
 V.C.

CONNECTICUT STATE BOARD OF EDUCATION

Hartford

TO BE PROPOSED:

June 6, 2018

RESOLVED, That the State Board of Education adopts the Computer Science Teacher

Association (CSTA) K-12 Standards and the International Society for Technology Education

(ISTE) Standards for Students.

Approved by a vote of _________, this sixth day of June, Two Thousand Eighteen.

 Signed: ________________________________

 Dr. Dianna R. Wentzell, Secretary

 State Board of Education

1

CONNECTICUT STATE BOARD OF EDUCATION

Hartford

TO: State Board of Education

FROM: Dr. Dianna R. Wentzell, Commissioner of Education

DATE: June 6, 2018

SUBJECT: Adoption of the Computer Science Teacher Association (CSTA) K-12 Standards

and the International Society for Technology Education (ISTE) Standards for

Students

Executive Summary

Introduction

Today’s students are part of a world in which technology is evolving rapidly, forging new fields

of study, creating new types of jobs, and requiring new sets of skills. Not only must students

understand the use of digital tools can help solve tomorrow’s problems, they must also learn how

to create those tools. Students need opportunities to improve their learning by effectively

leveraging technology and to build an understanding of the principles and practices of computer

science. To better assist students in building the relevant knowledge and skills necessary in this

digital age, two sets of technology-related standards were recently revised by national experts:

the CSTA K–12 Standards and the ISTE Standards for Students.

The Association for Computing Machinery, Code.org, Computer Science Teachers Association,

Cyber Innovation Center, and National Math and Science Initiative collaborated with states and

districts to develop a framework that includes overarching, high-level computer science guidance

per grade band. In 2016, the K–12 Computer Science Framework was published promoting a

vision in which all students engage in computer science and innovation. The CSTA utilized the

K–12 Computer Science Framework to revise the national K–12 computer science standards. In

July 2017, CSTA released the CSTA K–12 Computer Science Standards that provide detailed,

measureable student performance expectations at particular grade levels in the discipline of

computer science.

The ISTE Standards for Students were also updated in 2016. These standards provide a

framework for amplifying digital age learning, citizenship, and teaching across the content areas.

They are designed to empower student voice and ensure that learning is a student-driven process

regardless of the discipline being taught.

History/Background

Computer science and digital citizenship continue to be a priority in Connecticut. In 2016, the

State Board of Education (Board) adopted the Position Statement on Computer Science

Education for All Students K–12. The position statement outlines the responsibilities for various

stakeholders to build a high-quality, comprehensive, and culturally-responsive computer science

education program for all Connecticut students.

2

Additionally, in July 2017, the legislature passed Public Act No. 17-67. This act established a

Digital Citizenship, Internet Safety, and Media Literacy Advisory Council (Council) to be

chaired by the Department of Education. One responsibility of the Council is to provide

recommendations to the Board regarding best practices relating to instruction in digital

citizenship, Internet safety, and media literacy. The ISTE Standards for Students support the

work of the Council and enable students to recognize the rights, responsibilities, and

opportunities of living, learning and working in an interconnected digital world.

The CSTA K–12 Computer Science Standards and the Connecticut Computer Science Education

Implementation Guidelines were introduced for review and consideration to the Academic

Standards and Assessment subcommittee of the Board on December 11, 2017. The members

supported the work of the Connecticut Computer Science Standards Committee and provided

feedback. Based on this feedback, the documents were revised to include a glossary,

implementation models, and a variety of curriculum resources.

Both the CSTA K–12 Computer Science Standards and ISTE Standards for Students were

presented to the Academic Standards and Assessment subcommittee of the Board on February

26, 2018. At this meeting, the members requested a visual representation to show the distinct

differences and possible overlap of these two sets of standards as well as a narrative outlining the

need for both sets of standards (Appendix A).

These documents were submitted to the Academic Standards and Assessment Subcommittee on

April 4, 2018. Upon review of these materials, the members of the committee recommended that

both sets of standards, the CSTA K–12 Computer Science Standards and the ISTE Standards for

Students, and related documents go forward for full Board adoption.

Recommendation

The Connecticut State Department of Education (CSDE) presents the CSTA K–12 Computer

Science Standards and ISTE Standards for Students for review and consideration of adoption.

Next-Steps

The CSDE will continue to work with multiple partners to ensure that when the CSTA K–12

Computer Science Standards and ISTE Standards for Students are adopted, there is accessible

professional learning for computer science education and digital learning for all districts.

Additionally, the CSDE will continue to work collaboratively with the Commission for

Educational Technology to leverage conference presentation opportunities, as well as online

resources such as webinars to educate districts on the CSTA K–12 Computer Science Standards

and ISTE Standards for Students.

 Prepared by: Jennifer Michalek

 Education Consultant, Academic Office

Approved by: Melissa K. Wlodarczyk Hickey, Ed.D.

 Reading/Literacy Director

COMPUTER SCIENCE

Learning to create technology

EDUCATION TECHNOLOGY

Learning to use technolo
gy

Global
Collaborator

Creative
Communicator

Knowledge
Constructor

Innovator
Designer

Digital
Citizen

Empowered
Learner

Computational
Thinker

Data and
Analysis

Networks
and the
Internet

Algorithms
and

Programming Impacts of
Computing

Computing
Systems

CSTA
K-12 Standards

2017

ISTE
Standards

for Students
2016

Appendix A ISTE Standards and Computer Science Standards:
Working Together to Best Prepare Today’s Students

English
Language

Arts
Mathematics Computer

Science
Social

Studies Science

ISTE

Connecticut Core Standards
Computer
Science
Teachers

Association

CT Elementary
and Secondary
Social Studies
Frameworks

Next Generation
Science

Standards
Connecticut

Standards

Academic
Subjects

Cross-
Disciplinary

Standards

ISTE Standards and Computer Science Standards:
Technology for Learning and Careers

ISTE Standards and Computer Science Standards:
Technology for Learning and Careers

The State Board of Education endorses the standards of the International Society for Technology in Education (ISTE) and the Computer
Science Teachers Association (CSTA). While the two leverage similar terminology, given that both support current instructional best
practices, they differ in significant ways.

The ISTE Standards for Students address how students learn, which includes — but does not depend on — the use of technology. The ISTE
Standards define habits of mind and general competencies, which many organizations believe are critical for students to master for life in a
digital world, rather than discrete content areas. Educators are encouraged to address the Standards across all academic areas, toward the goal
of deepening and scaling learning. Teachers should assess student proficiency in the ISTE Standards as part of general coursework, ideally as
part of longitudinal portfolios that demonstrate interdisciplinary mastery of digital learning skills.

The CSTA K–12 Standards provide a comprehensive set of K–12 standards in the academic subject of computer science. They are designed
to provide a clear understanding of the principles and practices of computer science as an independent discipline. The standards provide
academic coherence between coursework and the rapid growth of computing and technology in the modern world and address the need for
an educated workforce that can build and manage technology for the benefit of society.

Schools’ adoption of both the ISTE and CSTA Standards will help all students to understand and leverage technology for successful careers,
lifelong learning, and citizenship in today’s digital world.

ISTE Standards NCSTA Standards

Standard Type Habits of Mind, General Competencies Specific Technical Content

Purpose Deepen Learning Across All Subjects Develop Technical Skills

Applications All Subjects, Standards Discrete Subject

Used By All Students, Educators, and Leaders All Students and Teachers of CS

Assessment Type Cross-Disciplinary, Integrated Content Specific (e.g., AP Exam)

K-12 Computer Science Standards, Revised 2017

This document includes all levels of the 2017 CSTA K-12 Computer Science Standards, which were created by
educators and released at the CSTA Annual Conference in July 2017. These standards are licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

The K–12 Computer Science Framework, led by the Association for Computing
Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, and National
Math and Science Initiative in partnership with states and districts, informed the development of this work.

About the CSTA K-12 Computer Science Standards
Computer science and the technologies it enables rest at the heart of our economy and the way we live our lives. To be well-educated
citizens in a computing-intensive world and to be prepared for careers in the 21st century, our students must have a clear
understanding of the principles and practices of computer science. The CSTA K–12 Computer Science Standards delineate a core set
of learning objectives designed to provide the foundation for a complete computer science curriculum and its implementation at the
K–12 level. To this end, the CSTA Standards:

• Introduce the fundamental concepts of computer science to all students, beginning at the elementary school level.

• Present computer science at the secondary school level in a way that can fulfill a computer science, math, or science graduation credit.

• Encourage schools to offer additional secondary-level computer science courses that will allow interested students to study facets of
computer science in more depth and prepare them for entry into the work force or college.

• Increase the availability of rigorous computer science for all students, especially those who are members of underrepresented groups.

The standards have been written by educators to be coherent and comprehensible to teachers, administrators, and policy makers.

Levels 1A, 1B, 2, and 3A are the computer science standards for ALL students. The Level 3B standards are intended for students who
wish to pursue the study of computer science in high school beyond what is required for all students (specialty or elective courses).

Connection to the K-12 Computer Science Framework
The K–12 Computer Science Framework (k12cs.org) provides overarching, high-level guidance per grade bands, while the standards
provide detailed, measurable student performance expectations. The Framework was considered as a primary input for the standards
development process.

The CSTA Standards Revision Task Force crafted standards by combining concept statements and practices from the Framework. It
also used descriptive material from the Framework when writing examples and clarifying statements to accompany the standards.

Concepts
1. Computing Systems
2. Networks and the Internet
3. Data and Analysis
4. Algorithms and Programming
5. Impacts of Computing

Practices
1. Fostering an Inclusive Computing

Culture
2. Collaborating Around Computing
3. Recognizing and Defining

Computational Problems

4. Developing and Using Abstractions
5. Creating Computational Artifacts
6. Testing and Refining Computational

Artifacts
7. Communicating About Computing

Level 1A: Grades K-2 (Ages 5-7)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

1A-CS-01 Select and operate appropriate software to perform a variety of tasks, and recognize that
users have different needs and preferences for the technology they use.

People use computing devices to perform a variety of tasks accurately and quickly. Students should be able to
select the appropriate app/program to use for tasks they are required to complete. For example, if students
are asked to draw a picture, they should be able to open and use a drawing app/program to complete this
task, or if they are asked to create a presentation, they should be able to open and use presentation software.
In addition, with teacher guidance, students should compare and discuss preferences for software with the
same primary functionality. Students could compare different web browsers or word processing, presentation,
or drawing programs.

Devices 1.1

1A-CS-02 Use appropriate terminology in identifying and describing the function of common physical
components of computing systems (hardware).

A computing system is composed of hardware and software.Hardware consists of physical
components.Students should be able to identify and describe the function of external hardware, such as
desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, and printers.

Hardware &
Software

7.2

1A-CS-03 Describe basic hardware and software problems using accurate terminology.
Problems with computing systems have different causes. Students at this level do not need to understand
those causes, but they should be able to communicate a problem with accurate terminology (e.g., when an
app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Ideally,
students would be able to use simple troubleshooting strategies, including turning a device off and on to
reboot it, closing and reopening an app, turning on speakers, or plugging in headphones. These are,
however, not specified in the standard, because these problems may not occur.

Troubleshooting 6.2, 7.2

Networks and the Internet
1A-NI-04 Explain what passwords are and why we use them, and use strong passwords to protect

devices and information from unauthorized access.

Learning to protect one's device or information from unwanted use by others is an essential first step in
learning about cybersecurity. Students are not required to use multiple strong passwords. They should
appropriately use and protect the passwords they are required to use.

Cybersecurity 7.3

Data and Analysis
1A-DA-05 Store, copy, search, retrieve, modify, and delete information using a computing device and

define the information stored as data.

All information stored and processed by a computing device is referred to as data. Data can be images, text
documents, audio files, software programs or apps, video files, etc. As students use software to complete
tasks on a computing device, they will be manipulating data.

Storage 4.2

1A-DA-06 Collect and present the same data in various visual formats.

The collection and use of data about the world around them is a routine part of life and influences how people
live. Students could collect data on the weather, such as sunny days versus rainy days, the temperature at the
beginning of the school day and end of the school day, or the inches of rain over the course of a storm.
Students could count the number of pieces of each color of candy in a bag of candy, such as Skittles or
M&Ms. Students could create surveys of things that interest them, such as favorite foods, pets, or TV shows,
and collect answers to their surveys from their peers and others. The data collected could then be organized
into two or more visualizations, such as a bar graph, pie chart, or pictograph.

Collection
Visualization &
Transformation

7.1, 4.4

1A-DA-07 Identify and describe patterns in data visualizations, such as charts or graphs, to make
predictions.

Data can be used to make inferences or predictions about the world. Students could analyze a graph or pie
chart of the colors in a bag of candy or the averages for colors in multiple bags of candy, identify the patterns
for which colors are most and least represented, and then make a prediction as to which colors will have most
and least in a new bag of candy. Students could analyze graphs of temperatures taken at the beginning of the
school day and end of the school day, identify the patterns of when temperatures rise and fall, and predict if
they think the temperature will rise or fall at a particular time of the day, based on the pattern observed.

Inference &
Models

4.1

	
Algorithms and Programming
1A-AP-08 Model daily processes by creating and following algorithms (sets of step-by-step

instructions) to complete tasks.

Composition is the combination of smaller tasks into more complex tasks. Students could create and follow
algorithms for making simple foods, brushing their teeth, getting ready for school, participating in clean-up
time.

Algorithms 4.4

	
	
	

1A-AP-09 Model the way programs store and manipulate data by using numbers or other symbols to
represent information.

Information in the real world can be represented in computer programs. Students could use thumbs up/down
as representations of yes/no, use arrows when writing algorithms to represent direction, or encode and
decode words using numbers, pictographs, or other symbols to represent letters or words.

Variables 4.4

1A-AP-10 Develop programs with sequences and simple loops, to express ideas or address a
problem.

Programming is used as a tool to create products that reflect a wide range of interests. Control structures
specify the order in which instructions are executed within a program.

Sequences are the order of instructions in a program. For example, if dialogue is not sequenced correctly
when programming a simple animated story, the story will not make sense. If the commands to program a
robot are not in the correct order, the robot will not complete the task desired.

Loops allow for the repetition of a sequence of code multiple times. For example, in a program to show the
life cycle of a butterfly, a loop could be combined with move commands to allow continual but controlled
movement of the character.

Control 5.2

1A-AP-11 Decompose (break down) the steps needed to solve a problem into a precise sequence of
instructions.

Decomposition is the act of breaking down tasks into simpler tasks. Students could break down the steps
needed to make a peanut butter and jelly sandwich, to brush their teeth, to draw a shape, to move a character
across the screen, or to solve a level of a coding app.

Modularity 3.2

1A-AP-12 Develop plans that describe a program’s sequence of events, goals, and expected
outcomes.

Creating a plan for what a program will do clarifies the steps that will be needed to create a program and can
be used to check if a program is correct. Students could create a planning document, such as a story map, a
storyboard, or a sequential graphic organizer, to illustrate what their program will do. Students at this stage
may complete the planning process with help from their teachers.

Program
Development

5.1, 7.2

1A-AP-13 Give attribution when using the ideas and creations of others while developing programs.

Using computers comes with a level of responsibility. Students should credit artifacts that were created by
others, such as pictures, music, and code. Credit could be given orally, if presenting their work to the class, or
in writing or orally, if sharing work on a class blog or website. Proper attribution at this stage does not require
a formal citation, such as in a bibliography or works cited document.

Program
Development

7.3

	

1A-AP-14 Debug (identify and fix) errors in an algorithm or program that includes sequences and
simple loops.

Algorithms or programs may not always work correctly. Students should be able to use various strategies, such
as changing the sequence of the steps, following the algorithm in a step-by-step manner, or trial and error to
fix problems in algorithms and programs.

Program
Development

6.2

1A-AP-15 Using correct terminology, describe steps taken and choices made during the iterative
process of program development.

At this stage, students should be able to talk or write about the goals and expected outcomes of the
programs they create and the choices that they made when creating programs. This could be done using
coding journals, discussions with a teacher, class presentations, or blogs.

Program
Development

7.2

	
Impacts of Computing
1A-IC-16 Compare how people live and work before and after the implementation or adoption of

new computing technology.

Computing technology has positively and negatively changed the way people live and work. In the past, if
students wanted to read about a topic, they needed access to a library to find a book about it. Today,
students can view and read information on the Internet about a topic or they can download e-books about it
directly to a device. Such information may be available in more than one language and could be read to a
student, allowing for great accessibility.

Culture 7

1A-IC-17 Work respectfully and responsibly with others online.

Online communication facilitates positive interactions, such as sharing ideas with many people, but the public
and anonymous nature of online communication also allows intimidating and inappropriate behavior in the
form of cyberbullying. Students could share their work on blogs or in other collaborative spaces online, taking
care to avoid sharing information that is inappropriate or that could personally identify them to others.
Students could provide feedback to others on their work in a kind and respectful manner and could tell an
adult if others are sharing things they should not share or are treating others in an unkind or disrespectful
manner on online collaborative spaces.

Social
Interactions

2.1

1A-IC-18 Keep login information private, and log off of devices appropriately.

People use computing technology in ways that can help or hurt themselves or others. Harmful behaviors, such
as sharing private

information and leaving public devices logged in should be recognized and avoided.

Safety Law &
Ethics

7.3

	

Level 1B: Grades 3-5 (Ages 8-11)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

1B-CS-01 Describe how internal and external parts of computing devices function to form a system.

Computing devices often depend on other devices or components. For example, a robot depends on a
physically attached light sensor to detect changes in brightness, whereas the light sensor depends on the
robot for power. Keyboard input or a mouse click could cause an action to happen or information to be
displayed on a screen; this could only happen because the computer has a processor to evaluate what is
happening externally and produce corresponding responses. Students should describe how devices and
components interact using correct terminology.

Devices 7.2

1B-CS-02 Model how computer hardware and software work together as a system to accomplish
tasks.

In order for a person to accomplish tasks with a computer, both hardware and software are needed. At this
stage, a model should only include the basic elements of a computer system, such as input, output, processor,
sensors, and storage. Students could draw a model on paper or in a drawing program, program an animation
to demonstrate it, or demonstrate it by acting this out in some way.

Hardware &
Software

4.4

1B-CS-03 Determine potential solutions to solve simple hardware and software problems using
common troubleshooting strategies.

Although computing systems may vary, common troubleshooting strategies can be used on all of them.
Students should be able to identify solutions to problems such as the device not responding, no power, no
network, app crashing, no sound, or password entry not working. Should errors occur at school, the goal
would be that students would use various strategies, such as rebooting the device, checking for power,
checking network availability, closing and reopening an app, making sure speakers are turned on or
headphones are plugged in, and making sure that the caps lock key is not on, to solve these problems, when
possible.

Troubleshooting 6.2

Networks and the Internet
1B-NI-04 Model how information is broken down into smaller pieces, transmitted as packets through

multiple devices over networks and the Internet, and reassembled at the destination.

Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called
packets, which are sent independently and reassembled at the destination. Students should demonstrate their
understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted,
programming an animation to show how packets are transmitted, or demonstrating this through an unplugged
activity which has them act it out in some way.

Network
Communication
& Organization

4.4

1B-NI-05 Discuss real-world cybersecurity problems and how personal information can be protected.

Just as we protect our personal property offline, we also need to protect our devices and the information
stored on them. Information can be protected using various security measures. These measures can be
physical and/or digital. Students could discuss or use a journaling or blogging activity to explain, orally or in
writing, about topics that relate to personal cybersecurity issues. Discussion topics could be based on current
events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up
data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or
why we should install and keep anti-virus software updated to protect data and systems.

Cybersecurity 3.1

Data and Analysis
1B-DA-06 Organize and present collected data visually to highlight relationships and support a claim.

Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity.
Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by
a number of commonalities. The same data could be manipulated in different ways to emphasize particular
aspects or parts of the data set. For example, a data set of sports teams could be sorted by wins, points
scored, or points allowed, and a data set of weather information could be sorted by high temperatures, low
temperatures, or precipitation.

Collection
Visualization &
Transformation

7.1

1B-DA-07 Use data to highlight or propose cause-and-effect relationships, predict outcomes, or
communicate an idea.

The accuracy of data analysis is related to how realistically data is represented. Inferences or predictions based
on data are less likely to be accurate if the data is not sufficient or if the data is incorrect in some way.
Students should be able to refer to data when communicating an idea. For example, in order to explore the
relationship between speed, time, and distance, students could operate a robot at uniform speed, and at
increasing time intervals to predict how far the robot travels at that speed. In order to make an accurate
prediction, one or two attempts of differing times would not be enough. The robot may also collect

Inference &
Models

7.1

temperature data from a sensor, but that data would not be relevant for the task. Students must also make
accurate measurements of the distance the robot travels in order to develop a valid prediction. Students could
record the temperature at noon each day as a basis to show that temperatures are higher in certain months of
the year. If temperatures are not recorded on non-school days or are recorded incorrectly or at different times
of the day, the data would be incomplete and the ideas being communicated could be inaccurate. Students
may also record the day of the week on which the data was collected, but this would have no relevance to
whether temperatures are higher or lower. In order to have sufficient and accurate data on which to
communicate the idea, students might want to use data provided by a governmental weather agency.

Algorithms and Programming
1B-AP-08 Compare and refine multiple algorithms for the same task and determine which is the most

appropriate.

Different algorithms can achieve the same result, though sometimes one algorithm might be most appropriate
for a specific situation. Students should be able to look at different ways to solve the same task and decide
which would be the best solution. For example, students could use a map and plan multiple algorithms to get
from one point to another. They could look at routes suggested by mapping software and change the route to
something that would be better, based on which route is shortest or fastest or would avoid a problem.
Students might compare algorithms that describe how to get ready for school. Another example might be to
write different algorithms to draw a regular polygon and determine which algorithm would be the easiest to
modify or repurpose to draw a different polygon.

Algorithms 6.3, 3.3

1B-AP-09 Create programs that use variables to store and modify data.

Variables are used to store and modify data. At this level, understanding how to use variables is sufficient. For
example, students may use mathematical operations to add to the score of a game or subtract from the
number of lives available in a game. The use of a variable as a countdown timer is another example.

Variables 5.2

1B-AP-10 Create programs that include sequences, events, loops, and conditionals.

Control structures specify the order (sequence) in which instructions are executed within a program and can be
combined to support the creation of more complex programs. Events allow portions of a program to run
based on a specific action. For example, students could write a program to explain the water cycle and when a
specific component is clicked (event), the program would show information about that part of the water cycle.
Conditionals allow for the execution of a portion of code in a program when a certain condition is true. For
example, students could write a math game that asks multiplication fact questions and then uses a conditional
to check whether or not the answer that was entered is correct. Loops allow for the repetition of a sequence of
code multiple times. For example, in a program that produces an animation about a famous historical
character, students could use a loop to have the character walk across the screen as they introduce
themselves.

Control 5.2

1B-AP-11 Decompose (break down) problems into smaller, manageable subproblems to facilitate the
program development process.

Decomposition is the act of breaking down tasks into simpler tasks. For example, students could create an
animation by separating a story into different scenes. For each scene, they would select a background, place
characters, and program actions.

Modularity 3.2

1B-AP-12 Modify, remix, or incorporate portions of an existing program into one's own work, to
develop something new or add more advanced features.

Programs can be broken down into smaller parts, which can be incorporated into new or existing programs.
For example, students could modify prewritten code from a single-player game to create a two-player game
with slightly different rules, remix and add another scene to an animated story, use code to make a ball
bounce from another program in a new basketball game, or modify an image created by another student.

Modularity 5.3

1B-AP-13 Use an iterative process to plan the development of a program by including others'
perspectives and considering user preferences.

Planning is an important part of the iterative process of program development. Students outline key features,
time and resource constraints, and user expectations. Students should document the plan as, for example, a
storyboard, flowchart, pseudocode, or story map.

Program
Development

1.1, 5.1

1B-AP-14 Observe intellectual property rights and give appropriate attribution when creating or
remixing programs.

Intellectual property rights can vary by country but copyright laws give the creator of a work a set of rights that
prevents others from copying the work and using it in ways that they may not like. Students should identify
instances of remixing, when ideas are borrowed and iterated upon, and credit the original creator. Students
should also consider common licenses that place limitations or restrictions on the use of computational
artifacts, such as images and music downloaded from the Internet. At this stage, attribution should be written
in the format required by the teacher and should always be included on any programs shared online.

Program
Development

5.2, 7.3

1B-AP-15 Test and debug (identify and fix errors) a program or algorithm to ensure it runs as
intended.

As students develop programs they should continuously test those programs to see that they do what was
expected and fix (debug), any errors. Students should also be able to successfully debug simple errors in
programs created by others.

Program
Development

6.1, 6.2

	
	
	

1B-AP-16 Take on varying roles, with teacher guidance, when collaborating with peers during the
design, implementation, and review stages of program development.

Collaborative computing is the process of performing a computational task by working in pairs or on teams.
Because it involves asking for the contributions and feedback of others, effective collaboration can lead to
better outcomes than working independently. Students should take turns in different roles during program
development, such as note taker, facilitator, program tester, or “driver” of the computer.

Program
Development

2.2

1B-AP-17 Describe choices made during program development using code comments, presentations,
and demonstrations.

People communicate about their code to help others understand and use their programs. Another purpose of
communicating one's design choices is to show an understanding of one's work. These explanations could
manifest themselves as in-line code comments for collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding journal.

Program
Development

7.2

Impacts of Computing
1B-IC-18 Discuss computing technologies that have changed the world, and express how those

technologies influence, and are influenced by, cultural practices.

New computing technology is created and existing technologies are modified for many reasons, including to
increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their
teacher, should discuss topics that relate to the history of technology and the changes in the world due to
technology. Topics could be based on current news content, such as robotics, wireless Internet, mobile
computing devices, GPS systems, wearable computing, or how social media has influenced social and political
changes.

Culture 3.1

1B-IC-19 Brainstorm ways to improve the accessibility and usability of technology products for the
diverse needs and wants of users.

The development and modification of computing technology are driven by people’s needs and wants and can
affect groups differently. Anticipating the needs and wants of diverse end users requires students to
purposefully consider potential perspectives of users with different backgrounds, ability levels, points of view,
and disabilities. For example, students may consider using both speech and text when they wish to convey
information in a game. They may also wish to vary the types of programs they create, knowing that not
everyone shares their own tastes.

Culture 1.2

	
	

1B-IC-20 Seek diverse perspectives for the purpose of improving computational artifacts.

Computing provides the possibility for collaboration and sharing of ideas and allows the benefit of diverse
perspectives. For example, students could seek feedback from other groups in their class or students at
another grade level. Or, with guidance from their teacher, they could use video conferencing tools or other
online collaborative spaces, such as blogs, wikis, forums, or website comments, to gather feedback from
individuals and groups about programming projects.

Social
Interactions

1.1

1B-IC-21 Use public domain or creative commons media, and refrain from copying or using material
created by others without permission.

Ethical complications arise from the opportunities provided by computing. The ease of sending and receiving
copies of media on the Internet, such as video, photos, and music, creates the opportunity for unauthorized
use, such as online piracy, and disregard of copyrights. Students should consider the licenses on
computational artifacts that they wish to use. For example, the license on a downloaded image or audio file
may have restrictions that prohibit modification, require attribution, or prohibit use entirely.

Safety Law &
Ethics

7.3

Level 2: Grades 6-8 (Ages 11-14)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

2-CS-01 Recommend improvements to the design of computing devices, based on an analysis of
how users interact with the devices.

The study of human–computer interaction (HCI) can improve the design of devices, including both hardware
and software. Students should make recommendations for existing devices (e.g., a laptop, phone, or tablet) or
design their own components or interface (e.g., create their own controllers). Teachers can guide students to
consider usability through several lenses, including accessibility, ergonomics, and learnability. For example,
assistive devices provide capabilities such as scanning written information and converting it to speech.

Devices 3.3

2-CS-02 Design projects that combine hardware and software components to collect and exchange
data.

Collecting and exchanging data involves input, output, storage, and processing. When possible, students
should select the hardware and software components for their project designs by considering factors such as
functionality, cost, size, speed, accessibility, and aesthetics. For example, components for a mobile app could
include accelerometer, GPS, and speech recognition. The choice of a device that connects wirelessly through
a Bluetooth connection versus a physical USB connection involves a tradeoff between mobility and the need
for an additional power source for the wireless device.

Hardware &
Software

5.1

2-CS-03 Systematically identify and fix problems with computing devices and their components.

Since a computing device may interact with interconnected devices within a system, problems may not be due
to the specific computing device itself but to devices connected to it. Just as pilots use checklists to
troubleshoot problems with aircraft systems, students should use a similar, structured process to troubleshoot
problems with computing systems and ensure that potential solutions are not overlooked. Examples of
troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to
see if hardware will work, checking connections and settings, and swapping in working components.

Troubleshooting 6.2

Networks and the Internet
2-NI-04 Model the role of protocols in transmitting data across networks and the Internet.

Protocols are rules that define how messages between computers are sent. They determine how quickly and
securely information is transmitted across networks and the Internet, as well as how to handle errors in
transmission. Students should model how data is sent using protocols to choose the fastest path, to deal with
missing information, and to deliver sensitive data securely. For example, students could devise a plan for
resending lost information or for interpreting a picture that has missing pieces. The priority at this grade level
is understanding the purpose of protocols and how they enable secure and errorless communication.
Knowledge of the details of how specific protocols work is not expected.

Network
Communication
& Organization

4.4

2-NI-05 Explain how physical and digital security measures protect electronic information.

Information that is stored online is vulnerable to unwanted access. Examples of physical security measures to
protect data include keeping passwords hidden, locking doors, making backup copies on external storage
devices, and erasing a storage device before it is reused. Examples of digital security measures include secure
router admin passwords, firewalls that limit access to private networks, and the use of a protocol such as
HTTPS to ensure secure data transmission.

Cybersecurity 7.2

2-NI-06 Apply multiple methods of encryption to model the secure transmission of information.

Encryption can be as simple as letter substitution or as complicated as modern methods used to secure
networks and the Internet. Students should encode and decode messages using a variety of encryption
methods, and they should understand the different levels of complexity used to hide or secure information.
For example, students could secure messages using methods such as Caesar cyphers or steganography (i.e.,
hiding messages inside a picture or other data). They can also model more complicated methods, such as
public key encryption, through unplugged activities.

Cybersecurity 4.4

Data and Analysis
2-DA-07 Represent data using multiple encoding schemes.

Data representations occur at multiple levels of abstraction, from the physical storage of bits to the
arrangement of information into organized formats (e.g., tables). Students should represent the same data in
multiple ways. For example, students could represent the same color using binary, RGB values, hex codes
(low-level representations), as well as forms understandable by people, including words, symbols, and digital
displays of the color (high-level representations).

Storage 4

2-DA-08 Collect data using computational tools and transform the data to make it more useful and
reliable.

As students continue to build on their ability to organize and present data visually to support a claim, they will
need to understand when and how to transform data for this purpose. Students should transform data to
remove errors, highlight or expose relationships, and/or make it easier for computers to process. The cleaning
of data is an important transformation for ensuring consistent format and reducing noise and errors (e.g.,
removing irrelevant responses in a survey). An example of a transformation that highlights a relationship is
representing males and females as percentages of a whole instead of as individual counts.

Collection
Visualization &
Transformation

6.3

2-DA-09 Refine computational models based on the data they have generated.
A model may be a programmed simulation of events or a representation of how various data is related. In
order to refine a model, students need to consider which data points are relevant, how data points relate to
each other, and if the data is accurate. For example, students may make a prediction about how far a ball will
travel based on a table of data related to the height and angle of a track. The students could then test and
refine their model by comparing predicted versus actual results and considering whether other factors are
relevant (e.g., size and mass of the ball). Additionally, students could refine game mechanics based on test
outcomes in order to make the game more balanced or fair.

Inference &
Models

5.3, 4.4

Algorithms and Programming
2-AP-10 Use flowcharts and/or pseudocode to address complex problems as algorithms.

Complex problems are problems that would be difficult for students to solve computationally. Students should
use pseudocode and/or flowcharts to organize and sequence an algorithm that addresses a complex problem,
even though they may not actually program the solutions. For example, students might express an algorithm
that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort,
and cost. Testing the algorithm with a wide range of inputs and users allows students to refine their
recommendation algorithm and to identify other inputs they may have initially excluded.

Algorithms 4.4, 4.1

	

2-AP-11 Create clearly named variables that represent different data types and perform operations
on their values.

A variable is like a container with a name, in which the contents may change, but the name (identifier) does
not. When planning and developing programs, students should decide when and how to declare and name
new variables. Students should use naming conventions to improve program readability. Examples of
operations include adding points to the score, combining user input with words to make a sentence, changing
the size of a picture, or adding a name to a list of people.

Variables 5.1, 5.2

2-AP-12 Design and iteratively develop programs that combine control structures, including nested
loops and compound conditionals.

Control structures can be combined in many ways. Nested loops are loops placed within loops. Compound
conditionals combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT), and
nesting conditionals within one another allows the result of one conditional to lead to another. For example,
when programming an interactive story, students could use a compound conditional within a loop to unlock a
door only if a character has a key AND is touching the door.

Control 5.1, 5.2

2-AP-13 Decompose problems and subproblems into parts to facilitate the design, implementation,
and review of programs.

Students should break down problems into subproblems, which can be further broken down to smaller parts.
Decomposition facilitates aspects of program development by allowing students to focus on one piece at a
time (e.g., getting input from the user, processing the data, and displaying the result to the user).
Decomposition also enables different students to work on different parts at the same time. For example,
animations can be decomposed into multiple scenes, which can be developed independently.

Modularity 3.2

2-AP-14 Create procedures with parameters to organize code and make it easier to reuse.
Students should create procedures and/or functions that are used multiple times within a program to repeat
groups of instructions. These procedures can be generalized by defining parameters that create different
outputs for a wide range of inputs. For example, a procedure to draw a circle involves many instructions, but
all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, the user
can easily draw circles of different sizes.

Modularity 4.1, 4.3

	
	
	
	
	
	

2-AP-15 Seek and incorporate feedback from team members and users to refine a solution that
meets user needs.

Development teams that employ user-centered design create solutions (e.g., programs and devices) that can
have a large societal impact, such as an app that allows people with speech difficulties to translate hard-to-
understand pronunciation into understandable language. Students should begin to seek diverse perspectives
throughout the design process to improve their computational artifacts. Considerations of the end-user may
include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use,
color contrast, and ease of use.

Program
Development

2.3, 1.1

2-AP-16 Incorporate existing code, media, and libraries into original programs, and give attribution.

Building on the work of others enables students to produce more interesting and powerful creations. Students
should use portions of code, algorithms, and/or digital media in their own programs and websites. At this
level, they may also import libraries and connect to web application program interfaces (APIs). For example,
when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump
movement from another person's game, and they may also import Creative Commons-licensed images to use
in the background. Students should give attribution to the original creators to acknowledge their
contributions.

Program
Development

4.2, 5.2,
7.3

2-AP-17 Systematically test and refine programs using a range of test cases.

Use cases and test cases are created and analyzed to better meet the needs of users and to evaluate whether
programs function as intended. At this level, testing should become a deliberate process that is more iterative,
systematic, and proactive than at lower levels. Students should begin to test programs by considering
potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of
positive numbers).

Program
Development

6.1

2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing
computational artifacts.

Collaboration is a common and crucial practice in programming development. Often, many individuals and
groups work on the interdependent parts of a project together. Students should assume pre-defined roles
within their teams and manage the project workflow using structured timelines. With teacher guidance, they
will begin to create collective goals, expectations, and equitable workloads. For example, students may divide
the design stage of a game into planning the storyboard, flowchart, and different parts of the game
mechanics. They can then distribute tasks and roles among members of the team and assign deadlines.

Program
Development

2.2

	
	
	

2-AP-19 Document programs in order to make them easier to follow, test, and debug.

Documentation allows creators and others to more easily use and understand a program. Students should
provide documentation for end users that explains their artifacts and how they function. For example, students
could provide a project overview and clear user instructions. They should also incorporate comments in their
product and communicate their process using design documents, flowcharts, and presentations.

Program
Development

7.2

	
Impacts of Computing
2-IC-20 Compare tradeoffs associated with computing technologies that affect people's everyday

activities and career options.

Advancements in computer technology are neither wholly positive nor negative. However, the ways that
people use computing technologies have tradeoffs. Students should consider current events related to broad
ideas, including privacy, communication, and automation. For example, driverless cars can increase
convenience and reduce accidents, but they are also susceptible to hacking. The emerging industry will
reduce the number of taxi and shared-ride drivers, but will create more software engineering and
cybersecurity jobs.

Culture 7.2

2-IC-21 Discuss issues of bias and accessibility in the design of existing technologies.
Students should test and discuss the usability of various technology tools (e.g., apps, games, and devices) with
the teacher's guidance. For example, facial recognition software that works better for lighter skin tones was
likely developed with a homogeneous testing group and could be improved by sampling a more diverse
population. When discussing accessibility, students may notice that allowing a user to change font sizes and
colors will not only make an interface usable for people with low vision but also benefits users in various
situations, such as in bright daylight or a dark room.

Culture 1.2

2-IC-22 Collaborate with many contributors through strategies such as crowdsourcing or surveys
when creating a computational artifact.

Crowdsourcing is gathering services, ideas, or content from a large group of people, especially from the
online community. It can be done at the local level (e.g., classroom or school) or global level (e.g., age-
appropriate online communities, like Scratch and Minecraft). For example, a group of students could combine
animations to create a digital community mosaic. They could also solicit feedback from many people though
use of online communities and electronic surveys.

Social
Interactions

2.4, 5.2

	
	
	
	

2-IC-23 Describe tradeoffs between allowing information to be public and keeping information
private and secure.

Sharing information online can help establish, maintain, and strengthen connections between people. For
example, it allows artists and designers to display their talents and reach a broad audience. However, security
attacks often start with personal information that is publicly available online. Social engineering is based on
tricking people into revealing sensitive information and can be thwarted by being wary of attacks, such as
phishing and spoofing.

Safety Law &
Ethics

7.2

Level 3A: Grades 9-10 (Ages 14-16)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

3A-CS-01 Explain how abstractions hide the underlying implementation details of computing systems
embedded in everyday objects.

Computing devices are often integrated with other systems, including biological, mechanical, and social
systems. A medical device can be embedded inside a person to monitor and regulate his or her health, a
hearing aid (a type of assistive device) can filter out certain frequencies and magnify others, a monitoring
device installed in a motor vehicle can track a person’s driving patterns and habits, and a facial recognition
device can be integrated into a security system to identify a person. The creation of integrated or embedded
systems is not an expectation at this level. Students might select an embedded device such as a car stereo,
identify the types of data (radio station presets, volume level) and procedures (increase volume, store/recall
saved station, mute) it includes, and explain how the implementation details are hidden from the user.

Devices 4.1

3A-CS-02 Compare levels of abstraction and interactions between application software, system
software, and hardware layers.

At its most basic level, a computer is composed of physical hardware and electrical impulses. Multiple layers
of software are built upon the hardware and interact with the layers above and below them to reduce
complexity. System software manages a computing device’s resources so that software can interact with
hardware. For example, text editing software interacts with the operating system to receive input from the
keyboard, convert the input to bits for storage, and interpret the bits as readable text to display on the
monitor. System software is used on many different types of devices, such as smart TVs, assistive devices,
virtual components, cloud components, and drones. For example, students may explore the progression from
voltage to binary signal to logic gates to adders and so on. Knowledge of specific, advanced terms for
computer architecture, such as BIOS, kernel, or bus, is not expected at this level.

Hardware &
Software

4.1

3A-CS-03 Develop guidelines that convey systematic troubleshooting strategies that others can use to
identify and fix errors.

Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and
implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize
that a problem is similar to one they have seen before or adapt solutions that have worked in the past.
Examples of complex troubleshooting strategies include resolving connectivity problems, adjusting system
configurations and settings, ensuring hardware and software compatibility, and transferring data from one
device to another. Students could create a flow chart, a job aid for a help desk employee, or an expert system.

Troubleshooting 6.2

Networks and the Internet
3A-NI-04 Evaluate the scalability and reliability of networks, by describing the relationship between

routers, switches, servers, topology, and addressing.

Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing IP
addresses to determine the pathways packets should take to reach their destination. Switches function by
comparing MAC addresses to determine which computers or network segments will receive frames. Students
could use online network simulators to experiment with these factors.

Network
Communication
& Organization

4.1

3A-NI-05 Give examples to illustrate how sensitive data can be affected by malware and other
attacks.

Network security depends on a combination of hardware, software, and practices that control access to data
and systems. The needs of users and the sensitivity of data determine the level of security implemented.
Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and
phishing, present threats to sensitive data. Students might reflect on case studies or current events in which
governments or organizations experienced data leaks or data loss as a result of these types of attacks.

Network
Communication
& Organization

7.2

3A-NI-06 Recommend security measures to address various scenarios based on factors such as
efficiency, feasibility, and ethical impacts.

Security measures may include physical security tokens, two-factor authentication, and biometric verification.
Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and
phishing, exemplify why sensitive data should be securely stored and transmitted. The timely and reliable
access to data and information services by authorized users, referred to as availability, is ensured through
adequate bandwidth, backups, and other measures. Students should systematically evaluate the feasibility of
using computational tools to solve given problems or subproblems, such as through a cost-benefit analysis.
Eventually, students should include more factors in their evaluations, such as how efficiency affects feasibility
or whether a proposed approach raises ethical concerns.

Cybersecurity 3.3

3A-NI-07 Compare various security measures, considering tradeoffs between the usability and
security of a computing system.

Security measures may include physical security tokens, two-factor authentication, and biometric verification,
but choosing security measures involves tradeoffs between the usability and security of the system. The needs
of users and the sensitivity of data determine the level of security implemented. Students might discuss
computer security policies in place at the local level that present a tradeoff between usability and security,
such as a web filter that prevents access to many educational sites but keeps the campus network safe.

Network
Communication
& Organization

6.3

3A-NI-08 Explain tradeoffs when selecting and implementing cybersecurity recommendations.

Network security depends on a combination of hardware, software, and practices that control access to data
and systems. The needs of users and the sensitivity of data determine the level of security implemented. Every
security measure involves tradeoffs between the accessibility and security of the system. Students should be
able to describe, justify, and document choices they make using terminology appropriate for the intended
audience and purpose. Students could debate issues from the perspective of diverse audiences, including
individuals, corporations, privacy advocates, security experts, and government.

Cybersecurity 7.2

Data and Analysis
3A-DA-09 Translate between different bit representations of real-world phenomena, such as

characters, numbers, and images.

For example, convert hexadecimal color codes to decimal percentages, ASCII/Unicode representation, and
logic gates.

Storage 4.1

3A-DA-10 Evaluate the tradeoffs in how data elements are organized and where data is stored.

People make choices about how data elements are organized and where data is stored. These choices affect
cost, speed, reliability, accessibility, privacy, and integrity. Students should evaluate whether a chosen solution
is most appropriate for a particular problem. Students might consider the cost, speed, reliability, accessibility,
privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud.

Storage 3.3

	
	
	
	
	
	
	
	

3A-DA-11 Create interactive data visualizations using software tools to help others better understand
real-world phenomena.

People transform, generalize, simplify, and present large data sets in different ways to influence how other
people interpret and understand the underlying information. Examples include visualization, aggregation,
rearrangement, and application of mathematical operations. People use software tools or programming to
create powerful, interactive data visualizations and perform a range of mathematical operations to transform
and analyze data. Students should model phenomena as systems, with rules governing the interactions within
the system and evaluate these models against real-world observations. For example, flocking behaviors,
queueing, or life cycles. Google Fusion Tables can provide access to data visualization online.

Collection
Visualization &
Transformation

4.4

3A-DA-12 Create computational models that represent the relationships among different elements of
data collected from a phenomenon or process.

Computational models make predictions about processes or phenomenon based on selected data and
features. The amount, quality, and diversity of data and the features chosen can affect the quality of a model
and ability to understand a system. Predictions or inferences are tested to validate models. Students should
model phenomena as systems, with rules governing the interactions within the system. Students should
analyze and evaluate these models against real-world observations. For example, students might create a
simple producer–consumer ecosystem model using a programming tool. Eventually, they could progress to
creating more complex and realistic interactions between species, such as predation, competition, or
symbiosis, and evaluate the model based on data gathered from nature.

Inference &
Models

4.4

Algorithms and Programming
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging prior

student knowledge and personal interests.

A prototype is a computational artifact that demonstrates the core functionality of a product or process.
Prototypes are useful for getting early feedback in the design process, and can yield insight into the feasibility
of a product. The process of developing computational artifacts embraces both creative expression and the
exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are
personally relevant or beneficial to their community and beyond. Students should develop artifacts in
response to a task or a computational problem that demonstrate the performance, reusability, and ease of
implementation of an algorithm.

Algorithms 5.2

	
	
	
	

3A-AP-14 Use lists to simplify solutions, generalizing computational problems instead of repeatedly
using simple variables.

Students should be able to identify common features in multiple segments of code and substitute a single
segment that uses lists (arrays) to account for the differences.

Variables 4.1

3A-AP-15 Justify the selection of specific control structures when tradeoffs involve implementation,
readability, and program performance, and explain the benefits and drawbacks of choices
made.

Implementation includes the choice of programming language, which affects the time and effort required to
create a program. Readability refers to how clear the program is to other programmers and can be improved
through documentation. The discussion of performance is limited to a theoretical understanding of execution
time and storage requirements; a quantitative analysis is not expected. Control structures at this level may
include conditional statements, loops, event handlers, and recursion. For example, students might compare
the readability and program performance of iterative and recursive implementations of procedures that
calculate the Fibonacci sequence.

Control 5.2

3A-AP-16 Design and iteratively develop computational artifacts for practical intent, personal
expression, or to address a societal issue by using events to initiate instructions.

In this context, relevant computational artifacts include programs, mobile apps, or web apps. Events can be
user-initiated, such as a button press, or system-initiated, such as a timer firing. At previous levels, students
have learned to create and call procedures. Here, students design procedures that are called by events.
Students might create a mobile app that updates a list of nearby points of interest when the device detects
that its location has been changed.

Control 5.2

3A-AP-17 Decompose problems into smaller components through systematic analysis, using
constructs such as procedures, modules, and/or objects.

At this level, students should decompose complex problems into manageable subproblems that could
potentially be solved with programs or procedures that already exist. For example, students could create an
app to solve a community problem by connecting to an online database through an application programming
interface (API).

Control 3.2

	
	
	
	
	
	

3A-AP-18 Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.

Computational artifacts can be created by combining and modifying existing artifacts or by developing new
artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations,
robotic systems, and apps. Complex programs are designed as systems of interacting modules, each with a
specific role, coordinating for a common overall purpose. Modules allow for better management of complex
tasks. The focus at this level is understanding a program as a system with relationships between modules. The
choice of implementation, such as programming language or paradigm, may vary. Students could incorporate
computer vision libraries to increase the capabilities of a robot or leverage open-source JavaScript libraries to
expand the functionality of a web application.

Modularity 5.2

3A-AP-19 Systematically design and develop programs for broad audiences by incorporating
feedback from users.

Examples of programs could include games, utilities, and mobile applications. Students at lower levels collect
feedback and revise programs. At this level, students should do so through a systematic process that includes
feedback from broad audiences. Students might create a user satisfaction survey and brainstorm distribution
methods that could yield feedback from a diverse audience, documenting the process they took to
incorporate selected feedback in product revisions.

Modularity 5.1

3A-AP-20 Evaluate licenses that limit or restrict use of computational artifacts when using resources
such as libraries.

Examples of software licenses include copyright, freeware, and the many open-source licensing schemes. At
previous levels, students adhered to licensing schemes. At this level, they should consider licensing
implications for their own work, especially when incorporating libraries and other resources. Students might
consider two software libraries that address a similar need, justifying their choice based on the library that has
the least restrictive license.

Program
Development

7.3

3A-AP-21 Evaluate and refine computational artifacts to make them more usable and accessible.

Testing and refinement is the deliberate and iterative process of improving a computational artifact. This
process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended
outcomes. Students should respond to the changing needs and expectations of end users and improve the
performance, reliability, usability, and accessibility of artifacts. For example, students could incorporate
feedback from a variety of end users to help guide the size and placement of menus and buttons in a user
interface.

Program
Development

6.3

	
	

3A-AP-22 Design and develop computational artifacts working in team roles using collaborative tools.

Collaborative tools could be as complex as source code version control system or as simple as a collaborative
word processor. Team roles in pair programming are driver and navigator but could be more specialized in
larger teams. As programs grow more complex, the choice of resources that aid program development
becomes increasingly important and should be made by the students. Students might work as a team to
develop a mobile application that addresses a problem relevant to the school or community, selecting
appropriate tools to establish and manage the project timeline; design, share, and revise graphical user
interface elements; and track planned, in-progress, and completed components.

Program
Development

2.4

3A-AP-23 Document design decisions using text, graphics, presentations, and/or demonstrations in
the development of complex programs.

Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for
a common overall purpose. These modules can be procedures within a program; combinations of data and
procedures; or independent, but interrelated, programs. The development of complex programs is aided by
resources such as libraries and tools to edit and manage parts of the program.

Program
Development

7.2

	
Impacts of Computing
3A-IC-24 Evaluate the ways computing impacts personal, ethical, social, economic, and cultural

practices.

Computing may improve, harm, or maintain practices. Equity deficits, such as minimal exposure to
computing, access to education, and training opportunities, are related to larger, systemic problems in
society. Students should be able to evaluate the accessibility of a product to a broad group of end users, such
as people who lack access to broadband or who have various disabilities. Students should also begin to
identify potential bias during the design process to maximize accessibility in product design.

Culture 1.2

3A-IC-25 Test and refine computational artifacts to reduce bias and equity deficits.

Biases could include incorrect assumptions developers have made about their user base. Equity deficits
include minimal exposure to computing, access to education, and training opportunities. Students should
begin to identify potential bias during the design process to maximize accessibility in product design and
become aware of professionally accepted accessibility standards to evaluate computational artifacts for
accessibility.

Culture 1.2

	
	
	
	

3A-IC-26 Demonstrate ways a given algorithm applies to problems across disciplines.

Computation can share features with disciplines such as art and music by algorithmically translating human
intention into an artifact. Students should be able to identify real-world problems that span multiple
disciplines, such as increasing bike safety with new helmet technology, and that can be solved
computationally.

Culture 3.1

3A-IC-27 Use tools and methods for collaboration on a project to increase connectivity of people in
different cultures and career fields.

Many aspects of society, especially careers, have been affected by the degree of communication afforded by
computing. The increased connectivity between people in different cultures and in different career fields has
changed the nature and content of many careers. Students should explore different collaborative tools and
methods used to solicit input from team members, classmates, and others, such as participation in online
forums or local communities. For example, students could compare ways different social media tools could
help a team become more cohesive.

Social
Interactions

2.4

3A-IC-28 Explain the beneficial and harmful effects that intellectual property laws can have on
innovation.

Laws govern many aspects of computing, such as privacy, data, property, information, and identity. These laws
can have beneficial and harmful effects, such as expediting or delaying advancements in computing and
protecting or infringing upon people’s rights. International differences in laws and ethics have implications for
computing. For examples, laws that mandate the blocking of some file-sharing websites may reduce online
piracy but can restrict the right to access information. Firewalls can be used to block harmful viruses and
malware but can also be used for media censorship. Students should be aware of intellectual property laws
and be able to explain how they are used to protect the interests of innovators and how patent trolls abuse
the laws for financial gain.

Safety Law &
Ethics

7.3

3A-IC-29 Explain the privacy concerns related to the collection and generation of data through
automated processes that may not be evident to users.

Data can be collected and aggregated across millions of people, even when they are not actively engaging
with or physically near the data collection devices. This automated and nonevident collection can raise privacy
concerns, such as social media sites mining an account even when the user is not online. Other examples
include surveillance video used in a store to track customers for security or information about purchase habits
or the monitoring of road traffic to change signals in real time to improve road efficiency without drivers being
aware. Methods and devices for collecting data can differ by the amount of storage required, level of detail
collected, and sampling rates.

Safety Law &
Ethics

7.2

	

3A-IC-30 Evaluate the social and economic implications of privacy in the context of safety, law, or
ethics.

Laws govern many aspects of computing, such as privacy, data, property, information, and identity.
International differences in laws and ethics have implications for computing. Students might review case
studies or current events which present an ethical dilemma when an individual's right to privacy is at odds with
the safety, security, or wellbeing of a community.

Safety Law &
Ethics

7.3

Level 3B: Grades 11-12 (Ages 16-18)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

3B-CS-01 Categorize the roles of operating system software.

Examples of roles could include memory management, data storage/retrieval, processes management, and
access control.

Hardware &
Software

7.2

3B-CS-02 Illustrate ways computing systems implement logic, input, and output through hardware
components.

Examples of components could include logic gates and IO pins.

Troubleshooting 7.2

Networks and the Internet
3B-NI-03 Describe the issues that impact network functionality (e.g., bandwidth, load, delay,

topology).

Recommend use of free online network simulators to explore how these issues impact network functionality.

Network
Communication
& Organization

7.2

3B-NI-04 Compare ways software developers protect devices and information from unauthorized
access.

Examples of security concerns to consider: encryption and authentication strategies, secure coding, and
safeguarding keys.

Cybersecurity 7.2

Data and Analysis
3B-DA-05 Use data analysis tools and techniques to identify patterns in data representing complex

systems.

For example, identify trends in a dataset representing social media interactions, movie reviews, or shopping
patterns.

Collection
Visualization &
Transformation

4.1

3B-DA-06 Select data collection tools and techniques to generate data sets that support a claim or
communicate information.

Collection
Visualization &
Transformation

7.2

3B-DA-07 Evaluate the ability of models and simulations to test and support the refinement of
hypotheses.

Inference &
Models

4.4

Algorithms and Programming
3B-AP-08 Describe how artificial intelligence drives many software and physical systems.

Examples include digital ad delivery, self-driving cars, and credit card fraud detection.

Algorithms 7.2

3B-AP-09 Implement an artificial intelligence algorithm to play a game against a human opponent or
solve a problem.

Games do not have to be complex. Simple guessing games, Tic-Tac-Toe, or simple robot commands will be
sufficient.

Algorithms 5.3

3B-AP-10 Use and adapt classic algorithms to solve computational problems.

Examples could include sorting and searching.

Algorithms 4.2

3B-AP-11 Evaluate algorithms in terms of their efficiency, correctness, and clarity.

Examples could include sorting and searching.

Algorithms 4.2

3B-AP-12 Compare and contrast fundamental data structures and their uses.
Examples could include strings, lists, arrays, stacks, and queues.

Variables 4.2

3B-AP-13 Illustrate the flow of execution of a recursive algorithm. Control 3.2

	

3B-AP-14 Construct solutions to problems using student-created components, such as procedures,
modules and/or objects.

Object-oriented programming is optional at this level. Problems can be assigned or student-selected.

Modularity 5.2

3B-AP-15 Analyze a large-scale computational problem and identify generalizable patterns that can
be applied to a solution.

As students encounter complex, real-world problems that span multiple disciplines or social systems, they
should decompose complex problems into manageable subproblems that could potentially be solved with
programs or procedures that already exist. For example, students could create an app to solve a community
problem by connecting to an online database through an application programming interface (API).

Modularity 4.1

3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs.

Libraries and APIs can be student-created or common graphics libraries or maps APIs, for example.

Modularity 5.3

3B-AP-17 Plan and develop programs for broad audiences using a software life cycle process.

Processes could include agile, spiral, or waterfall.

Program
Development

5.1

3B-AP-18 Explain security issues that might lead to compromised computer programs.

For example, common issues include lack of bounds checking, poor input validation, and circular references.

Program
Development

7.2

3B-AP-19 Develop programs for multiple computing platforms.
Example platforms could include: computer desktop, web, or mobile.

Program
Development

5.2

3B-AP-20 Use version control systems, integrated development environments (IDEs), and
collaborative tools and practices (code documentation) in a group software project.

Group software projects can be assigned or student-selected.

Program
Development

2.4

3B-AP-21 Develop and use a series of test cases to verify that a program performs according to its
design specifications.

At this level, students are expected to select their own test cases.

Program
Development

6.1

3B-AP-22 Modify an existing program to add additional functionality and discuss intended and
unintended implications (e.g., breaking other functionality).

For instance, changes made to a method or function signature could break invocations of that method
elsewhere in a system.

Program
Development

5.3

3B-AP-23 Evaluate key qualities of a program through a process such as a code review.

Examples of qualities could include correctness, usability, readability, efficiency, portability and scalability.

Program
Development

6.3

3B-AP-24 Compare multiple programming languages and discuss how their features make them
suitable for solving different types of problems.

Examples of features include blocks versus text, indentation versus curly braces, and high-level versus low-
level.

Program
Development

7.2

	
Impacts of Computing
3B-IC-25 Evaluate computational artifacts to maximize their beneficial effects and minimize harmful

effects on society.
Culture 6.1, 1.2

3B-IC-26 Evaluate the impact of equity, access, and influence on the distribution of computing
resources in a global society.

Culture 1.2

3B-IC-27 Predict how computational innovations that have revolutionized aspects of our culture
might evolve.

Areas to consider might include education, healthcare, art/entertainment, and energy.

Culture 7.2

3B-IC-28 Debate laws and regulations that impact the development and use of software. Safety Law &
Ethics

3.3, 7.3

	
	

The CSTA K-12 Computer Science Standards are created and maintained by educator members of
the Computer Science Teachers Association (CSTA). The Association for Computing Machinery
(ACM) founded CSTA as part of its commitment to K-12 computer science education.

Glossary

The glossary includes definitions of terms used in the standards. These terms are defined for
readers of the standards and are not necessarily intended to be the definitions or terms that are
seen by students.

Term Definition

abstraction

(process): The process of reducing complexity by focusing on

the main idea. By hiding details irrelevant to the question at hand

and bringing together related and useful details, abstraction

reduces complexity and allows one to focus on the problem.

(product): A new representation of a thing, a system, or a problem
that helpfully reframes a problem by hiding details irrelevant to the
question at hand. [MDESE, 2016]

accessibility

The design of products, devices, services, or environments for

people who experience disabilities. Accessibility standards that

are generally accepted by professional groups include the Web

Content Accessibility Guidelines (WCAG) 2.0 and Accessible

Rich Internet Applications (ARIA) standards. [Wikipedia]

algorithm A step-by-step process to complete a task.

analog

The defining characteristic of data that is represented in a

continuous, physical way. Whereas digital data is a set of

individual symbols, analog data is stored in physical media, such

as the surface grooves on a vinyl record, the magnetic tape of a

VCR cassette, or other nondigital media. [Techopedia]

app

A type of application software designed to run on a mobile

device, such as a smartphone or tablet computer. Also known as

a mobile application. [Techopedia]

artifact
Anything created by a human. See computational artifact for the

definition used in computer science.

Term Definition

audience Expected end users of a computational artifact or system.

accessibility

The design of products, devices, services, or environments for

people who experience disabilities. Accessibility standards that

are generally accepted by professional groups include the Web

Content Accessibility Guidelines (WCAG) 2.0 and Accessible

Rich Internet Applications (ARIA) standards. [Wikipedia]

authentication
The verification of the identity of a person or process.

[FOLDOC]

automate;

automation

automate: To link disparate systems and software so that they

become self-acting or self-regulating. [Ross, 2016]

automation: The process of automating.

Boolean
A type of data or expression with two possible

values: true and false. [FOLDOC]

bug

An error in a software program. It may cause a program to

unexpectedly quit or behave in an unintended manner. [Tech

Terms]

The process of finding and correcting errors (bugs) is called

debugging. [Wikipedia]

code
Any set of instructions expressed in a programming language.

[MDESE, 2016]

comment

A programmer-readable annotation in the code of a computer

program added to make the code easier to understand. Comments

are generally ignored by machines. [Wikipedia]

Term Definition

complexity

The minimum amount of resources, such as memory, time, or

messages, needed to solve a problem or execute an algorithm.

[NIST/DADS]

component

An element of a larger group. Usually, a component provides a

particular service or group of related services. [Tech Terms,

TechTarget]

computational Relating to computers or computing methods.

computational

artifact

Anything created by a human using a computational thinking

process and a computing device. A computational artifact can be,

but is not limited to, a program, image, audio, video,

presentation, or web page file. [College Board, 2016]

computational

thinking

The human ability to formulate problems so that their solutions

can be represented as computational steps or algorithms to be

executed by a computer. [Lee, 2016]

computer

A machine or device that performs processes, calculations, and

operations based on instructions provided by a software or

hardware program. [Techopedia]

computer science

The study of computers and algorithmic processes, including

their principles, their hardware and software designs, their

implementation, and their impact on society. [ACM, 2006]

computing
Any goal-oriented activity requiring, benefiting from, or creating

algorithmic processes. [MDESE, 2016]

Term Definition

computing device

A physical device that uses hardware and software to receive,

process, and output information. Computers, mobile phones, and

computer chips inside appliances are all examples of computing

devices.

computing

system

A collection of one or more computers or computing devices,

together with their hardware and software, integrated for the

purpose of accomplishing shared tasks. Although a computing

system can be limited to a single computer or computing device,

it more commonly refers to a collection of multiple connected

computers, computing devices, and hardware.

conditional

A feature of a programming language that performs different

computations or actions depending on whether a programmer-

specified Boolean condition evaluates to true or false. [MDESE,

2016]

(A conditional could refer to a conditional statement, conditional

expression, or conditional construct.)

configuration

(process): Defining the options that are provided when installing

or modifying hardware and software or the process of creating

the configuration (product). [TechTarget]

(product): The specific hardware and software details that tell

exactly what the system is made up of, especially in terms of

devices attached, capacity, or capability. [TechTarget]

connection
A physical or wireless attachment between multiple computing

systems, computers, or computing devices.

connectivity
A program’s or device’s ability to link with other programs and

devices. [Webopedia]

http://www.webopedia.com/TERM/P/program.html

Term Definition

control;

control structure

control: (in general) The power to direct the course of actions.

(in programming) The use of elements of programming code to

direct which actions take place and the order in which they take

place.

control structure: A programming (code) structure that

implements control. Conditionals and loops are examples of

control structures.

culture;

cultural practices

culture: A human institution manifested in the learned behavior

of people, including their specific belief systems, language(s),

social relations, technologies, institutions, organizations, and

systems for using and developing resources. [NCSS, 2013]

cultural practices: The displays and behaviors of a culture.

cybersecurity

The protection against access to, or alteration of, computing

resources through the use of technology, processes, and training.

[TechTarget]

data

Information that is collected and used for reference or analysis.

Data can be digital or nondigital and can be in many forms,

including numbers, text, show of hands, images, sounds, or

video. [CAS, 2013; Tech Terms]

data structure

A particular way to store and organize data within a computer

program to suit a specific purpose so that it can be accessed and

worked with in appropriate ways. [TechTarget]

data type

A classification of data that is distinguished by its attributes and

the types of operations that can be performed on it. Some

common data types are integer, string, Boolean (true or false),

and floating-point.

Term Definition

debugging
The process of finding and correcting errors (bugs) in programs.

[MDESE, 2016]

decompose;

decomposition

decompose: To break down into components.

decomposition: Breaking down a problem or system into
components. [MDESE, 2016]

device

A unit of physical hardware that provides one or more computing

functions within a computing system. It can provide input to the

computer, accept output, or both. [Techopedia]

digital

A characteristic of electronic technology that uses discrete

values, generally 0 and 1, to generate, store, and process data.

[Techopedia]

digital citizenship
The norms of appropriate, responsible behavior with regard to

the use of technology. [MDESE, 2016]

efficiency

A measure of the amount of resources an algorithm uses to find

an answer. It is usually expressed in terms of the theoretical

computations, the memory used, the number of messages passed,

the number of disk accesses, etc. [NIST/DADS]

encapsulation
The technique of combining data and the procedures that act on

it to create a type. [FOLDOC]

encryption

The conversion of electronic data into another form, called

ciphertext, which cannot be easily understood by anyone except

authorized parties. [TechTarget]

Term Definition

end user (or user)
A person for whom a hardware or software product is designed

(as distinguished from the developers). [TechTarget]

event

Any identifiable occurrence that has significance for system

hardware or software. User-generated events include keystrokes

and mouse clicks; system-generated events include program

loading and errors. [TechTarget]

event handler
A procedure that specifies what should happen when a specific

event occurs.

execute;

execution

execute: To carry out (or “run”) an instruction or set of

instructions (program, app, etc.).

execution: The process of executing an instruction or set of

instructions. [FOLDOC]

hardware
The physical components that make up a computing system,

computer, or computing device. [MDESE, 2016]

hierarchy
An organizational structure in which items are ranked according

to levels of importance. [TechTarget]

human–computer

interaction (HCI)

The study of how people interact with computers and to what

extent computing systems are or are not developed for successful

interaction with human beings. [TechTarget]

identifier

The user-defined, unique name of a program element (such as a

variable or procedure) in code. An identifier name should

indicate the meaning and usage of the element being named.

[Techopedia]

Term Definition

implementation

The process of expressing the design of a solution in a

programming language (code) that can be made to run on a

computing device.

inference
A conclusion reached on the basis of evidence and reasoning.

[Oxford]

input The signals or instructions sent to a computer. [Techopedia]

integrity
The overall completeness, accuracy, and consistency of data.

[Techopedia]

Internet

The global collection of computer networks and their

connections, all using shared protocols to communicate. [CAS,

2013]

iterative
Involving the repeating of a process with the aim of approaching

a desired goal, target, or result. [MDESE, 2016]

loop
A programming structure that repeats a sequence of instructions

as long as a specific condition is true. [Tech Terms]

memory Temporary storage used by computing devices. [MDESE, 2016]

model

A representation of some part of a problem or a system.

[MDESE, 2016] Note: This definition differs from that used in

science.

Term Definition

modularity

The characteristic of a software/web application that has been

divided (decomposed) into smaller modules. An application

might have several procedures that are called from inside its

main procedure. Existing procedures could be reused by

recombining them in a new application. [Techopedia]

module

A software component or part of a program that contains one or

more procedures. One or more independently developed modules

make up a program. [Techopedia]

network

A group of computing devices (personal computers, phones,

servers, switches, routers, etc.) connected by cables or wireless

media for the exchange of information and resources.

operation
An action, resulting from a single instruction, that changes the

state of data. [Free Dictionary]

packet The unit of data sent over a network. [Tech Terms]

parameter

A special kind of variable used in a procedure to refer to one of

the pieces of data received as input by the procedure. [MDESE,

2016]

piracy
The illegal copying, distribution, or use of software.

[TechTarget]

procedure

An independent code module that fulfills some concrete task and

is referenced within a larger body of program code. The

fundamental role of a procedure is to offer a single point of

reference for some small goal or task that the developer or

Term Definition

programmer can trigger by invoking the procedure itself.

[Techopedia]

In this framework, procedure is used as a general term that may

refer to an actual procedure or a method, function, or module of

any other name by which modules are known in other

programming languages.

process
A series of actions or steps taken to achieve a particular outcome.

[Oxford]

program;

programming

program (n): A set of instructions that the computer executes to

achieve a particular objective. [MDESE, 2016]

program (v): To produce a program by programming.

programming: The craft of analyzing problems and designing,
writing, testing, and maintaining programs to solve them. [MDESE,
2016]

protocol

The special set of rules used by endpoints in a

telecommunication connection when they communicate.

Protocols specify interactions between the communicating

entities. [TechTarget]

prototype

An early approximation of a final product or information system,

often built for demonstration purposes. [TechTarget,

Techopedia]

redundancy
A system design in which a component is duplicated, so if it

fails, there will be a backup. [TechTarget]

Term Definition

reliability

An attribute of any system that consistently produces the same

results, preferably meeting or exceeding its requirements.

[FOLDOC]

remix

The process of creating something new from something old.

Originally a process that involved music, remixing involves

creating a new version of a program by recombining and

modifying parts of existing programs, and often adding new

pieces, to form new solutions. [Kafai & Burke, 2014]

router
A device or software that determines the path that data packets

travel from source to destination. [TechTarget]

scalability

The capability of a network to handle a growing amount of work

or its potential to be enlarged to accommodate that growth.

[Wikipedia]

security See the definition for cybersecurity.

simulate;

simulation

simulate: To imitate the operation of a real-world process or

system.

simulation: Imitation of the operation of a real-world process or
system. [MDESE, 2016]

software
Programs that run on a computing system, computer, or other

computing device.

Term Definition

storage

(place) A place, usually a device, into which data can be entered,

in which the data can be held, and from which the data can be

retrieved at a later time. [FOLDOC]

(process) A process through which digital data is saved within a

data storage device by means of computing technology. Storage

is a mechanism that enables a computer to retain data, either

temporarily or permanently. [Techopedia]

string

A sequence of letters, numbers, and/or other symbols. A string

might represent, for example, a name, address, or song title.

Some functions commonly associated with strings are length,

concatenation, and substring. [TechTarget]

structure

A general term used in the framework to discuss the concept of

encapsulation without specifying a particular programming

methodology.

switch

A high-speed device that receives incoming data packets and

redirects them to their destination on a local area network

(LAN). [Techopedia]

system

A collection of elements or components that work together for a

common purpose. [TechTarget]

See also the definition for computing system.

test case

A set of conditions or variables under which a tester will

determine whether the system being tested satisfies requirements

or works correctly. [STF]

topology

The physical and logical configuration of a network; the

arrangement of a network, including its nodes and connecting

links. A logical topology is the way devices appear connected to

Term Definition

the user. A physical topology is the way they are actually

interconnected with wires and cables. [PCMag]

troubleshooting

A systematic approach to problem solving that is often used to

find and resolve a problem, error, or fault within software or a

computing system. [Techopedia, TechTarget]

user See the definition for end user.

variable

A symbolic name that is used to keep track of a value that can

change while a program is running. Variables are not just used

for numbers; they can also hold text, including whole sentences

(strings) or logical values (true or false). A variable has a data

type and is associated with a data storage location; its value is

normally changed during the course of program execution.

[CAS, 2013; Techopedia]

Note: This definition differs from that used in math.

References

Some definitions came directly from these sources, while others were excerpted or adapted to
include content relevant to this framework.

ACM, 2006

A Model Curriculum for K–12 Computer Science

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A

model curriculum for K–12 computer science: Report of the ACM K–12 task force

curriculum committee (2nd ed.). New York, NY: Association for Computing Machinery.

CAS, 2013
Computing At School’s Computing in the National Curriculum: A Guide for Primary

Teachers

Computing At School. (2013). Computing in the national curriculum: A guide for primary

teachers. Belford, UK: Newnorth

Print. http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf

College

Board,

2016

College Board Advanced Placement® Computer Science Principles

College Board. (2016). AP Computer Science Principles course and exam

description. New York, NY: College Board. https://secure-

media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-

and-exam-description.pdf

FOLDOC
Free On-Line Dictionary of Computing

Free on-line dictionary of computing. (n.d.). Retrieved from http://foldoc.org

Free

Dictionary

The Free Dictionary

The free dictionary. (n.d.). Retrieved from http://www.thefreedictionary.com

Kafai &

Burke, 2014

Connected Code: Why Children Need to Learn Programming

Kafai, Y., & Burke, Q. (2014). Connected code: Why children need to learn

programming. Cambridge, MA: MIT Press.

Lee, 2016

Reclaiming the Roots of CT

Lee, I. (2016). Reclaiming the roots of CT. CSTA Voice: The Voice of K–12 Computer

Science Education and Its Educators, 12(1), 3–

4. http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf

MDESE,

2016

Massachusetts Digital Literacy and Computer Science (DL&CS) Standards

Massachusetts Department of Elementary and Secondary Education. (2016, June).

2016 Massachusetts digital literacy and computer science (DLCS) curriculum

framework. Malden, MA: Author. http://www.doe.mass.edu/frameworks/dlcs.pdf

http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
http://foldoc.org/
http://www.thefreedictionary.com/
http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf
http://www.doe.mass.edu/frameworks/dlcs.pdf

NCSS,

2013

College, Career & Civic Life (C3) Framework for Social Studies State Standards

National Council for the Social Studies. (2013). The college, career, and civic life (C3)

framework for social studies state standards: Guidance for enhancing the rigor of K–12

civics, economics, geography, and history. Silver Spring, MD:

Author. http://www.socialstudies.org/system/files/c3/C3-Framework-for-Social-Studies.pdf

NIST/DADS

National Institute of Science and Technology Dictionary of Algorithms and Data

Structures

Pieterse, V., & Black, P. E. (Eds.). (n.d). Dictionary of algorithms and data

structures. Retrieved from https://xlinux.nist.gov/dads

Oxford
Oxford Dictionaries

Oxford dictionaries. (n.d.). Retrieved from http://www.oxforddictionaries.com/us

PCmag

PCmag.com Encyclopedia

PCmag.com encyclopedia. (n.d.). Retrieved

from http://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology

Ross, 2016

What Is Automation

Ross, B. (2016, May 10). What is automation and how can it improve customer

service? Information Age. Retrieved from http://www.information-

age.com/industry/software/123461408/what-automation-and-how-can-it-improve-

customer-service

STF

Software Testing Fundamentals

Software testing fundamentals. (n.d). Retrieved

from http://softwaretestingfundamentals.com

Tech Terms
Tech Terms

Tech terms computer dictionary. (n.d.). Retrieved from http://www.techterms.com

http://www.socialstudies.org/system/files/c3/C3-Framework-for-Social-Studies.pdf
https://xlinux.nist.gov/dads
http://www.oxforddictionaries.com/us
http://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology
http://www.information-age.com/industry/software/123461408/what-automation-and-how-can-it-improve-customer-service
http://www.information-age.com/industry/software/123461408/what-automation-and-how-can-it-improve-customer-service
http://www.information-age.com/industry/software/123461408/what-automation-and-how-can-it-improve-customer-service
http://softwaretestingfundamentals.com/
http://www.techterms.com/

Techopedia

Techopedia

Techopedia technology dictionary. (n.d.). Retrieved

from https://www.techopedia.com/dictionary

TechTarget
TechTarget Network

TechTarget network. (n.d.). Retrieved from http://www.techtarget.com/network

Webopedia
Webopedia

Webopedia. (n.d.). Retrieved from http://www.webopedia.com

Wikipedia
Wikipedia

Wikipedia: The free encyclopedia. (n.d.). Retrieved from https://www.wikipedia.org/

https://www.techopedia.com/dictionary
http://www.techtarget.com/network
http://www.webopedia.com/
https://www.wikipedia.org/

Progression of Computer Science Teachers Association (CSTA) K-12 Computer Science Standards, Revised 2017
Con
cept Subconcept

Level 1A (Ages 5-7) Level 1B (Ages 8-11) Level 2 (Ages 11-14) Level 3A (Ages 14-16)
By the end of Grade 2, students will be able to... By the end of Grade 5, students will be able to... By the end of Grade 8, students will be able to... By the end of Grade 10, students will be able to...

C
om

pu
tin

g
Sy

st
em

s

Devices

1A-CS-01 Select and operate appropriate software to
perform a variety of tasks, and recognize that users
have different needs and preferences for the
technology they use. (P1.1)

1B-CS-01 Describe how internal and external parts of
computing devices function to form a system. (P7.2)

2-CS-01 Recommend improvements to the design of
computing devices, based on an analysis of how users
interact with the devices. (P3.3)

3A-CS-01 Explain how abstractions hide the
underlying implementation details of computing
systems embedded in everyday objects. (P4.1)

Hardware &
Software

1A-CS-02 Use appropriate terminology in identifying
and describing the function of common physical
components of computing systems (hardware). (P7.2)

1B-CS-02 Model how computer hardware and
software work together as a system to accomplish
tasks. (P4.4)

2-CS-02 Design projects that combine hardware and
software components to collect and exchange data.
(P5.1)

3A-CS-02 Compare levels of abstraction and
interactions between application software, system
software, and hardware layers. (P4.1)

Troubleshooting
1A-CS-03 Describe basic hardware and software
problems using accurate terminology. (P6.2, P7.2)

1B-CS-03 Determine potential solutions to solve
simple hardware and software problems using
common troubleshooting strategies. (P6.2)

2-CS-03 Systematically identify and fix problems with
computing devices and their components. (P6.2)

3A-CS-03 Develop guidelines that convey systematic
troubleshooting strategies that others can use to
identify and fix errors. (P6.2)

N
et

w
or

ks
 &

 T
he

 In
te

rn
et

Network
Communication &

Organization

1B-NI-04 Model how information is broken down into
smaller pieces, transmitted as packets through multiple
devices over networks and the Internet, and
reassembled at the destination. (P4.4)

2-NI-04 Model the role of protocols in transmitting
data across networks and the Internet. (P4.4)

3A-NI-04 Evaluate the scalability and reliability of
networks, by describing the relationship between
routers, switches, servers, topology, and addressing.
(P4.1)

Cybersecurity

1A-NI-04 Explain what passwords are and why we
use them, and use strong passwords to protect devices
and information from unauthorized access. (P7.3)

1B-NI-05 Discuss real-world cybersecurity problems
and how personal information can be protected. (P3.1)

2-NI-05 Explain how physical and digital security
measures protect electronic information. (P7.2)

3A-NI-05 Give examples to illustrate how sensitive
data can be affected by malware and other attacks.
(P7.2)

2-NI-06 Apply multiple methods of encryption to
model the secure transmission of information. (P4.4)

3A-NI-06 Recommend security measures to address
various scenarios based on factors such as efficiency,
feasibility, and ethical impacts. (P3.3)
3A-NI-07 Compare various security measures,
considering tradeoffs between the usability and
security of a computing system. (P6.3)
3A-NI-08 Explain tradeoffs when selecting and
implementing cybersecurity recommendations. (P7.2)

D
at

a
&

 A
na

ly
si

s Storage

1A-DA-05 Store, copy, search, retrieve, modify, and
delete information using a computing device and define
the information stored as data. (P4.2)

Continuation of standard 1A-DA-05 2-DA-07 Represent data using multiple encoding
schemes. (P4.0)

3A-DA-09 Translate between different bit
representations of real-world phenomena, such as
characters, numbers, and images. (P4.1)
3A-DA-10 Evaluate the tradeoffs in how data
elements are organized and where data is stored.
(P3.3)

Collection,
Visualization, &
Transformation

1A-DA-06 Collect and present the same data in
various visual formats. (P7.1, P4.4)

1B-DA-06 Organize and present collected data
visually to highlight relationships and support a claim.
(P7.1)

2-DA-08 Collect data using computational tools and
transform the data to make it more useful and reliable.
(P6.3)

3A-DA-11 Create interactive data visualizations using
software tools to help others better understand real-
world phenomena. (P4.4)

Inference &
Models

1A-DA-07 Identify and describe patterns in data
visualizations, such as charts or graphs, to make
predictions. (P4.1)

1B-DA-07 Use data to highlight or propose cause-
and-effect relationships, predict outcomes, or
communicate an idea. (P7.1)

2-DA-09 Refine computational models based on the
data they have generated. (P5.3, P4.4)

3A-DA-12 Create computational models that
represent the relationships among different elements of
data collected from a phenomenon or process. (P4.4)

A
lg

or
ith

m
s

&
 P

ro
gr

am
m

in
g Algorithms

1A-AP-08 Model daily processes by creating and
following algorithms (sets of step-by-step instructions)
to complete tasks. (P4.4)

1B-AP-08 Compare and refine multiple algorithms for
the same task and determine which is the most
appropriate. (P6.3, P3.3)

2-AP-10 Use flowcharts and/or pseudocode to
address complex problems as algorithms. (P4.4, P4.1)

3A-AP-13 Create prototypes that use algorithms to
solve computational problems by leveraging prior
student knowledge and personal interests. (P5.2)

Variables
1A-AP-09 Model the way programs store and
manipulate data by using numbers or other symbols to
represent information. (P4.4)

1B-AP-09 Create programs that use variables to
store and modify data. (P5.2)

2-AP-11 Create clearly named variables that
represent different data types and perform operations
on their values. (P5.1, P5.2)

3A-AP-14 Use lists to simplify solutions, generalizing
computational problems instead of repeatedly using
simple variables. (P4.1)

Control

1A-AP-10 Develop programs with sequences and
simple loops, to express ideas or address a problem.
(P5.2)

1B-AP-10 Create programs that include sequences,
events, loops, and conditionals. (P5.2)

2-AP-12 Design and iteratively develop programs that
combine control structures, including nested loops and
compound conditionals. (P5.1, P5.2)

3A-AP-15 Justify the selection of specific control
structures when tradeoffs involve implementation,
readability, and program performance, and explain the
benefits and drawbacks of choices made. (P5.2)
3A-AP-16 Design and iteratively develop
computational artifacts for practical intent, personal
expression, or to address a societal issue by using
events to initiate instructions. (P5.2)

Practices P1. Fostering an Inclusive Computing Culture
P2. Collaborating Around Computing

P3. Recognizing and Defining Computational Problems
P4. Developing and Using Abstractions

P5. Creating Computational Artifacts
P6. Testing and Refining Computational Artifacts P7. Communicating About Computing

Progression of Computer Science Teachers Association (CSTA) K-12 Computer Science Standards, Revised 2017
Con
cept Subconcept

Level 1A (Ages 5-7) Level 1B (Ages 8-11) Level 2 (Ages 11-14) Level 3A (Ages 14-16)
By the end of Grade 2, students will be able to... By the end of Grade 5, students will be able to... By the end of Grade 8, students will be able to... By the end of Grade 10, students will be able to...

A
lg

or
ith

m
s

&
 P

ro
gr

am
m

in
g

(c
on

tin
ue

d)

Modularity

1A-AP-11 Decompose (break down) the steps
needed to solve a problem into a precise sequence of
instructions. (P3.2)

1B-AP-11 Decompose (break down) problems into
smaller, manageable subproblems to facilitate the
program development process. (P3.2)

2-AP-13 Decompose problems and subproblems into
parts to facilitate the design, implementation, and
review of programs. (P3.2)

3A-AP-17 Decompose problems into smaller
components through systematic analysis, using
constructs such as procedures, modules, and/or
objects. (P3.2)

1B-AP-12 Modify, remix, or incorporate portions of an
existing program into one's own work, to develop
something new or add more advanced features. (P5.3)

2-AP-14 Create procedures with parameters to
organize code and make it easier to reuse. (P4.1, P4.
3)

3A-AP-18 Create artifacts by using procedures within
a program, combinations of data and procedures, or
independent but interrelated programs. (P5.2)

Program
Development

1A-AP-12 Develop plans that describe a program’s
sequence of events, goals, and expected outcomes.
(P5.1, P7.2)

1B-AP-13 Use an iterative process to plan the
development of a program by including others'
perspectives and considering user preferences. (P1.1,
P5.1)

2-AP-15 Seek and incorporate feedback from team
members and users to refine a solution that meets user
needs. (P2.3, P1.1)

3A-AP-19 Systematically design and develop
programs for broad audiences by incorporating
feedback from users. (P5.1)

1A-AP-13 Give attribution when using the ideas and
creations of others while developing programs. (P7.3)

1B-AP-14 Observe intellectual property rights and
give appropriate attribution when creating or remixing
programs. (P7.3)

2-AP-16 Incorporate existing code, media, and
libraries into original programs, and give attribution.
(P4.2, P5.2, P7.3)

3A-AP-20 Evaluate licenses that limit or restrict use
of computational artifacts when using resources such
as libraries. (P7.3)

1A-AP-14 Debug (identify and fix) errors in an
algorithm or program that includes sequences and
simple loops. (P6.2)

1B-AP-15 Test and debug (identify and fix errors) a
program or algorithm to ensure it runs as intended.
(P6.1, P6.2)

2-AP-17 Systematically test and refine programs
using a range of test cases. (P6.1)

3A-AP-21 Evaluate and refine computational artifacts
to make them more usable and accessible. (P6.3)

 1B-AP-16 Take on varying roles, with teacher
guidance, when collaborating with peers during the
design, implementation, and review stages of program
development. (P2.2)

2-AP-18 Distribute tasks and maintain a project
timeline when collaboratively developing computational
artifacts. (P2.2)

3A-AP-22 Design and develop computational artifacts
working in team roles using collaborative tools. (P2.4)

1A-AP-15 Using correct terminology, describe steps
taken and choices made during the iterative process of
program development. (P7.2)

1B-AP-17 Describe choices made during program
development using code comments, presentations,
and demonstrations. (P7.2)

2-AP-19 Document programs in order to make them
easier to follow, test, and debug. (P7.2)

3A-AP-23 Document design decisions using text,
graphics, presentations, and/or demonstrations in the
development of complex programs. (P7.2)

Im
pa

ct
s

of
 C

om
pu

tin
g

Culture

1A-IC-16 Compare how people live and work before
and after the implementation or adoption of new
computing technology. (P7.0)

1B-IC-18 Discuss computing technologies that have
changed the world, and express how those
technologies influence, and are influenced by, cultural
practices. (P7.1)

2-IC-20 Compare tradeoffs associated with computing
technologies that affect people's everyday activities
and career options. (P7.2)

3A-IC-24 Evaluate the ways computing impacts
personal, ethical, social, economic, and cultural
practices. (P1.2)

1B-IC-19 Brainstorm ways to improve the
accessibility and usability of technology products for
the diverse needs and wants of users. (P1.2)

2-IC-21 Discuss issues of bias and accessibility in the
design of existing technologies. (P1.2)

3A-IC-25 Test and refine computational artifacts to
reduce bias and equity deficits. (P1.2)

 3A-IC-26 Demonstrate ways a given algorithm
applies to problems across disciplines. (P3.1)

Social Interactions
1A-IC-17 Work respectfully and responsibly with
others online. (P2.1)

1B-IC-20 Seek diverse perspectives for the purpose
of improving computational artifacts. (P1.1)

2-IC-22 Collaborate with many contributors through
strategies such as crowdsourcing or surveys when
creating a computational artifact. (P2.4, P5.2)

3A-IC-27 Use tools and methods for collaboration on
a project to increase connectivity of people in different
cultures and career fields. (P2.4)

Safety, Law, &
Ethics

1B-IC-21 Use public domain or creative commons
media, and refrain from copying or using material
created by others without permission. (P7.3)

3A-IC-28 Explain the beneficial and harmful effects
that intellectual property laws can have on innovation.
(P7.3)

1A-IC-18 Keep login information private, and log off of
devices appropriately. (P7.3)

2-IC-23 Describe tradeoffs between allowing
information to be public and keeping information
private and secure. (P7.2)

3A-IC-29 Explain the privacy concerns related to the
collection and generation of data through automated
processes that may not be evident to users. (P7.2)
3A-IC-30 Evaluate the social and economic
implications of privacy in the context of safety, law, or
ethics. (P7.3)

Practices P1. Fostering an Inclusive Computing Culture
P2. Collaborating Around Computing

P3. Recognizing and Defining Computational Problems
P4. Developing and Using Abstractions

P5. Creating Computational Artifacts
P6. Testing and Refining Computational Artifacts P7. Communicating About Computing

BryanTwarek
Typewritten Text
Suggested Citation: Computer Science Teachers Association (2017). CSTA K-12 Computer Science Standards, Revised 2017. Retrieved from http://www.csteachers.org/standards.The K–12 Computer Science Framework, led by the Association for Computing Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, and National Math and Science Initiative in partnership with states and districts, informed the development of this work. View the framework at http://k12cs.org.This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

BryanTwarek
Typewritten Text

Connecticut
Computer Science
Implementation

Guidelines

2018

Connecticut State Department of Education

1

Contents

Connecticut Computer Science Standards Workgroup .. 2

Introduction .. 3

Background ... 3

Defining Computer Science ... 4

Defining Computational Thinking ... 4

Equity .. 5

Computer Science Practices .. 5

Organization of the Standards .. 7

Implementation Models ... 9

Curriculum and Instruction Resources .. 10

References .. 16

The Connecticut State Department of Education is committed to a policy of equal opportunity/ affirmative action for all

qualified persons. The Connecticut State Department of Education does not discriminate in any employment practice,

education program, or educational activity on the basis of race, color, religious creed, sex, age, national origin, ancestry, marital

status, sexual orientation, gender identity or expression, disability (including, but not limited to, intellectual disability, past or

present history of mental disorder, physical disability or learning disability), genetic information, or any other basis prohibited

by Connecticut state and/or federal nondiscrimination laws. The Connecticut State Department of Education does not

unlawfully discriminate in employment and licensing against qualified persons with a prior criminal conviction. Inquiries

regarding the Connecticut State Department of Education’s nondiscrimination policies should be directed to: Levy Gillespie,

Equal Employment Opportunity Director/Americans with Disabilities Act Coordinator, Connecticut State Department of

Education, 450 Columbus Blvd, Suite 607, Hartford, CT 06103-1841, 860-807-2071, Levy.Gillespie@ct.gov.

mailto:Levy.Gillespie@ct.gov

2

Connecticut Computer Science Standards Workgroup

Jon Bishop, K–12 Stem Coordinator, Canton Public Schools

Jennifer Blalock, High School Mathematics and Computer Science Teacher, Ellington Public Schools

Jacqueline Corricelli, High School Computer Science Teacher, West Hartford Public Schools

Michael Cwirka, High School Teacher, Berlin Public Schools

Elizabeth W. Dillard, High School Computer Science Teacher, CREC

Dr. Melissa Hickey, Reading/Literacy Director, Connecticut State Department of Education

Christopher J Kerr, High School Computer Science Teacher, Newington Public Schools

Dana Kinel, IB Design Technology Teacher, East Hartford Public Schools

Eric Lozaw, High School Teacher, Watertown Public Schools

Jenny Lussier, Library Media Specialist, Regional School District 13

Lanna Mack, Career & Technical Education Teacher, New Haven Public Schools

Jennifer Michalek, Education Consultant, Connecticut State Department of Education

Dario Soto, Elementary Teacher, Hartford Public Schools

Heather Sutkowski, Elementary Computer Science Teacher, CREC

Dr. Chinma Uche, President, Connecticut Computer Science Teachers Association

James Veseskis, Project Coordinator, Exploring Computer Science CT

David Weinreb, Bilingual Teacher, New Haven Public Schools

3

Introduction

The Connecticut State Board of Education (Board) believes that computer science is a key to developing

and integrating 21st Century Skills (e.g., technology, communication, collaboration, critical thinking,

problem solving, innovation, creativity, persistence). The Board further believes that all Connecticut

public schools must provide challenging and rigorous programs of study in computer science across all

grade levels. This implementation guidance document articulates the lens through which to view the

standards and provides guidance for implementation across the State of Connecticut.

Background

In 2011, the Computer Science Teachers Association (CSTA) developed the first K–12 computer science

standards. As computer science continued to influence technology and the world, it became necessary

to review the 2011 CSTA K–12 Standards. While the review of the 2011 CSTA K–12 Standards was in

progress, CSTA joined forces with other computer science organizations (i.e., Association for Computing

Machinery, Code.org, Cyber Innovation Center, and National Math + Science Initiative) to develop a K–

12 Computer Science Framework. The K–12 Computer Science Framework identifies the core areas of

computer science necessary in grades K–12. Using the K–12 Computer Science Framework, a team of

computer science professionals composed of teachers, administrators, and members of industry

updated the 2011 CSTA K–12 Standards. Both the framework and the updated standards underwent

three public review period for scrutiny and feedback from anyone with interest or experience in K–12

computer science education. The feedback from each review period was read and addressed by the

development team. The updated K–12 computer science standards were released in July 2017.

The 2017 CSTA K–12 Computer Science Standards

The 2017 CSTA K–12 Computer Science Standards delineate a core set of learning objectives designed to

provide the foundation for a complete computer science curriculum. They have been widely received by

the computer science education and business communities, as well as policy developers. The standards

are currently being used to define computer science in many states across the United States.

The 2017 CSTA K–12 Computer Science Standards:

 introduce the fundamental concepts of computer science to all students, beginning at the

elementary school level;

 present computer science at the secondary school level in a way that can fulfill a computer

science, math, or science graduation credit;

 encourage schools to offer additional secondary-level computer science courses that will allow

interested students to study facets of computer science at a deeper level, and prepare these

students for entry into the workforce or college; and

 increase the availability of rigorous computer science courses for all students, especially those

who are members of underrepresented groups.

4

Computer Science Standards in Connecticut

In September 2017, the Connecticut Department of Education (CSDE) convened a group of educators

charged with putting forward computer science standards for Board approval. These educators were

divided into grade level teams: K–5, 6–8, and 9–12. Each team independently reviewed the 2017 CSTA

K–12 Computer Science Standards. The review by each team concluded that these 2017 standards

aligned to the beliefs contained with the Board’s previously adopted Position Statement on Computer

Science Education for All Students K–12. It was recommended by the teams that feedback from

stakeholders be elicited on the standards and that the standards be brought forth to the Board for

adoption.

In Connecticut a survey about the standards was disseminated to a variety of stakeholders in January

2018. This survey provided stakeholders the opportunity to give their feedback in regards to the

standards. The survey was made publicly available and responses were collected over a six week period.

Respondents included teachers, administrators, parents, higher education and business and industry.

The results of the survey were favorable for adopting the standards in Connecticut.

Defining Computer Science

Computer science is defined as “the study of computers and algorithmic processes, including their

principles, their hardware and software designs, their [implementation], and their impact on society”

(Tucker et. al, 2003, p. 6). Thus, computer science is the foundation for all computing. Computer

science builds on computer literacy, educational technology, digital citizenship, and information

technology. These aspects of computing are distinguished from computer science because they are

focused on using computer technologies rather than understanding why computer technologies work

and how to create those technologies.

Defining Computational Thinking

Integrated throughout the 2017 CSTA K–12 Computer Science Standards is the concept of computational

thinking. Computational thinking is the thought processes involved in formulating problems and their

solutions so that the solutions are represented in a form that can be effectively carried out by an

information-processing agent (Cuny, Snyder & Wing, 2010). It is an approach to solving problems in a

way that can be implemented with a computer. It involves the use of concepts, such as abstraction,

recursion, and iteration, to process and analyze data, and to create real and virtual artifacts (Computer

Science Teachers Association & Association for Computing Machinery).

Computational thinking practices such as abstraction, modeling, and decomposition connect with

computer science concepts such as algorithms, automation, and data visualization. Beginning with the

elementary school grades and continuing through grade 12, students should develop a foundation of

computer science knowledge and learn new approaches to problem solving that captures the power of

computational thinking to become both users and creators of computing technology.

5

Equity

Equity is a fundamental component in the development of the 2017 CSTA K–12 Computer Science

Standards. The intent of equity is to ensure that all students have the basic knowledge that will allow

them to productively participate in the world and make well informed decisions about their lives.

Classrooms often include students of different races, genders, socioeconomic statuses, English learners,

students with disabilities, and students with differing ways of learning. Regardless of these differences,

all students have the right to high quality computer science education.

Equity is not limited to whether classes are available, but includes how classes are taught, how students

are recruited for classes or activities, and how the classroom culture supports diverse learners and

promotes continued studies in computer science. The result of equity is achieving the ability to meet

the needs of diverse learners and having them feel capable of learning. It ensures that all students have

the basic knowledge that will allow them to compete in a diverse world.

Computer Science Practices

The 2017 CSTA K–12 Computer Science Standards incorporate seven practices. By Grade 12, it is

expected that every computationally literate student will engage with these practice behaviors as they

learn the standards and develop computational artifacts. The interrelated practices are listed in the

chart below in an order that simulates the developmental process taken to produce computational

artifacts.

Identifier Practice

P1 Fostering an Inclusive Computing Culture

P1.1 Include the unique perspectives of others and reflect on one’s own perspectives when
designing and developing computational products

P1.2

Address the needs of diverse end users during the design process to produce artifacts
with broad accessibility and usability

P1.3 Employ self- and peer-advocacy to address bias in interactions, product design, and
development methods

P2 Collaborating Around Computing

P2.1 Cultivate working relationships with individuals possessing diverse perspectives, skills,
and personalities

P2.2 Create team norms, expectations, and equitable workloads to increase efficiency and
effectiveness

P2.3 Solicit and incorporate feedback from, and provide constructive feedback to, team
members and other stakeholders

6

P2.4 Evaluate and select technological tools that can be used to collaborate on a project

P3 Recognizing and Defining Computational Problems

P3.1 Identify complex, interdisciplinary, real-world problems that can be solved
computationally

P3.2 Decompose complex real-world problems into manageable subproblems that could
integrate existing solutions or procedures

P3.3 Evaluate whether it is appropriate and feasible to solve a problem computationally

P4 Developing and Using Abstractions

P4.1 Extract common features from a set of interrelated processes or complex phenomena

P4.2 Evaluate existing technological functionalities and incorporate them into new designs

P4.3 Create modules and develop points of interaction that can apply to multiple situations and
reduce complexity

P4.4 Model phenomena and processes and simulate systems to understand and evaluate
potential outcomes

P5 Creating Computational Artifacts

P5.1 Plan the development of a computational artifact using an iterative process that includes
reflection on and modification of the plan, taking into account key features, time and
resource constraints, and user expectations

P5.2

Create a computational artifact for practical intent, personal expression, or to address a
societal issue

P5.3 Modify an existing artifact to improve or customize it

P6 Testing and Refining Computational Artifacts

P6.1 Systematically test computational artifacts by considering all scenarios and using test
cases

P6.2 Identify and fix errors using a systematic process

P6.3 Evaluate and refine a computational artifact multiple times to enhance its performance,
reliability, usability, and accessibility

P7 Communicating About Computing

P7.1 Select, organize, and interpret large data sets from multiple sources to support a claim

P7.2 Describe, justify, and document computational processes and solutions using appropriate
terminology consistent with the intended audience and purpose

7

P7.3 Articulate ideas responsibly by observing intellectual property rights and giving
appropriate attribution

Organization of the Standards

Grade bands

The 2017 CSTA K–12 Computer Science Standards are organized into grade bands with the goal being

that students will have met the expectations by the end of grade 2 (Level 1A, ages 5–7), the end of grade

5 (Level 1B, ages 8–11), the end of grade 8 (Level 2, ages 11–14) and the end of grade 10 (Level 3A, ages

14–16). Furthermore, for students who wish to study computer science in high school beyond the level

required for all students, Level 3B is provided.

Strands

The 2017 CSTA K–12 Computer Science Standards are also organized into strands called Concepts and

Subconcepts. There are five Concepts: Algorithms & Programming, Computing Systems, Data &

Analysis, Impacts of Computer, and Networks & the Internet, which are further broken down into

sixteen Subconcepts. The chart below provides a brief overview of each sub concept for further

clarification. In addition, there are five cross-cutting topics that are interwoven within each core

concept throughout the standards, but do not have stand-alone descriptions, including Abstraction,

System Relationships, Human- Computer Interaction, User Inspired Software Design, Privacy and

Security, and Communication and Coordination. The vertically aligned standards are intended to reflect

a comprehensive instructional program and document a progression of expected achievement in each

of the strands. This organization of standards also reflects the gradual progression in the development

of skills.

Concept Sub concept Overview

Algorithms

People evaluate and select algorithms based on performance, reusability, and

ease of implementation. Knowledge of common algorithms improves how

people develop software, secure data, and store information.

Control

Programmers consider tradeoffs related to implementation, readability, and

program performance when selecting and combining control structures.

Algorithms and

Programming

Modularity

Complex programs are designed as systems of interacting modules, each with

a specific role, coordinating for a common overall purpose. These modules can

be procedures within a program; combinations of data and procedures or

independent, but interrelated, programs. Modules allow for better management

of complex tasks.

Program

Development

Diverse teams can develop programs with broad impact through careful review

and by drawing on the strengths of members in different roles. Design

decisions often involve tradeoffs. The development of complex programs is

aided by resources such as libraries and tools to edit and manage parts of the

program. Systematic analysis is critical for identifying the effects of lingering

bugs.

8

Algorithms and

Programming

Variables

Data structures are used to manage program complexity. Programmers choose

data structures based on functionality, storage, and performance tradeoffs.

Computing

Systems

Devices

Many everyday objects contain computational components that sense and act

on the world. In early grades, students learn features and applications of

common computing devices. As they progress, students learn about connected

systems and how interaction between humans and devices influences design

decisions.

Hardware and

Software

Computing systems use hardware and software to communicate and process

information in digital form. In early grades, students learn how systems use both

hardware and software to represent and process information. As they progress,

students gain a deeper understanding of the interaction between hardware and

software at multiple levels within computing systems.

Troubleshooting

When computing systems do not work as intended, troubleshooting strategies

help people solve the problem. In early grades, students learn that identifying

the problem is the first step to fixing it. As they progress, students learn

systematic problem-solving processes and how to develop their own

troubleshooting strategies based on a deeper understanding of how computing

systems work.

Collection,

Visualization, and

Transformation

Data are collected with both computational and non-computational tools and

processes. In early grades, students learn how data about themselves and their

world is collected and used. As they progress, students learn the effects of

collecting data with computational and automated tools.

Data and

Analysis

Inference and

Models

Data science is one example where computer science serves many fields.

Computer science and science use data to make inferences, theories, or

predictions based upon data collected from users or simulations. In early

grades, students learn about the use of data to make simple predictions. As

they progress, students learn how models and simulations can be used to

examine theories and understand systems and how predictions and inferences

are affected by more complex and larger data sets.

Storage

Data can be composed of multiple data elements that relate to one another. For

example, population data may contain information about age, gender, and

height. People make choices about how data elements are organized and

 where data are stored. These choices affect cost, speed, reliability,

accessibility, privacy, and integrity.

Culture

The design and use of computing technologies and artifacts can improve,

worsen, or maintain inequitable access to information and opportunities.

Impacts of

Computing

Safety, Law and

Ethics

Laws govern many aspects of computing, such as privacy, data, property,

information, and identity. These laws can have beneficial and harmful effects,

such as expediting or delaying advancements in computing and protecting or

infringing upon people's rights. International differences in laws and ethics

have implications for computing.

Social

Interactions

Many aspects of society, especially careers, have been affected by the degree

of communication afforded by computing. The increased connectivity between

people in different cultures and in different career fields has changed the nature

and content of many careers.

9

Networks and

 the Internet

Cybersecurity

Transmitting information securely across networks requires appropriate

protection. In early grades, students learn how to protect their personal

information. As they progress, students learn increasingly complex ways

to protect information sent across networks.

Networks and

the Internet

Network

Communication

and Organization

Computing devices communicate with each other across networks to share

information. In early grades, students learn that computers connect them to

other people, places, and things around the world. As they progress, students

gain a deeper understanding of how information is sent and received across

different types of networks.

Implementation Models

In the following examples, a computer science experience can range from a few hours a week to a

semester- or year-long course. Computer science may be integrated into current curriculum or offered

as an independent course based on student and district readiness.

 Broad and Deep Exposure Moderate Exposure Basic Exposure

Elementary

School

………..

Middle

School

……..

High

School

SAMPLE K–12 COMPUTER SCIENCE PATHWAYS

Independent special

(Similar to Music, Art,

etc.)

Integrated into the

general classroom

Integrated into the

general classroom

Integrated into math,

science, other subjects

+

Independent course at a

particular grade level

Independent course at a

particular grade level
Integrated into math,

science, other subjects

Introductory course

+

AP Computer Science

+

Specialized courses

Introductory course

+

Specialized courses

Introductory course

10

Elementary and Middle School

Computer science at the K–2, 3–5, and 6–8 grade bands can be embedded within the curriculum and/or

offered as a stand-alone course, depending on the school’s program. This flexible implementation

allows schools the choice to determine their own timeline on how they will ensure that all students will

have the opportunity to learn computer science. All certified staff members and subject areas are

encouraged to integrate computer science instruction into their classrooms.

Below are various suggestions for implementation:

 integrate computer science into a particular subject area (i.e., math, science, technology) on a

weekly or biweekly basis within elementary classrooms;

 plan districtwide and schoolwide participation in the annual “Hour of Code” for all grade levels;

 offer computer science in a particular grade level and then expand the program to additional

grade levels in subsequent years;

 provide small group instruction;

 provide a weekly “specials”/ “unified arts” course designed to specifically teach the computer

science standards;

 integrate computer science instruction into existing Library/Media time; and

 incorporate computer science in a similar fashion as Maker Spaces, Genius Hour etc.

High School

Implementation at the high school level is best achieved through course offerings specific to computer

science. All high schools should offer at least one rigorous computer science course. Ideally high

schools develop computer science pathways for students to explore based on need and interest.

Curriculum and Instruction Resources

Implementing the computer science standards will require many curricula and instructional decisions.

 Schools may decide to teach a specific curriculum or combine multiple resources to deliver

computer science instruction.

 Computer science instruction can be implemented with limited access to technology. Students

are encouraged to work together and can share devices.

 Computer science can be individualized and collaborative.

 “Unplugged” lessons are available and districts are encouraged to use a combination of

“plugged” for an authentic computer science experience.

 20 hours of Computer Science instruction per year will provide a rigorous and well-developed

experience for students at the elementary and middle school levels.

 One credit or its equivalent in computer science at the high school level will best prepare

students to be college and career ready.

In an effort to assist districts in making curriculum decisions related to the implementation of computer

science a sampling of resources is provided. This is not an all-inclusive list and the resources are not

11

endorsed by CSDE. However, the intent is to provide information so that districts may begin researching

options to support computer science implementation in their schools.

Elementary School

Organization Curriculum

Apple

The lessons in the Get Started with Code Teacher Guides, which are part

of the Everyone Can Code Curriculum, are designed to help you bring

coding into the early primary classroom.

Bee-Bot

Bee-Bot Lessons contains 100 detailed lesson plans, with accompanying

images, for using Bee-Bot to teach across the curriculum. Problem-Solving

with Bee-Bot provides 150 sequential student challenges that use Bee-Bot

to develop problem-solving, critical-thinking, and decision-making skills.

codeSpark

Academy
Ignite interest in computer science and turn programming into play.

Code

Studio(Code.org)

Computer Science Fundamentals is comprised of 6 courses of about 15

lessons that may be implemented as one unit or over the course of a

semester.

Code Monkey

The Code Monkey game is accompanied by a curriculum guide which

includes 35 detailed lesson plans with both online and offline activities.

Computer Science

for All in SF

Creative Computing Curriculum for K – 2 and 3 – 5 introduces computer

science as a creative, collaborative, and engaging discipline across 15 – 20

lessons at each grade level.

Kodable
Courses for every grade K – 5 enabling students to learn foundational skills

in computer science preparing them for the next step in their learning.

hhttps://www.apple.com/education/teaching-code/
https://www.bee-bot.us/bee-bot/beebot-curriculum.html
http://codespark.org/
http://codespark.org/
https://csedweek.org/educate/k5
https://csedweek.org/educate/k5
https://www.playcodemonkey.com/
https://www.csinsf.org/curriculum.html
https://www.csinsf.org/curriculum.html
https://www.kodable.com/schools-and-districts

12

Organization Curriculum

Project Lead The

Way

PLTW Launch modules engage students and build knowledge and skills in

the area of computer science.

ScratchEd

Activities are designed to support familiarity and increasing fluency with

computational creativity and computational thinking using Scratch. Units

can be used as a semester-long computing course or as part of other

curriculum areas.

Tynker Seven coding courses designed for students K – 5.

Middle School

Organization Curriculum

Apple

The lessons in the Learn to Code Teacher Guides, which are part of the

Everyone Can Code Curriculum, are designed to help students learn

fundamental coding concepts.

Bootstrap

Teach algebra through video-game programming, with a module to go

alongside or inside a math class.

CodeHS

CodeHS helps schools and districts build a comprehensive Middle School

computer science program starting with introductory level block-based

programming courses. There are courses available for all grades 6-8.

Code.org

Computer Science Discoveries is an introductory computer science

course recommended for grades 6 - 10 that empowers students to

create authentic artifacts and engage with computer science as a

medium for creativity, communication, problem solving, and fun.

https://www.pltw.org/our-programs/pltw-launch
https://www.pltw.org/our-programs/pltw-launch
http://scratched.gse.harvard.edu/guide
https://www.tynker.com/school/lesson-plan
https://www.apple.com/education/teaching-code/
http://www.bootstrapworld.org/
https://codehs.com/
https://csedweek.org/educate

13

Organization Curriculum

Code Monkey

The Code Monkey game is accompanied by a curriculum guide which

includes 35 detailed lesson plans with both online and offline activities.

Codesters

Range of courses where students use Python to build projects through

structured lessons, then modify their code to create custom projects.

Computer Science

for All in SF

MyCS intended for grade 6 and App Inventor for grade 7 highlight the

personal relevance of computer science to middle school students and

attempt to present computer science as a fun, creative, and collaborative

discipline.

Edhesive

Explorations in Coding course is specifically designed for middle school

classrooms, this blended online course covers foundational concepts and

skills of computer science.

Globaloria Standalone and core subject integration pathways.

GUTS
In partnership with Code.org, Middle School CS in Science includes four

modules each consisting of five or six lessons.

Project Lead The

Way

PLTW Gateway units include units that engage students in computer

science through robotics, hardware and software development, and

mobile app development.

Pythonroom

Pythonroom's curriculum is designed to teach students problem-solving

and algorithmic thinking while introducing computer science to young

students.

ScratchEd Activities are designed to support familiarity and increasing fluency with

computational creativity and computational thinking using Scratch. Units

https://www.playcodemonkey.com/
https://www.codesters.com/
https://www.csinsf.org/curriculum.html
https://www.csinsf.org/curriculum.html
https://edhesive.com/
http://globaloria.com/intro
https://code.org/curriculum/science
https://www.pltw.org/our-programs/pltw-gateway-curriculum
https://www.pltw.org/our-programs/pltw-gateway-curriculum
https://pythonroom.com/
http://scratched.gse.harvard.edu/guide/

14

Organization Curriculum

ScratchEd can be used as a semester-long computing course or as part of other

curriculum areas.

Tynker Seven coding courses designed for students 6 - 8.

UC Davis C-STEM

Multiple academic year-long courses on computing in math,

programming, robotics, and film production.

High School

Organization Curriculum

Apple

The Intro to App Development with Swift and App Development with Swift

curricula were designed to teach high school students with little or no

programming experience how to be app developers, capable of bringing their

own ideas to life.

Beauty and Joy

of Computing

Introductory computer science curriculum intended for high school juniors

and seniors that is aligned to the AP CS Principles course.

Bootstrap

Teach algebra through video-game programming, with a 20-hr module to go

alongside or inside a math class.

CodeHS

Four-year high school computer science pathway. Intro CS JavaScript, Intro

CS Python, AP CS Principles, AP CS in Java, Computing Ideas, Web Design and

more.

Code.org Two years of Computer Science courses for beginners. The first course,

Computer Science Discoveries, is appropriate for grades 6-10 and the second,

http://scratched.gse.harvard.edu/guide/
https://www.tynker.com/school/lesson-plan
http://c-stem.ucdavis.edu/
https://www.apple.com/education/teaching-code/
http://bjc.berkeley.edu/
http://bjc.berkeley.edu/
http://www.bootstrapworld.org/
https://codehs.com/
https://csedweek.org/educate

15

Organization Curriculum

Code.org Computer Science Principles, can be implemented as an AP course or an

introductory course.

Edhesive Year-long AP Computer Science courses.

Exploring

Computer

Science

Year-long introductory high school course aimed at broadening participation

in computer science.

Globaloria Standalone and core subject integration pathways.

Mobile CSP

Mobile CSP is a College Board-endorsed AP Computer Science Principles

curriculum.

Project Lead The

Way

PLTW Computer Science engages students in true-to-life activities like

creating an online art portal or developing problem-solving apps.

ScratchEd

Activities are designed to support familiarity and increasing fluency with

computational creativity and computational thinking using Scratch. Units can

be used as a semester-long computing course or as part of other curriculum

areas.

TEALS

TEALS helps high schools build and grow sustainable computer science

programs by pairing experienced and trained software engineer

professionals with classroom teachers. TEALS has two standard high school

course offerings and offers support for additional courses.

UC Davis C-STEM

Multiple academic year-long courses on computing in math, programming,

and robotics.

https://csedweek.org/educate
https://edhesive.com/
http://www.exploringcs.org/
http://www.exploringcs.org/
http://www.exploringcs.org/
http://globaloria.com/intro
http://www.mobile-csp.org/
https://www.pltw.org/our-programs/pltw-computer-science/pltw-computer-science-curriculum
https://www.pltw.org/our-programs/pltw-computer-science/pltw-computer-science-curriculum
http://scratched.gse.harvard.edu/guide/
http://www.tealsk12.org/schools/
http://c-stem.ucdavis.edu/

16

Organization Curriculum

UTeach CS

Principles

A classroom-ready curriculum that is fully aligned with the College Board’s

AP Computer Science Principles framework and endorsed by the College

Board.

Additional resources to support computer science curricula and instruction can be accessed on the

Connecticut Computer Science Teachers’ Association website.

References

Computer Science Teachers Association (2017). CSTA K–12 Computer Science Standards, Revised 2017.

Retrieved from CS Teachers.

“K–12 Computer Science Framework.” k12cs.Org, Computer Science Teachers Association, k12cs.org/.

Education, Virginia Department of. “Computer Science.” VDOE :: Computer Science Standards of

Learning Resources, Virginia Department of Education, Nov. 2017,

www.doe.virginia.gov/testing/sol/standards_docs/computer-science/index.shtml.

“Anybody Can Learn.” Code.org, Code.org, code.org/.

“CSTA.” CSTA, csteachers.org/.

 “Proposed Nevada K–12 Computer Science Standards.”

www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_Aca

demic_Standards/Comp_Tech_Standards/DRAFTNevadaK–12ComputerScienceStandards.pdf.

“3rd Party Educator Resources.” CSEd Week, csedweek.org/educate/curriculum/3rd-party.

“ISTE - International Society for Technology in Education - Home.” ISTE - International Society for

Technology in Education - Home, www.iste.org

https://cs.uteach.utexas.edu/
https://cs.uteach.utexas.edu/
http://www.ctcsta.org/
http://k12cs.org/
http://www.doe.virginia.gov/testing/sol/standards_docs/computer-science/index.shtml
http://code.org/
http://csteachers.org/
http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_Academic_Standards/Comp_Tech_Standards/DRAFTNevadaK-12ComputerScienceStandards.pdf
http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_Academic_Standards/Comp_Tech_Standards/DRAFTNevadaK-12ComputerScienceStandards.pdf
https://csedweek.org/educate/curriculum/3rd-party

1. Empowered Learner
Students leverage technology to take an active role in choosing,
achieving and demonstrating competency in their learning goals,
informed by the learning sciences. Students:

a. articulate and set personal learning goals, develop strategies
leveraging technology to achieve them and reflect on the learning
process itself to improve learning outcomes.

b. build networks and customize their learning environments in ways
that support the learning process.

c. use technology to seek feedback that informs and improves their
practice and to demonstrate their learning in a variety of ways.

d. understand the fundamental concepts of technology operations,
demonstrate the ability to choose, use and troubleshoot current
technologies and are able to transfer their knowledge to explore
emerging technologies.

2. Digital Citizen
Students recognize the rights, responsibilities and opportunities of
living, learning and working in an interconnected digital world, and
they act and model in ways that are safe, legal and ethical. Students:

a. cultivate and manage their digital identity and reputation and are
aware of the permanence of their actions in the digital world.

b. engage in positive, safe, legal and ethical behavior when using
technology, including social interactions online or when using
networked devices.

c. demonstrate an understanding of and respect for the rights and
obligations of using and sharing intellectual property.

d. manage their personal data to maintain digital privacy and
security and are aware of data-collection technology used to track
their navigation online.

ISTE STANDARDS
FOR STUDENTS

iste.org/standards

3. Knowledge Constructor
Students critically curate a variety of resources using digital tools to
construct knowledge, produce creative artifacts and make meaningful
learning experiences for themselves and others. Students:

a. plan and employ effective research strategies to locate information
and other resources for their intellectual or creative pursuits.

b. evaluate the accuracy, perspective, credibility and relevance of
information, media, data or other resources.

c. curate information from digital resources using a variety of tools
and methods to create collections of artifacts that demonstrate
meaningful connections or conclusions.

d. build knowledge by actively exploring real-world issues and problems,
developing ideas and theories and pursuing answers and solutions.

2016

The 2016 ISTE Standards for Students emphasize the skills and qualities we want for students, enabling them to engage and thrive
in a connected, digital world. The standards are designed for use by educators across the curriculum, with every age student, with a
goal of cultivating these skills throughout a student’s academic career. Both students and teachers will be responsible for achieving
foundational technology skills to fully apply the standards. The reward, however, will be educators who skillfully mentor and inspire
students to amplify learning with technology and challenge them to be agents of their own learning.

4. Innovative Designer
Students use a variety of technologies within a design process to
identify and solve problems by creating new, useful or imaginative
solutions. Students:

a. know and use a deliberate design process for generating
ideas, testing theories, creating innovative artifacts or solving
authentic problems.

b. select and use digital tools to plan and manage a design process
that considers design constraints and calculated risks.

c. develop, test and refine prototypes as part of a cyclical
design process.

d. exhibit a tolerance for ambiguity, perseverance and the capacity to
work with open-ended problems.

5. Computational Thinker
Students develop and employ strategies for understanding and
solving problems in ways that leverage the power of technological
methods to develop and test solutions. Students:

a. formulate problem definitions suited for technology-assisted
methods such as data analysis, abstract models and algorithmic
thinking in exploring and finding solutions.

b. collect data or identify relevant data sets, use digital tools to
analyze them, and represent data in various ways to facilitate
problem-solving and decision-making.

c. break problems into component parts, extract key information,
and develop descriptive models to understand complex systems
or facilitate problem-solving.

d. understand how automation works and use algorithmic thinking to
develop a sequence of steps to create and test automated solutions.

6. Creative Communicator
Students communicate clearly and express themselves creatively for
a variety of purposes using the platforms, tools, styles, formats and
digital media appropriate to their goals. Students:

a. choose the appropriate platforms and tools for meeting the
desired objectives of their creation or communication.

b. create original works or responsibly repurpose or remix digital
resources into new creations.

c. communicate complex ideas clearly and effectively by creating or
using a variety of digital objects such as visualizations, models or
simulations.

d. publish or present content that customizes the message and
medium for their intended audiences.

7. Global Collaborator
Students use digital tools to broaden their perspectives and enrich
their learning by collaborating with others and working effectively in
teams locally and globally. Students:

a. use digital tools to connect with learners from a variety of
backgrounds and cultures, engaging with them in ways that
broaden mutual understanding and learning.

b. use collaborative technologies to work with others, including
peers, experts or community members, to examine issues and
problems from multiple viewpoints.

c. contribute constructively to project teams, assuming various roles
and responsibilities to work effectively toward a common goal.

d. explore local and global issues and use collaborative technologies
to work with others to investigate solutions.

ISTE Standards•S © 2016 International Society for Technology in Education. ISTE® is a registered trademark of the International Society for Technology in Education. If
you would like to reproduce this material, please contact permissions@iste.org.

iste.org/standards

	Structure Bookmarks
	 V.C.
	 V.C.
	
	
	CONNECTICUT STATE BOARD OF EDUCATION
	Hartford
	
	
	
	
	TO BE PROPOSED:
	June 6, 2018
	
	
	RESOLVED, That the State Board of Education adopts the Computer Science Teacher Association (CSTA) K-12 Standards and the International Society for Technology Education (ISTE) Standards for Students.
	
	
	Approved by a vote of _________, this sixth day of June, Two Thousand Eighteen.
	
	
	
	
	
	 Signed: ________________________________
	 Dr. Dianna R. Wentzell, Secretary
	 State Board of Education

	CONNECTICUT STATE BOARD OF EDUCATION
	CONNECTICUT STATE BOARD OF EDUCATION
	Hartford
	
	TO: State Board of Education
	
	FROM: Dr. Dianna R. Wentzell, Commissioner of Education
	
	DATE: June 6, 2018
	
	SUBJECT: Adoption of the Computer Science Teacher Association (CSTA) K-12 Standards and the International Society for Technology Education (ISTE) Standards for Students
	
	Executive Summary
	Introduction
	Today’s students are part of a world in which technology is evolving rapidly, forging new fields of study, creating new types of jobs, and requiring new sets of skills. Not only must students understand the use of digital tools can help solve tomorrow’s problems, they must also learn how to create those tools. Students need opportunities to improve their learning by effectively leveraging technology and to build an understanding of the principles and practices of computer science. To better assist studen
	The Association for Computing Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, and National Math and Science Initiative collaborated with states and districts to develop a framework that includes overarching, high-level computer science guidance per grade band. In 2016, the K–12 Computer Science Framework was published promoting a vision in which all students engage in computer science and innovation. The CSTA utilized the K–12 Computer Science Framework to revise the n
	The ISTE Standards for Students were also updated in 2016. These standards provide a framework for amplifying digital age learning, citizenship, and teaching across the content areas. They are designed to empower student voice and ensure that learning is a student-driven process regardless of the discipline being taught.
	History/Background
	Computer science and digital citizenship continue to be a priority in Connecticut. In 2016, the State Board of Education (Board) adopted the Position Statement on Computer Science Education for All Students K–12. The position statement outlines the responsibilities for various stakeholders to build a high-quality, comprehensive, and culturally-responsive computer science education program for all Connecticut students.
	Additionally, in July 2017, the legislature passed Public Act No. 17-67. This act established a Digital Citizenship, Internet Safety, and Media Literacy Advisory Council (Council) to be chaired by the Department of Education. One responsibility of the Council is to provide recommendations to the Board regarding best practices relating to instruction in digital citizenship, Internet safety, and media literacy. The ISTE Standards for Students support the work of the Council and enable students to recognize
	The CSTA K–12 Computer Science Standards and the Connecticut Computer Science Education Implementation Guidelines were introduced for review and consideration to the Academic Standards and Assessment subcommittee of the Board on December 11, 2017. The members supported the work of the Connecticut Computer Science Standards Committee and provided feedback. Based on this feedback, the documents were revised to include a glossary, implementation models, and a variety of curriculum resources.
	Both the CSTA K–12 Computer Science Standards and ISTE Standards for Students were presented to the Academic Standards and Assessment subcommittee of the Board on February 26, 2018. At this meeting, the members requested a visual representation to show the distinct differences and possible overlap of these two sets of standards as well as a narrative outlining the need for both sets of standards (Appendix A).
	These documents were submitted to the Academic Standards and Assessment Subcommittee on April 4, 2018. Upon review of these materials, the members of the committee recommended that both sets of standards, the CSTA K–12 Computer Science Standards and the ISTE Standards for Students, and related documents go forward for full Board adoption.
	Recommendation
	The Connecticut State Department of Education (CSDE) presents the CSTA K–12 Computer Science Standards and ISTE Standards for Students for review and consideration of adoption.
	Next-Steps
	The CSDE will continue to work with multiple partners to ensure that when the CSTA K–12 Computer Science Standards and ISTE Standards for Students are adopted, there is accessible professional learning for computer science education and digital learning for all districts. Additionally, the CSDE will continue to work collaboratively with the Commission for Educational Technology to leverage conference presentation opportunities, as well as online resources such as webinars to educate districts on the CSTA K
	Prepared by:
	Prepared by:
	Prepared by:
	Prepared by:
	Prepared by:

	Jennifer Michalek
	Jennifer Michalek

	
	
	

	Education Consultant, Academic Office
	Education Consultant, Academic Office

	
	
	

	
	

	Approved by:
	Approved by:
	Approved by:

	Melissa K. Wlodarczyk Hickey, Ed.D.
	Melissa K. Wlodarczyk Hickey, Ed.D.

	
	
	

	Reading/Literacy Director
	Reading/Literacy Director

	
	
	

	Glossary
	Glossary
	The glossary includes definitions of terms used in the standards. These terms are defined for readers of the standards and are not necessarily intended to be the definitions or terms that are seen by students.
	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	abstraction

	TD
	Span
	(process): The process of reducing complexity by focusing on the main idea. By hiding details irrelevant to the question at hand and bringing together related and useful details, abstraction reduces complexity and allows one to focus on the problem.
	(product): A new representation of a thing, a system, or a problem that helpfully reframes a problem by hiding details irrelevant to the question at hand. [MDESE, 2016]

	TR
	Span
	TD
	Span
	accessibility

	TD
	Span
	The design of products, devices, services, or environments for people who experience disabilities. Accessibility standards that are generally accepted by professional groups include the Web Content Accessibility Guidelines (WCAG) 2.0 and Accessible Rich Internet Applications (ARIA) standards. [Wikipedia]

	TR
	Span
	TD
	Span
	algorithm

	TD
	Span
	A step-by-step process to complete a task.

	TR
	Span
	TD
	Span
	analog

	TD
	Span
	The defining characteristic of data that is represented in a continuous, physical way. Whereas digital data is a set of individual symbols, analog data is stored in physical media, such as the surface grooves on a vinyl record, the magnetic tape of a VCR cassette, or other nondigital media. [Techopedia]

	TR
	Span
	TD
	Span
	app

	TD
	Span
	A type of application software designed to run on a mobile device, such as a smartphone or tablet computer. Also known as a mobile application. [Techopedia]

	TR
	Span
	TD
	Span
	artifact

	TD
	Span
	Anything created by a human. See computational artifact for the definition used in computer science.

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	audience

	TD
	Span
	Expected end users of a computational artifact or system.

	TR
	Span
	TD
	Span
	accessibility

	TD
	Span
	The design of products, devices, services, or environments for people who experience disabilities. Accessibility standards that are generally accepted by professional groups include the Web Content Accessibility Guidelines (WCAG) 2.0 and Accessible Rich Internet Applications (ARIA) standards. [Wikipedia]

	TR
	Span
	TD
	Span
	authentication

	TD
	Span
	The verification of the identity of a person or process. [FOLDOC]

	TR
	Span
	TD
	Span
	automate; automation

	TD
	Span
	automate: To link disparate systems and software so that they become self-acting or self-regulating. [Ross, 2016]
	automation: The process of automating.

	TR
	Span
	TD
	Span
	Boolean

	TD
	Span
	A type of data or expression with two possible values: true and false. [FOLDOC]

	TR
	Span
	TD
	Span
	bug

	TD
	Span
	An error in a software program. It may cause a program to unexpectedly quit or behave in an unintended manner. [Tech Terms]
	The process of finding and correcting errors (bugs) is called debugging. [Wikipedia]

	TR
	Span
	TD
	Span
	code

	TD
	Span
	Any set of instructions expressed in a programming language. [MDESE, 2016]

	TR
	Span
	TD
	Span
	comment

	TD
	Span
	A programmer-readable annotation in the code of a computer program added to make the code easier to understand. Comments are generally ignored by machines. [Wikipedia]

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	complexity

	TD
	Span
	The minimum amount of resources, such as memory, time, or messages, needed to solve a problem or execute an algorithm. [NIST/DADS]

	TR
	Span
	TD
	Span
	component

	TD
	Span
	An element of a larger group. Usually, a component provides a particular service or group of related services. [Tech Terms, TechTarget]

	TR
	Span
	TD
	Span
	computational

	TD
	Span
	Relating to computers or computing methods.

	TR
	Span
	TD
	Span
	computational artifact

	TD
	Span
	Anything created by a human using a computational thinking process and a computing device. A computational artifact can be, but is not limited to, a program, image, audio, video, presentation, or web page file. [College Board, 2016]

	TR
	Span
	TD
	Span
	computational thinking

	TD
	Span
	The human ability to formulate problems so that their solutions can be represented as computational steps or algorithms to be executed by a computer. [Lee, 2016]

	TR
	Span
	TD
	Span
	computer

	TD
	Span
	A machine or device that performs processes, calculations, and operations based on instructions provided by a software or hardware program. [Techopedia]

	TR
	Span
	TD
	Span
	computer science

	TD
	Span
	The study of computers and algorithmic processes, including their principles, their hardware and software designs, their implementation, and their impact on society. [ACM, 2006]

	TR
	Span
	TD
	Span
	computing

	TD
	Span
	Any goal-oriented activity requiring, benefiting from, or creating algorithmic processes. [MDESE, 2016]

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	computing device

	TD
	Span
	A physical device that uses hardware and software to receive, process, and output information. Computers, mobile phones, and computer chips inside appliances are all examples of computing devices.

	TR
	Span
	TD
	Span
	computing system

	TD
	Span
	A collection of one or more computers or computing devices, together with their hardware and software, integrated for the purpose of accomplishing shared tasks. Although a computing system can be limited to a single computer or computing device, it more commonly refers to a collection of multiple connected computers, computing devices, and hardware.

	TR
	Span
	TD
	Span
	conditional

	TD
	Span
	A feature of a programming language that performs different computations or actions depending on whether a programmer-specified Boolean condition evaluates to true or false. [MDESE, 2016]
	(A conditional could refer to a conditional statement, conditional expression, or conditional construct.)

	TR
	Span
	TD
	Span
	configuration

	TD
	Span
	(process): Defining the options that are provided when installing or modifying hardware and software or the process of creating the configuration (product). [TechTarget]
	(product): The specific hardware and software details that tell exactly what the system is made up of, especially in terms of devices attached, capacity, or capability. [TechTarget]

	TR
	Span
	TD
	Span
	connection

	TD
	Span
	A physical or wireless attachment between multiple computing systems, computers, or computing devices.

	TR
	Span
	TD
	Span
	connectivity

	TD
	Span
	P
	Span
	A
	
	program’s
	program’s

	 or device’s ability to link with other programs and devices. [Webopedia]

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	control; control structure

	TD
	Span
	control: (in general) The power to direct the course of actions.
	(in programming) The use of elements of programming code to direct which actions take place and the order in which they take place.
	control structure: A programming (code) structure that implements control. Conditionals and loops are examples of control structures.

	TR
	Span
	TD
	Span
	culture; cultural practices

	TD
	Span
	
	culture: A human institution manifested in the learned behavior of people, including their specific belief systems, language(s), social relations, technologies, institutions, organizations, and systems for using and developing resources. [NCSS, 2013]
	cultural practices: The displays and behaviors of a culture.

	TR
	Span
	TD
	Span
	cybersecurity

	TD
	Span
	The protection against access to, or alteration of, computing resources through the use of technology, processes, and training. [TechTarget]

	TR
	Span
	TD
	Span
	data

	TD
	Span
	Information that is collected and used for reference or analysis. Data can be digital or nondigital and can be in many forms, including numbers, text, show of hands, images, sounds, or video. [CAS, 2013; Tech Terms]

	TR
	Span
	TD
	Span
	data structure

	TD
	Span
	A particular way to store and organize data within a computer program to suit a specific purpose so that it can be accessed and worked with in appropriate ways. [TechTarget]

	TR
	Span
	TD
	Span
	data type

	TD
	Span
	A classification of data that is distinguished by its attributes and the types of operations that can be performed on it. Some common data types are integer, string, Boolean (true or false), and floating-point.

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	debugging

	TD
	Span
	The process of finding and correcting errors (bugs) in programs. [MDESE, 2016]

	TR
	Span
	TD
	Span
	decompose; decomposition

	TD
	Span
	decompose: To break down into components.
	decomposition: Breaking down a problem or system into components. [MDESE, 2016]

	TR
	Span
	TD
	Span
	device

	TD
	Span
	A unit of physical hardware that provides one or more computing functions within a computing system. It can provide input to the computer, accept output, or both. [Techopedia]

	TR
	Span
	TD
	Span
	digital

	TD
	Span
	A characteristic of electronic technology that uses discrete values, generally 0 and 1, to generate, store, and process data. [Techopedia]

	TR
	Span
	TD
	Span
	digital citizenship

	TD
	Span
	The norms of appropriate, responsible behavior with regard to the use of technology. [MDESE, 2016]

	TR
	Span
	TD
	Span
	efficiency

	TD
	Span
	A measure of the amount of resources an algorithm uses to find an answer. It is usually expressed in terms of the theoretical computations, the memory used, the number of messages passed, the number of disk accesses, etc. [NIST/DADS]

	TR
	Span
	TD
	Span
	encapsulation

	TD
	Span
	The technique of combining data and the procedures that act on it to create a type. [FOLDOC]

	TR
	Span
	TD
	Span
	encryption

	TD
	Span
	The conversion of electronic data into another form, called ciphertext, which cannot be easily understood by anyone except authorized parties. [TechTarget]

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	end user (or user)

	TD
	Span
	A person for whom a hardware or software product is designed (as distinguished from the developers). [TechTarget]

	TR
	Span
	TD
	Span
	event

	TD
	Span
	Any identifiable occurrence that has significance for system hardware or software. User-generated events include keystrokes and mouse clicks; system-generated events include program loading and errors. [TechTarget]

	TR
	Span
	TD
	Span
	event handler

	TD
	Span
	A procedure that specifies what should happen when a specific event occurs.

	TR
	Span
	TD
	Span
	execute; execution

	TD
	Span
	execute: To carry out (or “run”) an instruction or set of instructions (program, app, etc.).
	execution: The process of executing an instruction or set of instructions. [FOLDOC]

	TR
	Span
	TD
	Span
	hardware

	TD
	Span
	The physical components that make up a computing system, computer, or computing device. [MDESE, 2016]

	TR
	Span
	TD
	Span
	hierarchy

	TD
	Span
	An organizational structure in which items are ranked according to levels of importance. [TechTarget]

	TR
	Span
	TD
	Span
	human–computer interaction (HCI)

	TD
	Span
	The study of how people interact with computers and to what extent computing systems are or are not developed for successful interaction with human beings. [TechTarget]

	TR
	Span
	TD
	Span
	identifier

	TD
	Span
	The user-defined, unique name of a program element (such as a variable or procedure) in code. An identifier name should indicate the meaning and usage of the element being named. [Techopedia]

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	implementation

	TD
	Span
	The process of expressing the design of a solution in a programming language (code) that can be made to run on a computing device.

	TR
	Span
	TD
	Span
	inference

	TD
	Span
	A conclusion reached on the basis of evidence and reasoning. [Oxford]

	TR
	Span
	TD
	Span
	input

	TD
	Span
	The signals or instructions sent to a computer. [Techopedia]

	TR
	Span
	TD
	Span
	integrity

	TD
	Span
	The overall completeness, accuracy, and consistency of data. [Techopedia]

	TR
	Span
	TD
	Span
	Internet

	TD
	Span
	The global collection of computer networks and their connections, all using shared protocols to communicate. [CAS, 2013]

	TR
	Span
	TD
	Span
	iterative

	TD
	Span
	Involving the repeating of a process with the aim of approaching a desired goal, target, or result. [MDESE, 2016]

	TR
	Span
	TD
	Span
	loop

	TD
	Span
	A programming structure that repeats a sequence of instructions as long as a specific condition is true. [Tech Terms]

	TR
	Span
	TD
	Span
	memory

	TD
	Span
	Temporary storage used by computing devices. [MDESE, 2016]

	TR
	Span
	TD
	Span
	model

	TD
	Span
	A representation of some part of a problem or a system. [MDESE, 2016] Note: This definition differs from that used in science.

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	modularity

	TD
	Span
	The characteristic of a software/web application that has been divided (decomposed) into smaller modules. An application might have several procedures that are called from inside its main procedure. Existing procedures could be reused by recombining them in a new application. [Techopedia]

	TR
	Span
	TD
	Span
	module

	TD
	Span
	A software component or part of a program that contains one or more procedures. One or more independently developed modules make up a program. [Techopedia]

	TR
	Span
	TD
	Span
	network

	TD
	Span
	A group of computing devices (personal computers, phones, servers, switches, routers, etc.) connected by cables or wireless media for the exchange of information and resources.

	TR
	Span
	TD
	Span
	operation

	TD
	Span
	An action, resulting from a single instruction, that changes the state of data. [Free Dictionary]

	TR
	Span
	TD
	Span
	packet

	TD
	Span
	The unit of data sent over a network. [Tech Terms]

	TR
	Span
	TD
	Span
	parameter

	TD
	Span
	A special kind of variable used in a procedure to refer to one of the pieces of data received as input by the procedure. [MDESE, 2016]

	TR
	Span
	TD
	Span
	piracy

	TD
	Span
	The illegal copying, distribution, or use of software. [TechTarget]

	TR
	Span
	TD
	Span
	
	procedure

	TD
	Span
	An independent code module that fulfills some concrete task and is referenced within a larger body of program code. The fundamental role of a procedure is to offer a single point of reference for some small goal or task that the developer or

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	TD
	Span
	TD
	Span
	programmer can trigger by invoking the procedure itself. [Techopedia]
	In this framework, procedure is used as a general term that may refer to an actual procedure or a method, function, or module of any other name by which modules are known in other programming languages.

	TR
	Span
	TD
	Span
	process

	TD
	Span
	A series of actions or steps taken to achieve a particular outcome. [Oxford]

	TR
	Span
	TD
	Span
	program; programming

	TD
	Span
	
	program (n): A set of instructions that the computer executes to achieve a particular objective. [MDESE, 2016]
	program (v): To produce a program by programming.
	programming: The craft of analyzing problems and designing, writing, testing, and maintaining programs to solve them. [MDESE, 2016]

	TR
	Span
	TD
	Span
	protocol

	TD
	Span
	The special set of rules used by endpoints in a telecommunication connection when they communicate. Protocols specify interactions between the communicating entities. [TechTarget]

	TR
	Span
	TD
	Span
	prototype

	TD
	Span
	An early approximation of a final product or information system, often built for demonstration purposes. [TechTarget, Techopedia]

	TR
	Span
	TD
	Span
	redundancy

	TD
	Span
	A system design in which a component is duplicated, so if it fails, there will be a backup. [TechTarget]

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	reliability

	TD
	Span
	An attribute of any system that consistently produces the same results, preferably meeting or exceeding its requirements. [FOLDOC]

	TR
	Span
	TD
	Span
	remix

	TD
	Span
	The process of creating something new from something old. Originally a process that involved music, remixing involves creating a new version of a program by recombining and modifying parts of existing programs, and often adding new pieces, to form new solutions. [Kafai & Burke, 2014]

	TR
	Span
	TD
	Span
	router

	TD
	Span
	A device or software that determines the path that data packets travel from source to destination. [TechTarget]

	TR
	Span
	TD
	Span
	scalability

	TD
	Span
	The capability of a network to handle a growing amount of work or its potential to be enlarged to accommodate that growth. [Wikipedia]

	TR
	Span
	TD
	Span
	security

	TD
	Span
	See the definition for cybersecurity.

	TR
	Span
	TD
	Span
	simulate; simulation

	TD
	Span
	
	simulate: To imitate the operation of a real-world process or system.
	simulation: Imitation of the operation of a real-world process or system. [MDESE, 2016]

	TR
	Span
	TD
	Span
	software

	TD
	Span
	Programs that run on a computing system, computer, or other computing device.

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	Span
	TD
	Span
	storage

	TD
	Span
	(place) A place, usually a device, into which data can be entered, in which the data can be held, and from which the data can be retrieved at a later time. [FOLDOC]
	(process) A process through which digital data is saved within a data storage device by means of computing technology. Storage is a mechanism that enables a computer to retain data, either temporarily or permanently. [Techopedia]

	TR
	Span
	TD
	Span
	string

	TD
	Span
	A sequence of letters, numbers, and/or other symbols. A string might represent, for example, a name, address, or song title. Some functions commonly associated with strings are length, concatenation, and substring. [TechTarget]

	TR
	Span
	TD
	Span
	structure

	TD
	Span
	A general term used in the framework to discuss the concept of encapsulation without specifying a particular programming methodology.

	TR
	Span
	TD
	Span
	switch

	TD
	Span
	A high-speed device that receives incoming data packets and redirects them to their destination on a local area network (LAN). [Techopedia]

	TR
	Span
	TD
	Span
	system

	TD
	Span
	A collection of elements or components that work together for a common purpose. [TechTarget]
	See also the definition for computing system.

	TR
	Span
	TD
	Span
	test case

	TD
	Span
	A set of conditions or variables under which a tester will determine whether the system being tested satisfies requirements or works correctly. [STF]

	TR
	Span
	TD
	Span
	topology

	TD
	Span
	The physical and logical configuration of a network; the arrangement of a network, including its nodes and connecting links. A logical topology is the way devices appear connected to

	Table
	TBody
	TR
	Span
	TH
	Span
	Term

	TH
	Span
	Definition

	TR
	TD
	Span
	TD
	Span
	the user. A physical topology is the way they are actually interconnected with wires and cables. [PCMag]

	TR
	Span
	TD
	Span
	troubleshooting

	TD
	Span
	A systematic approach to problem solving that is often used to find and resolve a problem, error, or fault within software or a computing system. [Techopedia, TechTarget]

	TR
	Span
	TD
	Span
	user

	TD
	Span
	See the definition for end user.

	TR
	Span
	TD
	Span
	variable

	TD
	Span
	A symbolic name that is used to keep track of a value that can change while a program is running. Variables are not just used for numbers; they can also hold text, including whole sentences (strings) or logical values (true or false). A variable has a data type and is associated with a data storage location; its value is normally changed during the course of program execution. [CAS, 2013; Techopedia]
	Note: This definition differs from that used in math.

	References
	Some definitions came directly from these sources, while others were excerpted or adapted to include content relevant to this framework.
	Table
	TBody
	TR
	Span
	TD
	Span
	ACM, 2006

	TD
	Span
	A Model Curriculum for K–12 Computer Science Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model curriculum for K–12 computer science: Report of the ACM K–12 task force curriculum committee (2nd ed.). New York, NY: Association for Computing Machinery.

	TR
	Span
	TD
	Span
	CAS, 2013

	TD
	Span
	Computing At School’s Computing in the National Curriculum: A Guide for Primary Teachers Computing At School. (2013). Computing in the national curriculum: A guide for primary

	Table
	TBody
	TR
	TD
	Span
	TD
	Span
	P
	Span
	teachers.
	
	Belford, UK: Newnorth
	Print.
	
	http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
	http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf

	

	TR
	Span
	TD
	Span
	College Board, 2016

	TD
	Span
	P
	Span
	College Board Advanced Placement® Computer Science Principles
	
	College Board. (2016).
	
	AP Computer Science
	Principles course and exam
	description.
	
	New York, NY: College Board.
	
	https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
	https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf

	

	TR
	Span
	TD
	Span
	FOLDOC

	TD
	Span
	P
	Span
	Free On
	-
	Line Dictionary of Computing
	
	Free on
	-
	line dictionary of computing. (n.d.). Retrieved from
	
	http://foldoc.org
	http://foldoc.org

	

	TR
	Span
	TD
	Span
	Free Dictionary

	TD
	Span
	P
	Span
	The
	
	Free Dictionary
	
	The free dictionary. (n.d.). Retrieved from
	
	http://www.thefreedictionary.com
	http://www.thefreedictionary.com

	

	TR
	Span
	TD
	Span
	Kafai & Burke, 2014

	TD
	Span
	Connected Code: Why Children Need to Learn Programming Kafai, Y., & Burke, Q. (2014). Connected code: Why children need to learn programming. Cambridge, MA: MIT Press.

	TR
	Span
	TD
	Span
	Lee, 2016

	TD
	Span
	P
	Span
	Reclaiming the Roots of CT
	
	Lee, I. (2016). Reclaiming the roots of CT.
	
	CSTA Voice: The Voice of K
	–
	12 Computer
	Science Education and Its Educators
	, 12(1), 3
	–
	4.
	
	http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf
	http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf

	

	TR
	Span
	TD
	Span
	MDESE, 2016

	TD
	Span
	P
	Span
	Massachusetts Digital Literacy and Computer Science (DL&CS) Standards
	
	Massachusetts
	Department of Elementary and Secondary Education. (2016, June).
	2016
	
	Massachusetts digital literacy and computer science (DLCS) curriculum
	framework.
	
	Malden, MA: Author.
	
	http://www.doe.mass.edu/frameworks/dlcs.pdf
	http://www.doe.mass.edu/frameworks/dlcs.pdf

	

	Table
	TBody
	TR
	Span
	TD
	Span
	NCSS, 2013

	TD
	Span
	P
	Span
	College, Career & Civic Life (C3) Framework for Social Studies State Standards
	
	National Council for the Social Studies. (2013).
	
	The college, career, and civic life (C3)
	framework for social studies state standards: Guidance
	for enhancing the rigor of K
	–
	12
	civics, economics, geography, and history.
	
	Silver Spring, MD:
	Author.
	
	http://www.socialstudies.org/system/files/c3/C3-Framework-for-Social-Studies.pdf
	http://www.socialstudies.org/system/files/c3/C3-Framework-for-Social-Studies.pdf

	

	TR
	Span
	TD
	Span
	NIST/DADS

	TD
	Span
	P
	Span
	National Institute of Science and Technology Dictionary of Algorithms and Data
	Structures
	
	Pieterse, V., & Black, P. E. (Eds.). (n.d).
	
	Dictionary of algorithms and data
	structures.
	
	Retrieved from
	
	https://xlinux.nist.gov/dads
	https://xlinux.nist.gov/dads

	

	TR
	Span
	TD
	Span
	Oxford

	TD
	Span
	P
	Span
	Oxford Dictionaries
	
	Oxford dictionaries. (n.d.). Retrieved from
	
	http://www.oxforddictionaries.com/us
	http://www.oxforddictionaries.com/us

	

	TR
	Span
	TD
	Span
	PCmag

	TD
	Span
	P
	Span
	PCmag.com
	Encyclopedia
	
	PCmag.com encyclopedia. (n.d.). Retrieved
	from
	
	http://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology
	http://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology

	

	TR
	Span
	TD
	Span
	Ross, 2016

	TD
	Span
	P
	Span
	What Is Automation
	
	Ross, B. (2016, May 10). What is automation and how can it improve customer
	service?
	
	Information Age.
	
	Retrieved from
	
	http://www.information-age.com/industry/software/123461408/what-automation-and-how-can-it-improve-customer-service
	http://www.information-age.com/industry/software/123461408/what-automation-and-how-can-it-improve-customer-service

	

	TR
	Span
	TD
	Span
	STF

	TD
	Span
	P
	Span
	Software Testing Fundamentals
	
	Software testing fundamentals. (n.d). Retrieved
	from
	
	http://softwaretestingfundamentals.com
	http://softwaretestingfundamentals.com

	

	TR
	Span
	TD
	Span
	Tech Terms

	TD
	Span
	P
	Span
	Tech Terms
	
	Tech terms computer dictionary. (n.d.). Retrieved from
	
	http://www.techterms.com
	http://www.techterms.com

	

	Table
	TBody
	TR
	Span
	TD
	Span
	Techopedia

	TD
	Span
	P
	Span
	Techopedia
	
	Techopedia technology dictionary. (n.d.). Retrieved
	from
	
	https://www.techopedia.com/dictionary
	https://www.techopedia.com/dictionary

	

	TR
	Span
	TD
	Span
	TechTarget

	TD
	Span
	P
	Span
	TechTarget Network
	
	TechTarget network. (n.d.). Retrieved from
	
	http://www.techtarget.com/network
	http://www.techtarget.com/network

	

	TR
	Span
	TD
	Span
	Webopedia

	TD
	Span
	P
	Span
	Webopedia
	
	Webopedia. (n.d.). Retrieved from
	
	http://www.webopedia.com
	http://www.webopedia.com

	

	TR
	Span
	TD
	Span
	Wikipedia

	TD
	Span
	P
	Span
	Wikipedia
	
	Wikipedia: The free encyclopedia. (n.d.). Retrieved from
	
	https://www.wikipedia.org/
	https://www.wikipedia.org/

	

	

	Part
	Figure
	Connecticut Computer Science Implementation Guidelines
	Span
	Connecticut State Department of Education
	Connecticut State Department of Education
	Connecticut State Department of Education
	

	Span
	
	
	2018
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Figure
	Contents
	Contents
	Connecticut Computer Science Standards Workgroup .. 2
	Connecticut Computer Science Standards Workgroup .. 2
	Connecticut Computer Science Standards Workgroup .. 2

	

	Introduction .. 3
	Introduction .. 3
	Introduction .. 3

	

	Background ... 3
	Background ... 3
	Background ... 3

	

	Defining Computer Science ... 4
	Defining Computer Science ... 4
	Defining Computer Science ... 4

	

	Defining Computational Thinking ... 4
	Defining Computational Thinking ... 4
	Defining Computational Thinking ... 4

	

	Equity .. 5
	Equity .. 5
	Equity .. 5

	

	Computer Science Practices .. 5
	Computer Science Practices .. 5
	Computer Science Practices .. 5

	

	Organization of the Standards .. 7
	Organization of the Standards .. 7
	Organization of the Standards .. 7

	

	Implementation Models ... 9
	Implementation Models ... 9
	Implementation Models ... 9

	

	Curriculum and Instruction Resources .. 10
	Curriculum and Instruction Resources .. 10
	Curriculum and Instruction Resources .. 10

	

	References .. 16
	References .. 16
	References .. 16

	

	

	
	
	
	
	
	
	
	
	
	
	The Connecticut State Department of Education is committed to a policy of equal opportunity/ affirmative action for all qualified persons. The Connecticut State Department of Education does not discriminate in any employment practice, education program, or educational activity on the basis of race, color, religious creed, sex, age, national origin, ancestry, marital status, sexual orientation, gender identity or expression, disability (including, but not limited to, intellectual disability, past or present
	The Connecticut State Department of Education is committed to a policy of equal opportunity/ affirmative action for all qualified persons. The Connecticut State Department of Education does not discriminate in any employment practice, education program, or educational activity on the basis of race, color, religious creed, sex, age, national origin, ancestry, marital status, sexual orientation, gender identity or expression, disability (including, but not limited to, intellectual disability, past or present
	Levy.Gillespie@ct.gov
	Levy.Gillespie@ct.gov

	.

	Connecticut Computer Science Standards Workgroup
	
	Jon Bishop, K–12 Stem Coordinator, Canton Public Schools
	Jennifer Blalock, High School Mathematics and Computer Science Teacher, Ellington Public Schools
	Jacqueline Corricelli, High School Computer Science Teacher, West Hartford Public Schools
	Michael Cwirka, High School Teacher, Berlin Public Schools
	Elizabeth W. Dillard, High School Computer Science Teacher, CREC
	Dr. Melissa Hickey, Reading/Literacy Director, Connecticut State Department of Education
	Christopher J Kerr, High School Computer Science Teacher, Newington Public Schools
	Dana Kinel, IB Design Technology Teacher, East Hartford Public Schools
	Eric Lozaw, High School Teacher, Watertown Public Schools
	Jenny Lussier, Library Media Specialist, Regional School District 13
	Lanna Mack, Career & Technical Education Teacher, New Haven Public Schools
	Jennifer Michalek, Education Consultant, Connecticut State Department of Education
	Dario Soto, Elementary Teacher, Hartford Public Schools
	Heather Sutkowski, Elementary Computer Science Teacher, CREC
	Dr. Chinma Uche, President, Connecticut Computer Science Teachers Association
	James Veseskis, Project Coordinator, Exploring Computer Science CT
	David Weinreb, Bilingual Teacher, New Haven Public Schools
	
	
	
	
	
	
	
	Introduction
	The Connecticut State Board of Education (Board) believes that computer science is a key to developing and integrating 21st Century Skills (e.g., technology, communication, collaboration, critical thinking, problem solving, innovation, creativity, persistence). The Board further believes that all Connecticut public schools must provide challenging and rigorous programs of study in computer science across all grade levels. This implementation guidance document articulates the lens through which to view the
	Background
	In 2011, the Computer Science Teachers Association (CSTA) developed the first K–12 computer science standards. As computer science continued to influence technology and the world, it became necessary to review the 2011 CSTA K–12 Standards. While the review of the 2011 CSTA K–12 Standards was in progress, CSTA joined forces with other computer science organizations (i.e., Association for Computing Machinery, Code.org, Cyber Innovation Center, and National Math + Science Initiative) to develop a K–12 Comput
	The 2017 CSTA K–12 Computer Science Standards
	The 2017 CSTA K–12 Computer Science Standards delineate a core set of learning objectives designed to provide the foundation for a complete computer science curriculum. They have been widely received by the computer science education and business communities, as well as policy developers. The standards are currently being used to define computer science in many states across the United States.
	The 2017 CSTA K–12 Computer Science Standards:
	 introduce the fundamental concepts of computer science to all students, beginning at the elementary school level;
	 introduce the fundamental concepts of computer science to all students, beginning at the elementary school level;
	 introduce the fundamental concepts of computer science to all students, beginning at the elementary school level;

	 present computer science at the secondary school level in a way that can fulfill a computer science, math, or science graduation credit;
	 present computer science at the secondary school level in a way that can fulfill a computer science, math, or science graduation credit;

	 encourage schools to offer additional secondary-level computer science courses that will allow interested students to study facets of computer science at a deeper level, and prepare these students for entry into the workforce or college; and
	 encourage schools to offer additional secondary-level computer science courses that will allow interested students to study facets of computer science at a deeper level, and prepare these students for entry into the workforce or college; and

	 increase the availability of rigorous computer science courses for all students, especially those who are members of underrepresented groups.
	 increase the availability of rigorous computer science courses for all students, especially those who are members of underrepresented groups.

	
	
	Computer Science Standards in Connecticut
	In September 2017, the Connecticut Department of Education (CSDE) convened a group of educators charged with putting forward computer science standards for Board approval. These educators were divided into grade level teams: K–5, 6–8, and 9–12. Each team independently reviewed the 2017 CSTA K–12 Computer Science Standards. The review by each team concluded that these 2017 standards aligned to the beliefs contained with the Board’s previously adopted Position Statement on Computer Science Education for Al
	In Connecticut a survey about the standards was disseminated to a variety of stakeholders in January 2018. This survey provided stakeholders the opportunity to give their feedback in regards to the standards. The survey was made publicly available and responses were collected over a six week period. Respondents included teachers, administrators, parents, higher education and business and industry. The results of the survey were favorable for adopting the standards in Connecticut.
	Defining Computer Science
	Computer science is defined as “the study of computers and algorithmic processes, including their principles, their hardware and software designs, their [implementation], and their impact on society” (Tucker et. al, 2003, p. 6). Thus, computer science is the foundation for all computing. Computer science builds on computer literacy, educational technology, digital citizenship, and information technology. These aspects of computing are distinguished from computer science because they are focused on using
	Defining Computational Thinking
	Integrated throughout the 2017 CSTA K–12 Computer Science Standards is the concept of computational thinking. Computational thinking is the thought processes involved in formulating problems and their solutions so that the solutions are represented in a form that can be effectively carried out by an information-processing agent (Cuny, Snyder & Wing, 2010). It is an approach to solving problems in a way that can be implemented with a computer. It involves the use of concepts, such as abstraction, recursio
	Computational thinking practices such as abstraction, modeling, and decomposition connect with computer science concepts such as algorithms, automation, and data visualization. Beginning with the elementary school grades and continuing through grade 12, students should develop a foundation of computer science knowledge and learn new approaches to problem solving that captures the power of computational thinking to become both users and creators of computing technology.
	Equity
	Equity is a fundamental component in the development of the 2017 CSTA K–12 Computer Science Standards. The intent of equity is to ensure that all students have the basic knowledge that will allow them to productively participate in the world and make well informed decisions about their lives. Classrooms often include students of different races, genders, socioeconomic statuses, English learners, students with disabilities, and students with differing ways of learning. Regardless of these differences, all
	
	Equity is not limited to whether classes are available, but includes how classes are taught, how students are recruited for classes or activities, and how the classroom culture supports diverse learners and promotes continued studies in computer science. The result of equity is achieving the ability to meet the needs of diverse learners and having them feel capable of learning. It ensures that all students have the basic knowledge that will allow them to compete in a diverse world.
	Computer Science Practices
	The 2017 CSTA K–12 Computer Science Standards incorporate seven practices. By Grade 12, it is expected that every computationally literate student will engage with these practice behaviors as they learn the standards and develop computational artifacts. The interrelated practices are listed in the chart below in an order that simulates the developmental process taken to produce computational artifacts.
	
	Table
	TBody
	TR
	Span
	TD
	Span
	Identifier

	TD
	Span
	Practice

	TR
	Span
	TD
	Span
	P1

	TD
	Span
	Fostering an Inclusive Computing Culture

	TR
	Span
	P1.1
	P1.1

	Include the unique perspectives of others and reflect on one’s own perspectives when designing and developing computational products
	Include the unique perspectives of others and reflect on one’s own perspectives when designing and developing computational products

	TR
	Span
	P1.2
	P1.2

	
	
	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability

	TR
	Span
	P1.3
	P1.3

	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods
	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods

	TR
	Span
	TD
	Span
	P2

	TD
	Span
	Collaborating Around Computing

	TR
	Span
	P2.1
	P2.1

	Cultivate working relationships with individuals possessing diverse perspectives, skills, and personalities
	Cultivate working relationships with individuals possessing diverse perspectives, skills, and personalities

	TR
	Span
	P2.2
	P2.2

	Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness
	Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness

	TR
	Span
	P2.3
	P2.3

	Solicit and incorporate feedback from, and provide constructive feedback to, team members and other stakeholders
	Solicit and incorporate feedback from, and provide constructive feedback to, team members and other stakeholders

	Table
	TBody
	TR
	Span
	P2.4
	P2.4

	Evaluate and select technological tools that can be used to collaborate on a project
	Evaluate and select technological tools that can be used to collaborate on a project

	TR
	Span
	TD
	Span
	P3

	TD
	Span
	Recognizing and Defining Computational Problems

	TR
	Span
	P3.1
	P3.1

	Identify complex, interdisciplinary, real-world problems that can be solved computationally
	Identify complex, interdisciplinary, real-world problems that can be solved computationally

	TR
	Span
	P3.2
	P3.2

	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures
	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures

	TR
	Span
	P3.3
	P3.3

	Evaluate whether it is appropriate and feasible to solve a problem computationally
	Evaluate whether it is appropriate and feasible to solve a problem computationally

	TR
	Span
	TD
	Span
	P4

	TD
	Span
	Developing and Using Abstractions

	TR
	Span
	P4.1
	P4.1

	Extract common features from a set of interrelated processes or complex phenomena
	Extract common features from a set of interrelated processes or complex phenomena

	TR
	Span
	P4.2
	P4.2

	Evaluate existing technological functionalities and incorporate them into new designs
	Evaluate existing technological functionalities and incorporate them into new designs

	TR
	Span
	P4.3
	P4.3

	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity
	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity

	TR
	Span
	P4.4
	P4.4

	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes
	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes

	TR
	Span
	TD
	Span
	P5

	TD
	Span
	Creating Computational Artifacts

	TR
	Span
	P5.1
	P5.1

	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations
	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations

	TR
	Span
	P5.2
	P5.2

	
	
	Create a computational artifact for practical intent, personal expression, or to address a societal issue

	TR
	Span
	P5.3
	P5.3

	Modify an existing artifact to improve or customize it
	Modify an existing artifact to improve or customize it

	TR
	Span
	TD
	Span
	P6

	TD
	Span
	Testing and Refining Computational Artifacts

	TR
	Span
	P6.1
	P6.1

	Systematically test computational artifacts by considering all scenarios and using test cases
	Systematically test computational artifacts by considering all scenarios and using test cases

	TR
	Span
	P6.2
	P6.2

	Identify and fix errors using a systematic process
	Identify and fix errors using a systematic process

	TR
	Span
	P6.3
	P6.3

	Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and accessibility
	Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and accessibility

	TR
	Span
	TD
	Span
	P7

	TD
	Span
	Communicating About Computing

	TR
	Span
	P7.1
	P7.1

	Select, organize, and interpret large data sets from multiple sources to support a claim
	Select, organize, and interpret large data sets from multiple sources to support a claim

	TR
	Span
	P7.2
	P7.2

	Describe, justify, and document computational processes and solutions using appropriate terminology consistent with the intended audience and purpose
	Describe, justify, and document computational processes and solutions using appropriate terminology consistent with the intended audience and purpose

	Table
	TBody
	TR
	Span
	P7.3
	P7.3

	Articulate ideas responsibly by observing intellectual property rights and giving appropriate attribution
	Articulate ideas responsibly by observing intellectual property rights and giving appropriate attribution

	Organization of the Standards
	Grade bands
	The 2017 CSTA K–12 Computer Science Standards are organized into grade bands with the goal being that students will have met the expectations by the end of grade 2 (Level 1A, ages 5–7), the end of grade 5 (Level 1B, ages 8–11), the end of grade 8 (Level 2, ages 11–14) and the end of grade 10 (Level 3A, ages 14–16). Furthermore, for students who wish to study computer science in high school beyond the level required for all students, Level 3B is provided.
	Strands
	The 2017 CSTA K–12 Computer Science Standards are also organized into strands called Concepts and Subconcepts. There are five Concepts: Algorithms & Programming, Computing Systems, Data & Analysis, Impacts of Computer, and Networks & the Internet, which are further broken down into sixteen Subconcepts. The chart below provides a brief overview of each sub concept for further clarification. In addition, there are five cross-cutting topics that are interwoven within each core concept throughout the standar
	Table
	TBody
	TR
	Span
	TD
	Span
	Concept

	TD
	Span
	Sub concept

	TD
	Span
	Overview

	TR
	Span
	TD
	Span
	
	

	TD
	Span
	
	Algorithms

	People evaluate and select algorithms based on performance, reusability, and ease of implementation. Knowledge of common algorithms improves how people develop software, secure data, and store information.
	People evaluate and select algorithms based on performance, reusability, and ease of implementation. Knowledge of common algorithms improves how people develop software, secure data, and store information.

	TR
	Span
	TD
	Span
	
	Control

	
	
	Programmers consider tradeoffs related to implementation, readability, and program performance when selecting and combining control structures.

	TR
	Span
	TD
	Span
	
	Algorithms and Programming

	TD
	Span
	
	
	
	Modularity

	Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. These modules can be procedures within a program; combinations of data and procedures or independent, but interrelated, programs. Modules allow for better management of complex tasks.
	Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. These modules can be procedures within a program; combinations of data and procedures or independent, but interrelated, programs. Modules allow for better management of complex tasks.

	TR
	Span
	TD
	Span
	
	
	

	TD
	Span
	
	
	Program
	Development

	Diverse teams can develop programs with broad impact through careful review and by drawing on the strengths of members in different roles. Design decisions often involve tradeoffs. The development of complex programs is aided by resources such as libraries and tools to edit and manage parts of the program. Systematic analysis is critical for identifying the effects of lingering bugs.
	Diverse teams can develop programs with broad impact through careful review and by drawing on the strengths of members in different roles. Design decisions often involve tradeoffs. The development of complex programs is aided by resources such as libraries and tools to edit and manage parts of the program. Systematic analysis is critical for identifying the effects of lingering bugs.

	Table
	TBody
	TR
	Span
	TD
	Span
	
	Algorithms and Programming

	TD
	Span
	
	Variables

	
	
	Data structures are used to manage program complexity. Programmers choose data structures based on functionality, storage, and performance tradeoffs.

	TR
	Span
	TD
	Span
	
	
	
	
	
	
	
	
	Computing
	Systems

	TD
	Span
	
	Devices

	Many everyday objects contain computational components that sense and act on the world. In early grades, students learn features and applications of common computing devices. As they progress, students learn about connected systems and how interaction between humans and devices influences design decisions.
	Many everyday objects contain computational components that sense and act on the world. In early grades, students learn features and applications of common computing devices. As they progress, students learn about connected systems and how interaction between humans and devices influences design decisions.

	TR
	Span
	TD
	Span
	
	Hardware and
	Software

	Computing systems use hardware and software to communicate and process information in digital form. In early grades, students learn how systems use both hardware and software to represent and process information. As they progress, students gain a deeper understanding of the interaction between hardware and software at multiple levels within computing systems.
	Computing systems use hardware and software to communicate and process information in digital form. In early grades, students learn how systems use both hardware and software to represent and process information. As they progress, students gain a deeper understanding of the interaction between hardware and software at multiple levels within computing systems.

	TR
	Span
	TD
	Span
	

	TD
	Span
	
	Troubleshooting

	
	
	When computing systems do not work as intended, troubleshooting strategies help people solve the problem. In early grades, students learn that identifying the problem is the first step to fixing it. As they progress, students learn systematic problem-solving processes and how to develop their own troubleshooting strategies based on a deeper understanding of how computing systems work.

	TR
	Span
	TD
	Span
	
	
	
	

	TD
	Span
	
	Collection, Visualization, and Transformation

	Data are collected with both computational and non-computational tools and processes. In early grades, students learn how data about themselves and their world is collected and used. As they progress, students learn the effects of collecting data with computational and automated tools.
	Data are collected with both computational and non-computational tools and processes. In early grades, students learn how data about themselves and their world is collected and used. As they progress, students learn the effects of collecting data with computational and automated tools.

	TR
	Span
	TD
	Span
	Data and
	Analysis

	TD
	Span
	
	
	
	Inference and
	Models

	Data science is one example where computer science serves many fields. Computer science and science use data to make inferences, theories, or predictions based upon data collected from users or simulations. In early grades, students learn about the use of data to make simple predictions. As they progress, students learn how models and simulations can be used to examine theories and understand systems and how predictions and inferences are affected by more complex and larger data sets.
	Data science is one example where computer science serves many fields. Computer science and science use data to make inferences, theories, or predictions based upon data collected from users or simulations. In early grades, students learn about the use of data to make simple predictions. As they progress, students learn how models and simulations can be used to examine theories and understand systems and how predictions and inferences are affected by more complex and larger data sets.

	TR
	Span
	TD
	Span
	

	TD
	Span
	
	
	
	Storage

	Data can be composed of multiple data elements that relate to one another. For example, population data may contain information about age, gender, and height. People make choices about how data elements are organized and
	Data can be composed of multiple data elements that relate to one another. For example, population data may contain information about age, gender, and height. People make choices about how data elements are organized and
	 where data are stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity.
	
	
	

	TR
	Span
	TD
	Span
	

	TD
	Span
	
	Culture

	The design and use of computing technologies and artifacts can improve, worsen, or maintain inequitable access to information and opportunities.
	The design and use of computing technologies and artifacts can improve, worsen, or maintain inequitable access to information and opportunities.

	TR
	Span
	TD
	Span
	
	
	Impacts of
	Computing

	TD
	Span
	
	
	Safety, Law and
	Ethics

	Laws govern many aspects of computing, such as privacy, data, property, information, and identity. These laws can have beneficial and harmful effects, such as expediting or delaying advancements in computing and protecting or infringing upon people's rights. International differences in laws and ethics have implications for computing.
	Laws govern many aspects of computing, such as privacy, data, property, information, and identity. These laws can have beneficial and harmful effects, such as expediting or delaying advancements in computing and protecting or infringing upon people's rights. International differences in laws and ethics have implications for computing.

	TR
	Span
	TD
	Span
	

	TD
	Span
	
	
	Social
	Interactions

	Many aspects of society, especially careers, have been affected by the degree of communication afforded by computing. The increased connectivity between people in different cultures and in different career fields has changed the nature and content of many careers.
	Many aspects of society, especially careers, have been affected by the degree of communication afforded by computing. The increased connectivity between people in different cultures and in different career fields has changed the nature and content of many careers.

	Table
	TBody
	TR
	Span
	TD
	Span
	
	Networks and
	 the Internet

	TD
	Span
	
	
	Cybersecurity

	Transmitting information securely across networks requires appropriate protection. In early grades, students learn how to protect their personal information. As they progress, students learn increasingly complex ways to protect information sent across networks.
	Transmitting information securely across networks requires appropriate protection. In early grades, students learn how to protect their personal information. As they progress, students learn increasingly complex ways to protect information sent across networks.

	TR
	Span
	TD
	Span
	
	Networks and the Internet

	TD
	Span
	
	Network Communication and Organization

	Computing devices communicate with each other across networks to share information. In early grades, students learn that computers connect them to other people, places, and things around the world. As they progress, students gain a deeper understanding of how information is sent and received across different types of networks.
	Computing devices communicate with each other across networks to share information. In early grades, students learn that computers connect them to other people, places, and things around the world. As they progress, students gain a deeper understanding of how information is sent and received across different types of networks.

	Implementation Models
	In the following examples, a computer science experience can range from a few hours a week to a semester- or year-long course. Computer science may be integrated into current curriculum or offered as an independent course based on student and district readiness.
	
	SAMPLE K–12 COMPUTER SCIENCE PATHWAYS
	SAMPLE K–12 COMPUTER SCIENCE PATHWAYS
	Figure

	 Broad and Deep Exposure Moderate Exposure Basic Exposure
	
	Integrated into the general classroom
	Integrated into the general classroom
	Figure

	Integrated into the general classroom
	Integrated into the general classroom
	Figure

	Independent special
	Independent special
	(Similar to Music, Art, etc.)
	Figure

	Elementary
	School
	
	………..
	
	Integrated into math, science, other subjects
	Integrated into math, science, other subjects
	+
	Independent course at a particular grade level
	Figure

	Independent course at a particular grade level
	Independent course at a particular grade level
	Figure

	Integrated into math, science, other subjects
	Integrated into math, science, other subjects
	Figure

	Middle
	School
	
	
	……..
	
	Introductory course
	Introductory course
	+
	AP Computer Science
	+
	Specialized courses
	Figure

	Introductory course
	Introductory course
	+
	Specialized courses
	Figure

	Introductory course
	Introductory course
	Figure

	High
	School
	
	
	
	Elementary and Middle School
	Computer science at the K–2, 3–5, and 6–8 grade bands can be embedded within the curriculum and/or offered as a stand-alone course, depending on the school’s program. This flexible implementation allows schools the choice to determine their own timeline on how they will ensure that all students will have the opportunity to learn computer science. All certified staff members and subject areas are encouraged to integrate computer science instruction into their classrooms.
	Below are various suggestions for implementation:
	 integrate computer science into a particular subject area (i.e., math, science, technology) on a weekly or biweekly basis within elementary classrooms;
	 integrate computer science into a particular subject area (i.e., math, science, technology) on a weekly or biweekly basis within elementary classrooms;
	 integrate computer science into a particular subject area (i.e., math, science, technology) on a weekly or biweekly basis within elementary classrooms;

	 plan districtwide and schoolwide participation in the annual “Hour of Code” for all grade levels;
	 plan districtwide and schoolwide participation in the annual “Hour of Code” for all grade levels;

	 offer computer science in a particular grade level and then expand the program to additional grade levels in subsequent years;
	 offer computer science in a particular grade level and then expand the program to additional grade levels in subsequent years;

	 provide small group instruction;
	 provide small group instruction;

	 provide a weekly “specials”/ “unified arts” course designed to specifically teach the computer science standards;
	 provide a weekly “specials”/ “unified arts” course designed to specifically teach the computer science standards;

	 integrate computer science instruction into existing Library/Media time; and
	 integrate computer science instruction into existing Library/Media time; and

	 incorporate computer science in a similar fashion as Maker Spaces, Genius Hour etc.
	 incorporate computer science in a similar fashion as Maker Spaces, Genius Hour etc.

	
	High School
	Implementation at the high school level is best achieved through course offerings specific to computer science. All high schools should offer at least one rigorous computer science course. Ideally high schools develop computer science pathways for students to explore based on need and interest.
	Curriculum and Instruction Resources
	Implementing the computer science standards will require many curricula and instructional decisions.
	 Schools may decide to teach a specific curriculum or combine multiple resources to deliver computer science instruction.
	 Schools may decide to teach a specific curriculum or combine multiple resources to deliver computer science instruction.
	 Schools may decide to teach a specific curriculum or combine multiple resources to deliver computer science instruction.

	 Computer science instruction can be implemented with limited access to technology. Students are encouraged to work together and can share devices.
	 Computer science instruction can be implemented with limited access to technology. Students are encouraged to work together and can share devices.

	 Computer science can be individualized and collaborative.
	 Computer science can be individualized and collaborative.

	 “Unplugged” lessons are available and districts are encouraged to use a combination of “plugged” for an authentic computer science experience.
	 “Unplugged” lessons are available and districts are encouraged to use a combination of “plugged” for an authentic computer science experience.

	 20 hours of Computer Science instruction per year will provide a rigorous and well-developed experience for students at the elementary and middle school levels.
	 20 hours of Computer Science instruction per year will provide a rigorous and well-developed experience for students at the elementary and middle school levels.

	 One credit or its equivalent in computer science at the high school level will best prepare students to be college and career ready.
	 One credit or its equivalent in computer science at the high school level will best prepare students to be college and career ready.

	
	In an effort to assist districts in making curriculum decisions related to the implementation of computer science a sampling of resources is provided. This is not an all-inclusive list and the resources are not
	endorsed by CSDE. However, the intent is to provide information so that districts may begin researching options to support computer science implementation in their schools.
	Elementary School
	Table
	TBody
	TR
	Span
	TH
	Span
	Organization

	TH
	Span
	Curriculum

	TR
	Span
	TD
	Span
	P
	Span
	Apple
	Apple

	

	TD
	Span
	The lessons in the Get Started with Code Teacher Guides, which are part of the Everyone Can Code Curriculum, are designed to help you bring coding into the early primary classroom.

	TR
	Span
	TD
	Span
	P
	Span
	Bee-Bot
	Bee-Bot

	

	TD
	Span
	Bee-Bot Lessons contains 100 detailed lesson plans, with accompanying images, for using Bee-Bot to teach across the curriculum. Problem-Solving with Bee-Bot provides 150 sequential student challenges that use Bee-Bot to develop problem-solving, critical-thinking, and decision-making skills.

	TR
	Span
	TD
	Span
	P
	Span
	codeSpark Academy
	codeSpark Academy

	

	TD
	Span
	Ignite interest in computer science and turn programming into play.

	TR
	Span
	TD
	Span
	P
	Span
	Code Studio
	Code Studio

	(Code.org)

	TD
	Span
	Computer Science Fundamentals is comprised of 6 courses of about 15 lessons that may be implemented as one unit or over the course of a semester.

	TR
	Span
	TD
	Span
	P
	Span
	Code Monkey
	Code Monkey

	

	TD
	Span
	The Code Monkey game is accompanied by a curriculum guide which includes 35 detailed lesson plans with both online and offline activities.

	TR
	Span
	TD
	Span
	P
	Span
	Computer Science for All in SF
	Computer Science for All in SF

	

	TD
	Span
	Creative Computing Curriculum for K – 2 and 3 – 5 introduces computer science as a creative, collaborative, and engaging discipline across 15 – 20 lessons at each grade level.

	TR
	Span
	TD
	Span
	P
	Span
	Kodable
	Kodable

	

	TD
	Span
	Courses for every grade K – 5 enabling students to learn foundational skills in computer science preparing them for the next step in their learning.

	Table
	TBody
	TR
	Span
	TH
	Span
	Organization

	TH
	Span
	Curriculum

	TR
	Span
	TD
	Span
	P
	Span
	Project Lead The Way
	Project Lead The Way

	

	TD
	Span
	PLTW Launch modules engage students and build knowledge and skills in the area of computer science.

	TR
	Span
	TD
	Span
	P
	Span
	ScratchEd
	ScratchEd

	

	TD
	Span
	Activities are designed to support familiarity and increasing fluency with computational creativity and computational thinking using Scratch. Units can be used as a semester-long computing course or as part of other curriculum areas.

	TR
	Span
	TD
	Span
	P
	Span
	Tynker
	Tynker

	

	TD
	Span
	Seven coding courses designed for students K – 5.

	
	Middle School
	Table
	TBody
	TR
	Span
	TH
	Span
	Organization

	TH
	Span
	Curriculum

	TR
	Span
	TD
	Span
	P
	Span
	Apple
	Apple

	

	TD
	Span
	The lessons in the Learn to Code Teacher Guides, which are part of the Everyone Can Code Curriculum, are designed to help students learn fundamental coding concepts.

	TR
	Span
	TD
	Span
	P
	Span
	Bootstrap
	Bootstrap

	

	TD
	Span
	Teach algebra through video-game programming, with a module to go alongside or inside a math class.

	TR
	Span
	TD
	Span
	P
	Span
	CodeHS
	CodeHS

	

	TD
	Span
	CodeHS helps schools and districts build a comprehensive Middle School computer science program starting with introductory level block-based programming courses. There are courses available for all grades 6-8.

	TR
	Span
	TD
	Span
	P
	Span
	Code.org
	Code.org

	

	TD
	Span
	Computer Science Discoveries is an introductory computer science course recommended for grades 6 - 10 that empowers students to create authentic artifacts and engage with computer science as a medium for creativity, communication, problem solving, and fun.

	Table
	TBody
	TR
	Span
	TH
	Span
	Organization

	TH
	Span
	Curriculum

	TR
	Span
	TD
	Span
	P
	Span
	Code Monkey
	Code Monkey

	

	TD
	Span
	The Code Monkey game is accompanied by a curriculum guide which includes 35 detailed lesson plans with both online and offline activities.

	TR
	Span
	TD
	Span
	P
	Span
	Codesters
	Codesters

	

	TD
	Span
	Range of courses where students use Python to build projects through structured lessons, then modify their code to create custom projects.

	TR
	Span
	TD
	Span
	P
	Span
	Computer Science for All in SF
	Computer Science for All in SF

	

	TD
	Span
	MyCS intended for grade 6 and App Inventor for grade 7 highlight the personal relevance of computer science to middle school students and attempt to present computer science as a fun, creative, and collaborative discipline.

	TR
	Span
	TD
	Span
	P
	Span
	Edhesive
	Edhesive

	

	TD
	Span
	Explorations in Coding course is specifically designed for middle school classrooms, this blended online course covers foundational concepts and skills of computer science.

	TR
	Span
	TD
	Span
	P
	Span
	Globaloria
	Globaloria

	

	TD
	Span
	Standalone and core subject integration pathways.

	TR
	Span
	TD
	Span
	P
	Span
	GUTS
	GUTS

	

	TD
	Span
	In partnership with Code.org, Middle School CS in Science includes four modules each consisting of five or six lessons.

	TR
	Span
	TD
	Span
	P
	Span
	Project Lead The Way
	Project Lead The Way

	

	TD
	Span
	PLTW Gateway units include units that engage students in computer science through robotics, hardware and software development, and mobile app development.

	TR
	Span
	TD
	Span
	P
	Span
	Pythonroom
	Pythonroom

	

	TD
	Span
	Pythonroom's curriculum is designed to teach students problem-solving and algorithmic thinking while introducing computer science to young students.

	TR
	Span
	TD
	Span
	P
	Span
	ScratchEd
	ScratchEd

	

	TD
	Span
	Activities are designed to support familiarity and increasing fluency with computational creativity and computational thinking using Scratch. Units

	Table
	TBody
	TR
	Span
	TH
	Span
	Organization

	TH
	Span
	Curriculum

	TR
	Span
	TD
	Span
	P
	Span
	ScratchEd
	ScratchEd

	

	TD
	Span
	can be used as a semester-long computing course or as part of other curriculum areas.

	TR
	Span
	TD
	Span
	P
	Span
	Tynker
	Tynker

	

	TD
	Span
	Seven coding courses designed for students 6 - 8.

	TR
	Span
	TD
	Span
	P
	Span
	UC Davis C-STEM
	UC Davis C-STEM

	

	TD
	Span
	Multiple academic year-long courses on computing in math, programming, robotics, and film production.

	
	High School
	Table
	TBody
	TR
	Span
	TH
	Span
	Organization

	TH
	Span
	Curriculum

	TR
	Span
	TD
	Span
	P
	Span
	Apple
	Apple

	

	TD
	Span
	The Intro to App Development with Swift and App Development with Swift curricula were designed to teach high school students with little or no programming experience how to be app developers, capable of bringing their own ideas to life.

	TR
	Span
	TD
	Span
	P
	Span
	Beauty and Joy of Computing
	Beauty and Joy of Computing

	

	TD
	Span
	Introductory computer science curriculum intended for high school juniors and seniors that is aligned to the AP CS Principles course.

	TR
	Span
	TD
	Span
	P
	Span
	Bootstrap
	Bootstrap

	

	TD
	Span
	Teach algebra through video-game programming, with a 20-hr module to go alongside or inside a math class.

	TR
	Span
	TD
	Span
	P
	Span
	CodeHS
	CodeHS

	

	TD
	Span
	Four-year high school computer science pathway. Intro CS JavaScript, Intro CS Python, AP CS Principles, AP CS in Java, Computing Ideas, Web Design and more.

	TR
	Span
	TD
	Span
	P
	Span
	Code.org
	Code.org

	

	TD
	Span
	Two years of Computer Science courses for beginners. The first course, Computer Science Discoveries, is appropriate for grades 6-10 and the second,

	Table
	TBody
	TR
	Span
	TH
	Span
	Organization

	TH
	Span
	Curriculum

	TR
	Span
	TD
	Span
	P
	Span
	Code.org
	Code.org

	

	TD
	Span
	Computer Science Principles, can be implemented as an AP course or an introductory course.

	TR
	Span
	TD
	Span
	P
	Span
	Edhesive
	Edhesive

	

	TD
	Span
	Year-long AP Computer Science courses.

	TR
	Span
	TD
	Span
	P
	Span
	Exploring Computer Science
	Exploring Computer Science

	

	TD
	Span
	Year-long introductory high school course aimed at broadening participation in computer science.

	TR
	Span
	TD
	Span
	P
	Span
	Globaloria
	Globaloria

	

	TD
	Span
	Standalone and core subject integration pathways.

	TR
	Span
	TD
	Span
	P
	Span
	Mobile CSP
	Mobile CSP

	

	TD
	Span
	Mobile CSP is a College Board-endorsed AP Computer Science Principles curriculum.

	TR
	Span
	TD
	Span
	P
	Span
	Project Lead The Way
	Project Lead The Way

	

	TD
	Span
	PLTW Computer Science engages students in true-to-life activities like creating an online art portal or developing problem-solving apps.

	TR
	Span
	TD
	Span
	P
	Span
	ScratchEd
	ScratchEd

	

	TD
	Span
	Activities are designed to support familiarity and increasing fluency with computational creativity and computational thinking using Scratch. Units can be used as a semester-long computing course or as part of other curriculum areas.

	TR
	Span
	TD
	Span
	P
	Span
	TEALS
	TEALS

	

	TD
	Span
	TEALS helps high schools build and grow sustainable computer science programs by pairing experienced and trained software engineer professionals with classroom teachers. TEALS has two standard high school course offerings and offers support for additional courses.

	TR
	Span
	TD
	Span
	P
	Span
	UC Davis C-STEM
	UC Davis C-STEM

	

	TD
	Span
	Multiple academic year-long courses on computing in math, programming, and robotics.

	Table
	TBody
	TR
	Span
	TH
	Span
	Organization

	TH
	Span
	Curriculum

	TR
	Span
	TD
	Span
	P
	Span
	UTeach CS Principles
	UTeach CS Principles

	

	TD
	Span
	A classroom-ready curriculum that is fully aligned with the College Board’s AP Computer Science Principles framework and endorsed by the College Board.

	
	Additional resources to support computer science curricula and instruction can be accessed on the
	Additional resources to support computer science curricula and instruction can be accessed on the
	Connecticut Computer Science Teachers’ Association website
	Connecticut Computer Science Teachers’ Association website

	.

	References
	Computer Science Teachers Association (2017). CSTA K–12 Computer Science Standards, Revised 2017. Retrieved from CS Teachers.
	“K–12 Computer Science Framework.” k12cs.Org, Computer Science Teachers Association,
	“K–12 Computer Science Framework.” k12cs.Org, Computer Science Teachers Association,
	k12cs.org/
	k12cs.org/

	.

	Education, Virginia Department of. “Computer Science.” VDOE :: Computer Science Standards of Learning Resources, Virginia Department of Education, Nov. 2017,
	Education, Virginia Department of. “Computer Science.” VDOE :: Computer Science Standards of Learning Resources, Virginia Department of Education, Nov. 2017,
	www.doe.virginia.gov/testing/sol/standards_docs/computer-science/index.shtml
	www.doe.virginia.gov/testing/sol/standards_docs/computer-science/index.shtml

	.

	“Anybody Can Learn.” Code.org, Code.org,
	“Anybody Can Learn.” Code.org, Code.org,
	code.org/
	code.org/

	.

	“CSTA.” CSTA,
	“CSTA.” CSTA,
	csteachers.org/
	csteachers.org/

	.

	 “Proposed Nevada K–12 Computer Science Standards.”
	 “Proposed Nevada K–12 Computer Science Standards.”
	www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_Academic_Standards/Comp_Tech_Standards/DRAFTNevadaK–12ComputerScienceStandards.pdf
	www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_Academic_Standards/Comp_Tech_Standards/DRAFTNevadaK–12ComputerScienceStandards.pdf

	.

	P
	Span
	“3rd Party Educator Resources.”
	
	CSEd Week
	,
	csedweek.org/educate/curriculum/3rd-party
	csedweek.org/educate/curriculum/3rd-party

	.

	“ISTE - International Society for Technology in Education - Home.” ISTE - International Society for Technology in Education - Home, www.iste.org

	2016
	2016
	2016
	2016
	2016

	ISTE STANDARDS
	ISTE STANDARDS
	FOR STUDENTS

	The 2016 ISTE Standards for Students emphasize the skills and qualities we want for students, enabling them to engage and thrive in a connected, digital world. The standards are designed for use by educators across the curriculum, with every age student, with a goal of cultivating these skills throughout a student’s academic career. Both students and teachers will be responsible for achieving foundational technology skills to fully apply the standards. The reward, however, will be educators who skillfully m
	The 2016 ISTE Standards for Students emphasize the skills and qualities we want for students, enabling them to engage and thrive in a connected, digital world. The standards are designed for use by educators across the curriculum, with every age student, with a goal of cultivating these skills throughout a student’s academic career. Both students and teachers will be responsible for achieving foundational technology skills to fully apply the standards. The reward, however, will be educators who skillfully m

	1. Empowered Learner
	1. Empowered Learner
	Students leverage technology to take an active role in choosing, achieving and demonstrating competency in their learning goals, informed by the learning sciences. Students:
	a.
	a.
	a.
	a.

	articulate and set personal learning goals, develop strategies leveraging technology to achieve them and reflect on the learning process itself to improve learning outcomes.

	b.
	b.
	b.

	build networks and customize their learning environments in ways that support the learning process.

	c.
	c.
	c.

	use technology to seek feedback that informs and improves their practice and to demonstrate their learning in a variety of ways.

	d.
	d.
	d.

	understand the fundamental concepts of technology operations, demonstrate the ability to choose, use and troubleshoot current technologies and are able to transfer their knowledge to explore emerging technologies.

	2. Digital Citizen
	Students recognize the rights, responsibilities and opportunities of living, learning and working in an interconnected digital world, and they act and model in ways that are safe, legal and ethical. Students:
	a.
	a.
	a.
	a.

	cultivate and manage their digital identity and reputation and are aware of the permanence of their actions in the digital world.

	b.
	b.
	b.

	engage in positive, safe, legal and ethical behavior when using technology, including social interactions online or when using networked devices.

	c.
	c.
	c.

	demonstrate an understanding of and respect for the rights and obligations of using and sharing intellectual property.

	d.
	d.
	d.

	manage their personal data to maintain digital privacy and security and are aware of data-collection technology used to track their navigation online.

	3. Knowledge Constructor
	Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others. Students:
	a.
	a.
	a.
	a.

	plan and employ effective research strategies to locate information and other resources for their intellectual or creative pursuits.

	b.
	b.
	b.

	evaluate the accuracy, perspective, credibility and relevance of information, media, data or other resources.

	c.
	c.
	c.

	curate information from digital resources using a variety of tools and methods to create collections of artifacts that demonstrate meaningful connections or conclusions.

	d.
	d.
	d.

	build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

	4. Innovative Designer
	Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions. Students:
	a.
	a.
	a.
	a.

	know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

	b.
	b.
	b.

	select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

	c.
	c.
	c.

	develop, test and refine prototypes as part of a cyclical design process.
	

	d.
	d.
	d.

	exhibit a tolerance for ambiguity, perseverance and the capacity to work with open-ended problems.

	5. Computational Thinker
	Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions. Students:
	a.
	a.
	a.
	a.

	formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.

	b.
	b.
	b.

	collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.

	c.
	c.
	c.

	break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.

	d.
	d.
	d.

	understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

	6. Creative Communicator
	Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals. Students:
	a.
	a.
	a.
	a.

	choose the appropriate platforms and tools for meeting the desired objectives of their creation or communication.

	b.
	b.
	b.

	create original works or responsibly repurpose or remix digital resources into new creations.

	c.
	c.
	c.

	communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.

	d.
	d.
	d.

	publish or present content that customizes the message and medium for their intended audiences.

	7. Global Collaborator
	Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally. Students:
	a.
	a.
	a.
	a.

	use digital tools to connect with learners from a variety of backgrounds and cultures, engaging with them in ways that broaden mutual understanding and learning.

	b.
	b.
	b.

	use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.

	c.
	c.
	c.

	contribute constructively to project teams, assuming various roles and responsibilities to work effectively toward a common goal.

	d.
	d.
	d.

	explore local and global issues and use collaborative technologies to work with others to investigate solutions.

	Figure
	Figure
	iste.org/standards
	iste.org/standards
	iste.org/standards

	Figure
	Figure
	ISTE StandardsS © 2016 International Society for Technology in Education. ISTE® is a registered trademark of the International Society for Technology in Education. If you would like to reproduce this material, please contact permissions@iste.org.
	ISTE StandardsS © 2016 International Society for Technology in Education. ISTE® is a registered trademark of the International Society for Technology in Education. If you would like to reproduce this material, please contact permissions@iste.org.
	•

	Figure
	iste.org/standards
	iste.org/standards
	iste.org/standards

