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ABSTRACT: While estimates of the impact of climate change on health are
necessary for health care planners and climate change policy makers, models to
produce quantitative estimates remain scarce. This study describes a freely
available dynamic simulation model parameterized for three West Nile virus
vectors, which provides an effective tool for studying vectorborne disease risk
due to climate change. The Dynamic Mosquito Simulation Model is parame-
terized with species-specific temperature-dependent development and mortality
rates. Using downscaled daily weather data, this study estimates mosquito
population dynamics under current and projected future climate scenarios for
multiple locations across the country. Trends in mosquito abundance were
variable by location; however, an extension of the vector activity periods, and
by extension disease risk, was almost uniformly observed. Importantly, mid-
summer decreases in abundance may be offset by shorter extrinsic incubation
periods, resulting in a greater proportion of infective mosquitoes. Quantitative
descriptions of the effect of temperature on the virus and mosquito are critical to
developing models of future disease risk.

KEYWORDS: Ecological models; Disease; Ecological models; Local effects

1. Introduction
Robust quantitative models predicting vectorborne disease changes in response to

the changing climate are lacking (Hosking and Campbell-Lendrum 2012; Rodo et al.
2013). Mosquitoborne diseases are particularly vulnerable to a changing climate
because of the effect of weather conditions on pathogen and mosquito development,
survival, and reproduction and also on mosquito distribution and behavior [see re-
view by Paz (2015)]. Predicting how mosquitoes will respond is challenging because
of the complexity arising from interactions between mosquitoes and hosts, which
may be mediated by climate, host, and mosquitoes susceptibility to infection, which
varies among populations, and pathogen and vector development rates, which are
influenced by weather (Hartvigsen et al. 1998; Paz and Semenza 2013).

West Nile virus disease (WNV) is now the most common domestic arthropodborne
viral disease (Reimann et al. 2008). Presumably introduced from the Middle East,
the first WNV case in the United States occurred at the Bronx Zoo, New York, in
1999 (Jia et al. 1999). It subsequently spread across the country [see review by
Reisen (2013)]. WNV is particularly challenging as it involves multiple hosts and
multiple mosquito vectors [see, e.g., the review by Reisen (2013)]. While the virus
has been detected in many mammal species, the disease is primarily one in which
the virus is maintained in birds through a mosquito–avian transmission cycle, and
humans and horses are dead-end hosts (they can suffer from the disease but do not
transmit virus to mosquitoes). The disease exhibits seasonality with most of the
human cases occurring in late summer and fall. Because of the primary host of
concern being humans and also because of the preferred habitat of two primary
vectors (Culex pipiens and Cx. quinquefasciatus), West Nile virus disease is as-
sociated with urban areas (Reisen 2013). The other common vector, Cx. tarsalis, is
more commonly associated with agriculture but, being a stronger flyer, urban areas
near agriculture are generally more affected (Reisen and Reeves 1990).

Species’ distributions models, which identify abiotic and biotic factors that
support vector survival, have been used to predict a climate change–driven
northerly range expansion of the primary West Nile virus vectors (Chen et al. 2013;
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Harrigan et al. 2014; Hongoh et al. 2012). Temperature and precipitation are im-
portant underpinnings of the temporal component as seen with seasonal abundance
for Cx. tarsalis (Chen et al. 2012; Reisen et al. 2008) and Cx. pipiens (Ruiz et al.
2010). By integrating landscape (spatial) and climatic (temporal) information,
researchers can identify entomologic risk: when and where human exposure to
potentially infected vectors is most likely (Liu and Weng 2012).

Dynamic simulation models provide an alternative for studying vectorborne
diseases because they utilize a mechanistic approach (Pearce and Merletti 2006).
Rather than identifying suitable ecological niches, dynamic models simulate vector
abundance over time utilizing stage-dependent temperature-driven development and
mortality with location-specific daily weather data. They successfully simulated
observed WNV vector abundance (Gong et al. 2011; Morin and Comrie 2010).

We focus on two major WNV U.S. vectors, Cx. pipiens and Cx. tarsalis, ex-
panding the Dynamic Mosquito Simulation Model (DyMSiM) from the original
STELLA-based model for a southern U.S. WNV vector, Cx. quinquefasciatus
(Morin and Comrie 2010). DyMSiM is an agent-based compartmental model that
estimates daily mosquito abundance using temperature-dependent development and
mortality rates as well as availability of water for the immature stages of mosquito
development: egg, larval, and pupal stages. DyMSiM can be modified for most
mosquito species for which temperature-dependent development data are available
and for locations where appropriate weather (daily minimum and maximum tem-
perature and precipitation) information is known. We translated DyMSiM from the
original STELLA program into MATLAB to broaden the accessibility of this model
and enhance our ability to manipulate and add additional modules. The findings are
interpreted with respect to climate-related changes in WNV transmission.

2. Methods

2.1. Model parameters

DyMSiM simulates mosquito development using observed and simulated
weather data. Full model details are provided in Morin and Comrie (2010). Here,
we explain how daily mosquito development rates for each life stage were esti-
mated using daily mean temperatures.

2.1.1. Aquatic development

For the immature aquatic (all four larval instar stages, pupal, and total immature)
development, temperature-dependent rates were calculated using an updated Sharpe
and DeMichele biophysical model formula provided by Wagner et al. (1984):
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where r(T) is the mean development rate at a given temperature T (kelvins); R is the
universal gas constant (1.987 cal deg21mole21); RHO25 is the development rate at
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258C assuming no enzymatic activity; HA, HL, and HH are the enthalpies of
activation; and TL and TH are the temperatures (K) at which the rate-controlling
enzyme reaches 50% activity. Details of these parameters and Statistical Analysis
System (SAS) code can be found inWagner et al. (1984). We used the Wagner et al.
SAS program that fits the best form of the model (2-, 4-, or 6-parameter models)
using temperature-dependent development times reported in the literature for Cx.
tarsalis (Bailey and Gieke 1968; Henn et al. 2008; Mead and Conner 1987; Milby
and Meyer 1986; Miura and Takahashi 1988; Rosay 1972) and Cx. pipiens (Farid
1949; Gong et al. 2011; Horsfall 1955; Kramer 1915; Lang 1963; Mead and
Conner 1987; Rosay 1972; Tekle 1960). The best-fit parameter estimates are
provided in Table 1. Minimum and maximum temperatures where development
ceased were set at 58 and 358C for Cx. tarsalis (Miura and Takahashi 1988) and
2.258 and 428C for Cx. pipiens (Farid 1949).

2.1.2. Egg laying and development rate

The number of eggs laid per female was selected at random from a normal
distribution with a mean of 160 and standard deviation of 21 for Cx. tarsalis (Moon
1976) and a mean of 255 and standard deviation of 25 for Cx. pipiens (Horsfall
1955; Vinogradova 2000). For Cx. tarsalis, the Sharpe and DeMichele model was
used to estimate egg development (see Table 1; Miura and Takahashi 1988). For
Cx. pipiens, a regression model was used because of the small number of data
points precluding the biophysical model from converging (n 5 5; R2 5 0.97); the
development rate was set at

reggs(T)5
1

1432:53 T22:12
day21,

where T is temperature in degrees Celsius. The same values for minimum and
maximum temperatures where development ceased were used for egg development
as for immature life stages.

Table 1. Parameters for the Sharpe and DeMichele Biophysical Model amended by
Wagner et al. (1984) and including the R2 measure of model fit.

RH025 HA TH HH TL HL R2

Culex pipiens
First instar 0.504 79 12 927.326 0.79
Second instar 0.574 251 11 908.400 282.980 2550 608.142 0.78
Third instar 0.543 656 11 900.143 282.983 2628 405.268 0.77
Fourth instar 0.443 277 2604.056 294.768 228 634.755 0.75
Pupae 0.392 475 12 536.477 0.72
Total 0.140 519 1415.240 293.971 229 548.464 0.82

Culex tarsalis
Egg 2.556 353 218 025.080 302.924 240 346.708 0.80
First instar 0.712 604 3566.704 292.400 226 441.186 0.84
Second instar 0.506 259 13 356.187 630.729 3 427 774.210 0.57
Third instar 0.495 195 9499.657 316.571 56 110.276 285.641 257 243.149 0.89
Fourth instar 0.482 360 21025.198 294.935 228 104.745 0.50
Pupae 0.445 716 5563.977 211 685.968 578 472.022 0.91
Total 0.100 301 5319.224 288.385 229 542.827 0.89
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2.1.3. Gonotrophic progression rate, extrinsic incubation period, and vector
competence

Temperature-dependent gonotrophic development was defined by the following
formulas:

Culex tarsalis520:0661 0:0183 T day21,

and

Culex pipiens5
1

5052:73 T22.149
day21,

where T is temperature (8C). The rate for Cx. tarsalis was reported in Hartley et al.
(2012), while the rate for Cx. pipiens was derived from reported development data
(Tekle 1960; n5 4 data points; R2 5 0.98). The minimum temperature to lay eggs
was set to 3.678C for Cx. tarsalis and 108C for Cx. pipiens (Horsfall 1955). After a
lag of approximately 2 days depending on the daily calculated gonotrophic pro-
gression rate, female mosquitoes were assumed to successfully find blood meals
and lay eggs after completion of a temperature-dependent gonotrophic cycle.

The extrinsic incubation period (EIP) was set to occur above 14.358C (when the
EIP becomes positive) at a rate of 20:1321 0:00923 T per day for both species
(estimate derived using Cx. tarsalis data; Reisen et al. 2006). Using temperature-
dependent EIP and the gonotrophic cycle, we calculated the number of days to
infectiousness for each cohort of mosquitoes. We then calculated the proportion of
infected vectors.

Vector competence, the proportion of mosquitoes fed an infectious blood meal
that become infected (detectable West Nile virus in the saliva), was set to 0.79 for
both species (Goddard et al. 2002; Turell et al. 2001; Turell et al. 2002).

2.1.4. Mortality rates

During each life stage, mortality occurs, removing individuals from the popula-
tion. For eggs and adults, the rates were temperature independent: 5%day21 for eggs
(Eisenberg et al. 1995) with no thresholds for Cx. tarsalis found in the literature and
above 28 and below 428C (Farid 1949) for Cx. pipiens; between 08 and 408C, adults
died at a rate of 16.6%day21 for Cx. tarsalis (Mahmood et al. 2004; Moon 1976;
Reisen et al. 1995) and 22%day21 for Cx. pipiens (Gong et al. 2011; Tekle 1960).

The amount of permanent water was set by the user. Daily precipitation data are
used to increase the amount of water available in the system, which then evaporates
at a fixed rate. Ideally, the model can be amended to account for permanent water
sources (accounting for human behavior like excess watering, unmaintained pools
or fountains, and other sources like ponds and sewers, which are important habitats
for Cx. pipiens), semipermanent sources (such as irrigation, which is important
habitat for Cx. tarsalis), and containers that fill with precipitation and evaporate
based on temperature and hours of daylight. In this version of the model, water
levels are important for the calculation of carrying capacity [see Morin and Comrie
(2010) for detail] and do not overflow and washout immature life stages with
extreme events (Koenraadt and Harrington 2008).
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2.1.5. Weather data

Long-term daily temperature and precipitation data from weather stations were
downloaded from the U.S. Historical Climatology Network. Stations were selected
where daily temperature and precipitation data were available for at least 95% of
each year for the period 1970–2000 and include some diversity with respect to the
range of each mosquito’s distribution [based on Darsie and Ward (2005); recreated
as Figure 1]. This high threshold on the availability of meteorological data for
urban areas within the current ranges of Cx. pipiens and Cx. tarsalis yielded four
(Allentown, Pennsylvania; Groton, Connecticut; Fort Collins, Colorado; and Ur-
bana, Illinois) and five (Chandler Heights, Arizona; El Paso, Texas; Fort Collins,
Colorado; Redlands, California; and Urbana, Illinois) sites, respectively (starred
locations in Figure 1).

Future weather data were generated using the Long Ashton Research Station
Weather Generator (LARS-WG), version 5, a stochastic weather generator that
utilizes current daily weather data to generate a time series of daily weather data
with the same statistical properties as the recorded weather station data (Semenov
and Stratonovitch 2010). Of the 14 available global climate models used in the
International Panel on Climate Change (IPCC) Fourth Assessment Report1 in-
corporated into LARS-WG, we chose the National Center for Atmospheric Re-
search’s Community Climate System Model, version 3 (CCSM), to generate a
synthetic current baseline, midcentury (MC: 2045–65) and end of century (EOC:
2080–99) estimates under two projected climate scenarios—the IPCC’s SRA2 and
SRB1 scenarios. We selected CCSM because this high-resolution (1.48 3 1.48)
model incorporates radiation, boundary physics, and precipitation physics with
their atmospheric component and a land surface model incorporating soil and
vegetation.

While there is some question regarding whether to use single models, multiple
models for comparison, or means of multiple models, Winter and Nychka (2010)
showed that model averages perform less well under situations where individual
forecasts generally agree. To test whether the differences among the GCMs would
influence the interpretation of our simulated mosquito abundances, we compared a
subset of the results based on the CCSM to the United Kingdom’s HadCM3 GCMs for
the midcentury and end of century using the original STELLA version of the model.

The two future climate scenarios (SRA2 and SRB1) represent the range of future
climate assumptions (Bernstein et al. 2007). SRA2 assumes high human population
growth with slow carbon dioxide reductions. Under this scenario, mean global
temperatures are assumed to rise by 3.48C from 1980 to 1999 to 2090 to 2099.
SRB1 assumes the world population peaks in the midcentury with rapid changes in
economic structure that reduce carbon dioxide emissions. In this scenario, the
average global temperature increase over the next century is 1.88C.

At each of the four Cx. pipiens and five Cx. tarsalis locations listed above for
each time period (midcentury and end of century), 30 simulations of the 30 years of
simulated data were run for each species and climate change scenario combination.
A double-pass filter was applied to smooth the data, and a weighted scale factor
was applied to scale the estimate to the observed data.

1 At the time of this analysis, the IPCC Fifth Assessment Report scenarios were not yet incor-
porated into LARS-WG.
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2.2. Model validation

Model accuracy was assessed using Colorado Mosquito Control, Inc.’s (CMC),
2003–09 surveillance data (Cx. tarsalis and Cx. pipiens: 34.8 trap nights per week,
standard deviation 12.3, range 1–50) and the Connecticut Agricultural Experiment
Station’s (CAES) 2000–10 surveillance data (Cx. pipiens: 1.7 traps per week, range
1–4). CMC’s surveillance data were from Fort Collins (408330330N, 105840410W), an
urban area in north-central Colorado with the Rocky Mountain foothills to the west
and irrigated agriculture to the east. CMC’s municipal surveillance program was
established in response to the incursion of WNV into the region and serves a dual
purpose of monitoring infection rates and mosquito abundance on a temporal scale.
The CAES has been collecting mosquitoes for arbovirus surveillance in 91 locations
across the state since the 1990s. The CAES data used here were from Bridgeport
(418110110N, 738110440W), an urban area (Cx. pipiens habitat) that also had a com-
plete set of meteorological data available. Ideally, additional locations could have
been validated, but mosquito surveillance data consistently collected at a specific
location (rather than in response to complaints) over long periods of time are rare.

Data analysis

Multiple comparisons of the abundance estimations between the observed and
simulated data were used. Because the magnitude of Pearson’s correlation is not
well defined with respect to the accuracy of a model prediction, we also reported
Willmott’s d and root-mean-square error (Willmott et al. 1985). These latter indices
consider the difference between observed and predicted values, where RMSE is low
and Willmott’s d approaches 1 when the predicted values match the observed data.

To compare an epidemiologically important level of abundance, we dichoto-
mized weeks at greater than 10 mosquitoes per trap night (TA from experience).
We then visually compared the number of weeks across the different species–
scenario–time period combinations.

Vectorial capacity C provides an overview of the components necessary for
mosquitoborne disease transmission:

C5
ma2Pn

2lnP
,

where m is the density of mosquito to hosts, a is the probability a vector feeds on
the host, P is the daily survival, and n is the EIP—the number of days it takes for
the mosquito to become infectious (Macdonald 1957).

For a mosquito to transmit disease, it must take an infectious blood meal, survive
the period of time it takes for the pathogen to replicate and infect the mosquito
(EIP), and the mosquito must successfully find a second, susceptible host. Thus,
mosquitoborne disease transmission is related to the number of mosquitoes m
surviving the infectious period Pn and feeding on susceptible hosts a2. These are
mediated by the number of infected hosts, host feeding preferences, susceptibility
of mosquitoes and host to infection, and host behavior (e.g., birds eating mos-
quitoes or humans using repellant). These, in turn, are mediated by environmental
factors including the influence of weather on host (e.g., birds taking flight or
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Figure 1. Comparison of simulated (a)Culex pipiens and (b)Culex tarsalismosquito
populations. Shaded areas show the U.S. distribution of the two species
[redrawn from Darsie and Ward (2005)], and the black stars indicate lo-
cations from which weather data were acquired and the abundance
simulated (for Cx. pipiens: Groton, Connecticut; Allentown, Pennsylvania;
Urbana, Illinois; and Fort Collins, Colorado; for Cx. tarsalis: Urbana, Illinois;
Fort Collins, Colorado; El Paso, Texas; Chandler, Arizona; Redlands, Cal-
ifornia). The left column of graphs for each location shows MC (2045–65)
and the right column shows EOC (2080–99) estimates. The upper graph of
each couplet shows a scaled estimate of the number of mosquitoes per
trap night and the lower graph shows the percentage of infective mos-
quitoes. In all images, black dashed lines provide current estimates, the
solid blue lines are SRA2 scenarios and dotted red lines are SRB1 scenarios.
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humans remaining indoors) and mosquito behavior, the availability of habitat for
mosquitoes, and weather-related effects on mosquito survival and development. To
address multiple components of transmission while restricting ourselves to those
parameters for which reliable data were available, we focused on changes in
1) mosquito abundance (related to m), 2) the period of time (weeks of the year)
when the mosquitoes were active (related to m), and 3) the fraction of infectious
mosquitoes (related to Pn).

Notably missing in this model are hosts. This limits our interpretation to changes
in entomologic risk rather than changes in disease incidence. However, at this time,
good estimates for host abundance (e.g., species-specific bird populations), sus-
ceptibility across communities (both avian and human), and behavior (e.g., human
mosquito repellant use or avian host aggregation) are unavailable.

3. Results

3.1. Model validation

Similar to a mosquito model for the northeastern United States by Gong et al.
(2011), our model was able to simulate the observed interannual variability in

Figure 1. (Continued)
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vector populations and captures the peaks and troughs in annual mosquito abun-
dance. The Pearson’s correlation coefficient for Cx. pipiens was low but significant
for the single Connecticut site (Pearson’s r 5 0.34, P , 0.001), and the model
comparisons indicated a good fit (RMSE and Willmott’s d) between the simulation
population and the observed data (Table 2).

While light traps are the standard for Culex surveillance, they are limited in the
information they provide. Discrepancies between observed and predicted abun-
dance are common in models like these (Gong et al. 2011; Morin and Comrie
2010), but scaling the number of mosquitoes used to seed the model helped to
narrow the difference. Moreover, while the light traps used for mosquito surveil-
lance are a good estimate of relative vector abundance for the Culex species, they
are limited in the physical area they sample (Brown et al. 2008). Thus, while the
magnitude may be scaled to match the simulated to the observed, similarity in the
seasonal patterns is more critical.

3.2. Projected changes in vector abundance

Changes in mosquito abundance were localized, with abundance increasing (e.g.,
Fort Collins, Colorado, for both species; Figure 1, top row of graphic) or decreasing
(e.g., Chandler Heights, Arizona; Figure 1b) depending on the location. Generally,
there was a latitudinal gradient where higher latitudes experienced increased abun-
dance, while lower latitudes experienced a decrease in midsummer abundance.
Warming in cool regions may be exhibiting a positive effect on mosquito develop-
ment but, at the upper edges of thermal tolerance, heating had a negative effect. The
most dramatic decrease is predicted for Cx. tarsalis in Chandler Heights, Arizona,
where for all future scenarios midsummer abundance was reduced to near zero.

3.3. Projected changes in vector phenology

Comparing the 30 simulated years for each scenario (SRA2 and SRB1) and time
period (midcentury and end of century), we showed a nearly uniform increase in
the number of weeks with mosquito activity. The extension of the season is evident
in the annual average abundance (top row of the Figure 1 graphs) as well as in the
epidemiologically important increase in number of weeks with more than 10
mosquitoes per trap nights (Figure 2).

Table 2. Comparison between median numbers of mosquitoes per trap night av-
eraged across the weeks of the available data. Observed and double pass–
smoothed estimated weekly data [measures of agreement performed on log10(11)
transformed data] excluding missing data (i.e. no winter).

Years
Trap per
week

No. per week
(observations)

No. per week
(prediction) Pearson’s r RMSE Willmott’s d

Cx. pipiens
CT 02–10 1 (1–4) 4 (0–132) 0.7 (0–17.3) 0.34 p , 0.001 4.77 0.59
CO 03–10 41 (1–50) 2.10 (0–20.8) 0.18 (0–7.5) 0.69 p , 0.001 2.90 0.82

Cx. tarsalis
CO 03–10 41 (1–50) 11.0 (0–277.9) 0.48 (0–54.7) 0.43 p , 0.001 7.64 0.67
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3.4. Projected changes in infectious vectors

Using temperature-dependent EIP and the gonotrophic cycle, we calculated the
number of days to infectiousness for each cohort. We then calculated the proportion
of infectious mosquitoes (Figure 1, lower panel of each graphic couplet). This
provided nuance to the estimated changes in mosquito abundance; while populations
may decrease with higher midsummer temperatures, because the number of bites to
transmission would be reduced, the proportion of infectious mosquitoes increased. In
Chandler Heights, Arizona, estimates of the infectious proportion reached near 40%
under the end of century estimates compared with just 5% and ;3% for Urbana,
Illinois (peak SRA2 and SRB1 end of century estimates, respectively).

3.5. Global climate model comparison

Using the STELLA version of the model, we compared the Cx. tarsalis abun-
dance for Urbana, Illinois, based on the CCSM and the United Kingdom’s
HadCM3 GCMs for the midcentury and end of century (results not shown). We
selected Cx. trasalis in Urbana, Illinois, because this combination showed an in-
crease in midcentury predictions but a decrease in midsummer abundance for the
end of century simulations. There was no statistically significant difference in
either the total annual abundance or the late summer (critical mosquito period)
estimated by either model. A similar midsummer reduction in the number of
mosquitoes is observed, though this decrease is more pronounced in the HadCM
model. Both models predict a similar period of mosquito activity.

4. Discussion
We present a model parameterized using previously published field and labo-

ratory data, which estimates mosquito population dynamics in response to daily
weather data at selected sites across each mosquito species’ distribution. Like

Figure 2. Number of weeks with increased vector activity, defined as weeks where
the scaled estimates of the number of mosquitoes per trap night are
greater than 10.
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others, while the estimated number of vectors had to be scaled to numbers observed
in light traps, we found a significant association between observed Culexmosquito
population dynamics and ground level weather data (Gong et al. 2011; Morin and
Comrie 2010). We add three important findings with respect to future climate and
vectorborne disease to this body of literature: 1) climate-related changes in vector
population dynamics will vary by location; 2) changes will occur in both vector
abundance and length of the vector activity period; and 3) beyond changes in vector
abundance, survival to transmission is important to predicting risk.

4.1. Changes in vector population dynamics will vary by location

Our model shows some areas (generally the higher latitudes: Colorado, Con-
necticut, and Illinois) will warm to support increased vector abundance, while others
(generally currently hot areas: El Paso, Texas, and Chandler Heights, Arizona) may
become too hot, thus negatively affecting mosquito development and survival. Based
on the association between the probability of vector presence and current WNV
cases at the county level, Harrigan et al. (2014) projected WNV expansion due to
expansion of suitable climate. Their findings are synergistic to our city level mod-
eling of seasonal changes, where the extension of the season and the increased
abundance at more northerly latitudes likely translates to greater risk of West Nile
virus disease. The midsummer reductions in abundance we observed in lower lati-
tudes may translate to decreased mosquitoes activity and thus reduced disease risk.

The WNV vectors studied here are limited both in their presences and in their
seasonal activity by elevation (Barker et al. 2010; Schurich et al. 2014). While the
analysis presented here did not allow us to specifically evaluate vector distribution
across elevations, we can expect that, just as cooler northerly latitudes may become
more permissible, higher elevations may also become more permissible and con-
versely some of the lower elevations may become less permissible.

4.2. Changes will occur in both vector abundance and length of the
vector activity period

Comparing future climate scenarios with the current vector season, we show
mosquitoes emerging earlier in the year and remaining active longer into the fall
(Figures 1, 2). This is important in vectorborne diseases likeWNV that have a period
of amplification in their avian reservoir populations that may be followed by in-
creases in human biting rates (Kilpatrick et al. 2006). The late summer is a critical
period in WNV transmission when either through host switching (Kilpatrick et al.
2006) or through changes in the prevalence of infectious mosquitoes (Hamer et al.
2009), human cases are reported. Warmer temperatures have been associated with
earlier onset of host-seeking and feeding activity among Cx. tarsalis; however, in
1 year of a study, but greater WNV activity was not observed (Reisen et al. 2010).

4.3. Survival to transmission is important to predicting risk

Our study highlights the importance of considering not just changes in mosquito
abundance but changes in viral replication as well in order to get closer to a
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measure of human risk. We do not directly calculate vectorial capacity C because
of insufficient estimates of virus transmission efficiencies and true avian and hu-
man biting rates. Nonetheless, the data presented address two components of
vectorial capacity—the host biting rate ma and the fraction of infectious mos-
quitoes (which requires survival through the extrinsic incubation period). Our
measures of mosquito abundance can be considered a surrogate for ma, the host
biting rate (Dye 1986). Only mosquitoes surviving the EIP are able to transmit
pathogens (Gubler et al. 2001), thus mosquito survival beyond the extrinsic in-
cubation period Pn is an important component in determining whether disease will
persist in a host population (Novoseltsev et al. 2012). It should be noted that while
studies have shown a reduction in fecundity due to infection with WNV, mosquito
survival was not affected (Styer et al. 2007).

Changes in abundance must be considered in conjunction with expected changes
in the EIP. Hartley et al. (2012) found that, though survival decreased with
warming, the effect of warming on the EIP and the gonotrophic cycle yielded a
greater proportion of females surviving to transmission. This effect of shortening
the EIP with increasing temperature was shown in vivo for WNV in both Cx.
pipiens (Dohm et al. 2002; Kilpatrick et al. 2008) and Cx. tarsalis (Reisen et al.
2006). Similarly, our simulation suggests that the shortening of the EIP and
gonotrophic cycle had a positive effect on the proportion of mosquitoes surviving
to transmission. For example, in Chandler Heights, Arizona, while there may be a
drop in mosquito abundance with the increased temperatures, the decrease in time
to infectiousness results in a greater proportion of mosquitoes surviving the in-
cubation period.

4.4. Limitations of results and recommended uses

Two important limitations of this model with respect to investigating the effect
of climate change on WNV vector distribution include 1) the automatic recovery
feature, where if the population drops below one, a single mosquito is returned to
the pool of adults thus maintaining the system; and 2) the model has no evolu-
tionary adaptation to new temperatures.

Recovery is incorporated into the model to maintain the population over the
winter when mosquitoes in cooler climes either diapause because of the shortened
day length or seek warmer locations and cease feeding and host-seeking activity.
During this period, surveillance trapping yields few to no mosquitoes (Bolling et al.
2007; Spielman 2001). Recovery prevents the simulated populations from reaching
zero despite inhospitable conditions and thus mosquito populations rebound when
the conditions are again permissive (Morin and Comrie 2010). This mathemati-
cally necessary recovery is similar to biological diapause (effectively allowing
mosquitoes to survive the winter and reappear in the spring) and has little effect on
the calculated averages as the time at which mosquitoes are reintroduced varies
between years. It could also reflect reinitialization of populations due to immi-
gration. The current version of the model lets populations survive through the
winter in permissible regions; simulations in regions that become prohibitive due to
reduced precipitation would appear as successions of recovery and crashes and can
therefore be detected.
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An organism’s adaptation to the changing climate will influence its future a-
bundance and distribution. Empirical data on the adaptive capacity of mosquitoes
are limited. We know of one example where researchers investigated climate-
related evolutionary changes in egg desiccation, a limiting factor for Aedes aegypti
distribution. Relying on observed evolutionary changes in egg desiccation resis-
tance in a model system (Drosophila), researchers showed adaptation in desicca-
tion resistance of Ae. aegypti eggs may have led to the establishment of this
important disease vector in heavily populated areas of Australia (Kearney et al.
2009). Bradshaw and Holzapfel (2006) report mosquito populations exhibiting
rapid evolutionary shifts in the timing of diapause to take advantage of
temperature-induced changes in season length. We know of no other models of
disease vectors that incorporate evolutionary adaptation to a changing climate.
Models will need to include adaptation to temperature, changes in seasonality,
desiccation, and even snowmelt runoff for some species.

5. Conclusions
We expanded DyMSiM to incorporate two additional WNV vectors as well as

mosquito competence and temperature-dependent EIP, yielding a quantitative tool
for comparing population dynamics that vary based on meteorological data. This
analysis provided three important epidemiological findings: 1) changes in mos-
quito population dynamics will vary by location, 2) mosquito activity periods are
generally expected to increase across sites in the northern latitudes of the United
States, and 3) the interaction between temperature on both the virus and the
mosquito will be critical to understanding future disease risk.

While this model provides important insight to WNV transmission in the United
States, it does not provide a future WNV risk map. Many factors beyond mosquito
biology influence whether a disease occurs (Randolph and Rogers 2010). This
model focuses on disease vectors, ignoring human behavior, which modifies dis-
ease risk. Engaging in positive public health measures (e.g., mosquito control,
removal of potential breeding sites around the home, protecting water storage
sources, utilization of repellants and protective clothing, being aware of host-
seeking vector habits) has an influence on susceptibility and disease occurrence
(Reiter et al. 2003). When extrapolating this model or building upon it to include
disease risk, human behavior will need to be parameterized and integrated. Ad-
dressing the gap in quantitative assessments of the effects climate change will have
on mosquitoborne disease requires integration of mosquito, viral, and host pa-
rameters including how they interact and how they will adapt to future climates
(LaDeau et al. 2011).
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