The CTDOT MS4 Project Design MEP Worksheet is intended to be a living document that follows a project throughout its design. The primary intent of the Worksheet is to track the required metrics that must be reported to CT DEEP annually in order to comply with the DOT MS4 General Permit. It also serves as the required documentation to demonstrate that stormwater mitigation was pursued in a project’s design to the maximum extent practical.

**Section 1: Project Information**

Indicate the Project, Number, Title and Location.

**Section 2: Existing Conditions**

Before the end of Preliminary Design, fill out the requested information available regarding a project site’s existing conditions. As missing or updated information (e.g., soil infiltration potential, depth to groundwater, depth to bedrock) becomes available during later design phases, edit the Existing Conditions accordingly.

**EC2. Pre-Construction Directly Connected Impervious Area (DCIA) for the Project** - Determine the amount of pre-construction DCIA in acres and as a percentage of the overall project area. DCIA is surface area within the project limits that a) is impervious, and b) drains to a wetland or watercourse either directly or via a storm sewer system discharge. Impervious cover includes pavement, sidewalks, roofs, exposed ledge, gravel roads/parking (C ≥ 0.7). The %-DCIA will typically remain consistent as the design progresses unless the total project area changes.

**Designer Insight** - The primary purpose of %-DCIA is to determine the WQV retention design goal, which will be the minimum goal for impervious area disconnections (see instructions for DC1, below.)

**EC3. Soil Infiltration Potential** – Select either Existing Report/Soils Map or Field Verified as the source of the soils information. Choose from Good/Fair, Poor or Mixed as the best overall description of the project’s surficial geology ability to infiltrate. Generally, soils with an infiltration rate of at least 0.3 in/hr are considered as Good/Fair. Retention BMPs will need to be designed to infiltrate all of the ponded water within 48 hours. Select Mixed if the soil conditions vary throughout a large project area.

**Designer Insight** - The soil infiltration potential will be used to inform whether infiltration Best Management Practices (BMPs) are feasible. Any existing information (such as prior soils reports) for the project area should be reviewed. If no prior, area-specific soil information is available, utilize the Soil Drainage Class map from CTECO to identify preliminary locations. [http://www.cteco.uconn.edu/map_catalog.asp](http://www.cteco.uconn.edu/map_catalog.asp). Areas classified as Somewhat Poorly Drained, Poorly Drained or Very Poorly Drained Areas can be noted as “Poor” on the Worksheet and do not warrant further consideration for infiltration BMPs. All other areas should be considered as “Good/Fair” and, unless other factors prohibit infiltration, actual infiltration rates will require field verification.

**Designer Insight** - Total project area will be used in subsequent calculations for Directly Connected Impervious Area (DCIA) and determining the project’s Water Quality Volume. (See instructions for EC2 and DC1, below.)
**Section 2: Existing Conditions (continued)**

**EC4. Depth to Groundwater** – At the start of design, check the “TBD” box unless existing data from a previous project or other sources is available. As design progresses and as subsurface investigations are completed, indicate the depth to maximum groundwater as a range over the entire project area. Maximum groundwater is the level to which groundwater rises for a duration of one month or longer during the wettest season of the year. Report zero as the low end of the range if wetlands or standing water are present within the project limits. If depth to groundwater is deeper than the depth to bedrock, indicate as “BR” (below rock). If seasonal variations in depth to groundwater are known, defer to the seasonal high for this Worksheet.

**EC5. Depth to Bedrock** – At the start of design, check TBD unless existing data from a previous project or other sources is available. As design progresses and as subsurface investigations are completed, indicate the depth to bedrock as a range over the entire project area. Report zero as the low end of the range if bedrock outcrops are present within the project limits.

**EC6. Aquifer Protection Area** - Indicate (Y/N) if any part of the project falls within an aquifer protection area. This information will be reported to the design unit on the PNDF provided by Office of Environmental Planning.

**EC7. MS4 Priority Area** - Indicate (Y/N) if any part of the project falls within an “MS4 Priority Area.” If yes, indicate which of the three types of priorities (check all that apply). If “Impaired Waterbody” is checked, pick the impairment(s) from the list of drop down boxes. This information will be reported to the design unit on the PNDF provided by OEP.

**EC8. Contamination known or suspected to be present?** Indicate (Y/N) whether soil and/or groundwater contamination is known or suspected to be present. Check “Yes” if the Task 100 Environmental Hazardous Screening Form provided by DOT Environmental Compliance recommended that a Task 210 Subsurface Investigation be performed.

**Designer Insight** – Identifying the project’s location relative to MS4 Priority Areas is a requirement of the MS4 permit. If a receiving water is impaired, identifying the specific impairment will help inform the suitability of certain BMPs. Refer to the CTDOT BMP Matrix.

**Designer Insight** – The purpose of the depth to groundwater and depth to bedrock is to inform and document whether shallow groundwater or shallow bedrock will make it unfeasible to include infiltration/retention BMPs (see page 2 of DOT MS4 Worksheet) as part of the design.

**Designer Insight** – If contaminated soil and/or groundwater is known or suspected to be present, then careful consideration must be made before deciding whether infiltration/retention BMPs are feasible. If the surrounding land use is intensely developed and public drinking water is readily available, or if existing groundwater quality is known to be unsuitable for drinking water supply without treatment, or if remediation is planned as part of the project (for reasons other than BMP implementation), then an infiltration/retention BMP may still be appropriate.

**Designer Insight** – If the project is located within an Aquifer Protection Area, then this is a limiting condition to be documented with respect to the infiltration/retention BMPs listed on page 2. Infiltration/retention BMPs should not be pursued in these areas in order to protect groundwater quality from potential contaminants associated with transportation-related spills or other releases.
Section 2: Existing Conditions (continued)

EC9. Adjoining DOT ROW beyond project limits available for stormwater quality management. Indicate the approximate acreage of potentially suitable DOT property that is laterally beyond the project limit. This can include:

- Additional property in the DOT ROW that was not included in the Total Project Area;
- Adjacent parcels presently owned by DOT;
- Excess property from a parcel to be acquired for the project for reasons other than MS4.

Include only the amount of undeveloped area beyond the project limits. Attach a sketch depicting these areas.

Designer Insight – The available DOT-owned area surrounding a project is a general metric to help inform the possibility of locating stormwater BMPs near the project site if the area directly within the project limits is not sufficient. It is understood that the lateral distance from the project limit to the ROW limit can vary significantly, especially for linear projects that extend over a long distance. Include other relevant information related to additional area in the Notes box at the bottom of the page.

Section 3: Designed Conditions

This portion of the Worksheet was established based on a typical 30/60/90/FDP design process. At each phase, the progression of key metrics associated with a stormwater quality design are tracked by the Worksheet. It is understood that not every project will follow this exact design process. Any information that has not changed compared to what was recorded during the previous design phase review can be indicated as such (e.g., “no change” or “same”).

However, the FDP column must contain the final values.

Section 3 will rely heavily on the information recorded on Section 4: Stormwater BMP Selection Summary. As such, Section 4 will also need to be completed and updated with each corresponding milestone design review. Refer to the instructions below on how to complete Section 4.

At Design Approval, complete Section 3’s 30%-Design Phase column based on the best available information. If a project is using intermediate design reviews, complete the 60%-Design Phase column and/or the 90%-Design Phase column during the respective milestone reviews. These are working-versions of the Worksheet. Save the working versions of the Worksheet to the project’s appropriate 310_Milestone_Submissions folder in ProjectWise.

Designer Insight – Data from a project’s drainage report should be used when available. Review the Worksheet to ensure the reported metrics are consistent with the drainage report.

At the Final Design Plan milestone, complete the FDP Phase column. Upon completion of this column, this will be the record version of the project’s Worksheet. Save the Worksheet to the project’s ProjectWise 310_Milestone_Submissions/100% folder.

DC1. Water Quality Volume (WQV) retention design goal (acre-feet) – Determine the WQV retention design goal by first calculating the Water Quality Volume (WQV) for the project. The WQV is the volume of runoff generated across a site by one inch (1”) of rainfall. The proposed impervious area (C > 0.7) must be known to determine the WQV.

WQV = (1-inch)(R)(A)/12 WQV = water quality volume (ac-ft)
R = volumetric runoff coefficient = 0.05+0.009(I)
I = percent impervious cover for post-construction condition as designed (C > 0.7).
A = Total DOT-Owned Project Area in acres.

Designer Insight - The percent impervious cover (I) in the calculation above is the total impervious area, not just that which is directly connected. This is different from the DCIA area computed for the existing condition (EC2), which excludes surfaces that do not drain to a wetland or watercourse directly or via a storm sewer discharge.
Section 3: Designed Conditions (continued)

The equation above calculates a retention volume based on 1” of rainfall. It is not necessarily the WQV goal for the project. The project’s WQV retention design goal is determined based on the percentage of DCIA at the pre-construction stage (EC2). If the pre-construction DCIA is greater or equal to 40% of the project area, then project’s retention goal will be \( \frac{1}{2} \times \) Water Quality Volume (WQV). If the preconstruction DCIA is less than 40%, then the retention goal will be 1.0xWQV, or simply the WQV. For many redevelopment projects, the pre-construction DCIA percentage will be above 40% and the retention design goal will be equal to \( \frac{1}{2} \) the WQV.

**Designer insight** – Designers should note that the Construction Stormwater General Permit bases the WQV goal on the project’s percentage of total impervious area. The DOT’s MS4 Permit uses the percentage of directly connected impervious area to determine the WQV goal. This difference means some projects will require retention/treatment of \( \frac{1}{2} \) the WQV for the Construction Permit but the full WQV for compliance with the MS4 Permit.

If possible, an estimate of the retention goal should be calculated during preliminary design in order to approximate the extent of best management practices that will be needed. If the extent of impervious cover is not fully known by Design Approval, then the WQV cannot be calculated and the TBD box should be checked. Provide the information during a later design phase. An accurate value must always be provided for the FDP milestone.

**DC2. WQV Goal Retained** – Copy the total WQV Retained value column in Section 4: Stormwater BMP Selection Summary. Refer to Section 4 of these instructions.

**DC3. WQV Goal Treated** – Copy the total WQV Treated value column in Section 4: Stormwater BMP Selection Summary. Refer to Section 4 of these instructions.

**Designer insight** – Incorporate run-off retention BMPs to the maximum extent practical as site conditions allow, documenting site constraints on page 2 that are consistent with the Existing Condition information provided on page 1. If the amount of run-off retained in the design condition fails to meet the WQV retention design goal (DC1), determine the shortfall and evaluate the use of treatment BMPs to make up the difference. Treatment without infiltration should only be incorporated into the design when runoff retention can be demonstrated to be unfeasible.

**Designer insight** - It is acceptable to take credit for disconnecting off site DCIA areas that drain to on-site BMPs.

**DC4. Total WQV Retained or Treated** – Add the WQV Retained per 1” of Rainfall (DC2) to the WQV Treated (DC3) and indicate the total.

**Designer insight** – The Total WQV Retained or Treated is compared to the WQV retention design goal (DC1) to determine if the project has met the intended run-off reduction target.

If DC4 is less than DC1, review any adjoining DOT ROW beyond the project limits (identified in EC9) where retention BMPs (primarily) or treatment BMPs (secondarily) could be constructed in order to meet the full WQV retention design goal (DC1). Incorporate the retention/treatment of the alternative site(s) and update page 2.

If DC4 is still less than DC 1 after evaluating alternative sites and incorporating BMPs outside the project limits, then describe any limiting factors that make alternative locations unfeasible for BMPs in the Notes box on the bottom of page 1. Review the limiting site constraints in Section 4 with Section 1: Existing Conditions for accuracy and consistency.

**Designer insight** – For projects that do not meet the required WQV retention design goal, the MS4 Program will be evaluating future water quality improvement projects within the same local drainage basins or in other priority areas to mitigate the shortfall from the original project.
Section 3: Designed Conditions (continued)

DC5. Post-construction DCIA (acres) – Determine the amount of post-construction DCIA. Here, DCIA is surface area within the project limits that a) is impervious and b) drains to a wetland or watercourse either directly or via a storm sewer system discharge. Impervious cover includes pavement, sidewalks, roofs (Facilities projects), exposed ledge, gravel roads/parking (C ≥ 0.7). Do not include turf, temporary pavement areas or temporary access roads. If the post-construction DCIA is unknown during the Preliminary Design phase, check TBD and provide the information at a later design phase.

Designer insight – For the Post-Construction DCIA value, do not count impervious areas that will drain to BMPs designed to retain and/or treat enough runoff for the area to have met the WQV retention design goal. Areas not directed to a qualifying BMP must be counted as DCIA. The goal is to reduce the amount of DCIA (see DC7, below.)

DC6. Pre-construction DCIA (acres) – Copy the Pre-Construction DOT-Owned Directly Connected Impervious Area (DCIA) from line EC2.

DC7. Change in DCIA from pre- to post-construction (acres) - Subtract the Pre-construction DCIA (DC6) from the Post-construction directly connected impervious area (DC5).

A negative value indicates that the amount of DCIA will decrease.

A positive value indicates that the project will cause DCIA to increase. Review the limiting site constraints in Section 4 with the recorded existing conditions in Section 1 for accuracy and consistency.

Designer insight – The DOT MS4 General Permit has a statewide compliance metric to reduce DOT DCIA by 2% within five years compared to a July 2019 baseline. While a project will not be in violation if the maximum extent practical falls short of the permit requirements for DCIA and runoff reductions, any additional DCIA added by projects will make meeting the 2%-reduction that much harder.

Designer insight – Since BMPs may have drainage areas that extend beyond the chosen project area, it is acceptable to take credit for disconnecting off site DCIA areas that drain to on-site BMPs and compensate for DCIA remaining on-site. In rare cases it will be possible to disconnect more DCIA than exists within the project area.

Section 4: Stormwater BMP Selection Summary

This section of the Worksheet is intended to present the designer with several specific BMP types that are expected to be the most feasible for transportation-related projects. Refer to the CTDEEP’s 2004 Connecticut Stormwater Quality Manual for other acceptable BMPs and their respective design criteria. Innovative BMPs not listed in the Connecticut Stormwater Quality Manual are also encouraged so long as good engineering judgement is used when assigning retention and treatment capacities.

Designer insight – Designers can refer to the BMP one pagers and the examples that have been prepared on various BMPs for guidance on their design. The examples include Natural Dispersion, Grass Channel, Check Dam (Supplemental), Infiltration Trench and Infiltration Basin.

The key metrics associated with a stormwater quality design are tracked by the Worksheet as the project’s design progresses.

Complete the Stormwater BMP Selection Summary at each milestone design review. Indicate the current design review phase by checking off the appropriate box in the upper left corner.

Designer insight – While Section 3 (Design Conditions) and Section 4 (Stormwater BMP Selection Summary) were established based on a typical 30/60/90/FDP design process, it is understood that not every project will follow this exact design process and that a project’s metrics may not change from one phase to the next.

At the project’s Design Approval, potential opportunities to improve water quality with stormwater BMPs should be identified with preliminary locations shown on project plans.

Design phases after Design Approval will need to verify any preliminary assumptions used in siting and sizing BMPs.

Examine all limiting factors for each BMP (see Site Constraints for each type of stormwater management measure listed on the designer worksheet).
Section 4: Stormwater BMP Selection Summary (continued)

- Permeability/percolation information
- Depth to maximum groundwater
- Depth to bedrock

Update Section 1 as needed based on the field investigations.

Designer insight – A best management practice that does not meet every design requirement listed in the Stormwater Quality Manual will still provide a benefit, albeit not the full possible extent. Document the assumptions used in determining the proportional amount of runoff retention and/or treatment that the BMP will provide given its site constraints.

The BMPs listed under the Stormwater BMP Selection Summary are grouped into four categories:

1. **Disconnection BMPs** promote flow dispersion and reduce flow velocities in order to allow the downstream terrain to absorb and/or filter the runoff. Consider the following factors of the downstream terrain when determining its capacity to retain or treat: slope, soil type, and distance to the nearest surface water or wetland. Consider augmenting the downstream terrain to retain or treat a greater volume of runoff. For example, soil amendments can be used to increase infiltration capacity or certain seed mixes could be specified to promote beneficial vegetation.

2. **Conveyance & Disconnection BMPs** remove pollutants from the runoff as it is collected and conveyed away from the transportation infrastructure. The slope, soil type, and length of the conveyance will generally dictate its capacity to retain and/or treat. Also consider the downstream terrain, if any, between the conveyance’s outfall and the nearest surface water or wetland.

3. **Infiltration/Retention BMPs** are practices that retain the WQV or a portion of the WQV, temporarily holding it before it infiltrates into the native soil. Any BMP that does not allow the WQV from entering a storm system or adjacent surface water body would qualify for infiltration/retention credit.

4. **Treatment BMPs** are practices that improve the water quality but do not reduce or retain the volume.

**WQV Retained** – In this column, list the amount of the WQV retained by each BMP used in the design. For example, if a project uses three separate infiltration trenches then each trench should be individually listed (under in the infiltration/retention section) and the WQV retained by each recorded in the cell where the “infiltration trench” row and the “WQV Retained” column intersect.

**WQV Treated** – In this column, list the amount of the WQV treated by each BMP used in the design. For example, if a project has incorporated two separate wet detention basins then each basin should be individually listed (under the “treatment” section) and the volume treated by each basin should be recorded in the cell where the “wet basin” row and the “WQV Treated” column intersect.

Designer insight – The amount of water that a Disconnection BMP or a Conveyance & Disconnection BMP can infiltrate might be limited to only a portion of the WQV retention design goal. In addition to infiltration, consider the amount of treatment the BMP provides to the portion of the WQV that cannot be retained. Include the amount of treatment under the WQV Treated column.

Designer insight – For a Disconnection BMPs and Conveyance & Disconnection BMPs to meet the WQV retention design goal, they may need to be coupled with one or more other BMPs designed per the criteria in the CT DEEP Stormwater Quality Manual.
Section 4: Stormwater BMP Selection Summary (continued)

DCIA Captured (acres) – In this column, list the amount of directly connected impervious area (DCIA) that is captured by the BMP being proposed. DCIA Captured is the amount of surface area within the project limits that a) is impervious and b) drains to a BMP for retention and/or treatment that would otherwise be drained to a wetland or watercourse either directly or via a storm sewer system discharge.

DCIA Disconnection Credit (Percentage) – In this column, record the DCIA Disconnection Credit for the proposed BMP. DCIA Disconnection Credit is the percentage of DCIA directed to a BMP that can be considered disconnected. To find the DCIA Disconnection Credit percentage for different BMPs refer to the BMP one pagers which can be found on the CTDOT MS4 Webpage. (https://portal.ct.gov/DOT/PP_Envir/Water_Natural_Resources/CTDOT-MS4)

DCIA Disconnection Credit (Acres) – DCIA Disconnection Credit is the area directed to a BMP that can be considered disconnected. To find this number multiply the total amount of DCIA Captured (acres) by the DCIA Disconnection Credit percentage of the BMP.

Site Constraints: For each of the four categories of BMPs, select one or more site constraint from the drop down boxes. Site constraints are characteristics of the project location that prevent the selection of the corresponding type of BMP in the project’s design. Selected site constraints must be consistent with the information provided in Section 2.

Designer insight – If a BMP is included into a project, and if the WQV design retention goal is met (see Section 3), then a Site Constraint does not need to be selected for that BMP’s category.

Every project that affects drainage shall have completed the Worksheet with its FDP. The FDP-version will be considered the final version of the worksheet. All metrics extracted for the annual DEEP reports will come from the final FDP Worksheet. Save the FDP version of the Worksheet to the project’s ProjectWise 310_Milestone_Submissions/100% folder.