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Talk Outline

 History of road salt use
* Discovery of road salt in groundwater
* How road salt gets into groundwater

* Legacy of road salt use — how long it would take to
flush out of groundwater

 Where salt is in groundwater

e Seasonal patterns

* What else is associated with road salt
e Recommendations



History of Road Salt



Presenter
Presentation Notes
Road salt use began around 1940.

Photo credit: Scanned by Flominator from grandma's photo album around 1955



Bubeck et al. 1971. Science 172: 1128-1131

Runoff of Deicing Salt: Effect on Irondequoit
Bay, Rochester, New York

Abstract. Salt used for deicing the streets near Rochester, New York, has
increased the chloride concentration in Irondequoit Bay at least fivefold during the
past two decades. During the winter of 1969-70 the quantity and salinity of the
dense runoff that accumulated on the bottom of the bay was sufficient to prevent
complete vertical mixing of the bay during the spring. Comparison with 1939
conditions indicates that the period of summer stratification has been prolonged
a month by the density gradient imposed by the salt runoff.
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Presentation Notes
Road salt contamination of fresh waters was first identified in the 1970’s.


Huling & Hollocher. 1972. Science 176: 288-289

Groundwater Contamination by Road Salt: Steady-State
Concentrations in East Central Massachusetts

Abstract. The average steady-state contamination of groundwater by road
salt in_the suburban area _around Boston, on the assumption that current rates
of application of salt will continue, is about 160 milligrams _of sodium chloride -
per liter of water (100 milligrams of chloride per liter). This value is compared
with values of 50 to 100 milligrams of chloride per liter found rather commonly
now in town wells in eastern Massachusetts. These salt concentrations may be
of concern to persons on low-sodium diets and to persons who obtain water from
wells in the vicinity of major highways where salt concentrations could be
several times higher than average.
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Presentation Notes
1918-1924 groundwater concentrations range from 0.4-4.1 mg/L


Hall 1975

Table 3.

Chloride Balance for New Hampshire, 1970

Inflow

Armespheric Precipitation and Dry Fallourl/
Human .-"«.::li\"ity‘."l."l
Highway Deicing Saltd/

Town Road Deicing Salid/

Qurflow

Surface and Groundwarer2/

Change in Storagef/

Chloride, Tons

14,500

7,400

91,0040

20,000

132,200

135.900
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Presentation Notes
83% of input road salt
1968-1970 concentrations in groundwater range from 1-150 mg/L



NaCl Salt Used for Deicing in the United States
(metric tons)
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Presentation Notes
Since the 1970’s road salt use in the US has more than doubled.

Source: US Geological Survey, 2017, Salt statistics, in Kelly, T.D., and Matos, G.R., comps., Historical statistics for mineral and material commodities in the United States: US Geological Survey Data Series 140, available online at http://pubs.usgs.gov/ds/2005/140/)
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Fig. 1. Chloride concentration map based on Kriging concentrations measured in groundwater samples collected as part of the Connecticut State
Board of Health report during 1894.

1894 Cassanelli & Robbins 2013 J. Environ. Qual.
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Presentation Notes
A study of groundwater salt from CT using samples collected as part of the CT State Board of Health.

Cassanelli & Robbins J. Environ. Qual. 42:737–748 (2013)
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Fig. 2. Chloride concentration map based on Kriging concentrations measured in groundwater samples collected as part of the Connecticut State

Board of Health report during 1902.
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Fig. 3. Chloride concentration map based on Kriging concentrations measured in groundwater samples collected as part of the Connecticut Work
Progress Administration report from 1920 to 1938.
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Fig. 4. Chloride concentration map based on Kriging concentrations measured in groundwater samples collected as part of the Connecticut Water
Resource Bulletin reports from 1950 to 1969.
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Fig. 5. Chloride concentration map based on Kriging concentrations measured in groundwater samples collected as part of the National Uranium
Resource Evaluation report from 1977 to 1978.
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Fig. 6. Chloride concentration map based on Kriging concentrations measured in groundwater samples collected as part of the National Water
Quality Assessment report from 1992 to 2005.
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Fig. 7. Chloride concentration map based on Kriging concentrations measured in groundwater samples collected from Connecticut Public Water
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How Road Salt Gets Into
Groundwater
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Presentation Notes
Water flows downhill.
Rivers & streams largely consist of groundwater at base flow, especially during the growing season in the eastern U.S.
Pielou, E.C. 1998. Fresh Water. The University of Chicago Press.


»®
Roadside Infiltration, Fracture Zones
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Road salt can enter groundwater via 2 pathways: infiltration of the soil adjacent to roads & infiltration where roads intersect fracture zones.


Legacy of Road Salt

A Case Study Wappinger Creek at Cary Institute in Millbrook NY
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Presentation Notes
Baseflow stream concentrations since 1986. Stream baseflow = groundwater. Mass balance model where 90% of input road salt used in watershed feeding the stream and output = mass of chloride exiting the watershed via the stream. Begin road salt use in 1956. Actual data used since 1986. Steady increase in streamwater & groundwater concentrations from 1956-1986. Continued steady increase from 1986-2003, then plateau. Road salt use in watershed increased at a steady rate until around 1996 and has remained more or less stable since then. Predict after 2017, 18.5% decrease in road salt. Takes about 20 years to reach steady state. See Kelly et al. 2019 Water Air & Soil Pollution 230:13 https://doi.org/10.1007/s11270-018-4060-2
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Even if stopped using road salt all together, it would take 30+ years to reach background levels.
See Kelly et al. 2019 Water Air & Soil Pollution 230:13 https://doi.org/10.1007/s11270-018-4060-2



Where salt is in groundwater
Case Study from East Fishkill NY
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Kelly et al 2018 J. Environ. Qual. doi:10.2134/jeq2017.03.0124


Major vs. Minor Roads

Not Significant in This Study, Significant in Others
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Chloride (mg/L)
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Kelly et al 2018 J. Environ. Qual. doi:10.2134/jeq2017.03.0124


Hot Spots / Cold Spots

Z scores
(High-Low Clustering)
for Chloride in wells

Kelly et al 2018 J. Environ. Qual.
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Analysis to identify if there are clusters of high &/or clusters of low concentrations found both. High concentrations found where road salt use was likely high, such as an older community with dense, narrow roads or heavily used road with tight corners or steep hills. Low concentrations clustered in an industrial area where housing density is low. 
Kelly et al 2018 J. Environ. Qual. doi:10.2134/jeq2017.03.0124


Seasonality




Stream Baseflow = Groundwater
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Seasonal pattern in streamwater concentrations related to water flow. 
In eastern US, winter baseflow is high because vegetation is dormant and evapotranspiration is low. In summer, baseflow is low because trees remove nearly all of the water that falls on the landscape resulting in less water entering groundwater.
Pielou, E.C. 1998. Fresh Water. The University of Chicago Press.


Stabile Concentration but
High Inter-Annual Variability
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Note actual stream data show a lot of inter-annual variation – high concentrations followed by low concentrations. 
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Water volume matters
Kelly et al. 2019 Water Air & Soil Pollution 230:13 https://doi.org/10.1007/s11270-018-4060-2


Other Contaminants Associated with Road Salt

The Lead, Road Salt Connection




Road Salt Enhances Leaching of
Heavy Metals from Soil

Road salt absent Road salt present

High Low Schuler & Relyea 2018 Bioscience


Presenter
Presentation Notes
Figure 1. A depiction of the effects of road salt on heavy metal transport in soil along roads near homes or agriculture. (a) Heavy metals accumulate along a gradient (black and gray gradient bar), decreasing with distance from roads. The addition of road salt leads to fewer heavy metals being present in the organic layer at the surface because of rapid downward movement through the soil, indicated by the heavier arrows. (b) Heavy metals become disassociated from organic materials in the upper horizons, moving into leachate zones where they might enter freshwater systems (e.g., streams, lakes, and wetlands). (c) The presence of road salt might also increase the rate of movement across the leachate zones into groundwater. Collectively, these processes move heavy metals down into groundwater and slowly move horizontally, where they can enter wells and aquifers used for human consumption and agriculture. 
Schuler & Relyea. 2018. Bioscience 68: 327


Soil Leaching Mechanism
lon Exchange
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Positively charged metals adsorb to the outside of negatively charged soil particles. Addition of sodium or calcium increases exchange with Pb++, sending the Pb into solution.


Metals Leached From Soil (pg)

Pb Cd
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Experiment with 3 concentrations of NaCl & deionized water poured over soil, collected at bottom of soil column and analyzed for heavy metals. Increased leaching with higher concentrations of NaCl.
Amrhein et al. 1992. Environ. Sci. & Technol. 26: 703.


Does Road Salt Cause Lead to be
Leached from Drinking Water Pipes?
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Study looked at lead in groundwater contaminated by long-uncovered salt barn in Orleans NY
Pieper et al. 2018. Environ. Sci. & Technol. 52: 14078.
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Groundwater concentrations of Na & Cl high near salt barn, but SO4, Cu & Pb unrelated.
Pieper et al. 2018. Environ. Sci. & Technol. 52: 14078.



Leached Lead (ug/L)
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Created simulated lead-tin solder joints and soaked in simulated drinking water with different Cl concentrations indicates potential for high salt to increase lead leaching from pipes.
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Salt Storage Facilities
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Need for standardized salt storage with complete coverage, secondary containment.


Best Management Practices

DISPLAY
SELECT
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Other BMP’s include salt distribution control systems on trucks, smart plows, brining and road weather information systems.


Contaminant Candidate List Status of Na

* US SDWA — primary & secondary standards & CCL
* Primary — enforced standards

e Secondary — non-enforceable guidelines, aesthetic,
Chloride 250 mg/L

e CCL under review, may require regulation, Sodium
recommended limit 20 mg/L

* Some states require public notification if Na
exceeds 20 mg/L

* Shift Na from CCL to Primary Standard
 All standards only for public drinking water supplies


Presenter
Presentation Notes
Currently, the US Safe Drinking Water Act has primary and secondary standards and a contaminant candidate list (CCL). Primary standards are enforced standards of contaminants that are potentially harmful to human health. Secondary standards are nonenforceable guidelines and are for contaminants that are cosmetic or aesthetic (e.g., affecting taste). TheCCL lists contaminants that are under review because they are known to be in drinking water and may require regulation. For chloride, a secondary standard applies, and the recommended concentration is 250 mg L−1. Sodium is listed in the CCL, and the recommended concentration is 20 mg L−1. New York and other states require public notification if sodium exceeds 20 mg L−1. All regulations are for public drinking water supplies, not private wells. In this study, we found drinking water wells with concentrations as high as 860 mg sodium L−1 and
1800 mg chloride L−1. Half of the wells sampled had sodium concentrations that exceeded the USEPA health standard, and 10% had chloride concentrations that exceeded the USEPA aesthetic standard. Because private drinking water wells are not regulated, we recommend that homeowners regularly test drinking water from private wells to ensure that their water is safe to consume.


Private Drinking Water Wells

* Not protected by Safe Drinking Water Act
* In East Fishkill NY % wells sampled Na exceeded 20 mg/L

* Regular testing for suite of potential contaminants, including
sodium, chloride & lead




Thank You
Questions

Stuart Findlay, Kathie Weathers, Gary Lovett, Steve Hamilton, Cary Institute
Mary Ann Cunningham, Vassar College

Neil Curri, Vassar College

Sean Carroll, Cornell Cooperative Extension, Dutchess County
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