Conceptual Category Progressions

Traditional Pathways

Algebra 1
 Geometry

Algebra 2
Plus Standards

The Real Number System

Extend the properties of exponents

to rational exponents.

N.RN.1: Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 .
N.RN.2: Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Use properties of rational and

irrational numbers.

N.RN.3: Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Quantities

Reason quantitatively and use units

to solve problems.

The Complex Number System

Perform Arithmetic Operation with

Complex Numbers

N.CN.1: Know there is a complex
number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b real.
N.CN.2: Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Use complex numbers in polynomial

identities and equations

(+) standards

N.CN.7: Solve quadratic equations with real coefficients that have complex solutions.
N.CN.8: Extend polynomial identities to the complex numbers. For example, rewrite $x^{2}+4$ as $(x+2 i)(x-$ 2i).
N.CN.9: Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

| *N.Q.1: Use units as a way to | | |
| :--- | :--- | :--- | :--- |
| understand problems and to guide | | |
| the solution of multi-step problems; | | |
| choose and interpret units | | |
| consistently in formulas; choose and | | |
| interpret the scale and the origin in | | |
| graphs and data displays. | | |
| *N.Q.2: Define appropriate | | |
| quantities for the purpose of | | |
| descriptive modeling. | | |
| *N.Q.3: Choose a level of accuracy | | |
| appropriate to limitations on | | |
| measurement when reporting | | |
| quantities. | | |

Seeing Structure in Expressions
Interpret the structure of
expressions (linear, exponential,

quadratic)

*A.SSE.1: Interpret expressions that represent a quantity in terms of its context.
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P.

Write expressions in equivalent

 forms to solve problems (Quadratic and Exponential)*A.SSE.3: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a. Factor a quadratic expression

Seeing Structure in Expressions
Interpret the structure of expressions
(Polynomial and Rationa)
*A.SSE.1: Interpret expressions that represent a quantity in terms of its context.
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P.
A.SSE.2: Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}$ -
$\left(y^{2}\right)^{2}$, thus recognizing it as a
difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

Write expressions in equivalent

forms to solve problems

*A.SSE.4: Derive the formula for the

to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx$ $1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. Arithmetic with Polynomial and Rational Expressions Perform arithmetic operations on polynomials (Linear and quadratic) A.APR.1: Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.		sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. Arithmetic with Polynomial and Rational Expressions Perform arithmetic operations on polynomials (beyond quadratic) A.APR.1: Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

		A.APR.2: Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$. A.APR.3: Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. A.APR.4: Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-\right.$ $\left.y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples. A.APR.6: Rewrite simple rational expressions in different forms; write ${ }^{a(x)} /_{b(x)}$ in the form $q(x)+{ }^{r(x)} / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	

Creating Equations Create equations that describe numbers or relationships (linear, quadratic and exponential for integer inputs) *A.CED.1: Create equations and inequalities in one variable and use them to solve problems. *A.CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes		(+) standards A.APR.5: Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. A.APR.7: Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions. Creating Equations Create equations that describe numbers or relationships (Equations using all available types of expressions, including simple root functions) *A.CED.1: Create equations and inequalities in one variable and use them to solve problems. *A.CED.2: Create equations in two or more variables to represent relationships between quantities;

with labels and scales.
*A.CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
*A.CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.

Reasoning with Equations and Inequalities
Understand solving equations as a process of reasoning and explain the reasoning (Master linear, learn as general principle)
A.REI.1: Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation
graph equations on coordinate axes with labels and scales.
*A.CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

Reasoning with Equations and Inequalities
Understand solving equations as a process of reasoning and explain the reasoning (simple radical and rational)
A.REI.2: Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Solve equations and inequalities in one variable

Reasoning with Equations and Inequalities
Solve systems of equations
A.REI.8: Represent a system of linear equations as a single matrix equation in a vector variable.
A.REI.9: Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).
has a solution. Construct a viable argument to justify a solution method.

Solve equations and inequalities in one variable (Linear inequalities; literal that are linear in the variables being solved for; quadratics with real solutions)
A.REI.3: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
A.REI.4: Solve quadratic equations in one variable.
a. a.Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=$ q that has the same
solutions. Derive the quadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to
A.REI.4: Solve quadratic equations in one variable.
b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.

Represent and solve equations and

 inequalities graphically (Combine polynomial, rational, radical, absolute value, and exponential functions)A.REI.7: Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.
*A.REI.11: Explain why the x coordinates of the points where the graphs of the equations $y=f(x)$ and y

exponential; learn as general principle)

A.REI.10: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
*A.REI.11: Explain why the x coordinates of the points where the graphs of the equations $y=f(x)$ and y $=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
A.REI.12: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Algebra 1

Geometry
Algebra 2
Plus Standards

Interpreting Functions

Understand the concept of a

function and use function notation
(learn as a general principle; focus on linear and exponential and arithmetic and geometric sequences)
F.IF.1: Understand that a function
from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
F.IF.2: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F.IF.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=$ $f(n)+f(n-1)$ for $n \geq 1$.

Interpreting Functions
Interpret functions that arise in application in terms of the context (Emphasize selection of appropriate models)
*F.IF.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
*F.IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

Interpret functions that arise in application in terms of the context		representations (Focus on using key features to guide selection of
(Linear, exponential and quadratic)		appropriate type of model function)
*F.IF.4: For a function that models a relationship between two quantities,		*F.IF.7: Graph functions expressed symbolically and show key features
interpret key features of graphs and		of the graph, by hand in simple cases
ables in terms of the quantities, and		and using technology for more
sketch graphs showing key features		mplicated cases.
given a verbal description of the		b. Graph square root, cube
intercepts; intervals where the		functions, including step
function is increasing, decreasing,		functions and absolute val
positive, or negative; relative		functions.
maximums and minimums;		c. Graph polynomial functions,
symmetries; end behavior; and		entifying zeros when
periodicity.		suitable factorizations are
*F.IF.5: Relate the domain of a		available, and showing end behavior.
function to its graph and, where		e. Graph exponential and
applicable, to the quantitative		logarithmic functions,
relationship it describes. For		showing intercepts and end
example, if the function $h(n)$ gives the		behavior, and trigonometric
number of person-hours it takes to		functions, showing period,
assemble n engines in a factory, then		midline, and amplitude.
the positive integers would be an		
appropriate domain for the function.		F.IF.8: Write a function defined by an expression in different but equivalent
*F.IF.6: Calculate and interpret the average rate of change of a function		forms to reveal and explain different properties of the function.
(presented symbolically or as a table)		
over a specified interval. Estimate the		F.IF.9: Compare properties of two
rate of change from a graph.		functions each represented in a
Analyze functions using different		graphically, numerically in tables,
representations (Linear, exponential,		by verbal descriptions). For example,
quadratic, absolute value, piecewise		given a graph of one quadratic

defined)

*F.IF.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F.IF.8: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
b. Use the properties of exponents to interpret expressions for exponential

function and an algebraic expression

 for another, say which has the larger maximum.
(+ standards)

*F.IF.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
functions. For example,
identify percent rate of
change in functions such as y
$=(1.02)^{t}, y=(0.97)^{t}, y=$
$(1.01) 12^{t}, y=(1.2)^{t} / 10$, and classify them as representing exponential growth or decay.
F.IF.9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Building Functions

Build a functions that models a

 relationship between two quantities (linear, exponential and quadratic)*F.BF.1: Write a function that describes a relationship between two quantities.
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying

Building Functions
Build a functions that models a relationship between two quantities (include all functions studied)
*F.BF.1: Write a function that describes a relationship between two quantities.
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.

Building Functions

Build a functions that models a

 relationship between two quantities*F.BF.1: Write a function that describes a relationship between two quantities.
c. Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.

\quad| \quadexponential, and relate these
 functions to the model. |
| :--- |
| *F.BF.2: Write arithmetic and |
| geometric sequences both |
| recursively and with an explicit |
| formula, use them to model |
| situations, and translate between the |
| two forms. |
| Build new functions from existing |

functions (Linear, exponential,
quadratic and absolute value)
F.BF.3: Identify the effect on the
graph of replacing $f(x)$ by $f(x)+k, k$
$f(x), f(k x)$, and $f(x+k)$ for specific
values of k (both positive and
negative); find the value of k given
the graphs. Experiment with cases
and illustrate an explanation of the
effects on the graph using
technology. Include recognizing even
and odd functions from their graphs
and algebraic expressions for them.

functions (include simple radical,
rational, and exponential functions;
emphasize common effect of each
transformation across function
types)
F.BF.3: Identify the effect on the
graph of replacing $f(x)$ by $f(x)+k, k$
$f(x), f(k x)$, and $f(x+k)$ for specific
values of k (both positive and
negative); find the value of k given
the graphs. Experiment with cases
and illustrate an explanation of the
effects on the graph using
technology. Include recognizing even
and odd functions from their graphs
and algebraic expressions for them.
F.BF.4: Find inverse functions.
a. Solve an equation of the
form $f(x)=c$ for a simple
function f that has an inverse
and write an expression for
the inverse. For example, $f(x)$
$\quad=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for x
f 1.
functions (include simple radical, al, and exponential fun transformation across function types)
F.BF.3: Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k$ (x), $f(k x)$, and $f(x+k)$ for specific negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using nnology. Include recognizing even and odd functions from their graphs
F.BF.4: Find inverse functions.
a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the ${ }^{3}$ verse. for example, $f(x)$ $=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for x $\neq 1$.

+ standards)

Build a functions that models a

(include all functions studied)

F.BF.1: Write a function that quantities.
c. Compose functions. For temperature in the

Linear, Quadratic and Exponential Construct and compare linear, quadratic, and exponential models and solve problems *F.LE.1: Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. *F.LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). *F.LE.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a		Linear, Quadratic and Exponential Models Construct and compare linear, quadratic, and exponential models and solve problems (Logarithms as solutions for exponentials) *F.LE.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *F.LE.4: For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology. Trigonometric Functions Extend the domain of trigonometric functions using the unit circle F.TF.1: Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. F.TF.2: Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	Trigonometric Functions Extend the domain of trigonometric functions using the unit circle F.TF.3: Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number. F.TF.4: Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

quantity increasing linearly, quadratically, or (more generally) as a polynomial function. Interpret Expressions for functions in terms of the situation they model (Linear and exponential of form $\left.f(x)=b^{x}+k\right)$ *F.LE.5: Interpret the parameters in a linear or exponential function in terms of a context.		Model periodic phenomena with trigonometric functions *F.TF.5: Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. Prove and apply trigonometric identities F.TF.8: Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle. (+ standards) Extend the domain of trigonometric functions using the unit circle F.TF.3: Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number. F.TF.4: Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

Algebra 1	Geo	Algebra 2	Plus Standards
Interpreting Categorical and Quantitative Data Summarize, represent, and interpret data on a single count or measurement variable S.ID.1: Represent data with plots on the real number line (dot plots, histograms, and box plots). S.ID.2: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. S.ID.3: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). Summarize, represent, and interpret data on two categorical and quantitative variables (Linear focus, discuss general principle) S.ID.5: Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data	Conditional Probability and the Rules of Probability Understand independence and conditional probability and use them to interpret data (Link to data from simulations and experiments) S.CP1: Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). S.CP.2: Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. S.CP.3: Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	Interpreting Categorical and Quantitative Data Summarize, represent, and interpret data on a single count or measurement variable S.ID.4: Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. Making Inferences and Justifying Conclusions Understand and evaluate random processes underlying statistical experiments S.IC.1: Understand statistics as a process for making inferences about population parameters based on a random sample from that population. S.IC.2: Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of	Conditional Probability and the Rules of Probability Use the rules of probability to compute probabilities of compound events in a uniform probability model S.CP.8: Apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and B$)=$ $P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model. S.CP.9: Use permutations and combinations to compute probabilities of compound events and solve problems. Using Probability to Make Decisions Calculate expected values and use them to solve problems S.MD.1: Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions. S.MD.2: Calculate the expected value of a random variable; interpret it as

(including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
S.ID.6: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
b. Informally assess the fit of a function by plotting and analyzing residuals.
c. Fit a linear function for a scatter plot that suggests a linear association.

Interpret linear models

S.ID.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
S.ID.8: Compute (using technology) and interpret the correlation coefficient of a linear fit.
S.ID.9: Distinguish between
S.CP.4: Construct and interpret twoway frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.
S.CP.5: Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

Use the rules of probability to

 compute probabilities of compound events in a uniform probability modelS.CP.6: Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.

5 tails in a row cause you to question the model?

Make inferences and justify

conclusions from sample surveys,

 experiments, and observational studiesS.IC.3: Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
S.IC.4: Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
S.IC.5: Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
S.IC.6: Evaluate reports based on data.
the mean of the probability distribution.
S.MD.3: Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
S.MD.4: Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?

Use probability to evaluate outcomes of decisions

S.MD.5: Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.

correlation and causation.	S.CP.7: Apply the Addition Rule, P(A or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.		a. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fastfood restaurant. b. Evaluate and compare strategies on the basis of expected values. For example, compare a highdeductible versus a lowdeductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident. S.MD.6: Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). S.MD.7: Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

Conceptual Category: Geometry (Modeling Standards denoted with an *)			
Algebra 1	Geometry	Algebra 2	Plus Standards
	Congruence Experiment with transformations in the plane G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. G.CO.2: Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch). G.CO.3: Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. G.CO.4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.		

[^0][^1]
definition of similarity in terms of
similarity transformations to decide if
they are similar; explain using
similarity transformations the
meaning of similarity for triangles as
the equality of all corresponding pairs
of angles and the proportionality of
all corresponding pairs of sides.
G.SRT.3: Use the properties of
similarity transformations to
establish the AA criterion for two
triangles to be similar.
Prove theorems involving similarity
G.SRT.4: Prove theorems about
triangles. Theorems include: a line
parallel to one side of a triangle
divides the other two proportionally,
and conversely; the Pythagorean
Theorem proved using triangle
similarity.
G.SRT.5: Use congruence and
similarity criteria for triangles to
solve problems and to prove
relationships in geometric figures.
Define trigonometric ratios and
solve problems involving right
triangles
G.SRT.6: Understand that by
similarity, side ratios in right triangles
are properties of the angles in the
triangle, leading to definitions of
trigonometric ratios for acute angles.

G.GPE.5: Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).		
G.GPE.6: Find the point on a directed line segment between two given points that partitions the segment in a given ratio. *G.GPE.7: Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.		
Geometric Measurement and Dimension Explain volume formulas and use them to solve problems G.GMD.1: Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.	Geometric Measurement and *G.GMD.3: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. Visualize relationships between two-	Dimension dimensional and three dimensional
Explain volume formulas and use objects	them to solve problems G.GMD.2: Give an informal argument using Cavalieri's principle for the	
formulas for the volume of a sphere		
and other solid figures.		

	G.G.MD.4: Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two- dimensional objects. Modeling with Geometry Apply geometric concepts in Aodeling situations *G.MG.1: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).	
	*G.MG.2: Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).	
	*G.MG.3: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).	

[^0]: G.CO.5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

 Understand congruence in terms of rigid motion (Build on rigid motions as a familiar starting point for development of concept of geometric proof)
 G.CO.6: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
 G.CO.7: Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
 G.CO.8: Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

[^1]: reasoning while using variety of ways of writing proofs)
 G.CO.9: Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
 G.CO.10: Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
 G.CO.11: Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

 ## Make geometric constructions

 (Formalize and explain processes)
 G.CO.12: Make formal geometric

