Part VI: Grade 8

- Formula Chart
- Test Blueprint
- Test Content
- Sample Items
- Vocabulary List

EDITOR'S NOTE: Some scored student work may contain labeling elements used when the items were pilot tested. These labeling elements are separate and distinct from and are not a part of the test items themselves.

CMT Formula Chart

Connecticut Mastery Test - Fourth Generation

Mathematics Grade 8 Test Blueprint

Content Standards and Strands	\# of multiplechoice items	\# of openended items	\# of grid-in items
Numerical and Proportional Reasoning			
1. Place Value	4		
2. Pictorial Representations of Numbers	NT	NT	NT
3. Equivalent Fractions, Decimals and Percents	4	2	
4. Order, Magnitude and Rounding of Numbers	4	2	
5. Models for Operations	2	2	
6. Basic Facts	NT	NT	NT
7. Computation with Whole Numbers and Decimals			6
8. Computation with Fractions and Integers	6		
9. Solve Word Problems	2	2	2
10. Numerical Estimation Strategies	NT	NT	NT
11. Estimating Solutions to Problems		4	
12. Ratios and Proportions	4	2	
13. Computation with Percents			6
Geometry and Measurement			
14. Time	NT	NT	NT
15. Approximating Measures	6		
16. Customary and Metric Measures	2	2	2
17. Geometric Shapes and Properties	4	2	
18. Spatial Relationships	7	4	
Working with Data: Probability and Statistics			
19. Tables, Graphs and Charts	2	2	
20. Statistics and Data Analysis	4	1	2
21. Probability	2	2	
24. Classification and Logical Reasoning	2	2	
Algebraic Reasoning: Patterns and Functions			
22. Patterns	2	2	
23. Algebraic Concepts	4	3	2
Integrated Understandings			
25. Mathematical Applications		2	
TOTAL	61	36	20

* NT = Strand not tested at this grade level

Connecticut Mastery Test - Fourth Generation Mathematics Grade 8 Content

Strand	Grade 8 Concepts/Skills Assessed
1. Place Value	A. Identify alternative forms of expressing numbers using scientific notation.
2. Pictorial Representation of Numbers	Not tested
3. Equivalent Fractions, Decimals and Percents	A. Rename fractions and mixed numbers as equivalent decimals and vice versa. B. Rename fractions and decimals as equivalent percents and vice versa. C. Identify and/or shade decimals, fractions or percents of regions or sets.
4. Order, Magnitude and Rounding of Numbers	A. Order fractions and decimals including mixed numbers in context. B. Describe magnitude or order of mixed numbers, fractions and decimals in context. C. Round mixed numbers, fractions and decimals in context. D. Locate points on number lines and scales, including fractions, mixed numbers, decimals and integers.
5. Models for Operations	A. Identify the appropriate operation or equation to solve a story problem. B. Write a story problem from an equation.
6. Basic Facts	Not tested
7. Computation with Whole Numbers and Decimals	A. Add and subtract 3-, 4- and 5-digit whole numbers, money amounts and decimals. B. Multiply 2-and 3-digit whole numbers, money amounts and decimals by 1- or 2-digit numbers and decimals. Divide 2- and 3- digit whole numbers, money amounts and decimals by 1 -digit whole numbers and decimals. C. Multiply and divide whole numbers and decimals by $10,100,1,000,0.1$ and 0.01 .
8. Computation with Fractions and Integers	A. Add and subtract fractions and mixed numbers with reasonable and appropriate denominators. B. Multiply whole numbers and fractions by fractions and mixed numbers. C. Add or multiply positive and negative integers.
9. Solve Word Problems	A. Solve multistep problems involving fractions, mixed numbers, decimals and money amounts with or without extraneous information. B. Solve multistep problems involving whole numbers, mixed numbers, money amounts and decimals. C. Solve multistep problems involving whole numbers, fractions, mixed numbers, decimals or money amounts, and explain how the solution was determined.
10. Numerical Estimation Strategies	Not tested
11. Estimating Solutions to Problems	A. Determine a reasonable estimate, and describe the strategy used to arrive at the estimate. B. Given an estimate as a solution for problems involving whole numbers, mixed numbers, decimals and percents, judge its reasonableness and justify the decision.
12. Ratios and Proportions	A. Solve problems involving ratios. B. Solve problems involving proportions in context. C. Solve multistep problems involving ratio or proportion, and explain how the solution was determined.
13. Computation with Percents	A. Find percents of whole numbers or the percent a given number is of another number. B. Solve problems involving percents in context.
14. Time	Not tested
15. Approximating Measures	A. Estimate lengths, areas, volumes and angle measures.

Strand	Grade 8 Concepts/Skills Assessed
16. Customary and Metric Measures	A. Measure and determine perimeters, areas and volumes. Explain or show how the solution was determined.
B. Determine perimeters, areas and volumes. C. Solve problems involving conversions and/or operations within customary or metric units of measure.	
17. Geometric Shapes and Properties	A. Identify, describe and classify 2- and 3-dimensional geometric shapes and figures. B. Draw, describe and classify 2- and 3-dimensional geometric shapes and figures. Relationships
A. Identify congruent and similar figures. B. Draw, classify, describe and/ or explain why figures are similar. C. Locate and draw points on four-quadrant coordinate grids. D. Identify geometric transformations (reflections, rotations and translations). E. Draw geometric transformations (reflections, rotations and translations). F. Relate 2- and 3-dimensional representations and vice versa.	
19. Tables, Graphs and Charts	A. Identify correct information from tables, graphs and charts. B. Create graphs from data in tables and charts.
20. Statistics and Data Analysis	A. Draw reasonable conclusions from data in tables, graphs and charts. B. State a conclusion and explain why an answer is or is not reasonable based on the data. C. Solve problems involving means, medians, modes and ranges of sets of data.
21. Probability A. Identify correct solutions to problems involving elementary notions of probability and fairness expressed as fractions, decimals or percents.	
B. Solve problems involving elementary notions of probability and fairness expressed as	
fractions, decimals or percents and justify solutions.	

GRADE 8 SAMPLE ITEMS

1. Place Value - MC

Which number is equal to 3.02×10^{4} ?
O 0.000302
○ 0.0302
$\bigcirc 30,200$
O 3,020,000

3. Equivalent Fractions, Decimals and Percents - MC

At a school bake sale, $\frac{2}{5}$ of the number of pies sold were apple pies. Which percent is equal to $\frac{2}{5}$?

O 10\%
○ 20%
○ 40%
○ 60\%

3. Equivalent Fractions, Decimals and Percents - OE

S-1 Shade in 2.18 of the place-value blocks.

Key: $\square=.01$

S1A Shade in 2.18 of the place-value blocks.

S1E Shade in 2.18 of the place-value blocks.

$$
\text { Key: } \square=.01
$$

0

4. Order, Magnitude and Rounding of Numbers - MC

Wendal and his 3 friends compared the weights of their backpacks. The group borrowed a scale from their homeroom teacher and measured the weight of the 4 backpacks. The table below shows the results of their measurements.

Backpack Weights	
Owner	Weight (in pounds)
Wendal	$17 \frac{3}{8}$
Jamie	$17 \frac{5}{16}$
Raul	$17 \frac{3}{4}$
Mandy	$17 \frac{9}{16}$

Who had the heaviest backpack?
\bigcirc Wendal
\bigcirc Jamie
(-) Raul
○ Mandy

4. Order, Magnitude and Rounding of Numbers - OE

S-2 On the ruler below, mark an X at the point where 5.9 cm would be.

S 2 A On the ruler below, mark an X at the point where 5.9 cm would be.

1

S2B On the ruler Below, mark: an X at the point where 5.9 cm would.be.

1

1

S2D On the ruler below;: mark an X at the point where 5.9 cm would be.

S2E On the ruler below, mark an X at the point where 5.9 cm would be,

0

S2F On the ruler below, mark: an X at the point where 5.9 cm would bed

5. Models for Operations - MC

A farmer had 15.9 pounds of feed to give to her cows. She had 4 feeding bins she used to feed the cows. If she separated the feed evenly into the 4 bins, which number sentence could be used to determine the amount in one bin, b ?

○ $15.9 \times 4=b$
(-) $15.9 \div 4=b$
(15.9-4 = b

○ $15.9+4=b$

5. Models for Operations - OE

S-3 Write a story problem that can be solved using the number sentence

S3C Write a story problem that can be solved using the number sentence

$$
3 \times 8.3=\square
$$

$$
\text { Benny had les. } 30 \text { his mom }
$$

said she would tripelit if
le didhis Chars sointhe
end he had ${ }^{2} 24,90$,
\qquad
\qquad
\qquad
\qquad

S3D Write a story problem that can be solved using the number sentence

$$
3 \times 8.3=\square
$$

Sandy made a thriple backer of cookies There ore 8.3 cookies in each bede.
\qquad
\qquad
\qquad
\qquad

S3E Write a story problem that can be solved using the number sentence

$$
3 \times 8.3=\square
$$

If Lorie had $8: 3 \mathrm{~cm}$ of strong hew much would he have if he bought 3 times as much?
\qquad
\qquad

S3F Write a story problem that can be solved using the number sentence

$$
3 \times 8.3=\square
$$

Any mom gave me $\$ 8.3$ to buy a book. But the
I have. How much moniry dor 7 heed?

S3G Write a story problem that can be solved using the number sentence
$3 \times 8.3=\square$.
A baseball player had 3 hameruns, he needs 8.3 more hameruns to set a record. What would he have ta get?
\qquad
\qquad
\qquad
S3H write a story problem that can be solved using the number sentence

$$
3 \times 8.3=\square \text {. }
$$

When you der multiplication = you
multiple the $3 \times 8.3=249$ and cant
the number after the period and place
like 24.9

7. Computation with Whole Numbers and Decimals - GR

5,006.2-2,904.88 =

8. Computation with Fractions - MC

$2 \frac{1}{6}+1 \frac{3}{5}=$
© $3 \frac{23}{30}$
O $3 \frac{18}{30}$
O $3 \frac{4}{30}$
O $3 \frac{4}{11}$

9. Solve Word Problems - MC

Jerry had $3 \frac{1}{2}$ cups of mozzarella cheese and $2 \frac{3}{4}$ cups of cheddar cheese to put on 3 pizzas. He also added $1 \frac{1}{2}$ cups of Parmesan cheese to the pizzas. In all, how many cups of cheese did he put on the pizzas?

O $10 \frac{3}{4}$ cups
(-) $7 \frac{3}{4}$ cups
O $7 \frac{1}{4}$ cups
○ $6 \frac{5}{8}$ cups

9. Solve Word Problems - GR

Kwan went shopping for new clothes. He bought 2 shirts for $\$ 18.95$ each and 3 pairs of shorts for $\$ 15.50$ each. If he gave the cashier $\$ 100$, how much change should he get back?

9. Solve Word Problems - OE

S-1 Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female Squirrels	Life Span	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9.7 years	Chipper	9.2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? \qquad
Show your work or explain how you found your answer.

S1A Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female Squirrels	Life Span	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9.7 years	Chipper	9.2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? 2 yrs.
Show your work or explain how you found your answer.

First, I found the average of both the male and. female gray squirrels's life spans. Then, I aubtronted
the smaller life span ty from the larger one to get the difference.

S1B Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female Squirrels	Life Span	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9.7 years	Chipper	9.2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? 2 2
'Show your work or explain how you found your answer.

10.5 -
$8.5=2$
\qquad
\qquad
\qquad

S1C Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female	Life Squirrels	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9,7 years	Chipper	9,2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? 2 pars

Show your work or explain how you found your answer.

$$
\begin{aligned}
& \text { I averaged each life span and the } \\
& \text { subtinated }
\end{aligned}
$$

S1D Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female Squirrels	Life Span	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9.7 years	Chipper	9.2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? Femalos-10,5400 Mates - 8.5 years

Show your work or explain how you found your answer
2才1
11.3
-10.5
$+31.5$

I got my answer by adding at the number of years for lyme females and divide them bay 3.I did the same to the males.

S1E Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female Squirrels	Life Span	Male Squirrels	Life					
Span				$	$	Daphne	11.3 years	Boomer
:---:	:---:	:---:						
Kiwi	97 years	Chipper						
Peanut	10.5 years	Rocket						

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? 2.0

Show your work or explain how you found your answer.

I subtracted

S1F Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study

Female Squirrels	Life	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9.7 years	Chipper	9.2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? (c)

Show your work or explain how you found your answer.
female
11.3
9.7
10.5
31.5

Me木等
8.4

To
$\frac{1.9}{25.5}$

$$
\begin{array}{r}
241.5 \\
-25.5 \\
6.0
\end{array}
$$

I added up di of the female squirell life span then all of the moles. Then I subtracted the fonaleis total from the female total.

S1G Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female Squirrels	Life Span	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9.7 years	Chipper	9.2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? 9.5 pars

Show your work or explain how you found your answer.

$$
\begin{array}{r}
11.3 \\
9.7 \\
10.5 \\
8.4 \\
+7.9 \\
\hline 57 \div 6=9.5 \text { years }
\end{array}
$$

S1H Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female Squirrels	Life Span	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9.7 years	Chipper	9.2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? . 3 yes
Show your work or explain how you found your answer.

$$
\begin{array}{ccc}
11.3 \mathrm{y} s \mathrm{~s} & 9.12 \mathrm{ys} & 1.6 \mathrm{ycs} \\
-\frac{9.7}{1.6} \mathrm{yss} & -\frac{7.9}{1.3} \mathrm{yrs} & -\frac{1.3}{.3} \mathrm{yss}
\end{array}
$$

Found aug for both male/female then subtracted
\qquad

S1I Female gray squirrels generally live longer than male gray squirrels. The table below shows the life spans of 6 squirrels that were part of a study.

Female Squirrels	Life Span	Male Squirrels	Life Span
Daphne	11.3 years	Boomer	8.4 years
Kiwi	9.7 years	Chipper	9.2 years
Peanut	10.5 years	Rocket	7.9 years

According to the table, what was the difference, in years, of the average life span of a female gray squirrel and a male gray squirrel? $\quad 2.9$
Show your work or explain how you found your answer.
11.3
$\frac{-8.4}{29}$

11. Estimating Solutions to Problems - OE

A stadium can hold 108,400 people. It was about $3 / 4$ full of people for the last football game of the season.

What is a good estimate of the number of people who attended the last game? \qquad

Explain how you made your estimate.

S3AA stadium can hold 108,400 people. It was about $\frac{3}{4}$ full of people for the last football game of the season.

What is a good estimate of the number of people who attended the last game? 75,000
Explain how you made your estimate.
At the last football game there was about 100,000 people, and 埌 is 75%. 75% out of 100 is 75, so
I added on 3 more 01s and I got atbout 75,000
people.
\qquad

S3B A stadium can hold $108 ; 400$ people. It was about $\frac{3}{4}$ full of people for the last football game of the season.
What is a good estimate of the number of people who attended the last game? 8 要,000
Explain how you made your estimate.

S3C A stadium can hold 108,400 people. It was about $\frac{3}{4}$ full of people for the last football game of the season.
What is a good estimate of the number of people who attended the last game? 75,000
Explain how you made your estimate.

d sounded doun to 100,000 and ised $3 / 4$ of
$-100,000$.
\square

S-3f A stadium can hold 108,400 people. It was about $\frac{3}{4}$ full of people for the last football game of the season.
What is a good estimate of the number of people who attended the last game? 31500 Explain how you made your estimate.
108,400 is close to 110,000 . $3 / 4$ of 10 is. about 7 and $3 / 4$ of 100 is 75 put it togexiser and you got 75,700

S3E A stadium can hold 108,400 people. It was about $\frac{3}{4}$ full of people for the last football game of the season.

What is a good estimate of the number of people who attended the last game? $8 \geqslant, 000$
Explain how you made your estimate.
First I took 108,400 and divided it be) 4. Then I got my answer 27100. Then I times that by three since the fraction was $3 / 4$ and I got 81300 . Than I rounded that down to 81,000 .
\qquad
\qquad

S3F A stadium can hold 108,400 people. It was about $\frac{3}{4}$ full of people for the last football game of the season.
What is a good estimate of the number of people who attended the last game? 73,000 Explain how you made your estimate.
I rounded 108,400 to 110,000 and then 1 divided 110,000 by 3 because of $3 / 4$ gand scabtracted what I got when I
divided by 3 and of 73 ,000 (

S3G A stadium can hold 108,400 people. It was about $\frac{3}{4}$ full of people for the last football game of the season.

- What is a good estimate of the number of people who attended the last game? i 50.00

Explain how you made your estimate.
Iguess that it's about half of what it was last year so I Figure that \$0.000 would be a good estimate
\qquad $\ldots \ldots$..... : .. $\quad . .$.

S3H A stadium can hold 108,400 people. It was about $\frac{3}{4}$ full of people for the last football game of the season.

What is a good estimate of the number of people who attended the last game? 14,000
Explain how you made your estimate.

- $\frac{3}{4}$ would be 75% so $14,(x)$ would be 75 \% af $108,4(0)$

S3I A stadium can hold 108,400 people. It was about $\frac{3}{4}$ full of people for the last football game of the season.

What is a good estimate of the number of people who attended the last game? 98,200
Explain how you made your estimate.
in not raallysura how I got my answer hecausisal guessed
\qquad
\qquad
\qquad
\qquad
\qquad

12. Ratios and Proportions - MC

The ratio of pitchers to catchers at a baseball camp was 11:4. If there were 64 catchers, how many pitchers were at the camp?

O 44
○ 64

- 176

○ 256
12. Ratios and Proportions - OE

S-2 An Italian chef made 8 plates of spaghetti for every 3 plates of lasagna.
If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make altogether? \qquad
Show your work or explain how you found your answer.
\qquad

S2A An Italian chef made 8 plates of spaghetti for every 3 plates of lasagna.
If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make altogether? 286

Show your work or explain how you found your answer.

I cividecs the total rumbe of actes by 3 geting 26 mon I multidied mott al eight io gemenenlasaghes pates then I acicien the \# of lasugul praies to tre 7 7 esprojetio plates

S2B An Italian chef made 8 plates of spaghetti for every 3 plates of lasagna.
If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make altogether? 286
Show your work or explain how you found your answer.
$3 \longdiv { 7 8 }$
208

+78
+286

S2C An Italian chef made 8 plates of spaghetti for every 3 plates of lasagna.
If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make altogether? 286

Show your work or explain how you found your answer.

\qquad
\qquad

S2D An Italian chef made 8 plates of spaghetti for every 3 plates of lasagna.

If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make
altogether? 282
Show your work or explain how you found your answer.

$$
\frac{8}{3}=\frac{x}{78} \quad x=\frac{204}{\frac{+78}{282}}
$$

S2E An Italian chef made 8 plates of spaghetti for every 3 plates of lasagna.
If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make altogether? 208
Show your work or explain how you found your answer.
$78 \% 3=26$ $26 \times 8=208$

S2F An Italian chef made 8 plates of spaghetti for every 3 plates of lasagna.
If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make altogether? 286
Show your work or explain how you found your answer.

I added
 I added

$\overline{2}$
\qquad

S2H An Italian chef made 8 plates of spaghetti for every 3 plates of lasagna.

If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make altogether? 702

Show your work or explain how you found your answer.

\qquad
\qquad

S2I An Italian chef made 8 plates of spaghetti for every 3 plates of lasagịa.
If she made 78 plates of lasagna, how many plates of spaghetti and lasagna did she make altogether? 624

Show your work or explain how you found your answer

$$
\begin{aligned}
& \text { spagnettie for every } 3 \text { pion the } 78 \text { plates of } \\
& \text { she did the same for }(x) 8 \text { and got, } 624 \text {. }
\end{aligned}
$$ she did the same for the sion pot, 624.

lasagne. So It res (x) and g $^{\circ}$.
Well if the chef ate 8 plates of
\qquad
\qquad
\qquad
13. Computation with Percents - GR

What is 76% of $56 ?$

15. Approximating Measures - MC

The large square below is the base of a container. The small square is the base of a block.

Pablo filled the container evenly to the top with blocks stacked 4 high. Which is the best approximation for the number of blocks needed to fill the container evenly?

\bigcirc	9
\bigcirc	16
\odot	36
\bigcirc	64

16. Customary and Metric Measures - OE

S-3 Phil made sand art decorations. He had a rectangular container that he filled $\frac{1}{2}$ way full of sand. The picture shows the dimensions of the container.

What is the volume of the space that Phil filled with sand? \qquad
Show your work or explain how you found your answer.

S3A Phil made sand art decorations. He had a rectangular container that he filled $\frac{1}{2}$ way full of sand. The picture shows the dimensions of the container.

What is the volume of the space that Phil filled with sand? $1288 \mathrm{in}^{3}$
Show your work or explain how you found your answer.
The formula for volume is $L \times w * h$. (as* \quad. $* 14$) Following, this formula, I got $2576 \mathrm{in}^{3}$. Since he only filled $\frac{1}{2}$ the conceiver, I dividend by S to get 1288 in 3

S3C Phil made sand art decorations. He had a rectangular container that he filled $\frac{1}{2}$ way full of sand. The picture shows the dimensions of the container.

What is the volume of the space that Phil filled with sand? 1,288 in.
Show your work or explain how you found your answer.
$14^{\prime \prime} \cdot 23^{\prime \prime}-8^{\prime \prime}=2 ; 5 x^{\prime \prime} \div 2=1,288^{\prime \prime}$
\qquad
\qquad
\qquad
\qquad

S3D Phil made sand art decorations. He had a rectangular container that he filled $\frac{1}{2}$ way full of sand. The picture shows the dimensions of the container.

What is the volume of the space that Phil filled with sand? 257 The inches
Show your work or explain how you found your answer.
You multiply the length, which is 23 in,tyy the width, which is 8 in and then ty the height which is 14 in. then you will get 2576 inches.
\qquad
\qquad

16. Customary and Metric Measures - MC

Eli's car weighs 3,350 pounds. How many tons does the car weigh?
O 0.1675
○ 0.675
$\odot \quad 1.675$
○ 16.75
17. Geometric Shapes and Properties - MC

The picture below shows two flagpoles.

These flagpoles appear to create what kind of lines?
© Parallel
O Perpendicular
O Intersecting
O Obtuse

18. Spatial Relationships - OE

S-7 Barry traced the outline of two different floor tiles. The pictures below show his outlines.

Do the tiles appear to be similar?
Explain how you could tell for sure whether or not they are similar.

S7A $A^{\text {Barry traced the outline of two different floor tiles. The pictures below show his outlines. }}$

Do the tiles appear to be similar? No
Explain how you could tell for sure whether or not they are similar.
They are not similar because they aren't the same shape. One
has 90° angles and -the other joesnit. If two shapes are similar, the shape is the same but the size is different.
\qquad
\qquad
\qquad

S7B Barry traced the outline of two different floor tiles. The pictures below show his outlines.

Do the tiles appear to be similar? No
Explain how you could tell for sure whether or not they are similar.

\qquad

S7C Barry traced the outline of two different floor tiles. The pictures below show his outlines.

Explain how you could tell for sure whether or not they are similar.

\qquad
\qquad

S7D Barry traced the outline of two different floor tiles. The pictures below show his outlines.

Do the tiles appear to be similar? No
Explain how you could tell for sure whether or not they are similar.
The bigger tile is somewhat slanted to the right unlike the smaller tile which is

- straight.
\qquad
\qquad
\qquad

S7E Barry traced the outline of two different floor tiles. The pictures below show his outlines.

Do the tiles appear to be similar? No
Explain how you could tell for sure whether or not they are similar.
No they are not similar because the big one is a parallelogram and the smaller shape is a rectangle.

S7F Barry traced the outline of two different floor tiles. The pictures below show his outlines.

Do the tiles appear to be similar? ho
Explain how you could tell for sure whether or not they are similar.

\qquad
\qquad
\qquad

S7G Barry traced the outline of two different floor tiles. The pictures below show his outlines.

Do the tiles appear to be similar? Y S
Explain how you could tell for sure whether or not they are similar.
theyare - -similar because one has portal and they both look like rectangles
\qquad
\qquad
\qquad
\qquad
\qquad
Explain how you could tell for sure whether or not they are similar:

\qquad
\qquad
\qquad
S7I Barry traced the outline of two different floor tiles. The pictures below show his outlines.
Do the tiles appear to be similar? yes
Explain how you could tell for sure whether or not they are similar.
They are similar because it is definitely the same
shape the lines are just at different angles.
Lis
18. Spatial Relationships - MC

What view of the barrels is seen by the person in the picture?

\odot

O

O

O

This graph shows the winning percentage during the 2000 Major League Baseball regular season of the Eastern Division of the American League.

The Chicago White Sox, in the Central
Division, had a winning percentage of 59%.
About how much greater was their winning percentage than the percentage of the Boston Red Sox?

○ 2%
(-) 6%
○ 13%
○ 16%

19. Tables, Graphs and Charts - OE

The table shows the number of years ago several kinds of clothing were first worn.

Early Kinds of Clothing	
Kind	Number of Years Ago
Belts and Trousers	30,000
Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bar graph to show the same information.

S8A The table shows the number of years ago several kinds of clothing were first worn.

Early Kinds of Clothing	
Kind	Number of Years Ago
Belts and Trousers	30,000
Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bar graph to show the same information.

S8B The table shows the number of years ago several kinds of clothing were first worn.

Early Kinds of Clothing	
Kind	Number of Years Ago
Belts and Trousers	30,000
$:$ Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bir graph to show the same information.

S8C The table shows the number of years ago several kinds of clothing were first worn.
Early Kinds of Clothing

Early Kinds of Clothing	
Kind	Number of Years Ago
Belts and Trousers	30,000
Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bar graph to show the same information.

S8D The table shows the number of years ago several kinds of clothing were first worn.
Early Kinds of Clothing

Kind	Number of Years Ago
Belts and Trousers	30,000
Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bar graph to show the same information.

S8E The table shows the number of years ago several kinds of clothing were first worn.
Early Kinds of Clothing

	Kind	Number of Years Ago
A	Belts and Trousers	30,000
B	Knitted Skirts	20,000
C	Cotton	6,500
D	Silk	5,000
E	Buttoned Garments	13,000

Complete a bar graph to show the same information.

S8F The table shows the number of years ago several kinds of clothing were first worn.
Early Kinds of Clothing

Kind	Number of Years Ago
Beits and Trousers	30,000
Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bar graph to show the same information.

S8G The table shows the number of years ago several kinds of clothing were first worn.
Early Kinds of Clothing

Kind	Number of Years Ago
Beits and Trousers	30,000
Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bar graph to show the same information.

S8H-The table shows the number of years ago several kinds of clothing were first worn

Early Kinds of Clothing	
Kind	Number of Years Ago
Belts and Trousers	30,000
Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bar graph to show the same information.

S-8I The table shows the number of years ago several kinds of clothing were first worn.

Early Kinds of Clothing	
Kind	Number of Years Ago
Belts and Trousers	30,000
Knitted Skirts	20,000
Cotton	6,500
Silk	5,000
Buttoned Garments	13,000

Complete a bar graph to show the same information.

20. Statistics and Data Analysis - OE

S-4 The graph shows six planets and the number of miles each planet is from the Sun.
Planets' Average Distance From Sun

Michelle claims that Jupiter is about 3.4 times farther than Mars is from the Sun.
Based on the graph, is Michelle's claim reasonable? Write an explanation to show why you agree or why you do not agree with Michelle's claim.
Michelle claims that Jupiter is about 3.4 times farther than Mars is from the Sun.
Based on the graph, is Michelle's claim reasonable? Write an explanation to show why you agree or why you do not agree with Michelle's claim.
Yes, Stars is about 150 million miles avar. Multiply that by 3.4 and you wold get 510 . Jupiter loots about 490, so hes explindtion 3 not bod.
\qquad

S4B The graph shows six planets and the number of miles each planet is from the Sun.

Michelle claims that Jupiter is about 3.4 times farther than Mars is from the Sun
Based on the graph, is Michelle's claim reasonable? Write an explanation to show why you agree or why you do not agree with Michelle's claim.
Yes, I4 is reasonable. I yau divide 500 by 150 you get $3.3 \overline{3}$. That is well within rangle.
\qquad
\qquad

S4C The graph shows six planets and the number of miles each planet is from the Sun.
Planets' Average Distance From Sun

Planet
Michelle claims that Jupiter is about 3.4 itimes farther than Mars is from the Sunz
Based on the graph, is Michelle's claim reasonable? Write an explanation to show. why you agree or why you do not agree with Michelle's claim.
Do berause Marses distance from eart is abount
 $480 / 150=328$
$34 \neq 325$ \qquad

,

S4D The graph shows six planets and the number of miles each planet is from the Sun.

Michelle claims that Jupiter is about 3.4 times farther than Mars is from the Sun.
Based on the graph, is Michelle's claim reasonable? Write an explanation to show why you agree or why you do not agree with Michelle's claim.

Michelle's claim is not reasonable because if you find marss at 140 m (in millionsl and multiply it by 3.4, you get a lesser amount than the picture leads you to imagine.
/

S4F The graph shows six planets and the number of miles each planet is from the Sun.
Planets' Average Distance From Sun

Michelle claims that Jupiter is about 3.4 times farther than Mars is from the Sun.
Based on the graph, is Michelle's claim reasonable? Write an explanation to show why you agree or why you do not agree with Michelle's claim.

No, Michelle's claim is not reasonable because if Mercury's distance from the sun is about 40 million miles, and Jupiter's is about 490 million miles, then you know that 3.4 times 40 is not 490, but instead 136:

S4G The graph shows six planets and the number of miles each planet is from the Sun.
Planets' Average Distance From Sun

Michelle claims that Jupiter is about 3.4 times farther than Mars is from the Sun.
Based on the graph, is Michelle's claim reasonable? Write an explanation to show why you agree or why you do not agree with Michelle's claim.
I don't Think that micherle's cluim uris resunemb because yin woes of hour e ty me. Withy Jupiter by 3.4 and Mars by 3.4 ares $2^{\text {E ore uxesecs have to divine the }}$
correct.

S4H The graph shows six planets and the number of miles each planet is from the Sun.

0

S4I The graph shows six planets and the number of miles each planet is from the Sun.

Planets' Average Distance From Sun

Michelle claims that Jupiter is about 3.4 times farther than Mars is from the Sun.
Based on the graph, is Michelle's claim reasonable? Write an explanation to show why you agree or why you do not agree with Michelle's claim.
I aquee it closer.
\qquad
\qquad
\qquad
\qquad
20. Statistics and Data Analysis - GR

Louis works at a supermarket. His earnings from his last four paychecks are shown below.

$$
\begin{array}{ll}
\$ 187.53 & \$ 168.76 \\
\$ 205.64 & \$ 252.71
\end{array}
$$

What is the mean of Louis' earnings from these four paychecks?

21. Probability - MC

The spinners below are each divided into 4 equal sections

If each spinner is spun once, what is the probability that the arrows will both land on A ?
O $\frac{1}{4}$
○ $\frac{2}{16}$
© $\frac{1}{16}$

- $\frac{2}{4}$

21. Probability - OE

S-4 Bob was playing a game with his best friend, Jose. Jose would toss 2 coins at the same time. Jose would get a point each time the coins came up with one heads and one tails. Bob would get a point each time the coins came up either both heads or both tails.

Is this game fair? \qquad
Explain why or why not using the outcomes of tossing 2 coins.

S4A Bob was playing a game with his best friend, Jose. Jose would toss 2 coins at the same time. Jose would get a point each time the coins came up with one heads and one tails: Bob would get a point each time the coins came up either both heads or both tails.
Is this game fair? Yes \qquad
Explain why or why not using the outcomes of tossing 2 coins.

S4B Bob was playing a game with his best friend, Jose. Jose would toss 2 coins at the same time. Jose would get a point each time the coins came up with one heads and one tails. Bob would get a point each time the coins came up either both heads or both tails.
Is this game fair? \qquad
\qquad
Explain why or why not using the outcomes of tossing 2 coins.

S4C Bob was playing a game with his best friend, Jose. Jose would toss 2 coins at the same time. Jose would get a point each time the coins came up with one heads and one tails. Bob would get a point each time the coins came up either both heads or both tails.
Is this game fair? Hes \qquad
Explain why or why not using the outcomes of tossing 2 coins.
Pour can hate $H^{\prime}, T ; T, H ; H, H ; T, T$ both men have
\qquad
\qquad

S4D Bob was playing a game with his best friend, Jose. Jose would toss 2 coins at the same time. Jose would get a point each time the coins came up with one heads and one tails. Bob would get a point each time the coins came up either both heads or both tails.
Is this -game fair? yes
Explain why or why not using the outcomes of tossing 2 coins.
It is fair because Jose has a 50% chance of winning and so does Bob.
\qquad
\qquad
\qquad

S4E Bob was playing a game with his best friend, Jose. Jose would toss 2 coins at the same time. Jose would get a point each time the coins came up with one heads and one tails. Bob would get a point each time the coins came up either both heads or both tails:

Is this game fair? yes \qquad
Explain why or why not using the outcomes of tossing 2 coins.
I say it is fair becouse since there are 2 coins, one con land on hoods and the other ore canlard on tails very easily. Also both of the cans could land the same way meaning both on heads or both on tails.

S 4 F Bob was playing a game with his best friend, Jose. Jose would toss 2 coins at the same time Jose would get a point each time the coins came up with one heads and one tails. Bob would get a point each time the coins came up either both heads or both tails.
Is this game fair? \qquad _

Explain why or why not using the outcomes of tossing 2 coins.

S4G Bob was playing a game with his best friend; Jose. Jose would toss 2 coins at the same time. Jose would get a point each time the coins came up with one heads and one tails. Bob would get a point each time the coins came up either both heads or both tails.
Is this game fair?

Explain why or why not using the outcomes of tossing 2 coins.

S4I Bob was playing a game with his best friend, Jose. Jose would toss 2 coins at the same time. Jose would get a point each time the coins came up with one heads and one tails. Bob would: get a point each time the coins came up either both heads or both tails.

Is this game fair? $\cap 0$ \qquad
Explain why or why not using the outcomes of tossing 2 coins,
This is unfair because by tossing two coins Bobolas as advantage if he wis by these terms. Bob has a much greater chance of Whining -
22. Patterns - MC

The numbers below follow a pattern.

What is the 10 th term in the pattern?
© 6144
O 5744
○ 3072
$\bigcirc 192$

S-3 These numbers follow a pattern.

$$
610,510,420, \ldots, ?
$$

Which numbers are missing? \qquad

Explain why you think they are the missing numbers.

S3B These numbers follow a pattern.

S3C These numbers follow a pattern.

Which numbers are missing? 340,270
Explain why you think they are the missing numbers.
The potters shows that the Numbers are decreasing by 10 .

S3D These numbers follow a pattern. $70 \quad 60 \quad 50$
$\underset{\text { Which numbers are missing? } 340,270}{610,510,420, ?}, 210,160$
Explain why you think they are the missing numbers.
1 think they are the missing numbers because I figured out what the pattern was, and then did the work to
get the two missing numbers. I subtracted 70 From 420, and the 60 from 340. when 1 checked it.

S3E These numbers follow a pattern.

$$
610,510,420, ?, ?, 210,160
$$

Which numbers are missing? $330 ; 250$
Explain why you think they are the missing numbers.
They are the missing numbers because when you subtract the first two numbers, they go by one hundred. when you subtract sic and 420 , it is going by ninety, Every time you subtract two, it goes off by ten.

S3F These numbers follow a pattern.

$$
610,510,420, ?, ?, 210,160
$$

Which nimimess ace insides 340,271
Explain why you think they are the missing numbers.

S3G These numbers follow a pattern.

$$
610,510,420, ? ?, 210,160
$$

Which numbers are missing? 320,310
Explain why you think they are the missing numbers.
I think these numbers aremissina because all the hundred's are decreasing and the tens place repents twice then geest to to or 20 .
\qquad
\qquad

S3H These numbers follow a pattern. $\frac{310}{?}, \frac{240}{40}, 210,160$

$$
\frac{10,}{60} 510, \frac{420}{20}, \frac{240}{310}
$$

Explain why you think they-are the missing numbers.

10204060 and theirs
0 between both Numbers

23. Algebraic Concepts - GR

What is the value of x in this equation?

$$
2 x-4.01=7.13
$$

23. Algebraic Concepts - OE

S-6 Jenny has a collection of baseball and football cards. For every 5 baseball cards in the collection, there are 2 football cards.

If Jenny has a total of 133 cards in her collection, how many baseball cards does she have? \qquad

Show how you could use the table below to solve the problem.

Baseball	Football	Total
5	2	7

S6A Jenny has a collection of baseball and footballicards. For every 5 baseball cards in the collection, there are 2 football cards.

Ifi Jenny has a total of 133 cards in her collection, how many baseballicards does she hiave? \qquad
\qquad
Show how you could use the table below to solve the problem.

Baseball	Football	Total
5	2	7
10	4	14
15	6	21
20	8	28
25	0	35
30	12	42
95	25	133

S6B Jenny has a collection of baseball and football cards. For every 5 baseball cards in the collection, there are 2 football cards.

If Jenny has a total of 133 cards in her collection, how many baseball cards does she have? \qquad

Show how you could use the table below to solve the problem.

Baseball	Football 19	Total
¢ \times	迷 2	7
95	38	133
4	,	$\div 7$
		19

S6C Jenny has a collection of baseball and football cards: For every 5 baseball cards in the collection, there are 2 football eards.

If Jenny has a total of 133 cards in her collection, how many baseball cards does: she have? \qquad

Show how you could use the table below to solve the problem.

Baseball	Football	Total
5	2	7
50	20	70
100	40	140
95	38	133

S6D Jenny has a collection of baseball and football cards. Forevery 5 baseball cards in the collection; there are 2 football cards:

If Jenny has a total of 133 cards in her collection, how many baseball cárds does: she have? 140

Show how you could use the table below to solve the problem.

Baseball	Football	Total
5	2	7
10	4	14
15	6	21
20	8	28
25	10	35
30	12	42

S6E Jenny has a collection of baseball and football cards: For every 5 baseball cards in the collection, there are 2 football cards.

If Jenny has atotal of 133 eards in her collection, how many baseball cards does she have? \qquad
Show how you could use the table below ta solve the problem.

BasebalI:	Football	\ldots
5	2	Total
q5	38	7
		133

S6F Jenny has a collection of baseball and football cards. Forievery 5 baseball cards in the collection, there are 2 football lcards.

If Jenny, has a total of 133 cards in fier collection, how many baseball cards does she have? \quad 95 base vill incuids.

Show how you could use the table below to solve the problem.

Baseball ..	Football	\#: Total
5	2	7
, 用ir	- Le,	\%:
${ }_{4} \mathrm{E}$	7 \%	I Tin
, ii,	16	5
	.	- ... :
	.	\cdots

S6G Jenny has a collection of baseball and footballicards. For every 5 baseball cards in the collection, there are 2 football cards..

If Jenny Kias a total of 133 cards in her collection, how many baseball cards does she have? \qquad

Show how you could use the table below to solve the problemu

Baseball	Football	Total
5	2	7

S6H Jenny, has a collection of baseball and football cards. For every 5 baseball cards in the collection, there are 2 football cards.

If Jenny has a total of 133 cards in her collection, how many baseball cards does she have? \qquad

Show how you could use the table below to solve the problem.

Baseball	Football	Total
5	2	7
5	2	7
5	2	7
5	2	7
5	2	7

S6I Jenny has a collection of baseball and football cards. For every 5 baseball cards in the collection, there are 2 football cards.

If Jenny has a total of 133 cards in her collection, how many baseball cards does she have? \qquad

Show how you could use the table below to solve the problem.

Baseball	Football	Total
5	2	7
75	58	133
85	48	133
95	38	133
105	28	133
125	18	133

23. Algebraic Concepts - MC

Wendy was a painter. She paid $\$ 14.00$ for each gallon of paint she bought. She also bought a new brush for $\$ 4.99$. If x represents the number of gallons of paint she bought, which expression shows the amount of money she spent on paint and the brush?

○ $14-4.99 x$
(14x-4.99
○ $14+4.99 x$
(-) $14 x+4.99$

24. Classification and Logical Reasoning - MC

The following are clues to Carmen's age.

- It is an odd number greater than 10 but less than 22.
- It is not a prime number.
- It is not divisible by 5 .

What is Carmen's age?
○ 15
○ 17

- 21
$\bigcirc 23$

24. Classification and Logical Reasoning - OE

S-5 Use the Venn diagram to help you sort shapes.

Write the letter of each shape below into the appropriate set in the Venn diagram.

S5A Use the Venn diagram to help you sort shapes.

2

Write the letter of each shape below into the appropriate set in the Venn diagram.

S5B Use the Venn diagram to help you sort shapes.

Write the letter of each shape below into the appropriate set in the Venn diagram.

S5C Use the Venn diagram to help you sort shapes.

Write the Ietter of each shape below into the appropriate set in the Venn diagram.

S5D Use the Venn diagram to help you sort shapes.

Write the letter of each shape below into the appropriate set in the Venn diagram.

S5E Use the Venn diagram to help you sort shapes.

Write the letter of each shape below into the appropriate set in the Venn diagram.

D

S5F Use the Venn diagram to help you sort shapes.

Write the letter of each shape below into the appropriate set in the Venn diagram.

S5G Use the Venn diagram to help you sort shapes:

Write the Ietter of eaeh shape below inte the appropriate set in the Vern diagram.

E

S5H Use the Venn diagram to help you sortishapes:

Write the letter of each shape below into the appropriate set in the Venn diagram.

S5I Use the Venn diagram to help you sort shapes:

Write the Ietter of each shape below into the appropriate set in the Venn diagram.

25. Mathematical Applications

E-1 The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.

If the carousel rotates 4 times per minute, how many rotations could it make from

11 A.M. to 5 P.M.? \qquad

Show your work or explain how you found your answer.

E1A The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.

If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 PPM.? \qquad
Show your work or explain how you found your answer.
4 rotations/minute $\times 31 / 2$ minutes $=14$ rotations $/ 31 / 2$ minutes
60 wins $\div 8$ wins per aye $=7.5$ cycles $/$ hour
14 rotations/cycle $x 7.5$ cycles/hour $=105$ rotations/ hour
105 rotations/hour $x, 6$ hours $=630$ notations
析

E1B The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages; loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.
If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 P.M.? \qquad
Show your work or explain how you found your answer.

$$
3 \frac{1}{2} \cdot 4=14
$$

- rotates 14 times each ride

11 am to $5 \mathrm{pm}=6$ hours
6 hours $=360$ minutes $360 \div 8=45$
45 rides
$45 \cdot 14=630$
rotates 630 times
\qquad
\qquad
\qquad
\qquad

E1C The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.

If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 P.M.? C Se rotations.
Show your work or explain how you found your answer.

-antares.
\qquad
E1D The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.
If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 P.M.? 735 rotations
Show your work or explain how you found your answer.
From 11 to 5 it is 7 hours
$70 \times 60=420$ minutes

$3 / 2$
$4+4+4+2=14$
14 times every 8 minutes
$420 \div 8=52.5$

$$
52.5 \times 14=735
$$

first. I converted 11 To 5 pm into hours and
then multiolyed that by bo to get the \#of
minutes. Then I figured out now many times
the carosel rotated in $31 / 2$ minutes. Then I divided
420 by 8 and multiplied it by 14 because that
how many times it rotates every 8 minutes.

E1E The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.

If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 P.M.? 180
Show your work or explain how you found your answer.

E1F The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.

If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 P.M.? sC $3 / 8$ rotations

Show your work or explain how you found your answer.

E1G The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 p.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.
If the carousel rotates 4 times per minute, how many rotations could it make from 11 А.м. to 5 р.м.? 5,040
Show your work or explain how you found your answer.
11:00 Am
5: pm
hours $x \in 0) 360$ minute
$3 \frac{1}{2}$ mitus

1

$$
11:-12!-1:-2:-3:-4=-3!
$$

$\cdots, \ldots+\ldots, \ldots, \ldots$

| |
| :--- | :--- | :--- | :--- |

E1H The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.

If the carousel rotates 4 times per minute, how many rotations could it make from 11 A.M. to 5 P.M.? \qquad 224

Show your work or explain how you found your answer.

$$
\begin{aligned}
& 11 \text { ann to Ppm }=6 \text { hard } \\
& 6 \times 60 \text { min }=360 \text { mined } \div 8=45 \\
& 45 \quad 3.5 \times 8=28 \frac{28}{224}
\end{aligned}
$$

I convoresth hours to prese and divested bi, the 8 rim. cycle to get 45 the $3.5 \times 8=28+8$
\qquad
\qquad

E1I The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.
If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 P.M.? bl, 4 times
Show your work or explain how you found your answer.

I divided 60 by 8 then 1 divided 7.5 by $7 / 2$.
Then 1 multiplyed 2.1 times 4 and then 8.5 times 6 \& got 51.4

E1J The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual fide, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.

If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 P.M.? \qquad
Show your work or explain how you found your answer. ((ohrs)

E1K The Bushnell Park Carousel in Hartford opens in early May and runs through October from 11 A.M. to 5 P.M. One cycle of the carousel consists of 3 stages: loading people, the actual ride, and unloading people. It takes about 8 minutes to complete one cycle. The actual ride on the carousel takes $3 \frac{1}{2}$ minutes.

If the carousel rotates 4 times per minute, how many rotations could it make from
11 A.M. to 5 р.м.? \quad C
Show your work or explain how you found your answer.

$$
\begin{array}{r}
8+3.5=11.5 \\
11.5 \times 6=69
\end{array}
$$

Connecticut Mastery Test - Fourth Generation Mathematics Grade 8 Vocabulary List

About
Accurate
Acute angle
Add
Algebraic term
All together
A.M.

Angle (s)
Answer
Approximate
Arc
Area
Array
Arranged
Arrived at (as in determined)
Arrow
At least
Average
Axis
Bar graph
Between _ and
Categories
Capacity
Celsius degree
Centimeter
Chance
Change (as in money)
Chart
Chord
Circle
Circle graph
Circular face
Circumference
Classify
Clock (analog and digital)
Closest to
Column (s)
Combine
Combination
Common attribute
Compare
Complementary angles
Conclusion
Cone
Congruent
Coordinates

Coordinate grid
Cube
Cubic (feet, meters, etc)
Cubic millimeter
Cup
Cylinder
Data
Day
Days of the week
Decimal
Degree (s)
Denominator
Density
Depth
Describe
Design
Determined
Diagram
Diameter
Different
Digit
Divide
Double Bar Graph
Double Line Graph
Dozen
Edge
Elapsed time
Elliptical base
Equal
Equation
Equilateral
Equilateral triangle
Equivalent
Estimate
Exactly
Explain
Exponents (positive
\& Negative)
Expression
Evaluate
Event
Exponent
Face
Factor
Fahrenheit
Degrees
Fair
Farthest
Fewer, fewest

Fewer than	Line segment
Figure (as in	Liter
geometric figure)	Locate (d)
Foot	Long, longer,
Formulas	longest
Fraction	Lowest
Fractional part	Mass
Frequency table	Mathematical
Gallon	thinking
Geometric solid	Maximum
Grams	Mean
Graph	Measure
Greatest	Measurement
Grid (coordinate and	Median
dot paper)	Meter
Group	Midpoint
Grouped	Mile
Growing patterns	Milligram
Half	Milliliter
Half-Inch	Millimeter
Height (s)	Minimum
Hexagon	Minute
Highest	Missing
Hour	Mixed number
How many more	Mode
How many less	Month
Hundred (s)	More
Hundredth	More than
Improper fraction	Most
Inch	Most likely
In common	Multiple
Input	Multiply
Integers	Nearest
Intersect (ion)	Net (flat pattern)
Interval	No less
Irregular	No more than
Isosceles triangle	Number fact
Kilogram	Number line
Kilometer	Number sentence
Larger/larger than	Numerator
Least	Obtuse angle
Least Likely	Obtuse triangle
Length	Octagon
Less	Odd number
Less than	One-dimensional
Likely	Ones
Line of best fit	Open sentence
Line graph	Line of symmetry
Line plot	
	Ordion

Mathematics Grade 8 Vocabulary List (Continued)

Order (numbers)	Quadrilateral	Scatter plot	Table
Ordinal numbers	Quart	Scientific notation	Tall, taller, tallest
(first, second,	Quarter	Schedule	Temperature
etc)	Quotient	Second	Tens
Ordered pair	Radii	Segment	Tenth (s)
Ounce	Radius	Set	Term (in a pattern)
Outlier	Range	Shaded	Thousands
Output	Ratio	Shape	Thousandths
Parallel	Reasonable	Short, shorter,	Three-dimensional
Parallelogram	Rectangle,	shortest	Ton
Pattern	rectangular	Side (s)	Transformation
Pentagon	Rectangular prism	Size	Translation
Percent (\% of 100)	Reflection	Similar	Trapezoid
Perfect square	Regular polygon	Smaller/smaller than	Trend
Perfect cube	Rename	Solve/Solution	Triangle
Perimeter	Repeating	Sort	Two-dimensional
Perpendicular	patterns	Sphere	Unit (using dot
Pictograph	Replaced	Spinner	paper, base ten
Pint	Represents	Square	blocks, and
P.M.	Rhombus	Square centimeter	measurement)
Point (on a graph)	Right angle	Square feet	Unreasonable
Point (on a	Right trapezoid	Square inch	Unshaded
number line)	Right triangle	Square meter	Value
Polygon	Ring (draw a ring	Square number	Venn diagram
Possible	around)	Square unit	Vertical axis
Pound	Rotation (including	Square yard	Vertices
Predict	clockwise and	Stem-and-Leaf plot	Vertex
Probability	counterclockwise)	Story problem	Volume
Product	Rounding, rounded	Subtract	Week
Proportional	Row (s)	Sum	Weight
Pyramid	Same/ the same as	Surface area	Width
Pythagorean	Scale	Symbol	X-axis
Theorem	Scalene triangle	Symmetry	Y-axis
			Yard
			Year

This list, while not exhaustive, includes vocabulary with which all teachers and students should be familiar.
Bold words may be new vocabulary that should be used at this grade level.

STATE OF CONNECTICUT

M. Jodi Rell, Governor

STATE BOARD OF EDUCATION

Allan B. Taylor, Chairperson
Janet M. Finneran, Vice Chairperson
Beverly R. Bobroske
Donald J. Coolican
Rebecca Crosswaith
Lynne S. Farrell
Theresa Hopkins-Staten
Patricia B. Luke
Áine McCarthy
Timothy J. McDonald

Valerie Lewis (ex officio)
 Commissioner of Higher Education

Betty J. Sternberg
Commissioner of Education

The Connecticut State Department of Education is committed to a policy of equal opportunity/affirmative action for all qualified persons and does not discriminate in any employment practice, education program or educational activity on the basis of race, color, national origin, sex, religion, disability, age or any other basis prohibited by Connecticut state and/or federal nondiscrimination laws. Inquiries regarding the Department of Education's nondiscrimination policies should be directed to the Affirmative Action Officer, Connecticut State Department of Education, 165 Capitol Avenue, Harfford, Connecticut 06106, (860) 713-6530.

