Table of Contents

Preface ...1-0.1 Aug 2010

Chapter 1 – Inspection

1-100 General..1-1.1
1-101 Scope of the Work ...1-1.1
1-102 Initiating Inspection ...1-1.1
1-103 The Inspection Team ...1-1.2
1-103A The Inspector ..1-1.2 Aug 2010
1-103B The Project Engineer ...1-1.5 Aug 2010
1-103C The Supervising Engineer ...1-1.8 Aug 2010
1-103D The Assistant District Engineer ..1-1.9 Aug 2010
1-104 Time on Project ...1-1.12
1-105 Address of Inspectors ...1-1.12
1-106 Enforcing the Provisions of the Contract ..1-1.12
1-106A Quality Assurance ..1-1.13 Apr 2009
1-106B Project Oversight Independent Reviews ...1-1.14 Aug 2010
1-107 Safety ..1-1.14
1-108 Change in Travelway Clearances and Bridge Capacity Ratings1-1.15
1-109 Data, Supplies and Equipment ...1-1.15

Chapter 2 – Project Initiation

1-201 Project Start Up ..1-2.1 Aug 2010
1-202 Preconstruction Meetings ...1-2.1 Aug 2010
1-203 EEO Preconstruction Meeting ..1-2.2
1-204 Utility Meeting ..1-2.3
1-205 Notification of Contract Status ...1-2.3 Aug 2010
Chapter 3 – Project Recordkeeping and Documentation

Part I – Records Maintained in Project Volumes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-301</td>
<td>General</td>
<td>1-3.1</td>
</tr>
<tr>
<td>1-302</td>
<td>Official Field Records</td>
<td>1-3.2</td>
</tr>
<tr>
<td>1-303</td>
<td>Volume I – Diaries and Inspector’s Daily Work Reports</td>
<td>1-3.2</td>
</tr>
<tr>
<td>1-303A</td>
<td>Daily Work Report and Diary</td>
<td>1-3.3</td>
</tr>
<tr>
<td>1-303B</td>
<td>Diaries and Daily Work Reports during Periods of Inactivity</td>
<td>1-3.6</td>
</tr>
<tr>
<td>1-303C</td>
<td>Review of DWRs</td>
<td>1-3.6</td>
</tr>
<tr>
<td>1-303D</td>
<td>Daily Paving Reports</td>
<td>1-3.9</td>
</tr>
<tr>
<td>1-304</td>
<td>Volume II – Contract Items</td>
<td>1-3.9</td>
</tr>
<tr>
<td>1-305</td>
<td>Volume III – Quantity Computations</td>
<td>1-3.13</td>
</tr>
<tr>
<td>1-305A</td>
<td>Computations and Measurements</td>
<td>1-3.16</td>
</tr>
<tr>
<td>1-305B</td>
<td>Electronic Forms</td>
<td>1-3.17</td>
</tr>
<tr>
<td>1-305C</td>
<td>Drainage Systems</td>
<td>1-3.18</td>
</tr>
<tr>
<td>1-305D</td>
<td>Structures, Mainline Roadway, Ramps, Etc</td>
<td>1-3.21</td>
</tr>
<tr>
<td>1-306</td>
<td>Miscellaneous Contract Data</td>
<td>1-3.22</td>
</tr>
</tbody>
</table>

Part II – Other Project Records

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-307</td>
<td>Project Correspondence</td>
<td>1-3.27</td>
</tr>
<tr>
<td>1-307A</td>
<td>Email</td>
<td>1-3.27</td>
</tr>
<tr>
<td>1-308</td>
<td>Progress Meetings</td>
<td>1-3.28</td>
</tr>
<tr>
<td>1-309</td>
<td>Other Project Booklets and Folders</td>
<td>1-3.31</td>
</tr>
<tr>
<td>1-310</td>
<td>Non-Compliance Notices</td>
<td>1-3.31</td>
</tr>
<tr>
<td>1-311</td>
<td>Working Drawings</td>
<td>1-3.35</td>
</tr>
<tr>
<td>1-311A</td>
<td>Working Drawings for Permanent Construction</td>
<td>1-3.35</td>
</tr>
<tr>
<td>1-311B</td>
<td>Working Drawings for Temporary Construction</td>
<td>1-3.35</td>
</tr>
<tr>
<td>1-311C</td>
<td>Examples of Working Drawings that require a review by the Office of Engineering</td>
<td>1-3.35</td>
</tr>
<tr>
<td>1-312</td>
<td>Shop Drawings</td>
<td>1-3.36</td>
</tr>
</tbody>
</table>
Chapter 4 – Materials Testing

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-401</td>
<td>Overall Responsibilities</td>
<td>1-4.1</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-401A</td>
<td>District Construction (Designated Representative)</td>
<td>1-4.1</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-401B</td>
<td>Division of Materials Testing (Designated Representative)</td>
<td>1-4.1</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-402</td>
<td>Standard Procedures</td>
<td>1-4.2</td>
<td></td>
</tr>
<tr>
<td>1-402A</td>
<td>Request-for-Test/Material Quantities</td>
<td>1-4.2</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-402B</td>
<td>Test Results</td>
<td>1-4.3</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-402C</td>
<td>Samples Recommended for Rejection</td>
<td>1-4.3</td>
<td></td>
</tr>
<tr>
<td>1-402D</td>
<td>Buy America Requirements</td>
<td>1-4.3</td>
<td></td>
</tr>
<tr>
<td>1-402E</td>
<td>Structural Steel Fabrication Inspection Off-Site</td>
<td>1-4.6</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-403</td>
<td>Non-standard Testing Procedures</td>
<td>1-4.6</td>
<td></td>
</tr>
<tr>
<td>1-404</td>
<td>Minimum Testing Requirements Acceptance and Assurance</td>
<td>1-4.6</td>
<td></td>
</tr>
<tr>
<td>1-404A</td>
<td>General</td>
<td>1-4.6</td>
<td></td>
</tr>
<tr>
<td>1-404B</td>
<td>Assurance Samples and Tests</td>
<td>1-4.7</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-405</td>
<td>Requests for Test (Form MAT-100)</td>
<td>1-4.8</td>
<td></td>
</tr>
<tr>
<td>1-405A</td>
<td>SiteManager</td>
<td>1-4.8</td>
<td></td>
</tr>
<tr>
<td>1-405A-1</td>
<td>Item Materials (SiteManager)</td>
<td>1-4.9</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-405B</td>
<td>Hard Copy (Non-SiteManager)</td>
<td>1-4.9</td>
<td></td>
</tr>
<tr>
<td>1-406</td>
<td>Specialty and Proprietary Items</td>
<td>1-4.11</td>
<td></td>
</tr>
<tr>
<td>1-407</td>
<td>Certified Test Report</td>
<td>1-4.11</td>
<td></td>
</tr>
<tr>
<td>1-408</td>
<td>Materials Certificate</td>
<td>1-4.12</td>
<td></td>
</tr>
<tr>
<td>1-409</td>
<td>Final Material Certification (FMC)</td>
<td>1-4.12</td>
<td>Aug 2010</td>
</tr>
</tbody>
</table>
Chapter 5 – Adjustment of Contract Items and Differing Site Conditions

1-501 Minor Items – Article 1.04.02 ... 1-5.1
1-501A Increases of more than 25% .. 1-5.1

1-501B Decreases of more than 25% ... 1-5.1
1-501C Examples of Minor Item Adjustment Situations 1-5.2
1-502 Change in Quantities of Major Items and Significant
 Changes in the Character of Work – Article 1.04.03 1-5.2 Aug 2010
1-502A Examples of Major Item Adjustment Situations: 1-5.3
1-503 Differing Site Conditions – Article 1.04.04 ... 1-5.3 Aug 2010
1-503A “TYPE I” Differing Site conditions .. 1-5.4
1-503B "TYPE II" Differing Site conditions .. 1-5.5
1-503C Definitions .. 1-5.6
1-503D Examination of Site Clauses .. 1-5.7 Aug 2010
1-504 Adjusted Price Forms for Major Items,
 Change in Character of Work and Differing Site Conditions 1-5.7

Chapter 6 – Extra and Cost-Plus Work

1-600 General ... 1-6.1
1-601 Agreed Price ... 1-6.1
1-602 Cost Plus .. 1-6.2 Aug 2010
1-602A Labor Rates ... 1-6.4
1-602B Labor Markup for Insurance and Taxes and Bonding 1-6.6
1-602C Bonding Costs .. 1-6.9
1-602D Specialized Work ... 1-6.9 Aug 2010
1-602E Administrative Expenses ... 1-6.9
1-602F Rental Rate Blue Book™ ... 1-6.10
1-602G Idle Equipment ... 1-6.11
1-602H Rented Equipment .. 1-6.12
1-602I Materials ... 1-6.12 Aug 2010
Chapter 7 – Schedules, Time Extensions and Suspensions

1-700 Scheduling
1-700A Plan Reviews
1-700B Pre Award Submittal
1-700C After Contract Award
1-701 Documentation of Delays and Affect on Project
1-702 Time Extension Procedures
1-702A Time Extension Authority
1-702B Time Extension Requests
1-702C Time Extension Analysis
1-702D Federal Agency Approval
1-702E Assistant District Engineer Approval/Disapproval
1-703 Temporary Suspensions and Resumptions

Chapter 8 – Construction Orders

1-800 General
1-801 Review of Proposed Changes
1-802 Need for Construction Orders
1-803 Design Initiated Change Orders
1-803A Analysis of Design Initiated Change Orders
1-804 Additional Approval Requirements
1-804A Change Order Approval Requirements by the Office of Construction
1-804B Change Order Approval Requirements by Federal Highway Administration (FHWA)
1-805 Construction Order Preparation
1-806 Construction Order Addendums
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page Range</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-807</td>
<td>Standard Explanations - Classification of Line Item Changes</td>
<td>1-8.8</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-808</td>
<td>Documentation</td>
<td>1-8.8</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-809</td>
<td>General Processing Guidelines</td>
<td>1-8.9</td>
<td></td>
</tr>
<tr>
<td>1-810</td>
<td>Review and Processing Procedure</td>
<td>1-8.9</td>
<td></td>
</tr>
<tr>
<td>1-810A</td>
<td>Review by Project Engineer</td>
<td>1-8.10</td>
<td></td>
</tr>
<tr>
<td>1-810B</td>
<td>Review by Supervising Engineer</td>
<td>1-8.11</td>
<td></td>
</tr>
<tr>
<td>1-810C</td>
<td>Authorization to Process Construction Order</td>
<td>1-8.11</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-810D</td>
<td>Review and Initial Processing by District</td>
<td>1-8.12</td>
<td></td>
</tr>
<tr>
<td>1-810E</td>
<td>Processing by Project Engineer</td>
<td>1-8.12</td>
<td></td>
</tr>
<tr>
<td>1-811</td>
<td>Guidelines for Approval of Construction Orders</td>
<td>1-8.12</td>
<td></td>
</tr>
<tr>
<td>1-811A</td>
<td>Final Processing by District</td>
<td>1-8.14</td>
<td></td>
</tr>
<tr>
<td>1-811B</td>
<td>Distribution</td>
<td>1-8.14</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-812</td>
<td>Final Construction Orders</td>
<td>1-8.14</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 9 – Contract Payments

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page Range</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-901</td>
<td>Progress Estimates</td>
<td>1-9.1</td>
<td></td>
</tr>
<tr>
<td>1-902</td>
<td>Estimate Period</td>
<td>1-9.1</td>
<td></td>
</tr>
<tr>
<td>1-903</td>
<td>Estimate Preparation and Review</td>
<td>1-9.3</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-904</td>
<td>Funds</td>
<td>1-9.4</td>
<td></td>
</tr>
<tr>
<td>1-905</td>
<td>Retainage and Securities</td>
<td>1-9.4</td>
<td></td>
</tr>
<tr>
<td>1-906</td>
<td>Extra or Additional Work</td>
<td>1-9.5</td>
<td></td>
</tr>
<tr>
<td>1-907</td>
<td>Liquidated Damages, Sanctions, and Item Adjustments</td>
<td>1-9.5</td>
<td>Apr 2009</td>
</tr>
<tr>
<td>1-908</td>
<td>Deductions</td>
<td>1-9.6</td>
<td></td>
</tr>
<tr>
<td>1-909</td>
<td>Payment for Stored Materials</td>
<td>1-9.6</td>
<td>Apr 2009</td>
</tr>
<tr>
<td>1-909A</td>
<td>General Requirements</td>
<td>1-9.6</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>1-909B</td>
<td>Materials Stored On-Site or Off-Site within State</td>
<td>1-9.9</td>
<td>Apr 2009</td>
</tr>
<tr>
<td></td>
<td>(Except Raw or Partially Fabricated Materials)</td>
<td>1-9.9</td>
<td>Apr 2009</td>
</tr>
<tr>
<td>1-909C</td>
<td>Materials Stored Out of State (Except Raw or Partially Fabricated Materials)</td>
<td>1-9.9</td>
<td>Apr 2009</td>
</tr>
<tr>
<td>1-909D</td>
<td>Raw or Partially Fabricated Materials</td>
<td>1-9.10</td>
<td>Apr 2009</td>
</tr>
<tr>
<td>Volume 1</td>
<td>Contract Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-910</td>
<td>Payment to Subcontractors and Suppliers ..1-9.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-911</td>
<td>Credits due State ..1-9.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-912</td>
<td>Estimated Payments ..1-9.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-912A</td>
<td>Partial Payments ..1-9.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-913</td>
<td>Lump Sum Items ..1-9.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-914</td>
<td>Accuracy of Measurements and Computations1-9.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-915</td>
<td>Estimated Items / Adjustment Items ..1-9.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-915A</td>
<td>Asphalt (HMA) Adjustment Procedures ..1-9.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-915B</td>
<td>HMA Overweight Adjustment (tons) ...1-9.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-915C</td>
<td>Material Deficiency Adjustment (dollars) ...1-9.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-915D</td>
<td>HMA Density Adjustment (dollars) ..1-9.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-915E</td>
<td>Rideability Adjustment (dollars) ...1-9.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-915F</td>
<td>Measured Weight Adjustment (tons) ..1-9.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-915G</td>
<td>Liquid Asphalt Adjustment (dollars) ..1-9.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-916</td>
<td>Water Pollution Control ..1-9.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10 – Contract Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1000</td>
</tr>
<tr>
<td>1-1001</td>
</tr>
<tr>
<td>1-1002</td>
</tr>
<tr>
<td>1-1002A</td>
</tr>
<tr>
<td>1-1003</td>
</tr>
<tr>
<td>1-1004</td>
</tr>
<tr>
<td>1-1005</td>
</tr>
<tr>
<td>1-1005A</td>
</tr>
<tr>
<td>1-1005B</td>
</tr>
<tr>
<td>1-1006</td>
</tr>
<tr>
<td>1-1007</td>
</tr>
<tr>
<td>1-1008</td>
</tr>
<tr>
<td>1-1009</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1-1010</td>
</tr>
<tr>
<td>1-1011</td>
</tr>
<tr>
<td>1-1012</td>
</tr>
<tr>
<td>1-1013</td>
</tr>
<tr>
<td>1-1014</td>
</tr>
<tr>
<td>1-1015</td>
</tr>
<tr>
<td>1-1016</td>
</tr>
</tbody>
</table>

Chapter 11 – Guidelines for the District and Headquarters Intermediate and Final Reviews

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1101</td>
<td>Intermediate and Final Review</td>
<td>1-11.1 Aug 2010</td>
</tr>
<tr>
<td>1-1101A</td>
<td>Items</td>
<td>1-11.3</td>
</tr>
<tr>
<td>1-1101C</td>
<td>Volume III – Computations</td>
<td>1-11.4 Aug 2010</td>
</tr>
<tr>
<td>1-1101D</td>
<td>Volume IV – Miscellaneous Contract Data</td>
<td>1-11.4 Aug 2010</td>
</tr>
<tr>
<td>1-1102</td>
<td>Emergency Cost-Plus Projects</td>
<td>1-11.5</td>
</tr>
</tbody>
</table>

Chapter 12 – Civil Rights, Labor and Contract Compliance

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1200</td>
<td>General</td>
<td>1-12.1 Aug 2010</td>
</tr>
<tr>
<td>1-1201</td>
<td>Subcontracts</td>
<td>1-12.2 Aug 2010</td>
</tr>
<tr>
<td>1-1201A</td>
<td>Subcontracting – Trucking Firms</td>
<td>1-12.3 Apr 2009</td>
</tr>
<tr>
<td>1-1202</td>
<td>Labor Compliance</td>
<td>1-12.4</td>
</tr>
<tr>
<td>1-1202A</td>
<td>Statements and Payrolls</td>
<td>1-12.5 Aug 2010</td>
</tr>
<tr>
<td>1-1202B</td>
<td>Salaried Employees</td>
<td>1-12.8</td>
</tr>
<tr>
<td>1-1202C</td>
<td>Wage Rate Checks</td>
<td>1-12.8 Apr 2009</td>
</tr>
<tr>
<td>1-1202D</td>
<td>Project Payroll / Wage Check Monthly Summary</td>
<td>1-12.12 Aug 2010</td>
</tr>
<tr>
<td>1-1202D</td>
<td>Processing Complaints or Violations</td>
<td>1-12.12 Aug 2010</td>
</tr>
<tr>
<td>1-1204</td>
<td>DBE Goal or SBE Set-Aside Goal Contract Participation</td>
<td>1-12.19</td>
</tr>
<tr>
<td>1-1205</td>
<td>DBE and SBE Reports</td>
<td>1-12.20</td>
</tr>
</tbody>
</table>
Volume 1 Contract Administration

1-1205A Quarterly Contractor Reports ...1-12.20
1-1205B Quarterly Consultant Reports and Subconsultant Payment Log1-12.21 Apr 2009
1-1205C Final DBE/SBE Reports ...1-12.23
1-1206 DBE or SBE Fulfillment and Shortfall Procedure1-12.24
1-1207 On-the-Job Training ...1-12.26
1-1207A Contractor Preconstruction Requirements ...1-12.27
1-1207B Trainee Monitoring ..1-12.29
1-1208 Freedom of Information ...1.12.34

Chapter 13 – Utility Coordination and Administration

1-1300 General ...1-13.1
1-1301 Design Phase ..1-13.1
1-1302 Preconstruction Phase ..1-13.1
1-1303 Construction Phase...1-13.2
1-1303A Utility Coordination ...1-13.2 Apr 2009
1-1303B Inspection and Record Keeping ...1-13.2
1-1303C Review and Signature of CON 40’s, CON 41’s and Railroad
 Force Account Reports ..1-13.3 Apr 2009
1-1303D Change in Scope and Cost Overrun Requests....................................1-13.5 Aug 2010
1-1303E Handling of Requests More Than 60 Days After Project
 Completion ...1-13.6 Aug 2010

Chapter 14 – Project Incidents and Complaints

1-1401 Reporting Complaints and Damage or Injury Claims1-14.1
1-1402 Telephone Complaints ..1-14.1
1-1403 Property Owner Complaints ..1-14.2
1-1404 Improprieties ..1-14.2
1-1405 Motorist Claims ..1-14.2
1-1406 Other Property Damage and Personal Injury Claims1-14.5
1-1407 Claims Against the State ..1-14.5
Table of Contents

Chapter 15 – Disputes and Claims

1-1501 Contractor’s Right to Claim ..1-15.1
1-1502 Notification Requirements ...1-15.1 Aug 2010
1-1503 The Dispute and Claim Process ..1-15.2 Aug 2010

Chapter 16 – Design Error Procedure

1-1600 General ...1-16.1
1-1601 Construction Issue Form ..1-16.1
1-1601A The District Responsibilities ..1-16.1
1-1601B The Office of Construction Responsibilities1-16.1 Aug 2010
1-1602 Active Claim by Contractor ...1-16.3

Chapter 17 – Consultant Engineers

1-1701 Consultant Evaluations ...1-17.1
1-1702 Bi-Monthly Evaluation of Consultant’s Performance Guide1-17.1
1-1703 Semi-annual Consultant Evaluation Procedures1-17.1
1-1704 Consultant Performance Evaluation Rating Guidance1-17.2 Apr 2009
1-1704A Administration ..1-17.2 Apr 2009
1-1704B Procedural ..1-17.2 Apr 2009
1-1704C Technical ..1-17.3 Apr 2009
1-1704D Good Faith Effort (Administration) ..1-17.3 Apr 2009
Chapter 18 – Emergency Projects

- **1-1800** General..1-18.1
- **1-1801** Case 1 Initiation Procedure (Office of Construction)..........................1-18.1
- **1-1802** Case 1 Emergency Projects (District)..1-18.6
- **1-1803** Volume I – Inspector’s Daily Work Reports.................................1-18.7 Apr 2009
- **1-1804** Volume III...1-18.7 Aug 2010
- **1-1805** Volume IV ...1-18.9 Aug 2010

Chapter 19 – Insurance and Bond Requirements

- **1-1901** Insurance Requirements...1-19.1
- **1-1902** Performance Bonds..1-19.1

Chapter 20 – Maintenance and Protection of Traffic (M&PT) Changes and Public Relations

- **1-2000** General...1-20.1 Apr 2009
- **1-2001** Procedures for Revising Contract Provisions for M&PT1-20.1
- **1-2001A** Case 1 – Revision to the Traffic Management Plan (TMP) or M&PT Plan..1-20.1
- **1-2001B** Case 2 – Revision to Limitation of Operations..........................1-20.2
- **1-2001C** Case 3 – Emergency Operations..1-20.2 Apr 2009
- **1-2002** Work Zone Safety and Mobility ..1-20.4
- **1-2003** Press Release Procedures...1-20.4
- **1-2004** Public Relations on the Job Site..1-20.5 Apr 2009
- **1-2004A** Americans with Disabilities Act ..1-20.5 Apr 2009
- **1-2005** Trafficperson Item and State Police..1-20.7 Apr 2009
- **1-2005A** Municipal Police Officers and Uniformed Flaggers..................1-20.7 Apr 2009
- **1-2005B** State Police..1-20.9 Apr 2009
- **1-2005B.1** Ordering State Police Services..1-20.9 Apr 2009
- **1-2005B.2** State Police on the Project ...1-20.9 Apr 2009
- **1-2005B.3** Cancelling of State Police Services ..1-20.10 Apr 2009
Chapter 21 – Municipal Systems Oversight Procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2100</td>
<td>General</td>
<td>1-21.1</td>
</tr>
<tr>
<td>1-2101</td>
<td>MSAT Responsibilities</td>
<td>1-21.1</td>
</tr>
<tr>
<td>1-2102</td>
<td>Design/Constructibility Reviews</td>
<td>1-21.1</td>
</tr>
<tr>
<td>1-2103</td>
<td>Preliminary Meeting with the Municipality</td>
<td>1-21.2</td>
</tr>
<tr>
<td>1-2104</td>
<td>Municipal Setup for SiteManager</td>
<td>1-21.6</td>
</tr>
<tr>
<td>1-2105</td>
<td>Municipal Preconstruction Meeting</td>
<td>1-21.6</td>
</tr>
<tr>
<td>1-2106</td>
<td>Municipal Testing Procedures</td>
<td>1-21.7</td>
</tr>
<tr>
<td>1-2107</td>
<td>Municipal Contract Status Report CON 100M</td>
<td>1-21.7</td>
</tr>
<tr>
<td>1-2108</td>
<td>CLA 3’s for Projects Performed by Contractor/Consultant</td>
<td>1-21.7</td>
</tr>
<tr>
<td>1-2109</td>
<td>CLA 3’s for Projects Performed by Municipal Force Account</td>
<td>1-21.9</td>
</tr>
<tr>
<td>1-2110</td>
<td>Change In Scope Approval Process</td>
<td>1-21.9</td>
</tr>
<tr>
<td>1-2111</td>
<td>Municipality Construction Orders</td>
<td>1-21.9</td>
</tr>
<tr>
<td>1-2112</td>
<td>Claim Procedures</td>
<td>1-21.10</td>
</tr>
<tr>
<td>1-2113</td>
<td>Periodic Records Review</td>
<td>1-21.10</td>
</tr>
<tr>
<td>1-2113A</td>
<td>Periodic Review by CTDOT Management</td>
<td>1-21.13</td>
</tr>
<tr>
<td>1-2114</td>
<td>Semifinal and Final Inspection</td>
<td>1-21.13</td>
</tr>
<tr>
<td>1-2115</td>
<td>Closing Out Projects</td>
<td>1-21.15</td>
</tr>
<tr>
<td>1-2116</td>
<td>Submission of Finals Package to Office of Construction</td>
<td>1-21.15</td>
</tr>
</tbody>
</table>

Chapter 22 – Facilities Construction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2201</td>
<td>Overview</td>
<td>1-22.1</td>
</tr>
<tr>
<td>1-2202</td>
<td>Unit Responsibilities</td>
<td>1-22.1</td>
</tr>
<tr>
<td>1-2203</td>
<td>Obtaining a Certificate of Substantial Compliance</td>
<td>1-22.2</td>
</tr>
<tr>
<td>1-2204</td>
<td>Construction Specification Institute (CSI) Items</td>
<td>1-22.4</td>
</tr>
<tr>
<td>1-2205</td>
<td>Project Start Up</td>
<td>1-22.4</td>
</tr>
</tbody>
</table>
Volume 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2206</td>
<td>Payment Estimates</td>
<td>1-22.5</td>
</tr>
<tr>
<td>1-2207</td>
<td>Testing</td>
<td>1-22.5 Aug 2010</td>
</tr>
<tr>
<td>1-2208</td>
<td>Field Design Changes (FDC’s)</td>
<td>1-22.6</td>
</tr>
<tr>
<td>1-2209</td>
<td>Contract Closeout</td>
<td>1-22.6</td>
</tr>
<tr>
<td>1-2210</td>
<td>Reports and Records</td>
<td>1-22.7</td>
</tr>
<tr>
<td>1-2211</td>
<td>Code Inspections Schedule</td>
<td>1-22.11</td>
</tr>
</tbody>
</table>

Appendix A – SiteManager Project Inspection Manual

NOTE: Revisions forthcoming

Appendix B – Update Procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-100</td>
<td>General</td>
<td>B-1.1</td>
</tr>
<tr>
<td>B-101</td>
<td>Responsibilities</td>
<td>B-1.1</td>
</tr>
<tr>
<td>B-102</td>
<td>Construction Manual Panel</td>
<td>B-1.1</td>
</tr>
<tr>
<td>B-103</td>
<td>Construction Manual Coordinator</td>
<td>B-1.1 Aug 2010</td>
</tr>
<tr>
<td>B-104</td>
<td>Types of Changes</td>
<td>B-1.3</td>
</tr>
<tr>
<td>B-105</td>
<td>Sources of Changes</td>
<td>B-1.4</td>
</tr>
<tr>
<td>B-107</td>
<td>Suggesting Revision to the Standard Specifications</td>
<td>B-1.5</td>
</tr>
</tbody>
</table>

Appendix C – The List of Standard Correspondence

Table 1 of 2 List of Standard Correspondence ..C-1.1 Aug 2010

Table 2 of 2 Standard List of Project Correspondence to be Maintained in Folders at the Field Office ..C-1.8 Apr 2009
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2.1</td>
<td>Contract Status (Form CON-100)</td>
<td>1-2.5</td>
</tr>
<tr>
<td>1-2.2</td>
<td>Preconstruction Meeting Invitees</td>
<td>1-2.6 Apr 2009</td>
</tr>
<tr>
<td>1-3.1</td>
<td>Volume II – Project Identification/Construction Recordkeeping Format Sheet</td>
<td>1-3.9</td>
</tr>
<tr>
<td>1-3.2</td>
<td>Volume II – Construction Item Index</td>
<td>1-3.10</td>
</tr>
<tr>
<td>1-3.3</td>
<td>Volume II – Request for Test Index</td>
<td>1-3.11</td>
</tr>
<tr>
<td>1-3.4</td>
<td>Volume II – Contract Item Page</td>
<td>1-3.12</td>
</tr>
<tr>
<td>1-3.5</td>
<td>Volume II – Contract Item Testing Data Page</td>
<td>1-3.12</td>
</tr>
<tr>
<td>1-3.6</td>
<td>Volume III – Sample Item Summary Sheet</td>
<td>1-3.14</td>
</tr>
<tr>
<td>1-3.7</td>
<td>Volume III – Sample Master Summary Sheet</td>
<td>1-3.15</td>
</tr>
<tr>
<td>1-3.8</td>
<td>Volume III – Sample Master Summary Sheet with Categories</td>
<td>1-3.15 Apr 2009</td>
</tr>
<tr>
<td>1-3.8A</td>
<td>Record of Estimated Payment Procedures (Sample)</td>
<td>1-3.16 Aug 2010</td>
</tr>
<tr>
<td>1-3.9</td>
<td>Volume III – Drainage Master Summary Log</td>
<td>1-3.19</td>
</tr>
<tr>
<td>1-3.10</td>
<td>Volume III – Drainage (Right-Hand Page)</td>
<td>1-3.20</td>
</tr>
<tr>
<td>1-3.11</td>
<td>Volume III – Drainage (Left-Hand Page)</td>
<td>1-3.20</td>
</tr>
<tr>
<td>1-3.12</td>
<td>Volume III – Index Sheet</td>
<td>1-3.21</td>
</tr>
<tr>
<td>1-3.13</td>
<td>Volume III – Item Master Summary</td>
<td>1-3.22</td>
</tr>
<tr>
<td>1-3.14</td>
<td>Sample Volume IV Index</td>
<td>1-3.23 Aug 2010</td>
</tr>
<tr>
<td>1-3.15</td>
<td>Volume IV – Inspection of Field Records by Supervisory Personnel</td>
<td>1-3.23 Aug 2010</td>
</tr>
<tr>
<td>1-3.16</td>
<td>Volume IV – Record of Equipment Used</td>
<td>1-3.23 Aug 2010</td>
</tr>
<tr>
<td>1-3.17</td>
<td>Volume IV – Record of Prime Contractors and Subcontractors</td>
<td>1-3.23 Aug 2010</td>
</tr>
<tr>
<td>1-3.18</td>
<td>Volume IV – Record of Insurance and Bonding Companies</td>
<td>1-3.23 Aug 2010</td>
</tr>
<tr>
<td>1-3.20</td>
<td>Volume IV – Index of Construction Orders</td>
<td>1-3.24 Aug 2010</td>
</tr>
<tr>
<td>1-3.21</td>
<td>Record of State/Consultant Personnel</td>
<td>1-3.24 Aug 2010</td>
</tr>
<tr>
<td>1-3.22</td>
<td>Record of Labor Wage Checks</td>
<td>1-3.25 Aug 2010</td>
</tr>
<tr>
<td>1-3.23</td>
<td>Record of Certified Payrolls</td>
<td>1-3.25 Aug 2010</td>
</tr>
<tr>
<td>1-3.24</td>
<td>Material Stored Inventory Log</td>
<td>1-3.26</td>
</tr>
<tr>
<td>1-3.25</td>
<td>Record of Shop Drawings and Working Drawings</td>
<td>1-3.26 Aug 2010</td>
</tr>
<tr>
<td>1-3.26</td>
<td>Volume IV – Record of Activity 06</td>
<td>1-3.26 Aug 2010</td>
</tr>
<tr>
<td>1-3.27</td>
<td>(See Figure 1-3.8A)</td>
<td>1-3.27 Aug 2010</td>
</tr>
<tr>
<td>1-3.28</td>
<td>Sample of Report of Meeting</td>
<td>1-3.29 – 1-3.30</td>
</tr>
<tr>
<td>1-3.29</td>
<td>Non-Compliance Notice</td>
<td>1-3.33</td>
</tr>
<tr>
<td>1-3.30</td>
<td>Compliance Notice</td>
<td>1-3.34</td>
</tr>
<tr>
<td>1-3.31</td>
<td>Type Designation of Recycled Materials</td>
<td>1-3.39</td>
</tr>
<tr>
<td>1-3.32</td>
<td>Recycling Report</td>
<td>1-3.40</td>
</tr>
</tbody>
</table>
Figure 1-4.1 Request for Test (Form MAT-100) ... 1-4.4
Figure 1-4.2 Request for Test (Form MAT-100) SiteManager ... 1-4.5
Figure 1-5.1 Adjusted Price (No Equipment Audit) ... 1-5.8
Figure 1-5.2 Adjusted Price (Equipment Audit) ... 1-5.8
Figure 1-6.1 Daily Report of Cost Plus, Form CON 9 .. 1-6.5
Figure 1-6.2 Premium Time Cost Plus Additives ... 1-6.7 Apr 2009
Figure 1-6.3 Labor Mark-Up for Insurance and Taxes .. 1-6.8 Apr 2009
Figure 1-7.1 Sample Letter Project Engineer Time Extension Response 1-7.5
Figure 1-7.2 Time Extension Approval/Disapproval Memorandum 1-7.7
Figure 1-7.3 Sample Letter to FHWA Requesting Concurrence with Time Extension 1-7.8
Figure 1-8.1 Record of Prior Approval for Major Contract Change Order 1-8.6
Figure 1-8.2 Sample Estimate for Cost Plus Work .. 1-8.7
Figure 1-8.3 Construction Order Routing Slip .. 1-8.10
Figure 1-8.4 Second Letter to Contractor Transmitting Construction Order 1-8.13
Figure 1-8.5 Distribution of Construction Order Copies .. 1-8.16 Aug 2010
Figure 1-9.1 Payment Estimate .. 1-9.1 – 1-9.3
Figure 1-9.2 Certificate of Title Sample Form ... 1-9.12 – 1-9.13
Figure 1-9.3 Volume III Record of Estimated Payment Procedure 1-9.17 Aug 2010
Figure 1-9.4 Accuracy of Measurements and Computations 1-9.18
Figure 1-9.5 Vacant
Figure 1-9.6 Water Pollution Control Summary .. 1-9.21
Figure 1-10.1 Semi-Final Inspection Invitee List .. 1-10.7 Apr 2009
Figure 1-10.2A Certificate of Compliance – Project Engineer (CON-502A) 1-10.8
Figure 1-10.2B Certificate of Compliance – DOT Inspector (CON-502B) 1-10.9
Figure 1-10.2C Certificate of Compliance – Consultant Inspector (CON-502C) 1-10.10
Figure 1-10.2D Certificate of Compliance – Contractor (CON-502D) 1-10.11
Figure 1-10.3 Certificate of Acceptance of Work (Form CON-500) 1-10.15
Figure 1-10.4 Certificate of Acceptance of Project (Form CON-501) 1-10.17
Figure 1-10.5 Final Transmittal Memorandum ... 1-10.18 Aug 2010
Figure 1-10.6 Table for No. of Attachments for Final Transmittal Memorandum 1-10.19 Aug 2010
Figure 1-10.7a-b Construction Report ... 1-10.20 – 1-10.21
Figure 1-10.8 Financial Summary Checklist ... 1-10.22
Figure 1-10.9 Project Cost Overrun Report ... 1-10.23
Figure 1-10.10a-b Pavement Evaluation Form .. 1-10.24 – 1-10.25
Figure 1-10.11 Sample Memorandum to Federal Billing Unit 1-10.26 Aug 2010
Figure 1-10.12 Sample Letter to FHWA Division Administrator 1-10.27 Apr 2009
Figure 1-10.13a-b Post Construction Review Form .. 1-10.29 – 1-10.30
List of Figures

Volume 1

Figure 1-10.14 Sample Contractor Performance Evaluation 1-10.32 Apr 2009
Figure 1-12.1 Certified Payroll .. 1-12.6 Apr 2009
Figure 1-12.2 Certified Payroll / State Statement of Compliance2-12.7 Apr 2009
Figure 1-12.3 Certified Payroll / Federal Statement of Compliance1-12.7 Apr 2009
Figure 1-12.4 CT DOL Apprenticeship Registration Agreement 1-12.9
Figure 1-12.5 Labor Wage Check (Form CON-131)... 1-12.10
Figure 1-12.6 Prevailing Wage Referral Form .. 1-12.11
Figure 1-12.7 Project Payroll / Wage Check Monthly Summary 1-12.13 Aug 2010
Figure 1-12-8 Construction Project Site Record Review .. 1-12.14 – 1-12.15 Apr 2009
Figure 1-12.9 Sample Project Site Record Review Request Letter 1-12.16 – 1-12.18
Figure 1-12.10 Sample DBE or SBE Quarterly Report .. 1-12.21
Figure 1-12.11 Sample Consultant Quarterly Report ... 1-12.21
Figure 1-12.12 Subconsultant Payment Log ... 1-12.22
Figure 1-12.13 Final DBE or SBE Participating Report (Form 88-1) 1-12.23 Aug 2010
Figure 1-12.14 Sample Letter to Contractor Requesting Documentation to Substantiate DBE (SBE) Payments 1-12-25
Figure 1-12.15 Sample DBE (SBE) Payment Verification .. 1-12.26
Figure 1-12.16 Trainee Approval Form (Form 1415) .. 1-12.28
Figure 1-12.17 Training Summary ... 1-12.30
Figure 1-12.18a Monthly Training Report (Form 1409 – Front) 1-12.30
Figure 1-12.18b Monthly Training Report (Form 1409 – Back) 1-12.31
Figure 1-12.19a-d CT DOL Apprentice Handbook and Progress Record Sample 1-12.31 – 1-12.33
Figure 1-12.20 Sample Training Payment Recommendation Memorandum 1-12.33
Figure 1-14.1 Sample Letter to Contractor Regarding Claim from Motorist 1-14.3
Figure 1-14.2 Sample Letter to Claimant ... 1-14.3
Figure 1-14.3 Prompt Payment Complaint Log ... 1-14.6
Figure 1-14.4 Standard Prompt Payment Letter to Contractor 1-14.7
Figure 1-14.5 Incident Notification Process ... 1-14.9
Figure 1-14.6 Report of Major Road Closure / Project Incident / Emergency Work Form .. 1-14.9 Aug 2010
Figure 1-14.7 Report of Burglary, Theft or Vandalism .. 1-14.11
Figure 1-16.1 Construction Issue Form ... 1-16.2
Figure 1-17.1 Bi-Monthly Consultant Performance Evaluation Rating Form 1-17.4 – 1-17.5
Figure 1-17.2 Semi-Annual Consultant Performance Evaluation Rating Form 1-17.6 – 1-17.7
Figure 1-18.1 Emergency Work Letter Agreement .. 1-18.4 – 1-18.5
Figure 1-18.2 Emergency Project Status Report .. 1-18.6
Figure 1-19.1 Certificate of Insurance (CON-32) ... 1-19.2
Figure 1-19.2 Sample Letter to Contractor Requesting Evidence of Insurance 1-19.3
Figure 1-19.3 Sample Letter Requesting New Performance Bond 1-19.4
Figure 1-19.4 Sample Performance Bond Rider ... 1-19.5
Figure 1-20.1 Case 2 Backup Documentation Form .. 1-20.3
Figure 1-20.2 Construction Press Release Flow Chart .. 1-20.6
Figure 1-20.3 Volume III – Flasher Summary ... 1-20.11
Figure 1-21.1 Preliminary Meeting/Municipal Projects Check List 1-21.3 – 1-21.5
Figure 1-21.2 Project Administration Review ... 1-21.11 – 1-21.12
Figure 1-21.3 Sample Letter Transmitting Project Administration Review 1-21.14
Figure 1-22.1 Certificate of Substantial Compliance Flowchart .. 1-22.3
Figure 1-22.2 Schedule of Values ... 1-22.7
Figure 1-22.3 Sample AIA Form G702 Application and Certificate for Payment 1-22.8
Figure 1-22.4 Sample AIA Form G703 Continuation Sheet .. 1-22.8
Figure 1-22.5 AIA Certification Form .. 1-22.9
Figure 1-22.6 Notice of Intent ... 1-22.10
Figure 1-22.7 Certificate of Compliance ... 1-22.15

Figure B-1 Suggested Revision to Construction Manual Form .. B-1.2
Figure B-2 List of Revisions ... B-1.3
Figure B-3 Recommended Revision to Standard Specifications Memorandum B-1.6
Preface

1-000 General

This Manual, in conjunction with the Standard Specifications for Roads, Bridges and Incidental Construction, outlines the organization, policies and procedures of the Department in administering construction contracts from their execution to completion, and serves to clarify and unify construction procedures and practices.

The Construction Manual is arranged into two major volumes, each containing associated chapters and relevant appendices. Volume 1 – “Contract Administration” addresses the administration procedures. Volume 2 – “Technical References” addresses the technical aspects of the various construction areas and provides guidance to the inspector.

The scope of the Manual is primarily confined to construction practices and the proper handling of related contingencies that may arise. The Manual does not include discussions of the numerous technical questions involved in highway engineering. Technical questions concerning the detail of the project design should be referred to the appropriate section within the Office of Engineering. The material is arranged chronologically where possible, following the order in which work is normally developed, and is separated to reflect the following:

• Administration. The formulation and administration of policies and procedures to obtain uniformity throughout the State.

• Inspection. The inspection of all of the operations during construction of a project to assure the proper combination of materials and details of construction that meet all the requirements of the plans, specifications, and special provisions as set forth in the contract.

This manual was written to instruct the Department and Consultant staff in the performance of their duties associated with the administration and inspection of construction contracts. Unless specifically noted in the Manual as discretion of the Districts or general guidance, the provisions of this manual shall be considered the minimum requirements for uniform record keeping and administration. The Contract is the final control in the inspector-contractor relationship. The requirements of the Standard Specifications, special provisions, plans and subsequent policy and procedure memoranda take precedence if there are any conflicts with instructions in this manual.
Chapter 1 - Inspection

1-100 General

Public employees entrusted with the administration of construction projects must be mindful of the fact that we are “stewards of the public trust.” Each year the Department of Transportation is allocated public money for the construction of roads, bridges, buildings, and other transportation related projects. With this comes a responsibility to deliver what we set out to, in the most efficient manner possible. We must also strive to achieve the highest quality product attainable. To do any less would be a violation of the public trust that our organization is founded upon.

Inspection is one of the most important phases of construction work. Inspection consists of careful reviews and critical examination of all the factors entering into the construction of transportation projects to assure the proper combination of materials and details of construction. The goal is to produce a completed project complying with all the requirements of plans, specifications, and the special provisions as set forth by CONNDOT.

The detailed inspection of a project can be performed entirely by State employees or by private engineering firms hired by CONNDOT. These private firms, referred to as “consultant engineers,” represent the Commissioner and act as an agent of the State in accordance with the terms of their agreements with CONNDOT under the supervision of CONNDOT personnel. Their actions in the prosecution of their duties must be in accordance with the established policies of the Department and in the best interest of the State.

If the District determines that insufficient personnel are available to staff a project, the Assistant District Engineer must notify the Office of Construction. The Office of Construction will make a request for the Commissioner's approval to assign the work to a consulting engineer.

1-101 Scope of the Work

The construction of any transportation project consists of a number of operations that must be integrated in order to produce a finished product. Each operation has an effect on the quality of the final product. The procedures and restrictions applicable to the work to be performed and the estimated quantities involved are specified in the Contract documents. The actual quantities incorporated into the work must be documented and certified. The certification must be based on well-documented field measurements and computations.

The intent of the construction Contract is to prescribe a complete work or improvement. Knowledge of the plan details, design computations, and Contract requirements is a necessity for the Inspector to properly fulfill the function of the Department representative.

1-102 Initiating Inspection

The Assistant District Engineer is responsible for determining the appropriate staffing level on all projects and will assign a Project Engineer and Chief Inspector to oversee and take charge of each project respectively. Before actual operations are started by the Contractor, the Chief Inspector must make a careful study of the plans, Contract(s), special provisions, property agreements, utility agreements, permit
applications, permits, survey and design reports, and specifications for the Project, to become familiar with all phases of the improvement and learn of any extraordinary features involved. During this phase, the Chief Inspector should also discuss the Project with the Project Engineer, Environmental Coordinator, Utility Coordinator, and EEO Officer to determine if they know of any extraordinary features that may affect the Project.

1-103 The Inspection Team

Each Employee of the Department of Transportation is a representative of the Commissioner of Transportation and should conduct themselves in accordance with the Policies and Procedures of the Department, including the Code of Ethics. Employees shall act in the best interest of the Department consistent with the level of authority of their respective position. The following subsections are intended to outline the basic duties of certain positions and are not intended to be all inclusive. Depending on the employee, the duties may be altered to fit the needs of the project(s).

Each project must establish procedures at the onset of the project to ensure that payments are made in accordance with the contract. The Chief Inspector shall assign payment responsibilities to the project inspection staff to ensure that all required payments are made and that there are no overlaps or duplication. The Project Engineer shall review payment procedures with the Chief Inspector.

1-103A The Inspector

(For Consultant Inspectors the duties referred to in this section as Chief Inspector duties may be applied to the Resident Engineer position or as delegated.)

The Chief Inspector is assigned to a Project or Projects to see that the best interests of the State are served and that the Contractor works in accordance with the terms of the Contract.

One of the major responsibilities of the inspector is to verify and document that the Contractor is performing the work in accordance with the provisions of the Contract. The Chief Inspector delegates duties to Sub-Inspectors as needed.

The Inspector(s) must be fair, honest and strive to maintain a positive working relationship with the Contractor and his agent. The Inspector must be firm. Firmness in obtaining the required results from the start of the project will make the work of the inspection force easier as work progresses. Inspectors should never act as supervisors for the Contractor, and except in emergencies, should only issue instructions to the Contractor's supervisory personnel. This approach serves to maintain the Contractor's authority over his forces and will improve the relationship between the Contractor and the Inspector.

If differences between the Inspector and Contractor concerning the interpretation of the plans and specifications cannot be reconciled, the Inspector will immediately contact the Project Engineer for a decision.

In the absence of a supervisor, if an immediate decision is required, the Chief Inspector will make decisions according to the Inspector's best judgment and so direct the Contractor. The Inspector will, however, notify the Project Engineer of the decision and the reasons for the decision as soon as possible.
Inspectors are not allowed to waive specifications, nor permit an inferior grade of work to be done, or allow unapproved or rejected material to be incorporated into the project.

A list of duties has been provided below as an example and is not intended to be all inclusive. Depending upon the specific requirements of the construction project(s) which the Inspector is assigned, the required duties may vary. Further information related to the duties listed below can be found in other sections of this manual pertaining to the specific topic.

Project Initiation

- Before actual operations are started by the Contractor, the Chief Inspector must make a careful study of the plans, Contract(s), special provisions, property agreements, utility agreements, permit applications, permits, survey and design reports, and specifications for the project, to become familiar with all phases of the improvement and learn of any extraordinary features involved.
- The Chief Inspector should also discuss the Project with the Project Engineer, Environmental Coordinator, Utility Coordinator, and EEO Officer to determine if they know of any extraordinary features that may affect the Project.
- The Chief Inspector goes through the testing list to determine testing requirements for the materials of each item and forwards the list of deletions and additions if any to the Project Engineer (or Site Manager representative) for editing in SiteManager.
- The Chief Inspector attends the preconstruction meeting, preconstruction utility meeting and, preconstruction EEO meeting. Prior to attending the meetings the Chief inspector should become knowledgeable in the aspects of the Contract to be discussed at each meeting.
- Before Contract work begins the Chief inspector should review all agreements with second parties to determine what work involves credits due state. At this time it is also beneficial to review the Design Report as it may indicate what agreements should be in place. If you think agreements are missing check with the Designer.
- It is the Chief Inspector’s responsibility to obtain utility agreements, plans, specifications and the estimates for the utility work from the Project Engineer/District Utility Coordinator and the Utility Section.
- The Chief Inspector is responsible to assemble the project records in accordance with the Construction Manual.
- Prior to the start of construction the Chief Inspector should discuss the level of staffing required for the project with the Project Engineer.
- The Chief Inspector is responsible for the assignment of duties to the sub-inspectors. Prior to the start of the construction the Chief Inspector should communicate to the Sub-Inspectors the expectations of their role in the project and review the required information for the DWR.
- At the preconstruction meeting, the Chief Inspector should obtain the name, title and telephone number of the person(s) responsible for each utility’s daily work and contact information for that person’s supervisor, as backup.

Throughout The Project

- As soon as the Contractor begins operations, the Chief Inspector must notify the Project Engineer, who notifies the Assistant District Engineer. The Inspector records the actual starting date of the Contract on the Daily Work Report (Form CON-134) and Site Manager system. The Chief Inspector issues a Contract Status Report, Form CON-100, for the prime Contractor. The form must be prepared and processed within seven days of the order to start, actual start, suspension, resumption, and completion dates.
- The Chief Inspector is responsible to ensure that all forms and reports documenting the contractors work, as well as those that may be required by other units of the Department and State and Federal agencies, are accurate and complete.
- The Chief Inspector is responsible to verify that all contractors/subcontractors are properly approved by the Office of Construction prior to performing work on the project.
• At the beginning of the project and periodically thereafter, the Chief Inspector is to discuss with the Project Engineer issue folders that need to be established.
• It is the responsibility of the Chief Inspector(s) to thoroughly review and approve all sub-inspectors' DWR content including attached sheets and forms and sign them.
• The Chief Inspector must make sure the information necessary to create the as-built drawings are kept up to date on white paper plans as the project progresses. This duty can be delegated to other inspectors; however, the Chief Inspector is responsible for making sure it is done. At a minimum the white paper plans should be updated every other week. When the Contractor is required to produce as-built drawings, i.e. electrical or vertical construction projects, the Chief Inspector should periodically remind the Contractor of the as-built requirement and ask for an update on their status.
• The primary responsibility for adequate and sufficient testing rests with the Chief Inspector. The Chief Inspector must comply in all regards to the requirements stipulated in the “Schedule of Minimum Requirements for Sampling Materials for Test,” or as directed. Items with a special provision typically add additional or revised testing requirements to the minimum testing requirements and must be reviewed for conformance.
• The Chief Inspector is responsible for scheduling assurance testing as stipulated in the “Schedule of Minimum Requirements for Sampling Materials for Test.” Notification of the Laboratory Supervisor is required to have appropriate assurance testing performed. The Chief Inspector must arrange for the delivery or pick up of samples of all materials to be used on the job, except those to be tested at the source of supply or by the District, to the DMT.
• Before requesting approval for extra work from the Assistant District Engineer (through the Project Engineer), the Chief Inspector should carefully review the Contract documents (Standard Specifications, Addenda, Special Provisions, Permits, Plan Sheets, etc.) to make sure the work is not included in other items or the general cost of the Project.
• The Chief Inspector must keep the Project Engineer well informed of discussions regarding extra work with the Contractor as the Project Engineer is responsible for the approval of the labor, equipment and materials used in the performance of cost-plus work. The Chief Inspector must notify the Project Engineer when the start of cost-plus work will begin. The Project Engineer must keep the Supervising Engineer informed of any extra work that will be performed on a cost-plus basis.
• The Chief Inspector is the primary project staff member responsible for the preparation and content of Construction Orders and must make regular checks of the project records to identify any need for a Construction Order.
• The Chief Inspector must also make sure that any item paid on a monthly basis is on their or designated sub-inspector’s Daily Work Report.
• The Chief Inspector should keep the Project Engineer informed of the available funding for the Contract and must advise the Project Engineer when 75% of Project funds have been expended.
• The Chief Inspector is responsible to make sure all necessary labor wage checks are completed. On a monthly basis the Chief Inspector is to complete the “Project Payroll/Wage Check Monthly Summary.”
• Chief Inspector periodically reviews the status of training with the District EEO Coordinator to ensure that the Contractor is in compliance with the Contract provisions.
• It is the Chief Inspector’s or delegated sub-inspector's responsibility to monitor and document utility work on the project. The Chief Inspector should require that the utility’s foreman check-in at the start of each workday, providing the work force, major equipment, location, nature of work, and anticipated end of workday. It is the Chief inspector’s responsibility to verify the work charged on the Con 40 and CON 41 forms against the daily work reports.
• All complaints from property owners that are received by project personnel must be investigated by the Project Engineer and Chief Inspector and discussed with the property owner for resolution at the project level.
• Whenever there is a potential contractual dispute on a project, the Project Inspector involved should immediately bring the matter to the attention of the Chief Inspector who will make a note of it on their Diary and notify the Project Engineer of the potential dispute.
When Contract operations of emergency nature are required, such as hazardous potholes patching, cleaning up of damaged sand barrels, repairing damaged bridge joints, etc., the Chief Inspector/Project Engineer will request authorization to perform the necessary repairs from the Assistant District Engineer or District Engineer.

The Chief Inspector/Project Engineer will be responsible for notifying the Operations Center and Office of Construction of the proposed emergency work. The field inspectors are responsible for notifying the Operations Center at the completion of the work.

All Inspectors must be familiar with and follow the guidelines established in Volume 2 Chapter 1 “Environmental Protection”.

Project Completion

- The Chief Inspector issues a Contract Status Report, Form CON-100, when the project is completed.
- The Chief Inspector will assist the Project Engineer in determining when the project or a portion of the project is ready for a semi-final inspection.
- The Chief Inspector will record the dates that the remaining contract work and any corrective work noted on the semi-final inspection report are completed. The Chief Inspector will also notify the Project Engineer when all items noted on the report are satisfactorily addressed and the project is ready for a final inspection.
- The Chief Inspector will record the dates the remaining contract work or corrective work noted on the final inspection report are completed for inclusion in the Project records.
- As soon as the project is complete, the Chief Inspector must put together a complete set of white paper tracings with all as-built information compiled during the project and forward them for processing.
- The Chief Inspector/Resident Engineer is responsible for review and completion of the project records as well as completion of the final package.

1-103B The Project Engineer

The Project Engineer oversees a group of personnel in the endeavor to successfully administer construction or other transportation projects. As part of this role the Project Engineer may act as a liaison with consulting engineers, train inspectors and other staff, review and verify construction and other estimates, serve as a technical advisor for projects, and perform other duties related to the administration of construction projects as required.

A key role of the Project Engineer is to visit the construction site, observe the work in progress, and ensure that it is completed in accordance with the Project documents and Specifications. As part of the reviews the Project Engineer should also observe the inspection process and procedures performed by the field personnel to ensure that the inspectors are following the standards set forth in the Construction Manual and Project Specifications. If the Project Engineer is concerned with either the Contractor’s or Inspector’s performance of the work they are to provide direction on its proper performance. The Project Engineer shall keep the Assistant District Engineer apprised of the details of the project. This may be through direct communication or through Supervising Engineers and Principal Engineers depending upon District Policy.

In case of violations by the Contractor, Non-Compliance Notices shall be issued and the matter brought to the attention of the Supervising Engineer and Assistant District Engineer.
A list of duties has been provided below as an example and is not intended to be all inclusive. Depending upon the specific requirements of the construction project(s) which the Project Engineer is assigned, the required duties may vary. Further information related to the duties listed below can be found in other sections of this manual pertaining to the specific topic.

Design Stage

- Attend design meetings and become familiar with the work and utilities involved.
- Conduct plan reviews and field visits.
- Assist the other units so that all issues are addressed through the plan review process prior to the contract being advertised.

Project Initiation:

- Schedule and participate in the pre-construction meeting.
- Ensure that the Contractor submits required contractor training plans to the Office of Construction or their designated representative.
- Provide the Inspection staff with the data, supplies, and equipment needed to properly inspect the work.
- Attend and participate in the utility meeting field review.
- Become familiar with the applicable DBE or SBE requirements that apply to the Contract and monitor compliance throughout the project.

Throughout The Project

- Monitor construction progress to ensure general conformance with contract requirements.
- Be aware of project issues and orders given to the Contractor by the inspection staff and make sure that these are documented.
- Intervene when the contractor disregards direction from inspector. If the problem cannot be resolved, the Project Engineer may suspend the operation if conditions warrant such action. The Project Engineer must notify the Assistant District Engineer (and supervising engineer depending upon the delegation of authority) about the problem and the course of action taken. If the issue cannot be resolved by the Project Engineer the Assistant District Engineer shall intervene.
- Discuss any project issue folders that need to be established with the inspection staff.
- Attend and participate in the job progress meetings. Ensure that accurate minutes are prepared for each meeting. These minutes should be prepared for distribution within 5 working days of the date of the meeting.
- Review the DWRs monthly, including those of sub-inspectors, that were prepared for at least three days out of each month, for procedure, content, documentation, etc., have corrections made and sign them. The item quantities reviewed and the supporting back-up documentation shall be initialed by the Project Engineer.
- Periodically, as part of the monthly review of project records, review the white paper (as-built) plans while the work is ongoing to make sure they are updated to reflect work actually performed. Note this review on the front sheet of the white paper as-builts by initialing and dating the front sheet of the white paper as-builts.
- The system for tracking “estimated” payments shall be approved by the Project Engineer. The Project Engineer shall sign the procedure being used as “approved by” in on the “Estimated Payment Procedures Reviewed and Approved by the Project Engineer” sheet. This sheet is to be kept in the Volume III.
- Make periodic checks of the job site to ensure that the inspectors are properly performing their duties in accordance with department policies and procedures.
- Provide adequate instructions and supervision to the inspection staff to ensure adherence to material testing requirements (this includes deleting appropriate materials, from the initial materials requirements list that were or will not be required for completion of the item(s)).
Negotiate and support all agreed prices for work to be incorporated into the project. Before proposing a price to the Contractor the project engineer must obtain the concurrence of the Assistant District Engineer (or Transportation Principal Engineer).

Initial review of all time extension requests.

Periodically review the status of training with the District EEO Coordinator to ensure that the Contractor is complying with the Contract provisions.

Ensure that there is regular communication and coordination among the utility representatives, Chief Inspector and the prime contractor’s representative relative to work schedules (starting completing, etc.), sequencing of the work, and traffic control.

Ensure that complaints from property owners that are received by project personnel are investigated and discussed with the property owner for resolution.

Approve methods other than what is outlined in the Construction Manual for “partial payments”.

If all project personnel are relieved of their duties (reassigned, etc. such as during a suspension period), it is the responsibility of the Project Engineer to make periodic checks of the job site and create weekly Diaries in Site Manager.

Answer any specific questions the inspector may have concerning Non-Compliance/Compliance Notices.

Monitor the project’s available money.

Cost Plus:

Review and approval of the labor, equipment and materials proposed for use in the performance of cost-plus work. This includes whether anyone above the grade of foreman, as mentioned in the specifications may be charged to a cost plus item (this may have to be discussed with the Supervising Engineer).

Keep the Supervising Engineer informed of any extra work that will be performed on a cost-plus basis.

Review the records periodically to assure that cost-plus payments are current and note this review by initialing the cost-plus records.

Direct the Contractor to rent equipment when it is determined the equipment is needed to perform cost-plus work and not owned by the Contractor.

Change Orders:

Notify the FHWA of conditions that result in or require a change in scope/cost increase in excess of $100,000.

If a Change Order is proposed from the Office of Engineering, the Project Engineer must confirm that the Office of Engineering has advised FHWA of the change. If there has been no notification by the Office of Engineering to FHWA, the Project Engineer must request the Design Project Engineer to obtain federal concurrence before proceeding with the change order request.

Make regular checks of the project records to identify any need for a Construction Order.

Review the C.O. for scope, completeness and accuracy.

Sign and date the C.O. routing slip.

Review the completed C.O. package, sign all copies and forward it to the Contractor.

Monitor the completion of the construction order.

Payment Estimates

Review the computerized Payment Estimate and verify that the content of the estimate is reasonable. Pay particular attention to discrepancies and deductions. If the Project Engineer does not agree with the estimate they will reject it and return to the Chief inspector for revision.

Review for approval of payment, material placed or installed for which the contractor requests payment and for which required evidence of testing acceptability is pending.
After their review the Project Engineer will sign and transmit the estimate to the Supervising Engineer and Assistant District Engineer for review and signature.

Project Completion

- Notify the Transportation Supervising Engineer that the project or a portion thereof is ready for a semifinal inspection. The Project Engineer will coordinate with the Transportation Supervising Engineer to determine the date of the semifinal inspection and notify the involved participants.
- Monitor completion of required corrective work and completion of final paperwork.
- Complete form Con-502A
- Verifies that exceptions noted in the HQ Final Review from the Office of Quality Assurance have been corrected.

1-103C The Supervising Engineer

The Supervising Engineer assists, confers with and advises Transportation Principal Engineers or an Assistant District Engineer on all types of construction projects. The primary duty of the Supervising Engineer is the supervision of lower level employees in the administration of construction projects and consultant agreements.

A list of duties has been provided below as an example of the duties performed by a field Supervising Engineer and is not intended to be all inclusive. Depending upon the specific requirements of the construction project(s) to which the Supervising Engineer is assigned, the required duties may vary. Further information related to the duties listed below can be found in other sections of this manual pertaining to the specific topic.

General:

- Responsible for assignment and review of the Project Engineers work product.
- Develop and/or make recommendations for procedures and standards relative to contract administration and construction practices.

Design Phase:

- Participate in Preliminary Design Plan reviews and meetings.
- Review plan review comments prepared by the Project Engineer and forward to the Assistant District Engineer for signature
- Review the Contractor’s proposed pre-award schedule

Project Initiation:

- Review and approve press releases, preconstruction meeting notices, installation of the construction field office.
- Participate in the pre-construction meeting.
- Assist the Assistant District Engineer in the assignment of project staff.

Throughout The Project

- Supervise the work of Project Engineers, Inspectors and Office staff.
- Maintain continual contact with assigned Project Engineers for resolution of construction issues and project staffing.
• Review requests for extra work, after consultation with the Assistant District Engineer (or Transportation Principal Engineer), advance authorization may be given by the Supervising Engineer to the Contractor to perform cost-plus work.

• Review and approval of construction orders with minor increases and decreases in existing contract items where no change in the contract plans have occurred.

• Stay apprised of all details of the project and routinely visit and review the work of the contractors, consultants and staff.

• In the case of a dispute on the project, the Supervising Engineer should investigate, attempt to resolve, and if unresolved properly escalate the dispute to the Assistant District Engineer. The Supervising Engineer should offer advice and assistance to the Assistant District Engineer during their review of the dispute.

• Review and make recommendation for construction orders that involve price adjustments, differing site conditions, or claim settlements.

• Sign the Construction Order once the review is complete and necessary approvals have been received and forward it to the District Staff for further processing.

• When a Contractor returns a Construction Order unsigned, and the Contractor has stated their objection, preferably in writing (a copy of this letter is included with the Construction Order), the stated objections are investigated to the satisfaction of the Transportation Supervising Engineer. The Transportation Supervising Engineer will consult with the Transportation Principal Engineer or Assistant District Engineer as appropriate.

• Review and approve project estimates.

Project Completion

• When the Project Engineer notifies the Supervising Engineer that a project is substantially complete as specified elsewhere in this manual, the Supervising Engineer will review the project status and remaining work and, if deemed appropriate, will instruct the Project Engineer to schedule the Semi Final inspection. Also at this time the Supervising Engineer will make an assessment as to whether a Conn 100 should be issued to stop contract time.

• When notified by the Project Engineer that the Semi-Final punch list work is complete, the Supervising Engineer notifies the Liaison Engineer and conducts the final inspection.

• Transportation Supervising Engineer will have the Certificate of Acceptance; Form CON-500, prepared and forwarded to the District Engineer for signature when the final inspection has been held, any additional work and the final cleanup have been completed, and all equipment has been removed from within the project limits.

FINAL INSPECTION BY STATE

• Once notified that a project is ready for a final inspection the Supervising Engineer reviews the status and, if deemed appropriate, arranges for final inspection.

1-103D The Assistant District Engineer

The Assistant District Engineer schedules, assigns, oversees and reviews the work of staff and assists, concurs and advises the District Engineer and the Office of Construction on all construction matters.

The following list of duties has been provided as an example and is not intended to be all inclusive. Further information related to the duties listed can be found in other sections of this manual pertaining to the specific topic.
General:

- Primary role as the Department’s manager-in-charge of the administration and oversight of the construction projects within a District Office.
- Responsible for assignment of staff to construction projects to meet the Department’s requirements for administration of the work.
- Direct supervision of Supervising Engineers and review of their work product.
- Develop and/or make recommendations for improved construction procedures and standards relative to District operations.

Design Phase:

- Participate in Preliminary Design Plan reviews and meetings.
- Review plan review comments prepared by the Project Engineer and forward to Design for review and consideration.
- Review the Contractor’s proposed pre-award schedule for reasonableness.

Project Initiation:

- The Assistant District Engineer is responsible for determining the appropriate staffing level on all projects and will assign a Project Engineer and Chief Inspector to oversee and take charge of each construction project.
- If the District determines that insufficient personnel are available to staff a project, the Assistant District Engineer must notify the Office of Construction in order to request a consultant inspection firm.
- Participate in the pre-construction meeting and ensure that the appropriate people are present including but not limited to the Project Engineer, Chief Inspector, Surveys and representatives of Maintenance, Environmental Planning, Materials Testing, Design and other Department units, when required, as well as by the Contractors, Town officials, area legislators, and utility company representatives.

Throughout The Project:

- Supervise the work of the Supervising Engineers, Project Engineers, Inspectors and Office Staff.
- Maintain continual contact with Supervising Engineers for resolution of construction issues and project staffing.
- Stay apprised of all details of the project and routinely visit project sites to review the work of the contractors, consultants, and staff.
- Review and approve requests for extra work.
- Authorize in writing work to be performed on a cost plus basis.
- If cost plus operations may exceed $100,000, the Assistant District Engineer is to notify both the District Engineer and Construction Division Chief or Construction Administrator of the Cost-plus work.
- Review and approve agreed prices for extra work.
- Authorize operations of emergency nature are required, such as hazardous potholes patching, cleaning up of damaged sand barrels, repairing damaged bridge joints, etc.,
- Review, sign, and forward payment estimates for processing.
- Authorize changes in the plans and specifications.
- Authorize the performance of specialized work.
- In the case of a dispute on the project, the Assistant District Engineer will visit the project, make the necessary inspections and investigations, and render a decision in accordance with 1.05.01.
- Approve and authorize “Adjustments to Minor Items” under 1.04.02.
• Consult and advise the District Engineer and the Office of Construction whether a change in the contract constitutes a “significant change” under the Contract and seek further clarification and advice on how to proceed.

• Obtain prior approval for price adjustments that involve Article 1.04.03 or 1.04.04 from the District Engineer or from the Office of Construction if the total adjustment is greater than $100,000.

• Authorize the processing of construction orders whenever the following occur:
 o the Construction Order value exceeds $150,000;
 o the cumulative value of all construction orders reaches 5%, 10%, 15% etc. of the original contract value;
 o the Construction Order adjusts the price of an item under Article 1.04.02, 1.04.03, or 1.04.04;
 o the Construction Order addresses a potential claim issue;
 o the Construction Order grants additional time; or
 o the Construction Order contains an item change that involves a design error or material change.

• Review and approve time extensions.

• Before approving a time extension for federal oversight projects, the Assistant District Engineer will submit by letter the time extension request and analysis to the FHWA Division Administrator for approval. Upon written concurrence from the FHWA, the Assistant District Engineer may act on the time extension recommendation.

• Authorize suspensions of the contract.

• Ensure that on direct FHWA oversight projects that construction orders are sent to the FHWA for approval when any of the following are included in the construction order:
 o the value of the CO exceeds $100,000
 o there is an adjustment to the allowable contract time
 o there is a payment for a claim
 o liquidated damages or sanctions
 o incentive payment
 o project incidents which trigger a “construction issues” form

• Authorize the issuance of a Construction Issue Form after consultation with the Office of Construction.

• Authorize Type 2 changes to the Maintenance and Protection of Traffic control plan.

• Bring the following events and situations to the immediate attention of the Office of Construction:
 o Receipt of a written notice of a claim.
 o Receipt of a demand for payment of costs which District personnel are not able to verify, such as, but not limited to, overhead.
 o Receipt of a request for extension of contract time that, if granted, may expose the State to liability for costs incurred during or resulting from delay of project work.
 o Alleged differing site conditions and/or significant change in the character of project work, receipt of a request for the adjustment of contract prices based on alleged differing site conditions or a significant change in the character of project work, if the aggregate adjustments would increase contract costs by $100,000 or more.
 o Request to modify or waive contract requirements, as in situations in which a credit to the State should be proposed, a revision of the limitations of operations is requested, or the contractor is proposing design revisions.
 o Any situations in which the Department's action may set a significant precedent, or in which the Department's actions or inactions may have a significant effect on later or larger demands or claims by a contractor.

• Discuss the following with the Construction Division Chief or the Construction Administrator prior to implementation:
 o Directed acceleration of a project;
 o Any change, alteration, modification, or waiving of Division 1 of the General Conditions of the Standard Specifications or any changes that may have been made to them by the Special Provisions or the Supplemental Specifications;
Any change of the method of measurement for an item;
Any request for a payment of home office overhead.

Project Completion

- Attend or be represented at the semi-final and final inspection of the project.
- Supervise the proper close out paperwork of the project and authorize the processing of the Con 500, 501 and 502s.
- Authorize and sign the CON-100 which states the substantial completion date of the project.

1-104 Time on Project

Inspection on projects will be continuous during any and all hours that the Contractor's forces are physically working at the project site, unless otherwise directed by the Assistant District Engineer. A sufficient number of Inspectors should be on the project at all times to properly inspect the Contractor's operations. On projects that require only one Inspector, the daily working hours of the Inspector (during the construction phase) will usually be the same as for the Contractor's forces. The Project Engineer may, with permission of the Assistant District Engineer, vary the schedule of daily hours for any Inspector when a departure from the Contractor's hours is proper procedure. The employee will be notified of changes in work schedule in accordance with the current collective bargaining Contract. The assignment of duties to the sub-inspectors is the responsibility of the Chief Inspector.

Time off that can be anticipated must be arranged in advance with the employee's immediate superior. Employees who cannot report to the Project because of emergencies must call the District Office as soon as it is apparent that they will be absent or late. Formal standard reports on forms established by the Human Resources Division will be submitted promptly in all cases in which the forms are applicable.

1-105 Address of Inspectors

Changes in the Chief Inspectors home address, home telephone number or CONNDOT provided communication service are to be promptly reported to the District Office. Other inspectors assigned to the Project report this information to the Chief Inspector, who advises the Assistant District Engineer. Periodically, the District staff will compile this contact information and provide an updated list to all who need to know.

1-106 Enforcing Provisions of the Contract

Inspectors cannot waive specified requirements, nor permit an inferior grade of work to be done, or allow use of unapproved or rejected materials. They are expected to give instructions, and to demand strict compliance at all times. They shall accept only such changes in plans and specifications as are authorized by the Assistant District Engineer, or above.

Chief Inspectors or their sub-inspectors shall immediately advise, orally and in writing, Contractors or their representatives, when work is being done in violation of Contract provisions. The Project Engineer should be advised of the problem and any orders that were given to the Contractor. It is expected that spoken orders will accomplish results in almost every instance; however, the Inspector still needs to document
these orders in a Non-Compliance Notice (see 1-325) and on the Daily Work Report. If a Contractor persists in working contrary to orders, the Project Engineer will intervene. If the problem cannot be resolved, inspection shall be withdrawn from that part of the work, or the Project Engineer may suspend the operation if conditions warrant such action. The Assistant District Engineer must be notified immediately about the problem and the course of action taken. The Assistant District Engineer will visit the project, make the necessary inspections and investigations, and render a decision. In the event that the Assistant District Engineer cannot settle the difficulty, the District Engineer will be called to the job, and the District Engineer's decision shall be final.

1-106A Quality in Construction

A comprehensive Quality Program is an all-encompassing approach to construction oversight that includes the Contractor, the inspector, and the design team. Each entity is responsible for the quality of the deliverables and activities performed by them. An effective quality program includes; a Quality Control (QC) program covering all project activities, acceptance of the QC procedures by the Department, measuring and reporting QC findings using qualified laboratories and qualified personnel, independent assurance of the quality procedures and metrics, review and analysis of the results, and an issue or dispute resolution procedure. In short, an effective quality program is a joint effort of the entire project team toward achieving a common goal - a quality project.

In the past the term Quality Control has often been used synonymously with Quality Assurance with some transportation agencies viewing quality control as the contractor’s responsibility and quality assurance as the agency’s responsibility. However consistent with the broad definition of quality described above, quality control is not a separate function but rather is one of the core elements of a comprehensive quality program.

Quality is not merely an outcome, but also the result of a process. Planning and systems should be put in place on every project to monitor and document that all work fully complies with the contract documents. It is necessary that all materials, equipment, workmanship and elements incorporated into the work perform satisfactorily for the purpose intended and meet the contract requirements. It is the responsibility of the Project Engineer and the Chief Inspector/Resident Engineer to monitor the systems established to assure quality standards are satisfied. Documentation of their findings must be recorded in the project records. The contractor’s QC procedures shall be reviewed before the start of each new operation. Although the responsibility for achieving these requirements rests with the person(s) performing the work, the Inspector has a major role in maintaining quality standards for the duration of the project. The Chief Inspector/Project Engineer should provide instruction as to the quality and technical requirements of work operations, including the acceptable workmanship requirements, to the Inspector inspecting the work.

Checks and balances must be put in place to ensure that quality standards are maintained. It is the responsibility of the Chief Inspector/Resident Engineer to ensure that the inspection staff is properly prepared and understands the requirements of the construction work they are inspecting. Item payments should truly represent completed work that is acceptable and in accordance with the requirements of the project plans and specifications. Independent informal interviews with the project personnel concerning field inspection requirements should also be performed to assure that the field inspectors are inspecting the work correctly. Independent site reviews by the Chief Inspector are also recommended. The Chief Inspector must also perform independent checks to assure administrative requirements such as record keeping, payroll submittal and labor wage procedures are in accordance with policy and procedure. Documentation of all quality assurance checks regardless of field reviews or administrative reviews is highly recommended.

The project staff must establish a point of contact with the contractor with respect to quality matters. Also, the field inspectors are obligated to notify the contractor of deficient work and/or materials and any
unresolved issues immediately. The deficient work shall be documented on a Non-Compliance Notice described more fully in Volume 1 Chapter 3 Section 1-319.

1-107 Safety

It is the duty of the Chief Inspector to enforce public transportation safety and regulations as set forth in the Standard Specifications and special provisions.

All Inspectors must be familiar with and follow the guidelines established in the Department’s Manual of Safety & Training Topics. Safety practices related to the environment are included in Volume 2, Chapter 1, “Environmental Protection.” In cases where the Inspector is subjected to hazards not covered by the Department guidelines, the safety requirements set up for the project by the Contractor shall govern.

Inspectors will wear appropriate headgear, safety vests, and protective footwear in accordance with current Department policy. Other personal protective equipment, such as safety belts, goggles and ear protectors, are to be used when necessary. The Chief Inspector is responsible to enforce safety issues involving the sub inspectors on the job.

The Contractor is required to perform all work in accordance with the applicable safety regulations and further to take all precautions that the Engineer may deem necessary and reasonable for the protection of traveling public, all people on the project (including employees of the Contractor and CONNDOT as well as private citizens), and for the protection of property. Construction sites can be dangerous to anyone if proper precautions are not taken. Care must be taken at all times to ensure the project site/ work zone are safe and passable. Special protective measures are required when working at night, in heavy traffic, at extreme heights or depths, in confined spaces, near hazardous or contaminated materials, during blasting operations, near or over water, near railroad tracks or in the vicinity of live electrical wires. Inspectors should refer to the project specifications and/or their Project Engineer for advice and guidance.

When an unsafe practice or condition exists which presents an imminent danger to the safety of the traveling public or persons on site, the Inspector will request the Contractor to correct the situation. If the Contractor does not correct the unsafe practice or condition, the Chief Inspector should order the Contractor in writing to stop the operation that has been deemed unsafe, and notify the Assistant District Engineer as soon as possible. If the Assistant District Engineer's involvement cannot correct the situation, the District Engineer and the Office of Construction will be notified.

1-108 Change in Travelway Clearances and Bridge Capacity Ratings

When a construction activity reduces the height clearance on a bridge or overhead sign support, reduces the lane width on any roadway or intersection, or reduces the weight capacity of a bridge, the Chief Inspector is responsible to notify the supervisor of Motor Transport Services Unit 15 days in advance of the planned construction activity and inform them of the reductions and time frame that they will exist. When determining the vertical clearance restrictions, measure from the bottom of the falsework to travelway surface. Conform to CONNDOT Policy No. E&H.O.-22, regarding warning signs, when height is restricted to 14'-2" or less.
1-109 Data, Supplies and Equipment

The Project Engineer will provide the Inspector with the following data, supplies, and equipment:

Data

- Two sets of plans, including large-scale layouts of major structures
- Design Report and computations
- A copy of the Contract
- Copies of the property agreements
- Copies of utility agreements
- Copies of all permits issued for the work

Minimum Supplies

- *Construction Manual*
- “Schedule of Minimum Requirements for Sampling Materials for Test”
- Diary and field books
- Report blanks
 - Daily Work Reports (Forms CON-134, CON-135 and CON-136)
 - Pile Driving Report (Con87 and 87M)
 - Daily Report on Cost Plus (Form CON-9) or applicable electronic spreadsheet
 - Utilities forms (Forms CON-40 and CON-41)
 - Labor Wage Check (Form CON-131) and Labor Wage Check Summary
 - Request for Test (Form MAT-100) for non-SiteManager
 - Report of Test on Cylinders (Form MAT-308)
 - Rejected Material (Form MAT-103)
 - Environmental Check List-New Project Start Up
 - Project Site Environmental Inspection Report
 - Notification of Environmental Corrective Actions Implementation of 24 – Hour Rule
 - Leave of Absence Report (Form PER-4) or applicable electronic spreadsheet

- Spray paint for marking
- Hard hats
- Safety vests
- Rain gear

Minimum Equipment

- Measuring devices
- Folding rule
- Hand level or one line level
• Rain gauge

Additional Equipment for Concrete Projects

• single use or other suitable cylinder forms, plate and level
• slump cone and rod
• calibrated air meter
• thermometer
Chapter 2 - Project Initiation

1-201 Project Start Up

Once a contract has been awarded:

- It is the responsibility of the project staff to review the item material lists and arrange for deletion of material codes that will not be required. They shall also request addition of item material codes that they determine are necessary. For further responsibilities of project staff related to the maintenance of item material lists, refer to Volume 1 Chapter 4 Section 1-405A-1. Note: If changes to the initial testing assessment are necessary, the Inspector will notify the Project Engineer and the Division of Material Testing.

- SiteManager staff review the uploaded data in SiteManager for accuracy prior to making a project active. If the contract contains more than one category, the site manager staff will discuss with the project engineer and supervising engineer (SE) the need to keep the multiple categories. The SE will determine if the SiteManager staff should process an administrative construction order to combine Categories with like federal funding.

- Once the field office phone number(s) is known, this information must be transmitted to the SiteManager staff who will then notify Information Systems and request data line hookup.

- The Project Engineer and/or Chief Inspector should contact the design project manager to discuss important project issues, especially the early phase work. Examples would be: right of way issues, utility issues, permit requirements and any special design features. The outcome of the dialog with the designer could have tentative suggestions for the preconstruction meeting.

1-202 Preconstruction Meetings

A preconstruction meeting with the Contractor must be held for all Contracts awarded. The purposes of the meeting are:

- To review the Contract, especially job-specific special provisions.
- To discuss Project features, particularly those that may present problems.
- To discuss Environmental Permits and concerns.
- To discuss the potential problems of water pollution and soil erosion.
- To review the Contractor's proposed progress schedule.
- To review the methods of handling traffic.
- To review sampling and testing requirements for materials to be used throughout the construction process.
- To address any of the Contractor’s questions concerning the plans and the Contract. Any problems that cannot be resolved at this meeting will be reviewed with the District office, and the final determination will be transmitted to all concerned, and if feasible, incorporated in the written report of the meeting.
To review the areas where approval of working plans or shop drawings is required before segments of work commence.

To discuss Contract requirements for Equal Employment Opportunity (EEO), Affirmative Action, prevailing wages, On-the-Job Training (OJT) and Disadvantaged Business Enterprise (DBE) or Small Business Enterprise (SBE) Contract goals.

To discuss the subcontracting requirements. (Refer to Volume 1, Chapter 12 “Civil Rights” for more information.) In addition, on Site Manager Contracts, a copy of the Site Manager “Contract Line Item & Category Report” is provided to the Contractor. This list is to be used by the Contractor to clearly break-out sub-contractor’s assignments by project number, item code and line item when submitting requests to sub-contract.

The preconstruction meeting should be attended by the Assistant District Engineer (or their designee), Project Engineer, Chief Inspector, Surveys and representatives of Maintenance, Environmental Planning, Materials Testing, Design and other Department units, when required, as well as by the Contractors, Town officials, area legislators, utilities representatives and others. See Figure 1-2.2 for the list of potential invitees. Projects may vary in scope and additional units or agencies may need to be invited. On federal-aid projects, the participating agency(s), (Federal Highway Administration, Federal Transit Administration, Federal Railroad Administration, or Federal Aviation Administration) and the U.S Department of Labor are notified so that a representative may attend.

The District prepares a written report of the matters discussed and decisions made, and a copy is sent to the Contractor, as well as all attendees. Refer to the Approved Forms folder for a Preconstruction Agenda Form.

1-203 EEO Preconstruction Meeting

An EEO preconstruction meeting is held on all construction projects. The meeting, which usually precedes or follows the main preconstruction meeting, is held to review the EEO, Affirmative Action, OJT and DBE (SBE) obligations in the Contract. The following people attend the meeting:

- Chief Inspector,
- District EEO Coordinator,
- Division of Contract Compliance representative,
- US Department of Labor representative, and
- The Contractor's EEO officer.

The following items are reviewed and discussed in detail at this meeting:

- **EEO Segment Questionnaire.** This form is used to document minutes of the EEO preconstruction meeting.

- **Contractor's Information Sheet,** which consists of a package of various EEO-related forms and instruction sheets. This information is reviewed with the Contractor's EEO officer.

When there is an item in the Contract for Training, the requirements for OJT (On the Job Training) must be discussed at the preconstruction meeting. At this meeting it must be emphasized that the Contractor has to submit training outlines and proposed trainees before starting Contract work.
(Note: The Project Engineer must make sure the Contractor submits required training plans to the Division of Contract Compliance or their designated representative.)

The District prepares a written report of the matters discussed and sends a copy to the Contractor and the Division of Contract Compliance.

Refer to Volume 1, Chapter 12 “Civil Rights” for more information.

1-204 Utility Meeting

A utility meeting is held by the District Utility Coordinator or designated representative prior to the start of construction, preferably at the same time as the preconstruction meeting. The District should determine the Contractor's anticipated schedule of operations by location (station or structure), so that the utility work can be coordinated with the Contractor's operation. A report listing any decisions reached is prepared for the file, with a copy to the Contractor and each of the utility companies.

At the utility meeting, arrangements will be made for a field review with the Project Engineer, Chief Inspector, District Utility Coordinator, local tree warden(s), and representatives of the Contractor and utility companies in attendance. This field review must be held before construction is started. Any conflicts between the work to be performed by the Contractor and utility companies are reviewed and resolved at the field review. A field review report listing the findings is prepared and a copy is forwarded to those in attendance.

Refer to Volume 1, Chapter 13 “Utility Coordination and Administration” for more information.

1-205 Notification of Contract Status

As soon as the Contractor begins operations, the Chief Inspector must notify the Project Engineer, who notifies the Office of the Assistant District Engineer. The Inspector records the actual starting date of the Contract on the Daily Work Report (Form CON-134) and construction management computer system.

The Chief Inspector prepares a Contract Status Report, Form CON-100, for the prime Contractor. The form must be prepared and processed within seven days of the order to start, actual start, suspension, resumption, and completion dates. Determination of the actual dates to be entered on the CON-100 must be coordinated with the District Supervisory staff as described elsewhere in the manual. A sample Contract Status Report is shown in Figure 1-2.1.

The report is distributed as follows:

- Construction Division Chief/Finals Section
- FTA—FTA projects only,
- Fiscal and Special Projects,
- District—internal distribution list as determined by the District, original
- Division Chief of Research & Materials (Completion Only)
- Manager of Inventory & Forecasting
- Manager of Bridge Safety
• Maintenance Administrator
• Manager of Surveys
• DEP Watercourses Unit
• District Maintenance Manager
• Office of Construction – Examiner’s Supervisor
• Rocky Hill Stores

Start and completion dates for utilities must also be sent to:

• the Manager of Fiscal and Special Projects, and
• the Transportation Utilities Engineer.

Notification should be sent to both of the above within seven days of effective completion date so final audits can be performed.

The original of all memorandums regarding project status must be addressed and sent to the Construction Division Chief.
Figure 1-2.1 Contract Status (Form CON-100)

CON-100 Rev. 0904
[Replacing Con - 82 / 58]

State of Connecticut
Bureau of Engineering & Highway Operations
Office of Construction

Contract No. Project No(s). Fed. Aid No(s).

Date Con-100 Prepared

CONTRACT STATUS

Town(s):

Full Description Including crossroad:

Start End

Mile Markers: (From): (To):

Contract Awarded on: To:

Ordered to Start on: Job Tel:

Inspector:

Final Maint. Responsibility:

Date closed to traffic:

Date open to traffic:

Status of Contract (Check One):

- Active □
- Suspended □
- Resumed □
- Completed □

Date

District / Assistant District Engineer / Municipal Official on

Construction Division Chief / Plans Section
Manager of Bridge Safety
Manager of Inventory & Forecasting
Maintenance Administrator
Manager of Surveys
DEP, Waterways Unit
District Maintenance Manager
Thomas Ryan (FTA Projects only)
Fiscal / Special Projects
Director of Research & Materials (Completion only)
Office of Construction - Examiner's Supervisor
Rocky Hill Shores
District Projects Chief
CMR / EM Representative
Project Engineer - Inspector
Contract File
Figure 1.2.2 Preconstruction Meeting Invites

<table>
<thead>
<tr>
<th>INVITEE (If Applicable)</th>
<th>PRE-CONST</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHWA – Division Administrator</td>
<td>X</td>
<td>F.A.P. Highway Projects</td>
</tr>
<tr>
<td>FRA – Division Administrator</td>
<td>X</td>
<td>F.A.P. Rail Projects</td>
</tr>
<tr>
<td>FAA – Division Administrator</td>
<td>X</td>
<td>F.A.P. Airport Projects</td>
</tr>
<tr>
<td>U.S. DEPT. OF LABOR – Asst. District Director</td>
<td>X</td>
<td>F.A.P. Projects (CA 16-96)</td>
</tr>
<tr>
<td>STATE DESIGN – Engineering Administrator, Manager, Principal Engineer (Highway, Bridge, Facility)</td>
<td>X</td>
<td>cc: Engineering Administrator on all Semi-Final Inspection Reports (CA 25-96)</td>
</tr>
<tr>
<td>CONSULTANT DESIGN – Engineering Administrator, Manager, Principal Engineer (Highway, Bridge, Facility)</td>
<td>X</td>
<td>cc: Engineering Administrator on all Semi-Final Inspection Reports (CA 25-96)</td>
</tr>
<tr>
<td>PROPERTY AND FACILITIES SERVICES – Director</td>
<td>X</td>
<td>Facilities Construction</td>
</tr>
<tr>
<td>OCCUPYING UNIT / AGENCY – Representative</td>
<td>X</td>
<td>Facilities Construction</td>
</tr>
<tr>
<td>OFFICE OF CONSTRUCTION – Administrator, Manager, TSE (Facilities)</td>
<td>X</td>
<td>Facilities Construction</td>
</tr>
<tr>
<td>TRAFFIC ENGINEERING – Manager</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ENVIRONMENTAL PLANNING – Director</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CONTRACT COMPLIANCE – Director</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OFFICE OF MAINTENANCE – Maintenance Operations Principal Engineer</td>
<td>X</td>
<td>All Projects involving Traffic Signals</td>
</tr>
<tr>
<td>MAINTENANCE – District Manager</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL MAINTENANCE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BRIDGE MAINTENANCE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BRIDGE SAFETY</td>
<td>X</td>
<td>Bridges and New Overhead Signs (CA 6-96)</td>
</tr>
<tr>
<td>DISTRICT CONSTRUCTION – DE, ADE, PE, PE (Surveys), TSE, Project Engineer, Chief Inspector, Environmental Inspector, EEO Officer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TOWN/CITY</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOCAL AUTHORITIES</td>
<td>X</td>
<td>Facilities Construction</td>
</tr>
<tr>
<td>UTILITIES</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR/SUBCONTRACTOR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PAVEMENT ADVISORY TEAM</td>
<td>X Prepave</td>
<td>Also Final Pavement Evaluation required – 2,500 tons or greater surface course</td>
</tr>
</tbody>
</table>
Chapter 3 – Project Recordkeeping and Documentation

Part I – Records Maintained in Project Volumes

1-301 General

The Chief Inspector is responsible to ensure that all forms and reports documenting the contractors work, as well as those that may be required by other units of the Department and State and Federal agencies, are accurate and complete. Notes and explanations must supplement the records, if needed, to make the records as clear and complete as possible. The more important records include the following:

- Contract Documents,
- Chief Inspector’s Diary,
- Inspector's Daily Work Report (DWR) (Form CON-134),
- Concrete Pavement Inspection Report (Form CON-135),
- Base & Bituminous Concrete Inspection Report (Form CON-136),
- Inspector's Daily Work Report Appendix (Form CON-134A),
- Progress Meeting Minutes,
- Volume III Calculations,
- Requisitions (Form STO-2) and Receiving Reports (Form STO-3) for State-furnished materials,
- Requests for Material Tests (Form MAT-100),
- Report for Test on Cylinders (Form MAT-308),
- Report of Rejected Materials (Form MAT-103),
- Daily Reports of Cost Plus (Form CON-9),
- Orders for extra and additional work (Construction Orders),
- Pile Driving Records (Form CON-87),
- Special orders/directives to Contractors,
- Labor Wage Check (Form CON 131), and
- Contract Status (Form CON-100)
- Contractor’s Certified Payrolls
- Construction Orders
- Environmental Forms

At the end of the workday, project records are to be kept in a secure location. Volume III records should always be stored in the fireproof safe if one is available, when not in use. Other records should also be kept in the safe if there is sufficient room.

The Department's standardized system for recording and documenting construction work is presented in this section. Project records must be accurate and complete. They may be subject to detailed review and audit by State and Federal personnel at any time, even years after project completion, and they may also be required for court-claim action.

The minimum retention period for all project-related records is seven years after the project's Certification of Acceptance of Project (Form CON-501) is issued or three years after final federal payment whichever is later, providing there is no pending litigation. Note: The date of final payment by the Federal Highway Administration or other federal agency may be years after the date of acceptance by the State Department of Transportation.

Because payment of the federal portion is contingent on original source documentation for each item, the system of recordkeeping has been standardized to provide the method of recording and documenting the quantity of each item.
Some guiding principles are as follows:

- The records should be complete, but sufficiently simple and clear that an informed layman can understand what is presented.

- Full signature and printed name is required on all prepared forms and attached notes, including but not limited to inspectors, project engineer, checked by names, etc.

- Willful falsification, distortion or misrepresentation of any facts related to the Project is a violation of State and Federal law.

- All computations for payments for metric projects must be made in metric units. Conversions of computations made in English units to metric units are not permitted. Computations for projects designed in English units will remain in English units.

1-302 Official Field Records

The Department has established a standard format for project recordkeeping using four Volumes to record project information. The content and format for these volumes was created to establish uniformity throughout the State, facilitate the review and audit of project records, and provide for continuity when inspection personnel are transferred or reassigned to other projects or Districts.

Official project records are filed in binders, as follows:

- Volume I—Diaries and Inspector's Daily Work Reports
- Volume II—Contract Items (only required for non-SiteManager projects)
- Volume III—Computations, Etc.
- Volume IV—Miscellaneous Contract Data

Care must be taken not to obscure the content of records when holes are punched in the pages.

If more than one book in each volume is needed for a project, the second book in the series is designated “Book 2” (for example, “Volume II, Book 1;” “Volume II, Book 2;” and “Volume II, Book 3”). On minor projects all volumes may be contained in one or two binders, as the number of pages dictates. Each volume must have an index page that lists the contents.

1-303 Volume I—Diaries and Inspector's Daily Work Reports

All Diaries and DWRs are kept in a binder. If more than one binder is necessary, identify the contents of each by showing the book number and the dates of the first and last Diary. The Chief Inspector must create and print a Diary for each day from the Notice to Proceed Date to Construction Completion Date.

The following procedure must be used when adding hard copies of Diaries and DWRs to the Volume I book.

The Volume I entries are filed by date. The first entry for each date will be the Chief Inspector’s Diary followed by their CON-134, CON-135 or CON 136 and respective attachments. Any sub-inspector reports will be inserted behind the Chief Inspector’s report in alphabetical order, based on the inspectors SiteManager User ID.
Inactive Projects: In some cases, such as when utilities perform work on the project prior to the ordered-to-start date, hard copy DWRs may be required. This information will not be entered into SiteManager.

Active Projects: From the ordered-to-start date to the completion date, the Chief Inspector is required to create a daily Diary in SiteManager (including Saturday, Sunday and holidays). Inspection staff must prepare a DWR any day they inspect construction work, except when they are assisting in concrete and bituminous concrete placement operations for an entire day and not inspecting other work.

Suspended Projects: If personnel remain assigned to a project in the field or District Office that has been suspended, daily or weekly Diaries and DWRs, as warranted, must continue to be made out.

If all project personnel are relieved of their duties (reassigned, etc.), it is the responsibility of the Project Engineer to make periodic checks of the job site and create weekly Diaries in SiteManager. The Diaries must contain all ongoing information, discussions, meetings, etc., regarding the suspension period and job-site changes.

NOTE: When the project is under suspension, the field forces are required to inventory materials stored and equipment left on the job site and attach a list to their Diary or DWR.

Project Completed but Not Finalized: From the completion date, to the period when the final has been completed, a SiteManager Diary or DWR only needs to be prepared when there is construction activity or an item payment needs to be made.

1-303A Daily Work Report and Diary

The Daily Work Report (DWR), in conjunction with the Diary, are considered source documents. When properly maintained, these reports provide valuable information and evidence in the event of contractual controversies and legal actions. These records are vital to document the daily activities of a contract, record payments, meet the requirement for the Federal reimbursement of a project, and to document field conditions in the case of a claim or dispute between the State and the contractor. The goal is to have complete, uniform records for all contracts. They must be kept current and up to date in the Volume I and in SiteManager.

Diary:

On contracts maintained in SiteManager, the SiteManager Diary is entered by the Project Manager (Chief Inspector) to track time (i.e. elapsed days, calendar days), and to authorize (approve) the Daily Work Report (DWR) entered by inspection forces. Each Diary is a summary of the DWRs entered into SiteManager by all Inspectors on the project. The Chief Inspector is responsible for authorizing DWRs and making sure the charge day is correct on their Diary.

A diary needs to be entered for every calendar day from the actual “Start Date” to the “Completion Date” of the contract. See Section 1-A103 “Diary” for details concerning entering diaries into SiteManager. For work performed after the “Completion Date” (i.e.: punch list), a Diary is required when a DWR is entered.

Daily Work Report:

A DWR is required when there is construction activity or contract work being performed. A DWR is also required when contract payments are made. A DWR may be created for a ‘No Activity’ day to make item payments. For example, to pay for a project field office during a winter shut-down period.
The Inspector’s Daily Work Report (Form CON-134), Concrete Pavement Inspection Report (Form CON-135), and Base & Bituminous Concrete Inspection Report (Form CON-136) are the primary forms used by inspection staff to document the contract work. These forms are referred to as Daily Work Reports (DWR) or Inspector’ Reports (IR).

A DWR must be made out daily by all field personnel engaged in the inspection of contract work. See Section 1-A102 “SiteManager DWR” for details concerning entering DWRs into SiteManager and Section 1-307 “Daily Paving Reports” for reporting requirements for concrete and bituminous placement operations. The Chief Inspector should authorize them no later than 5 working days from the date of the DWR.

Notes:
- The Inspector’s Daily Work Report (Form CON-134) and the SiteManager DWR CON-134 (included in the Reporting Tools) include a certification statement.
- The Concrete Pavement Inspection Report (Form CON-135), and Base & Bituminous Concrete Inspection Report (Form CON-136), and the SiteManager DWR (printed from within SiteManager) do not currently include the certification statement. Therefore, the CON-134A, Inspector’s Daily Work Report Appendix, which does include the certification statement, and must be completed and attached to all SiteManager Printed DWRs, Concrete Inspection Report (CON-135) and the Base & Bituminous Concrete Inspection Report (CON-136).
- The SiteManager DWR must be authorized before it is printed and included in the Volume I Book.

Project inspectors must produce a detailed report of the work activities they are assigned to cover. Inspectors may use either hard copy DWR’s to record this information (with a summary entered in SiteManager) or enter only the detailed information in SiteManager system. Inspectors that compile their daily DWRs at the work site must enter a general description of the work that took place that day into the SiteManager DWR. The paper DWR may be hand written, typed or printed from the SiteManager reporting tool or from SiteManager. If the Inspector chooses to utilize a print-out of the SiteManager DWR in lieu of a handwritten DWR, then the SiteManager DWR must include all of the detail of the work. Any field notes used to prepare the DWR must be attached to the DWR, except as noted below when using a bound field book (book diary system). Field notes are required whenever field measurements are necessary or documentation is developed in the field. Field notes must be signed, dated and include printed name and project number. The Inspector must sign each of their DWRs. If a hard bound field book (book diary system) is used to record information gathered in the field, this must be included with the project records. This can be used in lieu of field notes attached to the DWR if referenced accordingly from the DWR to the hard bound diary.

The inspector documents in the DWR the contractors that worked that day, the location of work, and a description of the work in progress and inspected. The description of contractor’s work that the inspector has observed must identify the work as beginning, continuing or completed. Possible cost-plus work must be carefully documented as well. Labor and equipment for each contractor’s operation, including the contractor’s equipment number if possible must be documented. If work is acceptable it should be noted as such. Similarly, if in the inspector’s opinion, the work is deficient it should be noted as such (see below for further information). Lane closures and work hours of the inspector and contractor must be noted. Item payments are included on the DWR. As a general rule, the entering of zero quantities is not required unless District management or the Office of Construction requires it. The narrative of the DWR shall describe each operation which took place on that day. Pay quantities must reference the Volume III book and page number of the source documentation, if applicable. Discussions with contractors, property owner, governmental agencies or others should be noted. Meetings attended should reference the minutes of the meeting.
NOTE: Absolutely no erasures or whiteouts are allowed in any of the volumes on forms prepared by project personnel. If an error is made, the incorrect figure, item, or statement is crossed out and initialed. The correction may be written neatly above it or made elsewhere. If the correction is made elsewhere, a reference to the correction is written above the crossed-out and initialed error.

NOTE: If an Inspector is using a book diary system (the diary book that is brought out into the field), it must be referenced from the DWR. At the conclusion of the project the book diary (as well as any other supporting documentation) will become a part of the project records.

The presence of defective work is indicated in the appropriate section of the CON-134, CON-134A and in the SiteManager DWR. Refer to Non-Compliance Notices (Section 1-319) for additional information. Defective work is defined within the Standard Specifications 1.05.11 and defective materials are defined within 1.06.04.

Contents: The following information must be included in a DWR or a Diary, when applicable:

- Discussions with the contractor, property owners, governmental agencies, or others;
- Sketches, measurements, and computations;
- Work performed by others (Utilities, Maintenance, Municipalities, or others);
- Meetings attended (reference to minutes of meeting);
- Official visitors (State or Town officials, ConnDOT supervisors or managers, and FHWA, FTA, FAA, utility representatives, Record Examiners, Auditors, DEP, AMTRAK, etc.);
- The equipment and labor involved for each contractor's operation. Including the contractor's equipment number, when possible;
- References to source documentation (volume book and page) for pay quantities listed on the DWRs;
- Actual hours of work for the Contractor and their subcontractors; and
- Actual hours of work for the daily Project staff.
- Environmental deficiencies when a Non-Compliance Report is issued.

NOTE: Project staff assisting in concrete and bituminous concrete placement operations are not required to prepare a DWR; however, they must be listed on the DWR of the Inspector overseeing that operation.

Project staff not engaged in field activities (working in the project office on computations, etc.) and not required to prepare a DWR must be noted on the Diary or DWR prepared by the Chief Inspector, showing the hours of work and a brief description of their activities.

Diaries, DWRs, supplementary sheets, and forms prepared by inspection staff and attached to the Diary or DWR must have the date, Project Number, signature and printed name of author.
Weigh tickets are required for materials that are paid for by the ton. Inspectors are responsible for collecting the tickets and signing them as the loads are dumped. These tickets are attached to the inspectors DWR or kept in a separate folder or binder. The location of the weigh ticket(s) must always be referenced in the DWR, i.e. 3 weigh tickets attached, 3 weigh tickets located in Book 1 – Processed Aggregate Base. When kept in separate folder, or binder, weigh tickets should be filed in chronological order by Item. On small projects a single binder can be used, however, separate sections should be created for each item. Refer to other sections for information to note on tickets.

Chief Inspector’s Diary and DWR:

The Diary or DWR prepared by the Chief Inspector must include information concerning important discussions with the Contractor; incidents on the Project; discussions with designers, utilities, or public officials; meetings held (refer to meeting minutes for details); the work operations covered buy each sub-inspector and other information necessary to document the events that occurred on the project. If the Chief Inspector performs inspection duties as well as these other tasks, the details concerning the work personally inspected is also included on the DWR.

NOTE: The Chief Inspector is only to report the actual hours daily staff worked on the Project in their Diary or DWR. Do not record hours that project staff is on sick leave, vacation, etc.

When Assistant Chief Inspectors are performing general supervisory and administrative duties, they must also complete a DWR detailing their activities, instructions given, etc.

1-303B Diaries and Daily Work Reports During Periods of Inactivity

Diary:
A diary needs to be entered for every calendar day from the actual “Start Date” to the “Completion Date”. See Section 1-A103 “Diary”.

For work performed after the “Completion Date” (i.e.: punch list), a Diary is required when a DWR is entered.

For days of active construction, or days with contractor payments (monthly pay items, etc.), DWR’s must be entered in addition to the Diary.

Daily Work Report:
A DWR may be created for a ‘No Activity’ day to make item payments (Ex. pay for project field office during a winter shut-down period) or document ongoing information, discussions, meetings, etc., regarding the inactivity and suspension period and job-site changes.

Chief Inspector/Project Engineer Diary and DWR:
If all project personnel are relieved of their duties (reassigned, etc.), it is the responsibility of the Project Engineer to make periodic checks of the job site and continue to make out daily Diaries and DWRs as indicated above.

1-303C Review of DWRs

Each DWR must be reviewed and signed by an independent person. It is the responsibility of the Chief Inspector(s) to thoroughly review and approve all sub-inspectors’ DWRs’ content including attached sheets and forms and sign them. The Chief Inspector’s DWR must be reviewed by independently by another inspector. For state inspected projects, the independent reviewer must be at the Transportation Engineer 2 level or higher. For consultant inspected projects the independent reviewer must be at the Senior Inspector level or higher. The same person shall not generate and review the same DWR.
The manner in which the project staff proposes to satisfy this requirement shall be discussed and accepted by the Project Engineer or the MSAT Representative at the onset of the project. The reviewer(s) signing of the DWRs is meant to indicate that to the best of their knowledge, information and belief that all work and payments described in the DWR are consistent with the Department’s Policies and Procedures.

The following checklists have been created to standardize the review of DWRs by the noted individuals:

Review by Independent Reviewer:

1. Diaries, DWRs (CON-134, 134A, 135, 136), supplementary sheets, and forms prepared by inspection staff and attached to the Diary or DWR have the date, project number, signature and printed name of author.

2. The DWR records the weather conditions, contractors that worked that day, their hours of work, location of work, and description of the work in progress and inspected. The description of the contractor’s work that the inspector observed identifies the work as beginning, continuing or completed and notes if the work is acceptable in the opinion of the Inspector.

3. Possible cost-plus work must be carefully documented. A full description of the location and work as well as labor and equipment hours, and amounts of material used for each contractor’s operation must be detailed.

4. The Inspector has completed, signed and attached the CON-134A to their respective DWR or SiteManager DWR printout if not using the most current version of the CON-134 that includes the certification statement.

5. Lane closure information includes the location, lane(s) closed, direction etc. If there are no lane closures involved in an operation the DWR notes N/A or None.

6. Pay quantities on the hard copy DWR and in Site Manager match each other and reference to the source documentation (Volume III book and page number, ticket folder etc, of the source documentation).

7. Sketches, measurements, and computations documented and signed compiled by or checked by, field measured by, etc.

8. Work performed by others (i.e. Utilities, Maintenance, Municipalities, or others) is documented by hours, personnel, equipment, and description of work.

9. Project and other DOT staff assisting with inspection of operations are listed on the lead inspectors report (include hours of work).

10. The Chief Inspectors DWR or Diary lists all Inspectors assigned to the project and the work operations covered by each inspector (on consultant inspected projects the Chief or Senior Inspector may list the sub inspectors).

If there are DWRs or diaries that do not comply with the requirements listed above, the reviewer shall provide the Chief Inspector with a list detailing the DWR/Diary number and issue. The Chief inspector shall confirm that the corrections are made and discuss the issues with the inspector to avoid omissions in the future.

Review by Chief Inspector or Resident Engineer:

11. Items 1 – 10 included under the Independent Reviewer checklist.

12. Notes regarding discussions with contractors, property owners, governmental agencies or others, detail specifics of the conversation and actions taken.
13. No erasures or whiteouts are allowed in any of the volumes or forms prepared by project personnel. Mistakes should be lined out and initialed.

14. Meetings attended are noted and a reference is made to location of the minutes of meeting.

15. Official visitors (i.e. State or Town officials, ConnDOT supervisors or managers, and FHWA, FTA, FAA, utility representatives, Record Examiners, Auditors, DEP, AMTRAK, etc.) are noted and conversations detailed.

If there are DWRs or diaries that do not comply with the requirements listed above, the reviewer shall provide the Chief Inspector with a list detailing the DWR/Diary number and issue. The Chief inspector shall confirm that the corrections are made and discuss the issues with the inspector to avoid omissions in the future.

Review by Project Engineer

The Project Engineer is responsible for performing a review a minimum of three days per month of DWRs (including sub-inspectors DWRs), for procedure, content and documentation. The DWRs reviewed should contain either major item payments, cost-plus items in excess of $100,000.00, or items with computations in Volume III. The items checked should vary from month to month. Documentation to the source DWR must be examined as well as supporting back-up documentation. The item quantities reviewed and the supporting back-up documentation must be initialed by the Project Engineer on the payment line of the DWR. If there are DWRs or Diaries that do not comply with the requirements, the Project Engineer must discuss the issues with the Chief Inspector and if necessary provide a listing of the issues and actions required. The Chief inspector will ensure the corrections are made and notify the Project Engineer when complete. The Project Engineer should not sign the DWRs until corrections have been made. The Project Engineer’s signature on a DWR indicates the DWR has been reviewed and is in accordance with the Department’s Policies and Procedures.

The following checklist has been created to standardize the review of DWRs by the Project Engineer:

1. Is the diary kept up to date?
2. Are DWRs being kept up to date for all work activities?
3. Are the DWRs clear, concise and do they adequately describe the work performed?*
4. Are pay items properly documented with quantities, supporting documentation and do the hard copy pay items match the Site Manager entries.*
5. Are material test results consistent with quantities being paid?*
6. Are field measurements being conducted and documented properly?*
7. Are corrections being made using the “strike out” method?*
8. Are all the DWRs and diaries being signed by the inspector and signed reviewed by an independent person?

*Note: Refer to the inspector DWR checklist when verifying nos. 3-7.

The Records Examiners will verify the Project Engineer review for compliance with the above requirements.
1-303D Daily Paving Reports

The Inspector in charge of a paving operation is required to make out a Concrete Pavement Inspection Report, Form CON-135 or a Base and Bituminous Concrete Inspection Report, Form CON-136. Refer to Volume 2, Chapter 7, “Concrete Pavements,” for guidelines to complete Form CON-135, and Volume 2, Chapter 6, “Bituminous Pavements,” for guidelines to complete Form CON-136. The Inspector in charge of the paving is also required to make out a Form CON-134, if any other type of work is inspected on the day of the operation.

NOTE: When nuclear density tests are performed on bituminous concrete paving operations, the inspector must attach the Data & Computation Sheet for Nuclear Density Test-HMA (Form MAT-438) to the Form CON-136.

1-304 Volume II—Contract Items (Non-SiteManager Only)

Volume II is used when the Department’s construction management system, SiteManager, is not used to administer construction activities. The Volume II records daily Contract item quantities, Change Order Revisions, estimate payments, new Construction Order items, and material test results. Items are placed in the Volume II as follows:

- The first sheet in Volume II is the Project Identification/Construction Recordkeeping Format Sheet, shown in Figure 1-3.1.

Figure 1-3.1 Volume II - Project Identification/Construction Recordkeeping Format Sheet

![Screenshot of the form]

- Next, each Volume II contains a Construction Item Index, shown in Figure 1-3.2, with the items listed in numerical order.
- The Request for Test Index sheet that lists the material tests in numerical order follows the index. It is shown in Figure 1-3.3.
• The first Contract item is entered on Page 1 and the opposite page contains testing data and is numbered Page 2. The next Contract item is entered on the next page and is numbered 3. The left-hand page for the daily-item quantity entries is always an odd number, and the right-hand page, containing item-testing data, is an even number. Figure 1-3.4 and Figure 1-3.5 shows a sample of a Contract item page and corresponding testing data page.

 o The testing requirements noted on the right-hand page (Figure 1-3.5) are completed with the minimum frequency for control and progress tests, and all materials tested for that item are listed.

 o Additional pages needed for daily-item entries, are inserted after the item page. The pages are numbered with the item page number and a letter (for example, “31A,” “31B,” and “31C”). Additional testing-data pages follow the same procedure, but they are placed in front of the testing-data sheet.

 o The heading for each Contract-item page (Figure 1-3.4) in Volume II shows the item number, item description, original quantity, unit price, Construction Order revisions, revised quantities, and, when the item is completed, the final quantity.

Figure 1-3.2 Volume II - Construction Item Index

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>Page No.</th>
<th>Item No.</th>
<th>Item Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>92020001</td>
<td>Earth Excavation</td>
<td>1-1A</td>
<td>97050001</td>
<td>Membrane Waterproofing (Woven Glass)</td>
<td>44-44A</td>
</tr>
<tr>
<td>92021001</td>
<td>Rock Excavation</td>
<td>2-2A</td>
<td>97050001</td>
<td>Damp proofing</td>
<td>43-43A</td>
</tr>
<tr>
<td>92022001</td>
<td>Channel Excavation - Earth</td>
<td>3-3A</td>
<td>97050001</td>
<td>Reinforced Stone</td>
<td>46-46A</td>
</tr>
<tr>
<td>92023001</td>
<td>Canal Excavation - Rock</td>
<td>4-4A</td>
<td>97110001</td>
<td>Concrete Transition Curbing</td>
<td>47-47A</td>
</tr>
<tr>
<td>92024001</td>
<td>Cut Limitations Control Equipment</td>
<td>5-5A</td>
<td>97120001</td>
<td>Temporary Precast Concrete Barrier</td>
<td>48-48A</td>
</tr>
<tr>
<td>92025001</td>
<td>Structure Excavation - Earth (Complete)</td>
<td>6-6A</td>
<td>97150001</td>
<td>Timber Guard Rail - Combination System</td>
<td>49-49A</td>
</tr>
<tr>
<td>92026001</td>
<td>Structure Excavation - Rock (Complete)</td>
<td>7-7A</td>
<td>97190001</td>
<td>Timber Guard Rail End Anchorage</td>
<td>50-50A</td>
</tr>
<tr>
<td>92031101</td>
<td>Erosion Control</td>
<td>8-8A</td>
<td>97200001</td>
<td>Timber Guard Rail</td>
<td>51-51A</td>
</tr>
<tr>
<td>92035001</td>
<td>French Excavation (6-12 Drop)</td>
<td>9-9A</td>
<td>97210001</td>
<td>Sheet Pile</td>
<td>52-52A</td>
</tr>
<tr>
<td>92036001</td>
<td>Rock in French Excavation (6-12 Drop)</td>
<td>10-10A</td>
<td>97220001</td>
<td>Rock in French Excavation (6-12 Drop)</td>
<td>53-53A</td>
</tr>
<tr>
<td>92039001</td>
<td>Rock in French Excavation (6-12 Drop)</td>
<td>11-11A</td>
<td>97230001</td>
<td>Rock in French Excavation (6-12 Drop)</td>
<td>54-54A</td>
</tr>
<tr>
<td>92070001</td>
<td>Corrugated Pipe</td>
<td>12-12A</td>
<td>97240001</td>
<td>Corrugated Pipe</td>
<td>55-55A</td>
</tr>
<tr>
<td>92100001</td>
<td>Erasure</td>
<td>13-13A</td>
<td>97250001</td>
<td>Erasure</td>
<td>56-56A</td>
</tr>
<tr>
<td>92110001</td>
<td>Temporary Demolition Shoring</td>
<td>14-14A</td>
<td>97260001</td>
<td>Construction Field Office (Type II)</td>
<td>57-57A</td>
</tr>
<tr>
<td>92120001</td>
<td>Turbine Control Cables</td>
<td>15-15A</td>
<td>97270001</td>
<td>Turbine Control Cables</td>
<td>58-58A</td>
</tr>
<tr>
<td>92130001</td>
<td>Water Pollution Control (Estimated Cost)</td>
<td>16-16A</td>
<td>97280001</td>
<td>Water Pollution Control (Estimated Cost)</td>
<td>59-59A</td>
</tr>
<tr>
<td>92150001</td>
<td>Subgrade</td>
<td>17-17A</td>
<td>97290001</td>
<td>Subgrade</td>
<td>60-60A</td>
</tr>
<tr>
<td>92160001</td>
<td>Concrete Fill</td>
<td>18-18A</td>
<td>97300001</td>
<td>Concrete Fill</td>
<td>61-61A</td>
</tr>
<tr>
<td>92170001</td>
<td>Compacted Gravel Fill</td>
<td>19-19A</td>
<td>97310001</td>
<td>Compacted Gravel Fill</td>
<td>62-62A</td>
</tr>
<tr>
<td>92180001</td>
<td>Precast Concrete</td>
<td>20-20A</td>
<td>97320001</td>
<td>Precast Concrete</td>
<td>63-63A</td>
</tr>
<tr>
<td>92190001</td>
<td>Reinforcement Control System</td>
<td>21-21A</td>
<td>97330001</td>
<td>Reinforcement Control System</td>
<td>64-64A</td>
</tr>
<tr>
<td>94060101</td>
<td>Bimini Pony Trestle</td>
<td>32-32A</td>
<td>1A30011A</td>
<td>Bimini Pony Trestle</td>
<td>65-65A</td>
</tr>
<tr>
<td>94060102</td>
<td>Bimini Porch Trestle</td>
<td>33-33A</td>
<td>1A30021A</td>
<td>Bimini Porch Trestle</td>
<td>66-66A</td>
</tr>
<tr>
<td>94060103</td>
<td>Bimini Porch Trestle</td>
<td>34-34A</td>
<td>1A30031A</td>
<td>Bimini Porch Trestle</td>
<td>67-67A</td>
</tr>
<tr>
<td>94060104</td>
<td>Bimini Porch Trestle</td>
<td>35-35A</td>
<td>1A30041A</td>
<td>Bimini Porch Trestle</td>
<td>68-68A</td>
</tr>
<tr>
<td>94060105</td>
<td>Bimini Porch Trestle</td>
<td>36-36A</td>
<td>1A30051A</td>
<td>Bimini Porch Trestle</td>
<td>69-69A</td>
</tr>
<tr>
<td>94060106</td>
<td>Bimini Porch Trestle</td>
<td>37-37A</td>
<td>1A30061A</td>
<td>Bimini Porch Trestle</td>
<td>70-70A</td>
</tr>
<tr>
<td>94060107</td>
<td>Bimini Porch Trestle</td>
<td>38-38A</td>
<td>1A30071A</td>
<td>Bimini Porch Trestle</td>
<td>71-71A</td>
</tr>
<tr>
<td>94060108</td>
<td>Bimini Porch Trestle</td>
<td>39-39A</td>
<td>1A30081A</td>
<td>Bimini Porch Trestle</td>
<td>72-72A</td>
</tr>
<tr>
<td>94060109</td>
<td>Bimini Porch Trestle</td>
<td>40-40A</td>
<td>1A30091A</td>
<td>Bimini Porch Trestle</td>
<td>73-73A</td>
</tr>
<tr>
<td>94060110</td>
<td>Bimini Porch Trestle</td>
<td>41-41A</td>
<td>1A30101A</td>
<td>Bimini Porch Trestle</td>
<td>74-74A</td>
</tr>
<tr>
<td>94060111</td>
<td>Bimini Porch Trestle</td>
<td>42-42A</td>
<td>1A30111A</td>
<td>Bimini Porch Trestle</td>
<td>75-75A</td>
</tr>
<tr>
<td>94060112</td>
<td>Bimini Porch Trestle</td>
<td>43-43A</td>
<td>1A30121A</td>
<td>Bimini Porch Trestle</td>
<td>76-76A</td>
</tr>
<tr>
<td>94060113</td>
<td>Bimini Porch Trestle</td>
<td>44-44A</td>
<td>1A30131A</td>
<td>Bimini Porch Trestle</td>
<td>77-77A</td>
</tr>
</tbody>
</table>

• Each daily entry shows the date, location, quantity, and quantity to date, and is referenced to a DWR and to the source of the documentation, a Volume III computation.
Monthly or semimonthly estimate payments are recorded accordingly in red. An example entry is “Estimate No. 2, Pay 20,065. Total to Date 24,104.”

Items added to the Contract by a Construction Order are inserted after the original Contract items.

Material testing requirements for new items must be included.

Figure 1-3.3 Volume II - Request for Test Index

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>SAMPLE DATE</th>
<th>MATERIAL</th>
<th>REPORT DATE</th>
<th>APPROVED</th>
<th>REJECTED</th>
<th>VOLUME 2 REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>05/01/01</td>
<td>Signs (material cert)</td>
<td>06/02/01</td>
<td>A</td>
<td>PAGE 65A</td>
<td></td>
</tr>
<tr>
<td>C-2</td>
<td>05/02/01</td>
<td>Gravel (Source)</td>
<td>05/09/01</td>
<td>R</td>
<td>PAGE 17A</td>
<td></td>
</tr>
<tr>
<td>C-2A</td>
<td>05/10/01</td>
<td>Gravel (Source)</td>
<td>05/20/01</td>
<td>A</td>
<td>PAGE 17A</td>
<td></td>
</tr>
<tr>
<td>C-3</td>
<td>05/21/01</td>
<td>Gravel (Gradation)</td>
<td>05/29/01</td>
<td>A</td>
<td>PAGE 17A</td>
<td></td>
</tr>
<tr>
<td>C-4</td>
<td>05/21/01</td>
<td>Gravel (Proctor)</td>
<td>05/29/01</td>
<td>I</td>
<td>PAGE 17A</td>
<td></td>
</tr>
<tr>
<td>C-5</td>
<td>05/21/01</td>
<td>C. Barricade III (material cert)</td>
<td>06/07/01</td>
<td>A</td>
<td>PAGE 63A</td>
<td></td>
</tr>
<tr>
<td>C-6</td>
<td>05/28/01</td>
<td>Paint (material cert)</td>
<td>06/08/01</td>
<td>A</td>
<td>PAGE 80A</td>
<td></td>
</tr>
<tr>
<td>C-7</td>
<td>05/28/01</td>
<td>Spheres (material cert)</td>
<td>06/08/01</td>
<td>A</td>
<td>PAGE 80A</td>
<td></td>
</tr>
<tr>
<td>C-8</td>
<td>06/07/01</td>
<td>Hay Bales</td>
<td>06/20/01</td>
<td>A</td>
<td>PAGE 21A</td>
<td></td>
</tr>
<tr>
<td>C-9</td>
<td>06/07/01</td>
<td>Silo Fence</td>
<td>06/27/01</td>
<td>A</td>
<td>PAGE 21A</td>
<td></td>
</tr>
<tr>
<td>C-10</td>
<td>07/31/01</td>
<td>Portland Cement</td>
<td>08/15/01</td>
<td>A</td>
<td>PAGE 26A</td>
<td></td>
</tr>
<tr>
<td>C-11</td>
<td>08/15/01</td>
<td>Bedding material</td>
<td>08/21/01</td>
<td>A</td>
<td>PAGE 38A</td>
<td></td>
</tr>
<tr>
<td>C-12</td>
<td>08/15/01</td>
<td>12” RCP</td>
<td>08/21/01</td>
<td>A</td>
<td>PAGE 38A</td>
<td></td>
</tr>
</tbody>
</table>

Request for CP Testing (Assurance)

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>SAMPLE DATE</th>
<th>MATERIAL</th>
<th>REPORT DATE</th>
<th>APPROVED</th>
<th>REJECTED</th>
<th>VOLUME 2 REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-27</td>
<td>09/01/01</td>
<td>Gravel</td>
<td>10/01/01</td>
<td>A</td>
<td>PAGE 17A</td>
<td></td>
</tr>
<tr>
<td>CP-6092</td>
<td>12/11/01</td>
<td>Class "F" Concrete</td>
<td>12/17/01</td>
<td>I</td>
<td>PAGE 32A</td>
<td></td>
</tr>
</tbody>
</table>

Request for Test Cylinder Cards

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>SAMPLE DATE</th>
<th>MATERIAL</th>
<th>REPORT DATE</th>
<th>APPROVED</th>
<th>REJECTED</th>
<th>VOLUME 2 REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6001</td>
<td>04/10/01</td>
<td>Class "A" Concrete</td>
<td>04/13/01</td>
<td>I</td>
<td>PAGE 28A</td>
<td></td>
</tr>
<tr>
<td>C6001A</td>
<td>04/10/01</td>
<td>Class "A" Concrete</td>
<td>04/13/01</td>
<td>I</td>
<td>PAGE 28A</td>
<td></td>
</tr>
</tbody>
</table>

Request for Test Bituminous

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>SAMPLE DATE</th>
<th>MATERIAL</th>
<th>REPORT DATE</th>
<th>APPROVED</th>
<th>REJECTED</th>
<th>VOLUME 2 REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>08/25/01</td>
<td>Bituminous Concrete Class 4</td>
<td>09/07/01</td>
<td>A</td>
<td>PAGE 24A</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>08/25/01</td>
<td>Bituminous Concrete Class 1</td>
<td>09/07/01</td>
<td>A</td>
<td>PAGE 22A</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) Rejected Material Must have a "Report of Rejected Material" Filled out and submitted to the District
Figure 1-3.4 Volume II - Contract Item Page

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
<th>UNIT</th>
<th>READY FOR PAYMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0507201</td>
<td>Type "C.L." Catch Basin</td>
<td>2.00</td>
<td>each</td>
<td>$2550.00</td>
</tr>
</tbody>
</table>

NOTES:
- Project Recordkeeping and Documentation
- FIGURE 1-3.4 Volume II - Contract Item Page
- FIGURE 1-3.5 Volume II - Contract Item Testing Data Page

Figure 1-3.5 Volume II - Contract Item Testing Data Page

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>MATERIAL</th>
<th>QUANTITY</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-501</td>
<td>678272 4X9 FRAME</td>
<td>5 EACH</td>
<td>5 EACH</td>
</tr>
<tr>
<td>C-502</td>
<td>678272 4X9 STRIP</td>
<td>5 EACH</td>
<td>5 EACH</td>
</tr>
<tr>
<td>C-511</td>
<td>605263 4X9 FRAME</td>
<td>5 EACH</td>
<td>5 EACH</td>
</tr>
<tr>
<td>C-512</td>
<td>605263 4X9 STRIP</td>
<td>5 EACH</td>
<td>5 EACH</td>
</tr>
<tr>
<td>C-136</td>
<td>605263 4X9 FRAME</td>
<td>5 EACH</td>
<td>5 EACH</td>
</tr>
<tr>
<td>C-137</td>
<td>605263 4X9 STRIP</td>
<td>5 EACH</td>
<td>5 EACH</td>
</tr>
</tbody>
</table>

NOTES:
- Project Recordkeeping and Documentation
- FIGURE 1-3.4 Volume II - Contract Item Page
- FIGURE 1-3.5 Volume II - Contract Item Testing Data Page
1-305 Volume III—Quantity Computations

Contents. Volume III is used for items involving extensive computations and measurements, items difficult to track throughout the records system, and other items as directed. The following is a list of items and documentation that should be incorporated in Volume III, if applicable:

- Asphalt adjustment documentation.
- Proofs for factors used, if not standard factors.
- Flasher Summary Sheet.
- Copies of Daily Reports of Cost Plus, including payroll copies, receipted material invoices, bills, and Blue Book verification sheets. Refer to the “Final Package Booklet” for a sample form. (Cost-Plus back-up documentation is to be kept in its own Volume III book).
- Standard factor sheets for drainage.
- Trafficperson Report Summary Sheet.
- Trainee documentation.
- Water Pollution Control Summary Sheet.
- Any other items or documentation, as required or requested.

General Information: Each Volume III book will have an individual number. Examples are “Volume III, Book 1” and “Volume III, Book 2.” Do not duplicate book numbers. If the books become too voluminous, an expandable concept may be used. An example is “Volume III, Book 1;” “Volume III, Book 1A;” and “Volume III, Book 1B.” On complex contracts, in addition to the book number, it is suggested to use subtitles to identify content of certain Books, i.e., “Volume III, Book 3, Drainage Book.” A loose leaf binder is acceptable to use for the Volume III books. All Volume III’s must have summary sheets and a table of contents.

The Volumes will usually consist of, roadway items (earth excavation, subbase, formation of subgrade etc.), structure items (concrete classes, deformed steel bar items etc.), drainage items (trench excavation, pipe, bedding etc.), electrical items conductor, cable etc., contaminated materials items (handling of contaminated material, handling of controlled material, reuse of controlled material etc.), volumes for any cost-plus work and any removal items (removal of guardrail etc.).

If a Volume III item has a very large original bid quantity and the back-up documentation to support the payments is voluminous it is suggested that the item have its own book number. (Many of these items have an “estimated” dollar value in the contract. Some items of this nature are Handling of Contaminated Materials, Materials for Structural Steel, Lead Health and Safety, Trafficperson and large cost-plus items.

Forethought and anticipation of expansion when setting up the records is very important as it will be beneficial at the conclusion of the project. Consideration should be given to the size and nature of the project. Any questions regarding this should be directed to the Project Engineer.
All Volume III Books must have an Index. Very large projects should also keep a list of all of the Volume books to assure all of the applicable volumes are forwarded to the District at the conclusion of the project.

All items in Volume III must have summary sheets. Summary sheets for items in Volume III must provide a clear audit trail throughout so that anyone unfamiliar with the records will be able to follow them. A total must be shown for each summary sheet. The summary sheet shall be signed, “Compiled by” and “Checked by” the inspector(s). Refer to Figure 1.3.6. It is recommended that a “Quantity to Date Column” be included in the Volume III summary sheet for larger projects.

NOTE: A master summary book must be incorporated in the records, if items are contained in more than one Volume III book and or on DWRs. Computations on or attached to DWRs—but not contained in or incorporated in Volume III—that are used for final backup documentation must be included on the master summary. An example master summary sheet is shown in Figure 1-3.7 and Figure 1-3.13. Also, included is a sample of a Master Summary sheet showing multiple categories shown in Figure 1-3.9. All summary sheets must show a total and must be signed “Compiled by” and “Checked by” the Inspector(s).

Figure 1-3.6 Volume III – Sample Item Summary Sheet

![Sample Item Summary Sheet](image)
Figure 1-3.7 Volume III – Sample Master Summary Sheet

<table>
<thead>
<tr>
<th>ITEM: 0202002 Earth Excavation Master Summary Final Breakdown</th>
<th>PROJECT NO: 210-200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume III</td>
<td>PAGE NO: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Quantity</th>
<th>Source Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmwood Road Station 19-085.591 to 19-885</td>
<td>367.34</td>
<td>Volume III Book 1 Page 1A</td>
</tr>
<tr>
<td>Elmwood Road Station 19-085 to 19-185.591</td>
<td>352.88</td>
<td>LR-12A</td>
</tr>
<tr>
<td>Elmwood Road Station 19-185.591 to 19-285.591</td>
<td>290.97</td>
<td>Volume III Book 1 Page 1C</td>
</tr>
<tr>
<td>Elmwood Road Station 19-285.591 to 19-385.91</td>
<td>182.85</td>
<td>Volume III Book 1 Page 1E</td>
</tr>
<tr>
<td>Elmwood Road Station 19-385.91 to 19-485.91</td>
<td>33.98</td>
<td>LR-52A</td>
</tr>
<tr>
<td>Elmwood Road Station 19-485 to 19-585</td>
<td>291.15</td>
<td>Volume III Book 1 Page 1F</td>
</tr>
<tr>
<td>Elmwood Road Station 19-585 to 19-685</td>
<td>185.24</td>
<td>Volume III Book 1 Page 1G</td>
</tr>
<tr>
<td>Elmwood Road Station 19-685 to 19-785.91</td>
<td>103.84</td>
<td>Volume III Book 2 Page 1H</td>
</tr>
</tbody>
</table>

TOTAL FINAL EARTH EXCAVATION: 1,371.85

Figure 1-3.8 Volume III – Sample Master Summary Sheet with Categories

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0203-0204/0205/0206/0307</td>
<td>5625.000 (5125.000 Per category)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>DVR</th>
<th>Description</th>
<th>Reference</th>
<th>LIN /003 Quantity</th>
<th>LIN /004 Quantity</th>
<th>LIN /005 Quantity</th>
<th>LIN /006 Quantity</th>
<th>LIN /007 Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/31/97</td>
<td>dcr</td>
<td>Fairfield Police</td>
<td>Pg 7A</td>
<td>813.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2/31/98</td>
<td>dcr</td>
<td>Bridgeport Police</td>
<td>Pg 2B</td>
<td>541.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3/30/98</td>
<td>dcr</td>
<td>Bridgeport Police</td>
<td>Pg 2C 2D</td>
<td>509.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200.23</td>
</tr>
<tr>
<td>10/15/98</td>
<td>dcr</td>
<td>Westport Police</td>
<td>Pg 2E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>112.00</td>
<td>-</td>
</tr>
<tr>
<td>12/31/98</td>
<td>dcr</td>
<td>Bridgeport Police</td>
<td>Pg 2F 2G 2H</td>
<td>5,405.55</td>
<td>-</td>
<td>2,174.39</td>
<td>-</td>
<td>469.71</td>
</tr>
<tr>
<td>5/15/99</td>
<td>dcr</td>
<td>Bridgeport Police</td>
<td>Pages 3L 3</td>
<td>6,427.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,024.98</td>
</tr>
<tr>
<td>7/13/00</td>
<td>dcr</td>
<td>Bridgeport Police</td>
<td>Pages 3K 3L</td>
<td>1,521.21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,194.93</td>
</tr>
<tr>
<td>1/13/01</td>
<td>dcr</td>
<td>Fairfield Police</td>
<td>Pages 3M 3N</td>
<td>214.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>123.40</td>
</tr>
</tbody>
</table>

Category Subtotals: 18,140.30 214.40 2,174.80 569.40 11,542.85
Max Category Amount: 123,000.00 123,000.00 123,000.00 123,000.00 123,000.00

Total Paid to Date: 32,647.75
Total Quantity: 623,000.00

Complted by:
Printed Name:
Date:
Checked by:
Printed Name:
Date:
When an estimated payment procedure is used to make payment for an item a record that this procedure has been approved by the Project Engineer must be placed in the Volume III. For further explanation refer to Section 1-912. A sample record is shown in Figure 1-3.8A

Figure 1-3.8A (formerly 1-3.27) Volume III– Record of Estimated Payment Procedures (Sample)

<table>
<thead>
<tr>
<th>Estimated Payment Procedures</th>
<th>Project # XXX-XXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 0202003 Earth Excavation:</td>
<td></td>
</tr>
<tr>
<td>Paying estimated by load count until the survey party is available to survey the area.</td>
<td></td>
</tr>
</tbody>
</table>

(signed) (printed name) (date)

Approved by Project Engineer:

(signed) (printed name) (date)

Also refer to the following sections for additional direction: Section 1-305C Drainage Systems, 1-305D Structures, Mainline and Roadway, and 1-2005 Trafficperson.

1-305A Computations and Measurements

Computations prepared by the inspection staff and contained within the project records must be well documented and checked. Reference to the appropriate plan sheet(s) is to be included with the computations. Measurements taken by inspection staff must also be well documented and reference other source(s) used to prepare the documentation:

- For Computations on or attached to DWRs, the checker is to sign off, print their name and record the date they checked the computations using the following or similar format:

 “Checked by (signature) Date _______.
 (printed name)

- For Computations in the Volume III, the person who did the computation and the person who checked it are to sign and date every page. Use the following or similar format:

 “Computed by (signature) Date _______.
 (printed name)
For recorded sketches, measurements, etc. in the Volume III, the person who recorded the sketch, measurement, etc. is to sign and date the page using the following or similar format:

“Prepared by (signature) _______________ Date ____________

(printed name)

Measured by (signature) _______________ Date ____________”

(printed name)

For measurements recorded on a DWR that were measured by others, record the name of the inspector(s) who took the measurement(s) and date(s).

1-305B Electronic Forms

The following software programs are approved by the Office of Construction for use by project personnel for performing calculations:

- Earthworks
- Eagle-point CADD
- Micro-station CADD
- Inroads CADD
- Microsoft Excel (Spreadsheets)
- Other Software Programs approved for use by the Office of Construction

In addition, the following guidelines are to be followed when using software programs:

- Software programs must be properly licensed for Department use.
- The project records must identify the software programs, including version numbers that were used for calculations. Also identify the file extension(s) associated with this program. This information can be reported on the computer-generated reports or summary sheets kept in the Volume III. (Example: Microsoft Excel – Version 8.0e, Rebar spreadsheets, cost-plus spreadsheets.)
- Printouts of computer generated reports used for source documentation will be incorporated into the project records.
- Each printout must identify the Contract/Project the report is for and file name given the report.
- The person who entered the data must sign and date each printout, i.e.:

 “Data Entered by: _______ (signature) _______________ Date: ____________

 ____________________________”

 (printed name)
• Computer-generated reports must be checked to verify the calculations are correct. For reports using a template, i.e. cost-plus spreadsheets, calculations only need to be verified on one report. Reports checked to verify calculations are to be signed and dated by the person who checked them, e.g.:

“Calculations Checked by: (signature) Date: ________________

(printed name)

“Calculations of Template Checked by: (signature) Date: ________________

(printed name)

• Each computer-generated report must be checked to verify the data entered agrees with project records. The person who verified the data is to sign and date the report, i.e.:

“Verified as Correct: (signature) Date: ________________

(printed name)

When checking the data, you must always make sure the method of measurement and materials used comply with the Contract requirements. The most common errors discovered in computer-generated reports involve incorrect entry of data or incorrect method of measurement.

• For Rebar spreadsheets, check the data to make sure the bar types, sizes, and lengths agree with the approved shop drawings and DWRs. (The bar type is obtained from the Bar Mark.)

• For cost-plus reports, check the labor, material, and equipment data to make sure the information agrees with the original report created in the field, certified payrolls, receipted bills, and “Rental Rate Blue Book” worksheets.

• For excavation calculations, check the data to make sure entries agree with plan sheets and survey data.

• Each computer-generated report is to be saved electronically and backed up onto a CD.

• At the completion of the Project, the CD(s) with the backed up data are to be clearly identified, i.e., “Disk 1 - Project XXXX-XXXX,” and stored in a protective case for inclusion with the Project Records. The content of each CD is to be clearly identified and kept on or in the protective case for the CD.

1-305C Drainage Systems

The following are guidelines to use when setting up individual drainage systems in the Volume III books: As used in this section a drainage system is from structure to structure, i.e. catch basin to catch basin, catch basin to outlet.

• The Volume III drainage index master summary log, shown in Figure 1-3.9, is listed by system, as they appear in the drainage books and summarizes the items and quantities for each system. A total must be shown for each item.
The right-hand page, shown in Figure 1-3.10, shows the plan sketch and the computations for the system. Only one system is allowed on the right-hand page. The left-hand page, shown in Figure 1-3.11, lists the items and quantities pertinent to the system shown on the right-hand sheet. Quantity entries are listed below as the system is installed.

Totals for each item are noted on the drainage system summary sheet when the system is completed. If additional pages are needed, they are inserted between the two pages and given a letter designation.

Figure 1-3.9 Volume III – Drainage Master Summary Log

<table>
<thead>
<tr>
<th>Station</th>
<th>X</th>
<th>Y</th>
<th>Volume</th>
<th>From</th>
<th>To</th>
<th>Sandstone</th>
<th>Trench 1.0</th>
<th>Rock 1.0</th>
<th>Rock 4.0</th>
<th>Rock 8.0</th>
<th>Rock 12.0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>49</td>
<td></td>
<td>10462.50 TO 10463.50</td>
<td>24.19</td>
<td>5.35</td>
<td>18.82</td>
<td>0.75</td>
<td>3.00</td>
<td>3.00</td>
<td>1.00</td>
<td>2.44</td>
<td>60.50</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td></td>
<td>10462.70 TO 10462.90</td>
<td>7.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.80</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td></td>
<td>10407.80 TO 10408.50</td>
<td>10.12</td>
<td>2.54</td>
<td>14.12</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>31.00</td>
<td>70.00</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td></td>
<td>10407.80 TO 10409.50</td>
<td>26.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td></td>
<td>10409.20 TO 10409.80</td>
<td>26.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td></td>
<td>10409.20 TO 10409.80</td>
<td>26.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td></td>
<td>10496.70 TO 10497.50</td>
<td>16.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td></td>
<td>10497.00 TO 10497.50</td>
<td>16.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td></td>
<td>10497.00 TO 10497.50</td>
<td>16.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td></td>
<td>10497.00 TO 10497.50</td>
<td>16.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td></td>
<td>10497.00 TO 10497.50</td>
<td>16.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td></td>
<td>10497.00 TO 10497.50</td>
<td>16.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td></td>
<td>10497.00 TO 10497.50</td>
<td>16.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.00</td>
<td></td>
</tr>
</tbody>
</table>

Comp By: Printed Name:
Signature: Date:
Chkd By: Printed Name:
Signature: Date:
1-305D Structures, Mainline Roadway, Ramps, Etc.

Use the following guidelines for setting up Volume III books for structures, mainline roadway, ramps, etc.

- The first sheet in the book is the index sheet, shown in Figure 1-3.12.

Figure 1-3.12 Volume III – Index Sheet (Sample)

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>Page No.</th>
<th>Item No.</th>
<th>Item Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>020002</td>
<td>Earth Excavation</td>
<td>1</td>
<td>040004</td>
<td>Screened Masonry</td>
<td>31</td>
</tr>
<tr>
<td>020102</td>
<td>Rock Excavation</td>
<td>2</td>
<td>0703/01</td>
<td>Intermediate Riprap</td>
<td>33</td>
</tr>
<tr>
<td>020202</td>
<td>Channel Excavation - Earth</td>
<td>3</td>
<td>0708/12</td>
<td>Modified Riprap</td>
<td>34</td>
</tr>
<tr>
<td>020251</td>
<td>Channel Excavation - Rock</td>
<td>4</td>
<td>070300/4A</td>
<td>Membrane Waterproofing (Woven Glass)</td>
<td>36</td>
</tr>
<tr>
<td>020502</td>
<td>Cut Stone Pavement</td>
<td>5</td>
<td>0708/01</td>
<td>Damproofing</td>
<td>37</td>
</tr>
<tr>
<td>020602</td>
<td>Structure Excavation - Earth (Complete)</td>
<td>6</td>
<td>0725/02</td>
<td>Bagged Stone</td>
<td>38</td>
</tr>
<tr>
<td>020603</td>
<td>Structure Excavation - Rock (Complete)</td>
<td>7</td>
<td>081104</td>
<td>Concrete Foundation</td>
<td>39</td>
</tr>
<tr>
<td>020701</td>
<td>Sanding Water</td>
<td>8</td>
<td>0825/01B</td>
<td>Temporary Precast Concrete (Base)</td>
<td>40</td>
</tr>
<tr>
<td>030001</td>
<td>Foundation of Subgrade</td>
<td>9</td>
<td>0864/01A</td>
<td>Timber Guide Rail Transition System</td>
<td>41</td>
</tr>
<tr>
<td>031005</td>
<td>Temporary Dewatering Basin</td>
<td>10</td>
<td>0909/08A</td>
<td>Timber Guide Rail Anchorage</td>
<td>42</td>
</tr>
<tr>
<td>031106</td>
<td>Curb and Sidewalk Control Walls</td>
<td>11</td>
<td>0909/00A</td>
<td>Timber Guide Rail</td>
<td>43</td>
</tr>
<tr>
<td>031206</td>
<td>Water Pollution Control (Estimated Cost)</td>
<td>12</td>
<td>091258</td>
<td>Remove Metal Beam Rail</td>
<td>44</td>
</tr>
<tr>
<td>031202</td>
<td>Subbase</td>
<td>13</td>
<td>091256</td>
<td>Remove Single Post</td>
<td>45</td>
</tr>
<tr>
<td>040221</td>
<td>Subgrade</td>
<td>15</td>
<td>091256</td>
<td>Remove Single Post</td>
<td>45</td>
</tr>
<tr>
<td>040402</td>
<td>Compacted Granular Fill</td>
<td>16</td>
<td>0906/01</td>
<td>Spraying for Field Drainage</td>
<td>47</td>
</tr>
<tr>
<td>040502</td>
<td>Permeable Structure Backfill</td>
<td>17</td>
<td>0906/00</td>
<td>Traffic Drum</td>
<td>48</td>
</tr>
<tr>
<td>040501</td>
<td>Sedimentation Control System</td>
<td>18</td>
<td>0906/002A</td>
<td>Construction Field Office (Type I)</td>
<td>49</td>
</tr>
<tr>
<td>040601</td>
<td>Erosion Control Concrete Class 1</td>
<td>19</td>
<td>0906/001A</td>
<td>Maintenance and Protection of Traffic</td>
<td>50</td>
</tr>
<tr>
<td>040602</td>
<td>Erosion Control Concrete Class 2</td>
<td>20</td>
<td>0906/001A</td>
<td>Removal of Existing Masonry</td>
<td>51</td>
</tr>
<tr>
<td>040603</td>
<td>Erosion Control Concrete Class 3</td>
<td>21</td>
<td>0906/001A</td>
<td>Mobilization</td>
<td>52</td>
</tr>
<tr>
<td>040604</td>
<td>Erosion Control Concrete Class 4</td>
<td>22</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
<tr>
<td>040605</td>
<td>Erosion Control Concrete Class 5</td>
<td>23</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
<tr>
<td>040606</td>
<td>Erosion Control Concrete Class 6</td>
<td>24</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
<tr>
<td>040607</td>
<td>Erosion Control Concrete Class 7</td>
<td>25</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
<tr>
<td>040608</td>
<td>Erosion Control Concrete Class 8</td>
<td>26</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
<tr>
<td>040609</td>
<td>Erosion Control Concrete Class 9</td>
<td>27</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
<tr>
<td>040610</td>
<td>Erosion Control Concrete Class 10</td>
<td>28</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
<tr>
<td>040611</td>
<td>Erosion Control Concrete Class 11</td>
<td>29</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
<tr>
<td>040612</td>
<td>Erosion Control Concrete Class 12</td>
<td>30</td>
<td>0906/001A</td>
<td>Bridge and Tunnel Lighting (High Intensity)</td>
<td>53</td>
</tr>
</tbody>
</table>

- Because an expandable concept usually is used in the book, only one page number is assigned to any item. Additional pages that show computations are assigned the same number with a letter designation. An example is “Class A Concrete, Page 23”; “Class A Concrete, Page 23A”; and “Class A Concrete, Page 23B.”

- On projects with several structures, ramps, etc., the item summary sheet can list the structures and the assigned letter for each, as shown in Figure 1-3.13. Separate books should be set up for each structure, ramp, etc.
1-306 Volume IV - Miscellaneous Contract Data

This volume contains miscellaneous contract data pertaining to the Project. It can be either maintained in a hard copy or electronic data file format. A Sample Index for Miscellaneous Contract Data is shown in Figure 1-3.14. The sheets listed in the indexes can be obtained from the District or may be developed using Microsoft Excel spreadsheets or other computer generated reports.
VOLUME IV - MISCELLANEOUS CONTRACT DATA INDEX

<table>
<thead>
<tr>
<th>PAGE DESCRIPTION</th>
<th>PAGE #</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Sheet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record of Project Personnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Stored Inventory Log</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record of Shop Drawings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** Record of Labor Wage Checks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** Record of Certified Payrolls</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N/A if electronic files are kept.

***SiteManager data entry is acceptable in lieu of Vol. IV sheets.**

Revised June 2010

The sheets that follow the index in Volume IV are listed below. The information on the sheets must be complete and kept up to date throughout the Project. They can be either maintained in the Volume IV or in electronic files. (Refer to Volume I, Chapter 11 for a list of the acceptable electronic spreadsheets).

- **Record of State/Consultant Personnel.** The sheet is shown in Figure 1-3.21. Record all personnel assigned to the project from the ordered-to-start date until the final is completed. Include the start and completion dates for each employee and the assigned operation. Include Project Engineers on this record.

Figure 1-3.15 Deleted

Figure 1-3.16 Deleted

Figure 1-3.17 Deleted

Figure 1-3.18 Deleted
Figure 1-3.19 Deleted

<table>
<thead>
<tr>
<th>NAME (PRINTED)</th>
<th>SIGNATURE</th>
<th>INITIALS</th>
<th>TITLE</th>
<th>DATE STARTED</th>
<th>DATE COMPLETED</th>
<th>OPERATIONS COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-3.20 Deleted

Figure 1-3.21 Record of State/Consultant Personnel

<table>
<thead>
<tr>
<th>NAME (PRINTED)</th>
<th>SIGNATURE</th>
<th>INITIALS</th>
<th>TITLE</th>
<th>DATE STARTED</th>
<th>DATE COMPLETED</th>
<th>OPERATIONS COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Record of Labor Wage Checks.** This summary is only required if information is not entered into SiteManager. The summary is shown in Figure 1-3.22. List all labor wage checks made on the summary. Form CON-131 for individual checks is shown in Figure 1-12.5. If the number of the records is large, the Form CON-131s may be kept in a separate booklet, labeled accordingly. Refer to Volume 1 Chapter 12 Civil Rights, Labor and Contract Compliance for additional information on labor wage requirements.

• **Record of Certified Payrolls.** This summary is only required if information is not entered into SiteManager. Figure 1-3.23 shows a payroll log. Keep a copy of each pertinent payroll for the prime Contractor and all subcontractors at the construction project site in designated folders(s) and maintain a log of their receipt. Refer to Volume 1 Chapter 12 Civil Rights, Labor and Contract Compliance for additional information on payroll requirements.

• **Material Stored Inventory Log.** The sheet is shown in Figure 1-3.24. The material must be inspected and inventoried as specified in the section 1-909 “Payment for Stored Materials.” On large projects or projects with large amounts of materials stored, a separate Volume should be created to centralize the location of all documentation for materials stored on site.

• **Record of Shop Drawings and Working Drawings.** The sheet is shown in Figure 1-3.25. List all shop drawings pertinent to the project.

Figure 1-3.22 Record of Labor Wage Checks

<table>
<thead>
<tr>
<th>Employee</th>
<th>Contractor</th>
<th>Date Wage Check Taken</th>
<th>Complying to the Minimum Hourly Rate Is Not</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-3.23 Payroll Log
Figure 1-3.23 Record of Certified Payrolls

<table>
<thead>
<tr>
<th>Date Started:</th>
<th>Date Completed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week of</td>
<td>Week of</td>
</tr>
<tr>
<td>January</td>
<td>May</td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
</tr>
<tr>
<td>March</td>
<td>June</td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
</tr>
<tr>
<td>July</td>
<td>August</td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
</tr>
<tr>
<td>August</td>
<td>December</td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
</tr>
</tbody>
</table>
Figure 1-3.24 Material Stored Inventory Log

"MATERIAL STORED" INVENTORY LOG

<table>
<thead>
<tr>
<th>DESCRIPTION OF MATERIAL</th>
<th>MATERIAL QUANTITY</th>
<th>STORED SITE (LOCATION)</th>
<th>VERIFIED BY (SIGNATURE OF INSPECTOR)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-3.25 Record of Shop Drawings and Working Drawings

RECORD OF SHOP DRAWINGS AND WORKING DRAWINGS

<table>
<thead>
<tr>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>SUBMITTED BY</th>
<th>SUBMITTED TO</th>
<th>DATE RETURNED</th>
<th>DISPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part II – Other Project Records

1-307 Project Correspondence

To properly identify Project related correspondence both the State and Federal project numbers are to be shown. The official copy of Project correspondence is to be kept in the District Office. The Supervising Engineer is responsible to establish and maintain a complete chronological file of all project-related correspondence for each project assigned to him/her. When necessary, copies of correspondence are to be forwarded to the Project field office for their records. Correspondence received in the field is to be forwarded to the District.

Correspondence and other project information that is not part of the four volume record-keeping system must be maintained in an organized manner at the field office. A hierarchical file structure should be established at the onset of the project for the project correspondence. The size of the file system will vary depending on the size and complexity of the project. The files for smaller projects are usually categorized based upon the type of correspondence or contents of the folder. Larger projects or those projects using an electronic database will likely use a more complex numerical sequential system. The Resident Engineer or chief inspector is responsible for establishing the file system for the project, subject to the review and approval of the Project Engineer. Sample correspondence filing systems for both smaller and larger projects are included in Appendix C, Table 2.

On Federal oversight projects, the FHWA Area Engineer should be copied on the project correspondence concerning issues that have a significant impact on project scope, schedule or budget.

The “List of Standard Correspondence” is located in Appendix C, Table 1, of this manual. This chart assigns responsibility for research and preparation of project correspondence, and also provides guidance for the authorized signature on the respective documents. A higher level of authority could possibly be necessary depending on the circumstances. Suggestions to add additional correspondence to this chart are encouraged and should follow the instructions in Appendix B “Update Procedures”.

The “Approved Forms” folder is located within the Construction Manual folder on the Department’s share drive. Suggestions to add additional forms are also encouraged and should follow the instruction in Appendix B of this manual “Update Procedures”.

Generally, all official project correspondence (letters addressing compensation, disputes, RFCs (requests for changes), and other contractual issues) must be sent through the District before it is sent to the Contractor. Similarly, all Contractor correspondence of this nature must be sent to the District Office and then forwarded to the field office. Advance or preliminary copies of such correspondence may be exchanged at the project level, however all official copies must be sent to/from the District Office. Routine correspondence (meeting reports, transmittals, material test reports, RFIs (Requests for Information), etc.) may be issued at the field level with a copy to the District Office. If “field memorandums” are issued by the Inspector to the Contractor relative to contract performance, the District Office must be copied.

1-307A Email

Emails are contract records and may be subject to detailed review; therefore, Project related email, sent and received, must be printed and kept in the correspondence folder. An exception may be allowed if the project maintains an electronic database of project records. Email prepared by project staff should always be professional and to the point.
1-308 Progress Meetings

Progress meetings are required to be held at least monthly on active projects, except during the winter shutdown period or at other times when no work activity is occurring on the project. The purpose of the meeting is to discuss the progression of the work and any issues which may impact the ongoing work. The meeting shall be conducted by the Chief Inspector or Project Engineer. Where appropriate, action items should be defined and responsible parties assigned specific tasks. Each task shall be given a due date and tracked until resolved. TheChief Inspector is responsible for preparing a report of the meeting. The Project Engineer is responsible to ensure that the report of meeting is accurate. The report of meeting should be prepared, reviewed and be ready for distribution within 5 working days of the date of the meeting.

On Federal oversight projects, the FHWA Area Engineer should be invited to each Progress Meeting and copied on the meeting minutes.

The following topics should be discussed at each meeting and included in the meeting minutes:

- Contractor’s progress and review of project’s schedule,
- Utilities,
- Quality and workmanship
- Environmental concerns,
- Maintenance and Protection of Traffic/Work Zone Safety
- Submittals
- Testing
- Civil Rights (DBE/SBE, OJT, Payrolls, Labor Wage)
- General Concerns.

Figure 1-3.28 shows a sample report of meeting. Project staff is to use this format for Report of Meetings or other format approved at the District level.
1-309 Other Project Booklets and Folders

When applicable, the following additional information should be put together in a booklet or series of folders and kept with the field books as part of the records:

CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING AND HIGHWAY OPERATIONS
DISTRICT IV UNIT 901
REPORT OF MEETING

Project: [blank] Route #: [blank] Date of Meeting: July 14, 2004
Location of Meeting: Project Job Site: [blank] Town: [blank]
Subject of Meeting: Project Progress Meeting (8:00am)

Attendance:

Transactions and Determinations:

Today is the 21st meeting for this project.
The following is a summary of the meeting.

Old Business

19.1 Time Extension

[blank] Construction was instructed by CT DOT to submit a detailed time extension request.

Mr. [blank] stated that [blank] has not yet submitted their request for a time extension and they should do so as soon as possible.

(Action: [blank])

New Business

21.1 D.B.E.

D.B.E. requirements were discussed and it appears that the Contractor will meet the 12% goal even though [blank] has refused to return to work to complete their subcontract with [blank].

This goal is being met because of an increase in one subcontract and the utilization of two new subcontractors on the project, [blank] and [blank].

(Action: none required)

21.2 Training

The total number of training hours for this project is 367. Mr. [blank] has performed 367 hours.

Mr. [blank] no longer works for [blank] and therefore the hours will fall short of the required amount.

This issue is pending review by Mr. [blank] of the Office of Construction.

(Action: none required)

21.3 Certified Payroll

Mr. [blank] was informed that there are still outstanding certified payroll submittals by his Subcontractors.

Mr. [blank] said his office has been in contact with all his Subcontractors regarding this issue.

(Action: [blank])

21.4 Schedule

Mr. [blank] stated that August 24, 2004 is the projected date for the semi-final inspection, with a total completion date of September 7, 2004.

(Action: none required)
• computer disks;
• Construction Orders, with backup;
• Contract;
• Contractor payrolls;
• correspondence;
• delivery tickets (separate book that is clearly labeled should be used for each type of material);
• environmental correspondence, logs, etc.;
• EEO/Affirmative Action reports;
• hazardous waste manifests;
• Labor Wage Checks, Form CON-131;
• Materials Certificates and all laboratory reports;
• Nuclear Density Tests and Data Sheets, Forms CON-125 and MAT-438;
• Pile Driving Logs, Form CON-87;
• purchase orders and requisitions;
• semimonthly and monthly estimates;
• schedules;
• shop drawings;
• working drawings;
• Request for Information (RFI)
• Request for Change (RFC)
• utility forms, Forms CON-40 and CON-41;
• Other materials, if required or requested (i.e. work performed by others, records of state furnished materials).

1-310 Non-Compliance Notices

Defective work is defined within the Standard Specifications 1.05.11 and defective materials are defined within 1.06.04. The DWR Appendix (CON-134A) is required to be completed and attached to all SiteManager DWRs, Concrete Inspection Reports (CON-135) and Base & Bituminous Concrete Inspection Reports (CON-136), as these do not currently include the required certification statement.

Non-Compliance Notices are to document instances when the Contractor’s workmanship or materials do not conform to the plans and/or specifications. The process of recognizing and resolving non-compliance issues consists of the following major steps; 1) recognizing the problem, 2) proposing a corrective procedure, 3) gaining approval for the corrective procedure, and 4) completing the corrective work. Whenever unacceptable work is encountered steps 1) and 4), as identified above, are always necessary. Depending upon the scope and/or severity of the non-
Construction Manual

Volume 1

Contract Administration

compliance issue, corrective procedures may be required (steps 2 and 3). When approval is required for corrective procedures, separate correspondence is generated addressing the issue in question.

The goal of this process is not to create more paperwork for project personnel, but to alleviate some of the difficulties of confronting these issues day to day. Also, items will not be forgotten and left until the punch-list at the end of the project. No Contractor likes rework; however, if the issues and expectations are clearly defined, the work can be reasonably discussed and included in the work plan. In so doing, confrontation at the field level will be reduced.

Non-Compliance Notices should be issued to the contractor if any of the following conditions exist:

- Unacceptable materials are being incorporated into the work.
- The construction methods or workmanship do not meet the contract requirements or approved plans.
- Rework is required to correct a deficiency discovered on the project.
- The survey lay-out is incorrect or there is inadequate survey to verify the accuracy of the work.
- The contractor intends to place new work upon previous work that has not been accepted.
- The contractor has left the work in an incomplete state and it is possible the remaining work could be overlooked. If the project staff has adequately documented the incomplete nature if the work in some other fashion (ex. DWR, Volume 3, As-Built, White Paper Tracings, etc.), then the NCN may not need to be issued.

Specific questions pertaining to Non-Compliance/Compliance Notices and their issuance should be directed to the Project Engineer. The inspection staff may not deviate from the above guidance unless approved by the Project Engineer or Supervising Engineer for the project.

The following procedure is to be used for the resolution of non-compliance issues:

- Whenever unacceptable materials or workmanship is discovered, a Non-Compliance Notice should be issued to the Contractor that clearly identifies the problem and requests a proposed corrective measure if one is required. Non-Compliance Notices are to be numbered as follows: XXXX-XXXX-0001NCN. XXXX-XXXX-0002NCN etc. See Figure 1-3.29

- Refer to Appendix “A” for direction on entering Non-Compliance Notices in SiteManager.

- For each Non-Compliance Notice issued that requires a corrective procedure to ensure there is agreement as to the scope of the repair work required, the final/approved corrective procedure will be issued by the District. In some instances the correction is obvious and may be determined by project personnel. Other times approval by the District, Lab, CE Design or other units is required. Project personnel are to obtain such approval, when required.

- When the corrective work has been completed in accordance with the approved corrective procedure, a Compliance Notice is to be issued to clear the Non-Compliance Notice. The Compliance Notice shall have the same number as the Non-Compliance Notice. Example: XXXX-XXXX-0001CN. See figure 1-3.30.

Discussion of “open” Non-Compliance issues should be included as a standing item at Progress Meetings. The Non-Compliance Notices and corresponding Compliance Notices are to be kept in a folder at the project.

Figure 1-3.29 Non Compliance Notice
Connecticut Dept. of Transportation
Contract No. 0123-0456
Project Description: Reconstruction of Route 454 in New Haven

TITLE: Bridge No. 987
DATE ISSUED: 2/7/2007

PROJECT: 0123-0456 & 123-457, Reconstruction of Route 454 in New Haven

CONTRACTOR RESPONSIBLE: Dave’s Rebar Installers, LLC

TO: ABC General Contractors, Inc.
2345 Main Street
Bridgeport, CT

Attention: Mr. Robert Smith, Project Super

DATE CONTRACTOR IS REQUIRED TO COMPLETE BY: 2/15/07
DATE CONTRACTOR STARTED:
DATE CONTRACTOR COMPLETED:
DATE OF DWR REPORTED ON AND USER ID: 2/7/07, ferrard

DESCRIPTION OF NON-COMPLIANCE:
Subcontractor Dave’s Rebar Installers are currently using the wrong type of rebar for wingwall 1A footing on Bridge No. 987. Contractor told that rebar should be #7 not #5 as shown on plan sheet no. 31 of 156. Contractor has ordered the correct size and type of rebar and will remove bars previously installed.

SIGNATURE:
PRINTED NAME: David Ferraro
Date: 2/7/07

cc: Paul H. Breen
Steve DiGiovanna
Alan Warner
Figure 1-3.30 Compliance Notice

Connecticut Dept. of Transportation

Contract No. 0123-0456
Project Description: Reconstruction of Route 454 in New Haven

COMPLIANCE NOTICE
NO. 0123-0456-0001CN

TITLE: Bridge No. 987
DATE ISSUED: 2/7/2007

PROJECT: 0123-0456 & 123-457, Reconstruction of Route 454 in New Haven

CONTRACTOR RESPONSIBLE: Dave’s Rebar Installers, LLC

TO: ABC General Contractors, Inc.
2345 Main Street
Bridgeport, CT

Attention: Mr. Robert Smith, Project Super

DATE CONTRACTOR STARTED:
DATE CONTRACTOR COMPLETED:
DATE OF DWR REPORTED ON AND USER ID: 2/7/07, ferrard

CORRECTIVE ACTION COMPLIANCE:

Subcontractor Dave’s Rebar Installers are currently using the wrong type of rebar for wingwall 1A footing on Bridge No. 987. Contractor told that rebar should be #7 not #5 as shown on plan sheet no. 31 of 156. Contractor has ordered the correct size and type of rebar and will remove bars previously installed.

SIGNATURE:__________________________
PRINTED NAME: David Ferraro
Date: 2/7/07

cc: Paul H. Breen
 Steve DiGiovanna
 Alan Warner
1-311 Working Drawings

1-311A Working Drawings for Permanent Construction

When working drawings for permanent construction are required, the Contract should require the Contractor to submit nine (9) copies of the working drawings directly to the appropriate Principal Engineer in the Office of Engineering for review (State Design or Consultant Design as the case may be). The Office of Engineering is responsible for transmitting the submission to other reviewing units as required for comments. Examples of working drawings for permanent construction are: Proprietary Retaining Walls, Precast Concrete Box culverts, Pot Bearings, Modular Joints, Permanent Soil Nail Wall, Tie-Backs, Micro-Piles, etc.

The Working Drawings are reviewed and stamped in accordance with the requirements of the Bridge Design Manual. After review, five (5) stamped copies of the working drawing submittal are sent to the District administering the contract with recommendation regarding acceptance.

The District is to forward two (2) copies of the working drawing submittal along with the review comments and statement regarding the acceptability of the submission to the contractor. The District is responsible to ensure that all review comments are appropriately addressed prior to the Contractor starting work.

The District is to retain one (1) copy of the submittal in the District files, and one (1) copy in the field office files. After all comments have been resolved, the District shall forward one (1) copy to the Materials Testing Division.

The District is to direct the Contractor to submit reproducible mylars of the working drawings after the Contractor has addressed the review comments and made necessary changes. The District is responsible for including these mylars as part of the "As-Built" Drawings.

1-311B Working Drawings for Temporary Construction

When working drawings for temporary construction are required, the Contract should require the Contractor to submit nine copies of the working drawings to the District. The District will forward the submittal with a Letter of Transmittal to the appropriate Principal Engineer in the Office of Engineering for review (State Design or Consultant Design as the case may be) when necessary. The Office of Engineering unit will not review the Design computations in depth.

The Working Drawings will be reviewed and stamped in accordance with the requirements of the Bridge Design Manual. After review, five copies of the working drawing submittal will be returned to the District administering the contract with a recommendation regarding acceptance.

The District will forward three copies of the working drawing submittal with the review comments to the Contractor along with a statement regarding the acceptability of the working drawing submission. The District will be responsible for the resolution of all comments prior to the Contractor starting work.

The District will retain one copy of the submittal in the District files, and one copy will be retained in the field office files.

1-311C Examples of Working Drawings That Require a Review by the Office of Engineering

Permanent Construction: Proprietary Retaining Walls, Precast Concrete Box culverts, Pot Bearings, Modular Joints, Permanent Soil Nail Wall, Tie-Backs, Micro-Piles, etc.,

Temporary Construction: Temporary Sheet Piling, temporary Soil Nail Walls, Cofferdams, temporary Superstructure Supports, Falswork, Jacking, Structural Steel Erection Plans, Post-Tensioning Procedures, Containment and Collection Systems for painting, etc.
In general, the working drawings that can be reviewed by the District are minor traffic control plans, submissions related to the implementation of construction staging plans, minor steel erection schemes, bearing replacement or repair schemes, barrier relocation plans, etc.

1-312 Shop Drawings

When shop drawings are required the contract should require the contractor to submit nine (9) copies of the shop drawings directly to the appropriate Principal Engineer in the Office of Engineering or Office of Traffic for review (State Design or Consultant Design as the case may be).

The drawings must include erection plans, material lists, and material designated for project use, such as:

- Reinforcing steel,
- Anchorage details for rail attachments at the ends of bridge parapets,
- Structural steel,
- Pre-tensioned concrete beams and deck units,
- Post-tensioned concrete superstructures,
- Post-tensioned pier caps,
- Concrete for structures (remain-in-place forms),
- “Modular” expansion joints,
- Mechanical/electrical components of movable bridges,
- Elastomeric compression seals,
- Bearings,
- Bridge scuppers,
- Pipe for bridge drainage,
- Stain protection,
- Metal bridge rail,
- Open steel sidewalk grating,
- Granite facing, and
- Illumination.

In addition to bridges, shop drawings are required for side-mounted sign supports, bridge-mounted sign supports, and tubular and truss sign supports. These sign support drawings are submitted to the Office of Traffic Engineering.

The contractor should provide the District with a copy of the letter of transmittal for all shop and working drawings that are not sent directly to the District. The Inspector must maintain a log in the Volume IV or in an electronic file to track the acceptance of shop and working drawings and notify the Project Engineer if reviews are not timely.

1-313 Final Revisions of Plans and Cross Sections (As-Builts)

The Chief Inspector must make sure the information necessary to create the as-built drawings are kept up to date on white paper plans as the Project progresses. This duty can be delegated to other inspectors; however, the Chief Inspector is responsible for making sure it is done. At a minimum the white paper plans should be updated every other week. Periodically, as part of the review of project records, the Project Engineer is to verify that as-built plans are being updated concurrently with the physical work on the project and note this review by initialing and dating the front sheet of the white paper as-builts.

When the Contractor is required to produce as-built drawings (i.e. electrical or vertical construction projects), the Chief Inspector should periodically remind the Contractor of the requirement to submit as-built drawings and ask for an update on the status.
The following guidance is offered for the preparation of as-built drawings:

Responsibility of Contracting Engineers. A contracting engineer must indicate the as-built features of a project in either ink on the original tracings or the digital design file, if required. The work must be accomplished in accordance with the terms of the agreement with the State. If a contracting engineer must indicate the as-built features on the tracings, it is not necessary to revise a set of prints of the plans for the use of the Highway Design Section.

Responsibility of Department Forces. Designated District staff is to revise the original tracings or digital design files on State or federal-aid projects to show the project as-built.

Methods of Showing Revisions. If paper transparencies have been added to the plans to indicate revisions resulting from Construction Orders during construction, the revisions are transferred to the corresponding original tracings. The following notations are inscribed in a conspicuous place on the original tracings:

- **Title Sheet.** Use the following guidelines for the title sheet:
 - **Title.** Show the corrected beginning and ending stations, and the horizontal length of the project in the title. Cross out original figures.
 - **Inscription.** Inscribe the following in a conspicuous place on the sheet:
 - Construction Started Date ________________
 - Construction Completed Date ________________

- **Index Plan and Index Profile Sheet.** Do not correct the plan and profile sheets. In a conspicuous place, inscribe this note: “THIS SHEET NOT CORRECTED.”

- **Detailed Estimate Sheet.** Inscribe this note somewhere on the detailed estimate sheet: “THIS SHEET NOT CORRECTED.” If quantities are on the title sheet, inscribe this note: “THESE QUANTITIES NOT CORRECTED.”

- **Typical Sections.** Show any changes in the typical sections and add the note, “TYPICAL SECTION CORRECTED.”

- **Plan Sheets.** If either the beginning or ending stations of the project have been changed, make the necessary correction and label: “BEGINNING OF CONSTRUCTION” or “END OF CONSTRUCTION.”

Use the following guidelines to revise the plan view:

- **General Construction Notes.** General construction notes are not to be corrected.
Culverts. The locations and lengths of culverts must be changed, except that no change in location is made unless the culvert has been moved 3 m (10 ft.) or more from its original proposed location or unless the angle of crossing has been radically changed. If the original culvert notes were listed individually adjacent to each proposed culvert and no change has been made in the length or size, simply check the note with a black ink “x” mark.

If either the length or size of the culvert has been changed, cross out the incorrect figures and insert the correct ones immediately above. If new pipes were installed that were not originally proposed, plot the pipe and label it. For example, “28 ft.—28 in. × 20 in. (8.5 m—680 mm × 500 mm) A.C.C.M. PIPE ARCH INSTALLED.”

Catch Basins, Manholes, Underdrains, Endwalls and Ditches. Use the procedure for culverts. For example, “INSTALLED” or “DITCH EXCAVATED.”

Drives and Barways. Plot as constructed. If not constructed, cross out.

Wire Fences. Plot as constructed. Label “WIRE FENCE ERECTED” or “CHAIN LINK FENCE ERECTED.”

Stone Wall Fences. Plot in the locations constructed. Label “STONE WALL FENCE ERECTED” or “FARM WALL ERECTED.”

Single Posts. If not proposed on the plan, plot and label “SINGLE POST ERECTED.” Single poles at each end of Guide Railing need not be shown.

Intersecting Roads. Outline as constructed. Give the type of surface. Label “APPROACH CONSTRUCTED.”

Temporary Approaches. Indicate by heavy broken lines and label “TEMPORARY APPROACH CONSTRUCTED.”

Slope Lines. Do not revise.

Relocation of Buildings, Poles, Etc. Show in the new locations.

Channel Relocation. Plot in the location actually constructed. If not originally proposed, plot and label “CHANNEL EXCAVATED.”

Riprap. Show the outline as constructed. Label “RIPRAP INSTALLED.”

Curbing. Show the beginning and end, with the note, “(TYPE) CURBING INSTALLED.”
Profile Sheets. Use the following guidelines for the profile view:

- **Culverts, Catch Basins, Manholes and Underdrains.** For structures 381 mm (15 in.) or greater in diameter, plot accurately all field changes in elevation and location. Use the procedure for plan notes for these items.

- **Grade Changes.** Any field change in grade of 91 mm (0.3 ft.) or more must be shown with a broken line. Label “GRADE AS CONSTRUCTED.”

- **Subbase.** Make all changes in subbase with correcting notes, such as “STA. _________ TO STA. _________ (DEPTH),” or if no change, check the original notes.

Bridge Sheet. Show all changes in the structures. Do not correct bar lists.

Cross-Section Tracings. Revise the final cross-section tracings only if changes in the original design were authorized or if embankment material is to be deducted from the borrow material.

1-314 Recycling of Construction Materials

Department policy encourages the reuse and recycling of materials on construction projects. To determine the amount of material recycled, a Recycling Report for Construction Projects must be completed twice each year, January through June and July through December. The reports are due no later than the 20th of the following month.

Figure 1-3.31 lists the types of material that are reported.

Figure 1-3.31 Type Designation of Recycled Material

<table>
<thead>
<tr>
<th>Type Designation</th>
<th>Kind of Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demolition debris—concrete and bituminous concrete</td>
</tr>
<tr>
<td>B</td>
<td>Wood—clearing and grubbing, structures and cable rail posts</td>
</tr>
<tr>
<td>C</td>
<td>Steel—reinforcing bars, sheeting, beam rail, etc.</td>
</tr>
<tr>
<td>D</td>
<td>Glass</td>
</tr>
</tbody>
</table>

See Figure 1-3.32 for a copy of the form. Enter the appropriate reporting period, year and project number. Then complete the form as follows:

- **Reuse of Material On Site.** Enter the type of material, either A or B as described above, obtained from within the limits of the project and reused on the same project.
- **Reuse of Material Off Site.** Enter the type of material, either A or B, obtained from within the limits of the project and transported off site for reuse.

- **Imported Recycled Material.** Enter the type of recycled material, either A or B, imported from beyond the limits of the project. Note: Recycled materials from beyond the limits of the project must be accompanied by a materials certificate and certified test report indicating that the material is environmentally acceptable and structurally sound in accordance with Article 1.06.07 of the Standard Specifications.

- **Original and Final Locations.** If possible, use station numbers and describe the application for all locations. If the material was used off site but on another CONNDOT project, list the project number and application where used.

- **Percentage of Recyclable Material Used.** The percentage is derived from the amount of recyclable material utilized in an application. For example, Project XYZ has one metric ton (1.1 ton) of bituminous material that has been removed, the project has a requirement for 10 metric tons (11 tons) of fill. The one metric ton (1.1 ton) of bituminous was used as part of the fill. This yields 10 percent of recyclable material used.

![Figure 1-3.32 Recycling Report](image)

All quantities must be reported in metric tons (tons). Use the following factors for converting volumes to mass.

- **Type A, Bituminous** 1 cu. yd. = 3105 lbs. = 1.55 tons
- **Type A, Concrete** 1 cu. yd. = 4050 lbs. = 2.02 tons
- **Type D, Glass** 1 cu. yd. = 3105 lbs. = 1.55 tons
1-315 Retention of Project Records

The following list of project records, documents and materials must be retained by the District after projects are accepted:

- The Contract,
- Field books, all Volumes,
- Semimonthly and monthly payment estimates,
- Construction Orders with backup,
- All delivery tickets for bituminous concrete, processed aggregate base, concrete, etc.,
- Material certifications and all Laboratory reports,
- Nuclear Density Tests and Data Sheets (Forms CON-125 and MAT-438),
- Pile Driving Logs (Form CON-87),
- Environmental correspondence, logs, etc.,
- Utility forms (Forms CON-40 and CON-41),
- Contractors' payrolls,
- EEO/Affirmative Action reports (for 30-, 60-, and 90-percent project completion),
- Labor Wage Checks (Form CON-131),
- Shop drawings,
- Hazardous waste manifests,
- Stores requisitions and transfer vouchers,
- Purchase orders and requisitions,
- Correspondence,
- Consultants' billings with backup,
- Computer disks (properly labeled), and
- Any other related records, either required or requested.

The above records and materials must be retained by the District for one of the periods below whichever is later:

- Seven (7) years after the issuance of the project's Certification of Acceptance, or
- Three (3) years after the final federal payment is made, providing there is no pending litigation. Records must be retained until all litigation is resolved.
1-316 Requests for Information and Requests for Change

Request for Information (RFI) - Is a request for clarification of the contract documents. This can include clarification of intent of information shown on the plans or in the specifications, requests for information missing from contract documents and interpretation of conflicting information shown on the plans or in the specifications.

Procedure for RFI - The Prime Contractor sends the RFI to the Project Staff/District Field Office. If the RFI cannot be resolved by the District Staff the RFI is sent to the Designer for resolution. The Designer prepares a response addressed to the District and the District responds to the Contractor. A response to an RFI should be within 7 days.

Request for Change (RFC) - This includes all requests by the Contractor to substitute materials specified in the contract documents. This also includes requests to change the methods of construction as detailed in the contract documents. Before any RFC by the Contractor will be considered, a formal written request from the Contractor must be made to the District and written approval secured before any change in the design will be sanctioned.

Procedure for RFC - The Prime Contractor sends a written request to the District’s ADE. The District determines the appropriate parties for review. If design review is required, the request will be sent to the appropriate Project Manager in Design. Design will forward the request, if required, to the Consultant Designer for their comment and/or recommendations. Design will forward their recommendation to the District after reviewing the request and/or the Consultant Designer recommendations. The District will make the final decision and approve or not approve the request. A written response of the decision will be sent to the Contractor. A response to an RFC should be within 30 days.
Chapter 4 – Materials Testing

1-401 Overall Responsibilities

The quality of materials used on the project are evaluated and accepted in various ways, whether by testing of samples, visual inspection, or certification of compliance. The Division of Materials Testing (DMT) Representative and the District Construction Representative have separate and important responsibilities for inspecting, sampling and testing of these materials. Complete cooperation by both is required to effectively evaluate and determine the compliance of materials to the project specifications.

1-401A District Construction (Designated Representative)

District Construction does the following:

- Furnishes to the DMT, copies of test reports for certain materials tested by the District, including
 - in-place nuclear density tests for all materials, such as bituminous concrete, structural backfill, embankment and base materials, and
 - air content, temperature, and slump tests for Portland Cement concrete.

- Ascertains that project inspection, sampling, and testing on federally funded National Highway System projects is performed by NETTCP certified personnel. All other funded projects will have qualified personnel perform project inspection, sampling and testing.

- Special mixes are submitted and revised for content to Special Provisions.

- Notifies the DMT, of the final disposition of all materials recommended for rejection by the Laboratory using a MAT-103 - Report of Rejected Materials.

- Ascertains that samples for all materials incorporated permanently or temporarily into a project are representative of the material used and meet the contract specifications.

- Notifies the DMT when additional items that require testing are added to the Contract.

- Submits material samples or documentation in accordance with the “Minimum Schedule for Acceptance Testing” and the “Minimum Schedule for Assurance Testing.”

1-401B Division of Materials Testing (Designated Representative)

The Division of Materials Testing does the following:

- Ascertains that laboratory inspection, sampling, and testing on Federally funded National Highway System projects is performed by NETTCP certified personnel according to Contract Specifications. All other funded projects will have qualified personnel perform inspection, sampling and testing.
- Responds to Requests for Tests in a timely fashion and posts recommendations for material acceptance or rejection within SiteManager.

- Posts detailed results of testing within SiteManager where possible.

- Issues final material certification to FHWA for oversite projects and for other construction projects to the Construction Administrator.

- Is available for consultation and acts as an adviser to Office of Construction on all matters pertaining to the sampling, testing, fabrication, inspection and production of materials.

- When a test is rejected, the DMT will notify the project staff directly and follow up with a report of the rejected test.

1-402 Standard Procedures

1-402A Request-for-Test/Material Quantities

The primary responsibility for adequate and sufficient testing rests with the project Chief Inspector. The Chief Inspector must comply in all regards to the requirements stipulated in the “Minimum Schedule for Acceptance Testing,” and the “Minimum Schedule for Assurance Testing” or as directed. The Project Engineer is responsible for providing adequate supervision and instructions to the Inspector to ensure adherence to material testing requirements.

The Inspector is responsible for taking samples, so that the Laboratory will be able to complete the tests and post the results in SiteManager before the Contractor desires to use the material. It is the Contractor's responsibility to have materials on the Project in sufficient quantities early enough to allow for testing.

The Chief Inspector is responsible for scheduling assurance testing as stipulated in the “Minimum Schedule for Assurance Testing.” Notification of the Laboratory Supervisor is required to have appropriate assurance testing performed.

The Chief Inspector must arrange for the delivery of samples of all materials to be used on the job, except those to be tested at the source of supply or by the District, to the DMT. Material submitted for testing can only be sampled or witnessed by State forces or other designated representatives employed by the State. Design approval of cuts (catalog and sheets) or drawings of materials is similar to shop drawing approval by the Bridge Design Section. The Inspector is responsible for inspecting and verifying the materials involved are represented by the approved cuts.

A standard form Request for Test, Form MAT-100, must accompany any acceptance or assurance sample. The form used for non-SiteManager jobs is shown in Figure 1-4.1, and is explained in detail in the Section 1-405 “Request for Materials Test (Form MAT-100).” The form generated by SiteManager is shown in Example 1-4.2, and directions on how to complete the form are contained in the “SiteManager Help Files.” Sampling, labeling and shipping must be in accordance with the instructions contained in “Schedule of Minimum Requirements for Sampling Materials for Test.”

A summary must be included in the Inspector's records so that the number of each test taken, under the appropriate categories, can be readily checked against the total required and against the quantity paid for on the monthly estimate.
The Supervising Engineer supervises a monthly review of each project to ensure that the number of tests for each item included for payment on the monthly estimates is equal to or greater than the minimum number of tests required for that quantity of material. The tabulation of minimum testing requirements for each project must be revised if there is a change in the contract quantity. Quantity changes are documented with Construction Orders.

1-402B Test Results

Materials cannot be used until a favorable report of the test is received from the DMT, except in special cases as provided in the Specifications or approved by the Assistant District Engineer. When a verbal or email report is received from the Materials Testing Section or the District, either recommending acceptance or rejection of the material, a notation is generally made on the Request for Test by DMT personnel. Project personnel can always access the testing status through SiteManager after they are posted.

Typically results of testing performed by DMT personnel are never provided directly to the Contractor. Any requests from a Contractor for test results should be coordinated through the District or the Office of Construction.

1-402C Samples Recommended for Rejection

If the DMT determines that a sample does not meet specification, a representative from the Division contacts the Project Field office and provides the results of the tests. A detailed test report may also be issued. Copies of all test reports are on file at the Division of Materials Testing.

1-402D Buy America Requirements

As stated in Section 1.06.01 of the Standard Specifications, “All permanently incorporated steel and iron used in the construction of the project must have been produced and fabricated in the United States.” DMT personnel review all documentation submitted with requests for test for steel and materials containing steel and recommend acceptance or rejection based on this review. As part of the enforcement of Contract Specifications for materials, it is important that all project personnel be aware of this requirement and notify their chain of command and the DMT if there is evidence or suspicion that this requirement is not being met.

As further stated in Section 1.06.01, “The Contractor may request, in accordance with Section 635.410(b)(4) of Title 23 CFR, approval to include a minimal amount of steel in the Project.” These requests must be made in writing. The District will approve these requests provided the overall value of the steel, including delivery cost to the Project, is less than 1/10 of 1% of the total Contract price or $2,500, whichever is greater. When multiple approvals are requested the combined total can not exceed the minimal amount defined above.

There may be other circumstances where the Contractor proposes to use foreign steel and may request that the District seek a waiver. Should this occur, the District will obtain from the Contractor details of the efforts made to secure domestic steel. The District will forward this information to the Office of Construction which may request a waiver from the Federal Highway Administration or other administering agency for the specific Project.

Foreign steel should never be incorporated into the Project unless approved. Inspection personnel are required to track the value of all foreign steel delivered to the project and provide documentation to the DMT at the conclusion of the Project that substantiates required waivers and/or approvals have been obtained.
Request for Test (Form MAT-100)

STATE OF CONNECTICUT - DEPARTMENT OF TRANSPORTATION

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Item Number</th>
<th>Item Quantity Represented</th>
<th>Material Represented</th>
<th>Additional Laboratory Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fed Aid No.</td>
<td>1</td>
<td>48</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>Sample No.</td>
<td>2</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>Kind of Material</td>
<td>3</td>
<td>55</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>Source of Supply</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Taken From</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location of</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT-1 Completed by</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Sampled</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone #</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Agency</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT Number</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit of Material</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where Material Will be Used</td>
<td>15</td>
<td>60</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>DOT Number</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status Assigned</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1-4.2 Request for Test (Form MAT-100) SiteManager

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>C0108-0154C0041D</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Code</td>
<td>04901</td>
<td>Lab: Item# 0751003 C# 569553 Lab: Item# 0651015 C# 569545 Lab: Item# 0651020 C# 569547 Lab: Item# 0651037 C# 569549 Lab: Item# 0751002 C# 569552 Lab: Item# 0751001 C# 569551 Lab: Item# 0651064 C# 569550 Lab: Item# 0651</td>
</tr>
<tr>
<td>Material Description</td>
<td>Bedding Material</td>
<td></td>
</tr>
<tr>
<td>Sample Date</td>
<td>09/27/2002</td>
<td></td>
</tr>
<tr>
<td>Sampled By</td>
<td>Siregusa, Albert A.</td>
<td></td>
</tr>
<tr>
<td>Source of Supply</td>
<td>ENNIEST JOLLY & SONS, S&G, DANIENSON (US)</td>
<td></td>
</tr>
<tr>
<td>Procurer/Supplier Code</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>Material Rep Qty</td>
<td>2,000.00</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>CY</td>
<td></td>
</tr>
<tr>
<td>Batch Number</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Sample Taken From</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Purpose/intended Use</td>
<td>bedding material for drainage</td>
<td></td>
</tr>
<tr>
<td>Location of Sample</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Where Material Will Be Used</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Contract Number</td>
<td>0108-0154</td>
<td></td>
</tr>
<tr>
<td>District Number</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Federal Aid Number</td>
<td>1XE-508(107)</td>
<td></td>
</tr>
<tr>
<td>Field Office Phone Number</td>
<td>(960)856-8960</td>
<td></td>
</tr>
<tr>
<td>Sample Status</td>
<td>ACCEPTED</td>
<td></td>
</tr>
<tr>
<td>Date of Assigned Status</td>
<td>09/27/2002</td>
<td></td>
</tr>
</tbody>
</table>

Material Test Report

<table>
<thead>
<tr>
<th>Project Number</th>
<th>LIN</th>
<th>Item Code</th>
<th>Item Description</th>
<th>Lab Number</th>
<th>Material Rep Qty</th>
<th>Item Rep Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0108-0154</td>
<td>0048</td>
<td>0651001</td>
<td>BEDDING MATERIAL</td>
<td>1,145.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0049</td>
<td>0651011</td>
<td>12" R.C. PIPE</td>
<td>33.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0050</td>
<td>0651012</td>
<td>15" R.C. PIPE</td>
<td>259.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0051</td>
<td>0651013</td>
<td>18" R.C. PIPE</td>
<td>228.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0052</td>
<td>0651015</td>
<td>24" R.C. PIPE</td>
<td>157.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0053</td>
<td>0651019</td>
<td>30" R.C. PIPE</td>
<td>83.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0054</td>
<td>0651020</td>
<td>42" R.C. PIPE</td>
<td>37.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0055</td>
<td>0651556</td>
<td>12" CORRUGATED PE PIPE (SMOOTH INTERIOR)</td>
<td>14.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0056</td>
<td>0651557</td>
<td>18" CORRUGATED PE PIPE (SMOOTH INTERIOR)</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0057</td>
<td>0651664</td>
<td>48" CORRUGATED ALUMINUM PIPE</td>
<td>12.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0072</td>
<td>0751001</td>
<td>UNDERDRAIN WITH 12" SLOTTED R.C. PIPE</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0073</td>
<td>0751002</td>
<td>UNDERDRAIN WITH 15" SLOTTED R.C. PIPE</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0074</td>
<td>0751003</td>
<td>UNDERDRAIN WITH 18" SLOTTED R.C. PIPE</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0108-0154</td>
<td>0075</td>
<td>0751711</td>
<td>6" UNDERDRAIN</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

file://C:\Documents%20and%20Settings\pauliv\Desktop\Mat1%20Hard%20Copy.htm 12/8/2004
1-402E Structural Steel Fabrication Inspection Off-Site

In accordance with the notification required in Section M06.02-13(a), the Division of Materials Testing provides on-site inspection at any facility fabricating structural steel which includes, but is not limited to, bridge girders or trusses, building trusses, sign supports, span poles, railings, or any fabricated steel item that is controlled by a shop drawing. The inspection is intended to monitor the fabricator’s adherence to the Department’s and project specifications and advise project staff on the progress of the work. It is the responsibility of DMT staff to keep District project personnel informed so that any action that may be required on the part of the Contractor can be initiated as soon as possible.

In accordance with Section 1.05.09, this inspection “does not relieve the Contractor of its responsibility to perform the project work properly, to monitor the work of its subcontractors, and to institute and maintain quality control procedures appropriate for the proper execution of the project work”. While every attempt is made to assure that steel is fabricated correctly at the fabrication facility, project personnel should be aware that incorrect, incomplete, or unacceptable material may be delivered to the project site. The Department’s role is to perform Quality Assurance, not Quality Control. Minimally, a visual inspection of the materials delivered to the project site should be performed by project personnel to detect any damage during transportation. It should be made clear to the Contractor that structural steel is not accepted at any stage prior to being properly erected or installed in its final location.

1-403 Non-standard Testing Procedures

The designer (with input from the D.E. and the DMT representative) establishes the method of processing for approval of all items for which a standard testing procedure has not been identified in the special provisions.

1-404 Minimum Testing Requirements Acceptance and Assurance

1-404A General

All materials are subject to inspection, testing, and acceptance or rejection at any time during preparation and use. Contract Items within Site Manager that include materials that require acceptance testing, assurance testing, or certification will have all material(s) codes assigned to each project by the Division of Materials Testing. The Project Engineer is responsible for deleting materials not used with that item on each project. The testing requirements (frequency, sample size etc…) for each specific material are included within Site manager. These requirements are also listed in the “Schedule of Minimum Requirements for Sampling Materials for Test”. It includes the following information:

- the persons responsible for sampling,
- the sample size,
- the location for sampling,
- the frequency for acceptance sampling,
- the frequency for assurance sampling, and
- any special instructions.

It is required by Federal and State regulations that at least the minimum number of tests be conducted. Additional sampling and testing may be needed to assure acceptability of materials.
Project sampling and testing falls into three general classifications:

- **Quality Control samples** are those samples obtained by the Contractor to provide quality control of his process/material.

- **Acceptance samples** are taken and tested, by DOT personnel to determine material compliance with the Contract specifications.

- **Assurance samples** are taken by or under the observation or supervision of the Materials Testing Section, personnel of the Office of Construction, representatives of the Federal Highway Administration or representatives of other federal agencies to provide an independent check on the quality of the sampling and testing equipment, and the personnel performing these tasks. Assurance testing is extremely important in that it validates the results and recommendations of all the acceptance sampling and testing done on the project.

- **Verification samples** are used to validate the contractor’s quality control test data used in process control for the product.

1-404B Assurance Samples and Tests

In accordance with the “Schedule of Minimum Requirements for Sampling Materials for Test,” the following items/materials require assurance samples and/or tests:

- Borrow
- Concrete Pavement
- Concrete Structures
- Earth Embankment
- Hot Mix Asphalt
- Processed Aggregate Base
- Subbase
- Aggregates for Ready Mix Concrete

To ensure that required assurance sampling and testing is performed as required including qualification of sampling and testing personnel, it is necessary that the District project personnel notify Laboratory personnel of the need for these samples and tests, with as much advance notice as possible. Assurance samples and tests performed by Laboratory personnel must be in accordance with the following:

- When assurance samples are required for materials subject to gradation analysis, Laboratory personnel must be contacted to witness the sampling procedure at the project site. The samples are then transported to a District Laboratory and halved in accordance with AASHTO T248. One-half of the assurance sample is tested at the District Laboratory. If desired by project personnel, this sample can additionally serve as the acceptance sample for the appropriate test coverage. The other half of the assurance sample is for laboratory use and is utilized for the purpose of making independent checks on the reliability of the results obtained form various equipment, personnel, and testing facilities. If any set of results shows a variation greater than the expected deviation, it is the responsibility of the Central Laboratory to investigate the cause and, if necessary, to see that appropriate corrective action is taken.
• When assurance tests are required for PC Concrete testing, Laboratory personnel must be contacted to witness all required sampling and testing procedures at the project site. Laboratory personnel record on the assurance testing forms all pertinent testing data, observations of the testing procedures, and the names of all persons involved in the tests and molding of the specimens. Laboratory personnel additionally perform side by side air content testing, verify equipment calibration and use of the proper testing and equipment being utilized at the field testing sites. If there are any deficiencies, District Construction offices are notified via memorandum that corrective action is required.

• Assurance tests for concrete cylinders must include air content, temperature, and slump tests on the plastic Portland cement concrete. The technician indicates on the assurance testing form the names of all persons involved in the tests and molding of all specimens. The cylinders molded during an assurance test can be submitted for acceptance testing provided they are submitted with a separate MAT-100. It is possible that the material could be recommended for rejection, and the assurance test could be acceptable or vice versa.

• When assurance testing is required for project field density testing, Laboratory personnel must be contacted to observe the test site preparation and testing procedure performed by the District density gauge operators. Two nuclear density gauges are used in the assurance testing procedure. One gauge will be used by District operators, and the second gauge and operator is provided by the Laboratory. Upon completion of a test, Laboratory personnel perform a test in the same location, using a second density gauge, to verify test results obtained by the District operator. Corrective action is required if there are any deficiencies. The District test report must be signed and dated by Laboratory personnel indicating they have witnessed the test procedure. The test report completed by Laboratory personnel is marked “Assurance Test” and placed in the appropriate project folder.

1-405 Requests for Test (Form MAT-100)

A Request for Test (Form MAT-100) must accompany all acceptance and assurance samples, Certified Test Reports, and Materials Certificates and Approved Product List items submitted to the Laboratory. Refer to Figures 1-4.1 and 1-4.2, for examples of Form MAT-100.

1-405A SiteManager

The Inspector should consult SiteManager documentation for guidelines in inputting and printing a MAT-100 from SiteManager. A major difference between the SiteManager MAT-100 and the previous hardcopy version MAT-100/MAT-1 are the fields labeled “Smpl Type” and “Acpt Meth.”

“Smpl Type” is the type of sample being submitted, and has the following choices available in the pull-down menu.

• Acceptance (Production) – will be used for all samples submitted where the project is looking for a recommendation of acceptance or rejection.
• Assurance – will be used for all samples/testing used to validate equipment or personnel performing the acceptance testing.
• Bid Sample (Not for Construction use)
• Information Only – use when results are not used to determine acceptance or rejection. Example, concrete cylinders broken to bridge deck opening or form removal.
• Maintenance Sample – for use by maintenance.
• Source Sample – for use by lab personnel
• *Spaces* - blank
• *Stores Sample* – for use by lab personnel.

It is important that project personnel select “Acceptance (Production)” when submitting a sample for material and quantity that is being incorporated into the project. This is the only type of sample that will provide material test coverage for the project.

It is equally important that “Assurance” be selected for those materials that need assurance testing coverage. A project must perform assurance testing in accordance with the minimum schedule of sampling materials for test, or else assurance testing will be listed as a deficiency on the final materials certificate.

“Acpt Meth” is the method used to determine if the material will be recommended for acceptance or rejection. The following are available from the pull-down menu. Examples of what materials apply to these methods are shown in parentheses.

- *Field Test* - (ex. HMA and Soil Density,)
- *Lab Test, Mat Cert & Certified Test Report* - (ex. Epoxy pavement markings)
- *Laboratory Test* - (ex. Aggregates)
- *Mat Cert & Certified Test Report* - (ex. Anchor Bolts)
- *Material Certification* - (ex. Construction Barricades, Impact attenuators)
- *PC-1* - (ex. Catch basin components)
- *Past Performance (Lab use only)*
- *Qualified Products List* -(ex. Erosion Control Matting, Geotextiles)
- *Spaces*
- *Visual Inspection* -(ex. Riprap, stone walls)

Project personnel are responsible for selecting the appropriate acceptance method for the material and sample type. For example, a MAT-100 for gravel that is an “Acceptance (production)” sample type and a “Lab Test” will be recorded as a test on a physical sample. A MAT-100 for gravel that is the same sample type, but is a “Field Test” will be recorded as a test at the project site on an in-place material.

1-405A-1 Item Materials (SiteManager)

Construction Order items and material information should be brought to the attention of the Division of Material Testing as soon as it is possible and verified at or near the completion of the project. (For activities related to materials testing at project start up refer to Volume 1 Chapter 2 Section 1-201).

At project start up, periodically throughout the course of the project, and again prior to requesting the final material certificate the Chief Inspector or Resident Engineer will review the Item Material Assignment by Item Code report.

In order to promote consistency from project to project and District to District, the ability to modify the association of materials to contract items must reside solely with DMT personnel. Project personnel must contact DMT personnel via email to modify these associations.

1-405B Hardcopy (Non-SiteManager)

The Inspector should use the following guidelines for completing the hardcopy version of Form MAT-100:

- *Contract Number*. Enter the project number, purchase order number, or both if applicable.
- **Sample Number.** Enter the number assigned to the sample. The sample number will be reported back exactly as submitted.

- **Kind of Material.** Enter the complete name of the material represented by the Request for Test form. (Example: processed stone, bank run gravel etc. –not item names such as Processed Aggregate Base or Subbase which the particular material are used under and paid for.) Only one material can be entered on each form. The following are the only exceptions to the one-material-per-form rule:
 - Deformed steel bars, where different sizes are allowed on the same form.
 - Hardware and accessories for fencing and guide rail.
 - ACCMP and collars.

- **Source of Supply.** Enter the full name of the manufacturer, source of production, or natural deposit of the material.

- **Location.** Enter the town or city and state where the source of supply is located. If the source is at a foreign location, enter the city, province (if applicable) and country.

- **Sample Taken From.** Identify the type of conveyor or lot from which the sample was taken-, stockpile, project, end of chute, end of pump, etc.

- **Location of.** Enter the location where the sample was actually taken. For example, the sample may be taken from a stockpile, at the plant, or on the job. List the specific station and distance from centerline for samples taken at the job site.

- **MAT-100 Completed By.** Enter the names of the individuals who perform the actual sampling. If Laboratory personnel or others observe or sample, their names should also appear in this space. Witnesses for assurance samples should be shown in parentheses.

- **District.** Enter the number of the District requesting the test on the material. When a Request is prepared by an agency other than a District, such as Purchasing or Stores, this space should be completed per the direction of the Director of Materials and Research.

- **Purpose.** Indicate the purpose for which the material will be used. For example, “traffic signals,” “drainage,” “signing,” “subbase” etc.

- **Item Number.** Specify the contract item number for the material represented by the test. If the item being tested is subject to a special provision in the contract, place an “A” following after the item number. The contract item numbers must be entered correctly. They are the bases for quantity totals and estimates and for materials certification at the close of the project. If the same material is used for more than one contract item, up to 10 item numbers can be put on one Request.

- **Item Quantity Represented.** Enter the quantity of material that is represented by the test sample. Specify the proper quantity for each item number by the pay unit.

- **Material Quantity Represented.** Enter the quantity of material that is represented by the test sample.

- **Additional Laboratory Numbers & Laboratory Test No.:** No longer used.
• **Unit of Material.** Some materials have quantities and units of measure different from that for the basis of payment. For example, the item quantity unit of measure for concrete sidewalk is square meters, but the material quantity unit of measure is cubic meters.

• **Date Sampled.** Enter date sample taken.

• **Where Material will be Used.** Enter the name of the town.

• **Status Assigned.** The status is entered by the Laboratory.

1-406 Specialty and Proprietary Items

Some specialty items incorporated into transportation projects are not physically tested by the DMT. Recommendations for these materials usually is contingent on receipt of a satisfactory Materials Certificate, Certified Test Report, or both. In general, the following procedures pertain to the testing of specialty and proprietary items.

Prior to the award of the contract, the Contractor is required to state on Form CON-83 the sources of all items intended to be supplied for the Project. The Contractor is responsible for obtaining approval of each of these items, and must request the approval in writing from the District Engineer. If a particular manufacturer's product is a proprietary item and is specified in the special provisions or the plans, it is understood that this represents the standard required but that a similar product by another manufacturer may be considered for approval as an equal. Nine copies of shop drawings, cuts or other descriptive literature that completely illustrates such proprietary or substitute items must be submitted by the contractor for approval by the Department. The submittal must be forwarded by the District to the responsible section (Design, Traffic, etc.) for review and approval. Submittals returned to the District will be forwarded to the Project. Project personnel must verify that only material described by an approved catalog cut is incorporated into the project.

No Request for Test is required for materials approved with a catalog cut. Included with the request for the final materials certificate, project personnel must include all approved catalog cuts showing the approval date, and verify that these materials were incorporated into the project.

For materials that require a Materials Certificate and/or a Certified Test Report, the Request for Test must show the name of the manufacturer, the source of supply, the code number or serial number of the material, any applicable material reference or requirement in the special provisions or the approved catalog cut, and any other data necessary to ensure that the item provided is the item specified, or an equal approved by the Designer. Currently, the Department is specifying testing requirements of specialty and proprietary items in the special provisions of contracts.

1-407 Certified Test Report

A Certified Test Report is a document containing a list of the dimensional, chemical, metallurgical, electrical, and physical results of actual tests of the materials involved. It must certify that the materials meet the requirements of the plans and specifications and include the following information:

- the item number and a description of the material;
- the date of manufacture;
Construction Manual
Volume 1
Contract Administration

1-4.12 Materials Testing

- the date of testing;
- the name of the organization to which the material is consigned;
- a means of identifying the consignment, such as label, marking, or lot number;
- a date and method of shipment; and
- the name of the organization that performed the tests.

The Certified Test Report must be signed by an authorized and responsible agent for the manufacturer, and it must be notarized. Article 1.06.07 of the Standard Specifications describes the requirements.

1-408 Materials Certificate

If the consignee listed on the Certified Test Report is not the prime contractor, a Materials Certificate is required to identify the shipment. A Materials Certificate is a document that certifies that the materials, components and equipment furnished conform to all requirements of the plans and specifications.

The Materials Certificate must also include the following information:

- the project to which the material is consigned;
- the name of the contractor to whom the material is supplied;
- the item number and a description of the material;
- the quantity of material represented by the certificate;
- a means of identifying the consignment, such as label, marking or lot number; and
- the date and method of shipment.

The Material Certificate must be signed by an authorized and responsible agent for the vendor, and it must be notarized. Article 1.06.07 of the Standard Specifications describes the requirements. Field personnel forward all Certified Test Reports and Materials Certificates to the Central Laboratory with a Request for Test (Form MAT-100).

1-409 Final Material Certification (FMC)

Federal Regulation Title 23CFR 637 requires that the Department have in place an approved Quality Assurance (QA) Program for materials used in Federal-aid highway construction projects. The final procedure in the Department’s QA program is for the Division Chief of Research and Materials (DCRM) to produce a Final Material Certification for individual projects and submit them to the Division Office of the Federal Highway Administration. The FMC documents the testing of materials permanently incorporated into the project and the results of that testing in accordance with the “Schedule of Minimum Requirements for Acceptance Testing,” and the “Schedule of Minimum Requirements for Assurance Testing”.

During the course of a project, DMT personnel work with project personnel to meet the requirements of the schedules of acceptance testing and assurance testing.

Inspectors are urged to address all testing deficiencies and material rejections when they occur or on a regular basis. Inspectors are reminded that any Report of Rejected Material (MAT-103) submitted to the DMT must be the original with appropriate signatures.

Projects that span more than one construction season should not carry over any deficiencies or rejections into the next construction season. Processing of deficiencies or rejections older than 12 months will be significantly delayed as priority will be given by the DMT to address current issues.
When at least 95% of the construction work is complete and before the Contractor has been relieved of its responsibility, the Assistant District Engineer will request that a Final Material Certification be issued for the construction project. The Federal Aid Project (FAP) number must be included with the request.

Documentation for field density acceptance tests for both HMA, and granular materials shall accompany all requests for Final Material Certificates. Acceptable documentation of the density acceptance tests may be a summary report produced at the project level or a report generated from Pave Track or other software. In all cases the source document Inspection Reports shall become part of the permanent project records.

As part of drafting this request, project personnel should review the following Site Manager reports and appropriately document any testing deficiencies or rejected material not previously documented.

- Contract Testing Deficiency Report
- Final Material Cert.-Qty Summary
- Samples Saved without Status
- Samples Pending
- Contract Sample Rejection List
- Contract Assurance Samples “AT”
- Contract Assurance Samples “CP”

The Assistant District Engineer or District Engineer may accept material that was tested and rejected or material which was not tested if the conditions listed in Article 1.06.02 are met. The District will notify the Division Chief of Research and Materials in writing upon accepting the material. If the Division of Research and Materials takes exception to the District’s findings, the Division of Research and Materials will attempt to resolve the disagreement with the District and if the matter cannot be resolved it shall be referred to the Office of Construction for resolution.

A request for a Final Material Certificate should document all testing deficiencies and rejected materials not previously documented and be sent to the Division Chief of Research with a copy to the Assistant District Engineer. If all deficiencies and rejections are documented adequately, the issuance of a Final Material Certificate should not be delayed. Examples of well documented requests for Final Material Certification are available from District Office personnel.
Chapter 5 - Adjustment of Contract Items & Differing Site Conditions

1-501 Minor Items – Article 1.04.02

Payment for minor items may only be adjusted under the procedures detailed in Article 1.04.02 of the Standard Specifications. Under this article, when the quantity of a minor item increases or decreases by 25% from the original estimated quantity, the Department should make an adjustment in one of following three ways. First, the Department and the Contractor may come to an agreement on price. That price will have to be substantiated in a method similar to substantiating a new item of work. Second, unlike the major item adjustment, the Department can direct the Contractor to perform the work in a cost-plus manner in accordance with Article 1.09.04. Third, if neither of these first two procedures is used, the “adjustment of the original Contract unit price shall be the difference between the Contract unit price and the actual unit price … to be calculated when all work under the item has been completed…” Calculations of actual costs for either increases or decreases in minor item quantity should be made by the Engineer “in the same way that they would if payment were to be made on a cost-plus basis under Article 1.09.04.” This method of adjusting the Contract price of a minor item is not to be used when the adjustment is due to a significant change in the character of work or differing site conditions. That type of adjustment must be calculated under Article 1.04.03 or 1.04.04

Approval authority for Adjustments to Minor Items is the same as agreed prices and must be approved by a Transportation Principal Engineer, Assistant District Engineer, or District Engineer. This approval will be documented by memorandum unless the approval letter sent to the Contractor is signed by the approval authority.

1-501A Increases of More Than 25%

According to Article 1.04.02(a), if the minor item is being increased by more than 25%, any fixed costs which are part of the actual costs of the work, “shall be deemed to have been recovered by the Contractor as part of the payments made by the Department for the 125 percent of the Engineer’s Estimate of that item; such fixed costs shall be excluded from any computation of the actual unit costs.” Also, it must be remembered that the adjustment of price is only for the excess quantity over 125% of the original quantity. The quantity less than 125% of the minor item being increased should be paid at the original unit price. Absent prior written approval by the OOC, no adjustment should be made for items increased by more than 25%, “When the total compensation payable for the excess item units … would be less than $25,000 if they were paid for at the original Contract unit price.”

1-501B Decreases of More Than 25%

Price adjustments for minor items decreased more than 25% must be requested in writing by the Contractor before any adjustment is made. According to Article 1.04.02(b), if the minor item is being decreased by more than 25%, any fixed costs, which are part of the actual costs of the work, should be considered in any computation of actual unit costs. Also, any adjustment of a unit price for minor items decreased more than 25% “shall not … be less than the unit price in the original Contract.” Finally, total payment for an item that has been decreased “may not … exceed the payment which would be made for the performance of 75 percent of the Engineer’s Estimate of the item at the original Contract unit price for that time.”
1-501C Examples of Minor Item Adjustment Situations

The Contractor’s bid for Rock Excavation is $30.00/CY. Rock Excavation is a minor item in this contract. The item quantity is decreased to less than 75% of the original Contract quantity. The cost of the work, as computed by the cost-plus method under Article 1.09.04, is calculated to be $35.00/CY. If the Contractor requests an adjustment under Article 1.04.02, the Contractor is entitled to an adjustment of $5.00/CY for the total quantity completed, so long as the total compensation for this item does not exceed the value of 75% of the original Contract quantity paid at $30.00/CY.

The Contractor’s bid for Variable Depth Patch is $300.00/CF. Variable Depth Patch is a minor item in this contract. The quantity increases by more than 25% of the original Contract quantity and no agreement can be reached for payment. The Contractor should be ordered to proceed on a cost-plus basis. If the Contractor is not so directed, and the cost of the work, according to the cost-plus method, is $350.00/CF, then the Contractor is entitled to an adjustment of $50.00/CF for the quantity above 125% of the original Contract quantity. The quantity less than 125% of the original Contract quantity should be paid at the original unit price.

1-502 Change in Quantities of Major Items and Significant Changes in the Character of Work – Article 1.04.03

Under Article 1.04.03(4)(b) of the Forms 814A, 815, and 816 “When a major item of work … is increased in excess of 125 percent or decreased below 75 percent of the original Contract quantity” it is “by definition” considered a “significant change” in the character of the work. Also, any item under the Contract regardless of whether it is a minor or major item that undergoes a significant change in the character of the work is required to be adjusted under Article 1.04.03. Article 1.04.03(2) requires the Engineer to make “an adjustment, excluding loss of anticipated profits” if such a change occurs. A “significant change” in the character of the work is any department directed change that significantly impacts the construction methods to perform the original Contract work. If additional direction is necessary on whether the change constitutes a “significant change” under the Contract the Assistant District Engineer or District Engineer should consult with the Office of Construction claims staff for further clarification and advice on how to proceed.

Once the District establishes that a “significant change” has occurred an attempt should be made to arrive at a mutually agreeable adjustment to the Contract with the Contractor. If an agreement cannot be made prior to the work being performed, the Engineer shall make such an adjustment that is “fair and equitable.” When an adjustment is made because a major item of work is increased in excess of 125 percent or decreased below 75 percent of the original Contract quantity only the quantity in excess of 125% or below 75% of the original Contract quantity should be adjusted. It is important to note however that just because an item qualifies for an adjustment (i.e., major item that increases more than 25%) it doesn’t mean that an adjustment is warranted in all cases. **For an adjustment to be warranted the increase or decrease in costs must be due solely to the increase or decrease in quantity or to the significant change in the character of the work.** The cost-plus method should NEVER be used when adjusting a major item. An additional 10% should be added to compensate the Contractor for overhead and profit. If the adjustment to the equipment costs is less than $100,000 and Blue Book rates for equipment is used, then 10% should be applied to the labor and materials only. If the equipment cost adjustment is over $100,000 and actual equipment costs supported by an audit are used then the 10% should be applied to the labor, equipment, and materials. If the Contractor argues that 10% does not adequately compensate him for the overhead expended the Contractor may decide to submit additional information to support their additional overhead costs. Any additional overhead requested must be discussed with the Office of Construction claims unit. On equipment adjustments over $100,000, Blue Book rates for equipment should not be used unless discussed and approved by the Office of Construction.

The adjustment should be based on the difference in costs between what the Contractor would have spent prior to the increase in quantity or significant change in the character of the work and what the Contractor’s
actual costs were after the change. The Contractor’s bid may or may not be a good indicator of the Contractor’s expected costs prior to any change. An independent estimate should be performed.

Approval authority for Adjustments to Major Items or Significant Changes in the Character of Work for sums which the District can justify, not to exceed $250,000.00, is the District Engineer.

All adjustments to major items, which, in the aggregate, exceed $250,000, must be discussed with and approved by the Office of Construction. The Office of Construction may require that Contract adjustments under Article 1.04.03 greater than $250,000 be reviewed by an independent Certified Public Accountant and/or claims personnel.

This approval will be documented by memorandum or E-Mail unless the approval letter sent to the Contractor is signed by the approval authority.

1-502A Examples of Major Item Adjustment Situations

The Contractor’s bid for Rock Excavation is $30.00/CY. The Contractor has estimated its cost to do the work at $25.00/CY. Rock Excavation is a major item in this contract. Because of design issues, a significant portion of the project is not constructed and the rock excavation quantity decreases significantly (less than 75% of original quantity). If the actual cost of doing the work is calculated at $40.00/CY and the Contractor’s estimate is found to be reasonable, then under Article 1.04.03, the Contractor is entitled to an adjustment of $15.00/CY on the total quantity completed plus $1.50 for overhead and profit of 10%.

The Contractor’s bid for Earth Excavation is $12.00/CY. The Contractor has estimated its cost to do the work at $9.00/CY. Earth Excavation is a major item in this contract. The quantity goes over 125% of the original Contract quantity, causing the Contractor to work on the item in a second year. Because of an increase in the cost of materials and labor, the actual cost to do the work is calculated at $12.00/CY. If the Contractor’s estimate is found to be reasonable, under Article 1.04.03 the Contractor is entitled to an adjustment of $3.00/CY for the quantity more than 125% of the original Contract quantity plus $0.30 for overhead and profit of 10%.

The Contractor’s bid for Earth Excavation is $12.00/CY. The Contractor has estimated its cost to do the work at $9.00/CY. Earth Excavation is a major item in this contract. The quantity goes over 125% of the original Contract quantity, but does not extend the project duration or cause an increase in the price of materials or labor. The actual cost to do the work is calculated at $12.00/CY. If the increase in cost was caused by the Contractor’s inability to do the work or the Contractor’s estimate was unreasonable, the Contractor is not entitled to any adjustment under Article 1.04.03.

The Contractor’s bid for Class A Concrete is $300.00/CY. The Contractor has estimated its cost to do the work at $260.00/CY. Class A Concrete is a major item in this contract. The quantity is increased more than 125% of the original Contract quantity due to extra work. The Contractor’s actual cost is calculated to be $230.00/CY. Under Article 1.04.03, the Department is entitled to adjust the Contractor’s cost downward $30.00/CY for the quantity above 125% of the original Contract quantity.

The Contractor’s bid for both Class 1 and Class 4 Bituminous Concrete is $45.00/Ton. The Contractor has estimated its cost to do the work at $42.00/Ton. Both items are major items in this contract. Class 4 replaces a large portion of the Class 1 quantity. This causes the Class 1 quantity to go below 75% of the original Contract quantity while increasing the Class 4 quantity to over 125% of the original Contract quantity. If these are the only significant changes to these items, the Contractor is not entitled to any adjustment under Article 1.04.03.

1-503 Differing Site Conditions – Article 1.04.04

Under Article 1.04.04 of the Forms 814A, 815 and 816, … “if a subsurface or latent physical conditions are
encountered at the site differing materially from those indicated in the Contract or if unknown physical conditions of an unusual nature, differing materially from those ordinarily encountered and generally recognized and inherent in the work provided for in the Contract…” then an adjustment to the Contract may be due. This language is federally mandated for all federally funded projects. Because of the difficulty in analyzing differing site condition requests it is important to seek guidance from the Office of Construction’s claims section in evaluating these requests.

Approval authority for Differing Site Conditions which the District can justify, not to exceed $ 250,000 is the District Engineer.

All differing site condition requests which, in the aggregate, exceed $250,000, must be discussed and approved by the Office of Construction. The Office of Construction may require that Contract adjustments under §1.04.03 greater than $250,000 be reviewed by an independent Certified Public Accountant and/or claims personnel.

This approval will be documented by memorandum or E-Mail unless the approval letter sent to the Contractor is signed by the approval authority.

The causes for a differing site condition generally consist of the following:

- Subsurface Conditions
 - Unanticipated Rock
 - Unanticipated Groundwater
 - Buried structures
 - Hazardous or contaminated material

- Other physical conditions
 - In rehabilitation projects:
 - Concealed decay
 - In demolition projects:
 - Concealed reinforcement

Differing Site conditions are generally categorized as either Type I or Type II requests. Article 1.04.04 addresses both of these types of requests.

1-503A "TYPE I" Differing Site Conditions

Article 1.04.04 states “if subsurface or latent physical conditions are encountered at the site differing materially from those indicated in the Contract….” This describes the circumstance of when a Contractor is entitled to a differing site condition adjustment as a Type I differing site condition.

A Type I differing site condition exists when subsurface or latent (not obvious) physical conditions at the site differ materially from those indicated in the Contract.

The courts have articulated various tests for Type I requests. Generally, a contractor must show that all of the following conditions are met:
• Contract documents indicate the subsurface or latent conditions forming the basis of the request.

• The Contractor's interpretation of the Contract documents is reasonable.

• The Contractor must have relied on the indications of the subsurface or latent conditions in the Contract.

• The subsurface or latent conditions actually encountered at the site must materially differ from those represented in the Contract.

• The actual condition encountered must have been reasonably unforeseeable.

• The costs requested must be solely attributable to materially different subsurface conditions.

The following types of contract documents constitute “representations”

• "Existing conditions" drawings

• Structures to be demolished

• Buried utilities

• Contours, waterways

• Reports of Subsurface investigations

• Boring logs

• Geotechnical report

• Environmental Investigation

1-503B “TYPE II” Differing Site Conditions

Article 1.04.04 also states “if unknown physical conditions of an unusual nature, differing materially from those ordinarily encountered and generally recognized and inherent in the work provided for in the Contract…” This describes the circumstance of when a contractor is entitled to a differing site condition adjustment as a Type II differing site condition. These are conditions which differ from those usually found on similar projects.

Even in the absence of specific contract representations or indications regarding any subsurface or latent physical conditions, a contractor may still be entitled to an equitable adjustment for encountering a differing site condition. Under a Type II request, the Contractor is entitled to an adjustment if it encounters an unknown and unusual condition that is materially different from that ordinarily encountered.

A Type II analysis is not concerned with representations in the Contract; the Contract is silent as to the conditions to be encountered. The silence need not be as to all conditions at the site, but must exist at least in regard to the condition forming the basis of the Type II request. The focus is on what was actually encountered compared to what is normally or usually encountered at a like jobsite. The Contractor must prove that what is encountered was not normal but, in fact, unknown and unusual. It must be a condition that reasonably could not have been anticipated by the Contractor from a study of the Contract documents,
by site investigations, or by the general experience of the Contractor. The lack of contractual
representations regarding the jobsite in a Type II case makes the Contractor's burden of proof more difficult
to meet.

To prevail in a Type II case a contractor must prove:

- What were the usual conditions a contractor would predict at the site.
- What physical conditions were actually encountered.
- The physical conditions actually encountered differed materially from the known and the
 usual.
- These conditions caused an increase in the cost of performance.

The language of the differing site conditions clause states the existence of a Type II condition must have
been unknown to the Contractor. The request will be denied if the Contractor knew or should have known
of the existence of the condition.

1-503C Definitions

Extra Work:

Unforeseen work made necessary by the Engineer’s changes of the Contract plans or specifications. It is
not extra work when original Contract work is involved.

Significant Change in the character of the work
Any department directed change that significantly impacts the construction methods to perform the original
Contract work.

Materiality:

Arbitrators and courts have a difficult time determining if the condition encountered is "materially
different" from that indicated in the Contract. The materiality analysis in Type I requests is somewhat less
complex than that in Type II requests. In a Type I request, there is some contract indication to compare to
the encountered condition. This indication, although maybe not as specific as a quantity or percentage, is
usually more concrete than what is "usual" the standard of comparison of a Type II request.

The easiest way to determine materiality in a Type II request is to compare what the Contractor could have
reasonably expected to encounter against what was actually encountered and determine whether this
difference caused a change in the Contractor's method.

The "materiality" standard reflects the expectation that the Contractor never is assured that everything on
the job will go just as planned. Only variations outside of the norm will be grounds for extra compensation.

Foresee ability:

To be compensable, subsurface or latent physical conditions encountered must not only differ materially
from the Contract indications, but also must be reasonably unforeseeable on the basis of all information
available to the Contractor at the time of bidding. The condition must not have been anticipated by the
Contractor from a study of the Contract, inspection at the site, and general experience.

For example, in requests of unusual weather, one norm is that weather pattern from the last 10 years are
considered foreseeable.
Reliance:
Reasonable reliance is an essential element of a differing site condition. A contractor requesting a differing site condition will not be successful, even if the site conditions vary from the Contract, unless the Contractor reasonably relies on the Contract's assertions as to the condition. This requirement is typical of most misrepresentation claims. If the Contractor did not reasonably rely on the contract indications, it did not suffer damages as a result of them and therefore cannot recover.

A common area of dispute is over the Contractor's duty to investigate public records of past work at the site. Sometimes there are records available at, for example, a town engineer's office. Even if the owner has not reviewed those and disclosed them to contractors, the owner may argue that the Contractor has a duty to look at such documents before arriving at conclusions about the site.

Unusual condition (Type II Request):
A condition that might not reasonably be anticipated based on the contract work and the location at which it was to be performed. A contractor is not entitled to expect the most favorable conditions, but it need not anticipate the worst. Generally, the more extreme the condition, the easier it will be for the Contractor to prevail on its request.

1-503D Examination of Site Clauses

CONNDOT contracts require the Contractor to visit the site and familiarize himself with conditions there. Any condition, which would have been seen in a pre-bid inspection, will be deemed to have been "disclosed" to the bidder. Disputes arise over what level of site inspection the bidder should make, and whether it includes uncovering of work to see "hidden" conditions.

Contractors are expected to look closely at important parts of the project during the site inspection, but are not expected to perform invasive work to uncover hidden work.

Once the District establishes that a “differing site condition” has occurred an attempt should be made to arrive at a mutually agreeable adjustment to the Contract with the Contractor. If an agreement cannot be made prior to the work being performed, the Engineer shall make such an adjustment that is “fair and equitable.” For an adjustment to be warranted the increase or decrease in costs must be due solely to the significant change in the character of the work caused by the differing site condition. The cost-plus method should NEVER be used. An additional 10% should be added to compensate the Contractor for overhead and profit. If the cost of the equipment adjustment is less than $100,000 and Blue Book rates for equipment are used the 10% should be applied to labor and materials only. If the equipment adjustment is over $100,000 and actual equipment costs supported by an audit are used then the 10% should be applied to labor, equipment, and materials. If the Contractor argues that 10% does not adequately compensate him for the overhead expended the Contractor may decide to submit additional information to support their additional overhead costs. Any additional overhead requested must be discussed with the Office of Construction claims unit.

The adjustment should be based on the difference in costs between what the Contractor would have spent prior to the significant change in the character of the work and what the Contractor’s actual costs were after the change. The Contractor’s bid may or may not be a good indicator of the Contractor’s expected costs prior to any change. An independent estimate should be performed.

1-504 Adjusted Price Forms for Major Items, Change in Character of Work & Different Site Conditions

Figures 1-5.1 and Figures 1-5.2 show forms that are used to calculate adjusted prices for major items change in character of work and different site conditions.
Figure 1-5.1 Adjusted Price (No Equipment Audit)

<table>
<thead>
<tr>
<th>NO.</th>
<th>LABOR</th>
<th>MATERIAL</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Item 1</td>
<td>Item 2</td>
<td>Item 3</td>
</tr>
<tr>
<td></td>
<td>Item 4</td>
<td>Item 5</td>
<td>Item 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>No.</th>
<th>Total Hours</th>
<th>Rate</th>
<th>Amount</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Amount</th>
<th>Size and Class</th>
<th>(or Active)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total:
- Labor: [Calculations]
- Material: [Calculations]
- Equipment: [Calculations]

Inspector: Date: [Date]

Contractor’s Representative: Date: [Date]

Daily Total: [Total]

Total to Date: [Total]

Figure 1-5.2 Adjusted Price (Equipment Audit)

<table>
<thead>
<tr>
<th>NO.</th>
<th>LABOR</th>
<th>MATERIAL</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Item 1</td>
<td>Item 2</td>
<td>Item 3</td>
</tr>
<tr>
<td></td>
<td>Item 4</td>
<td>Item 5</td>
<td>Item 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>No.</th>
<th>Total Hours</th>
<th>Rate</th>
<th>Amount</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Amount</th>
<th>Size and Class</th>
<th>(or Active)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total:
- Labor: [Calculations]
- Material: [Calculations]
- Equipment: [Calculations]

Inspector: Date: [Date]

Contractor’s Representative: Date: [Date]

Daily Total: [Total]

Total to Date: [Total]
Chapter 6 - Extra and Cost-Plus Work

1-600 General

Extra work is new and unforeseen work that cannot be covered by a contract item or a combination of contract items or work that is designated as such by the specifications. All new and unforeseen work is not necessarily extra work.

Before approving extra work the Chief Inspector should carefully review the Contract documents (Standard Specifications, Addenda, Special Provisions, Permits, Plan Sheets, etc.) to make sure the work is not included in other items or the general cost of the Project. If the new or unforeseen work is the same as items included in the Contract, payment must be at the Contract item price unless there has been a significant change in the quantity or character of the work. For significant changes in quantities of items (>25%), significant changes in the character of work, or differing site conditions refer to Articles 1.04.02, 1.04.03 and 1.04.04 of the Standard Specifications and Volume 1, Chapter 5 “Adjustment of Contract Items & Differing Site Conditions”.

1-601 Agreed Price

Whenever possible, efforts are to be made to agree upon prices for extra work. File with the Contract records any calculations made to justify agreed prices for extra work. These calculations must be attached to the price approval letters and included with the back-up for the construction order and must be in such a form that they clearly substantiate and justify the amount paid for the extra work. Agreed prices may be unit prices or lump sum. Before an agreed price may be used to pay for extra work, the Assistant District Engineer (or Transportation Principal Engineer) and the Contractor must agree on compensation and a Change Order must be authorized for processing.

As soon as the extent of extra work has been determined, request the Contractor to submit a proposed agreed price and a request for additional time with supporting documentation if the extra work will impact the completion of the project. When requesting a proposed price, make sure the Contractor knows the specification(s) he will have to follow to perform the extra work. Analyze the Contractor’s proposed price to determine if it is acceptable. Methods to determine if prices are acceptable include:

- Comparison with weighted unit prices.
- Comparison with Actual bids on similar projects.
- Cost-plus analysis using a CON-9 Form. (Check the “Scope Analysis” box if used for this purpose.)
- Other cost estimating guidelines approved by the Assistant District Engineer (or Transportation Principal Engineer), i.e. Means estimating books.
- If the parties agree, a measured unit can be completed to establish a production rate. The Project Engineer and Chief Inspector must make sure the production rate is consistent with the normal industry practice. Prior to using this method concurrence must be obtain from the Assistant District Engineer (or Transportation Principal Engineer).

The Project Engineer/Chief Inspector may also initially determine a proposed agreed price based on any method used above and present it to the Contractor. Before proposing a price to the Contractor make sure the Assistant District Engineer (or Transportation Principal Engineer) concurs.

After an agreement has been reached, project staff will prepare a letter for the Assistant District Engineer’s (or Transportation Principal Engineer’s) signature agreeing to the price and process a change order to incorporate the extra work item into the Contract. Again, it is stressed that whenever possible, the Project Engineer/Chief Inspector must make every effort to agree upon prices for extra work.
1-602 Cost-Plus

When the extent of extra work cannot be predetermined or an agreed price cannot be reached with a contractor, an order to do the extra work on a cost-plus basis may be pursued by the Project Engineer. Cost-plus work can only be used for payment of extra work unless otherwise specified in the Contract. Once it is determined that the extra work will be performed on a cost-plus basis, the project staff will prepare a letter for the Assistant District Engineer’s (or Transportation Principal Engineer’s) signature directing the Contractor to perform the extra work on a cost-plus basis. For Cost-plus operations that may exceed $100,000, the Assistant District Engineer is to notify the District Engineer. If the cost-plus operation exceeds $250,000 then the District Engineer notifies the Construction Division Chief or Construction Administrator of the Cost-plus work.

After consultation with the Assistant District Engineer (or Transportation Principal Engineer), advance authorization may be given to the Contractor to perform cost-plus work. The Supervising Engineer, Project Engineer and/or inspection staff may issue said direction subject to limits that may be established by the Assistant District Engineer. In each instance a confirmation letter to the Contractor must be issued and signed by the Assistant District Engineer (or Transportation Principal Engineer). Where appropriate, confirming letters for cost-plus work should include the not to exceed amounts in order to better monitor open-ended cost-plus operations.

In addition, the project staff may issue a field directive to the Contractor to perform extra work on a cost-plus basis in emergency situations. The field directive must be followed up with a confirmation letter from the Assistant District Engineer (or Transportation Principal Engineer) to the Contractor.

The District’s and Project’s copy of the letter sent to the Contractor directing or confirming the work will be performed on a cost-plus basis is to have attached to it a reasonable estimate of the anticipated costs if not included in the body of the letter.

Before the cost-plus work begins the Chief Inspector should discuss with the Contractor the labor, material and equipment to be used. Knowing the resources ahead of time can avoid misunderstandings and inefficiencies. The Chief Inspector must keep the Project Engineer informed on discussions with the Contractor as the Project Engineer is responsible for the approval of the labor, equipment and materials used in the performance of cost-plus work.

The Chief Inspector must notify the Project Engineer when the start of cost-plus work will begin. The Project Engineer must keep the Supervising Engineer informed of any extra work that will be performed on a cost-plus basis.

CONNDOT must pay the Contractor labor, material and equipment costs used to perform cost-plus work. The Standard Specifications are very explicit about the method of payment, and the Inspector must become familiar with Articles 1.04.02, 1.04.03 and 1.04.04 before engaging in cost-plus work.

Cost-plus documentation includes:

- A letter from the Assistant District Engineer to the Contractor directing or confirming the work is being done on a cost plus basis. This letter is to include or have attached as backup a reasonable estimate of the anticipated costs.

- A daily report signed off by the Inspector and Contractor at the end of each workday documenting labor, material and equipment used for cost-plus work. Make sure to document the hours for labor and equipment.
• A completed Daily Report of Cost Plus, Form CON-9, signed by the Contractor and the Inspector for each day work is performed on cost-plus work.

• Representative Certified payroll that documents labor rates reported on Daily Report of Cost-plus, Form CON-9. For cost plus operations that extend more than one period the chief inspector must verify the actual rates paid for each period. Additional payrolls only need to be attached when rates change.

• Contractors costs for insurance, taxes and bonding.

• Quotes for specialized work (if quotes were requested)

• Copies of paid (receipted) bills for all material and rented equipment used.

Receipted bills shall be referenced to an actual invoice, which documents the amount of the cost-plus item. Acceptable documentation for Receipted bills:
- Copies of the cancelled checks for invoiced material/rented equipment.
- Invoices signed, “Paid in Full” by the Vendor.
- Invoices Stamped “Paid” and the Contractor’s check number noted and a copy of a bank statement showing the check was paid.
- Letter or affidavit from the vendor showing full payment was specifically received for noted items. Any credits or changes in value must be indicated.

• Affidavit for material taken out of the Contractor's stock, certifying material quantities claimed and prices claimed. The affidavit must include language that attests the price claimed for materials represents the current fair market value.

• Quotes for rental equipment (if quotes were requested)

• Worksheets documenting the allowable equipment rates determined from the Rental Rate Blue Book™ published by PRIMEDIA Business Magazines & Media Inc.

The procedures for handling cost-plus work are as follows:

• When the Assistant District Engineer determines that cost-plus work is required, the Chief Inspector will immediately process a Construction Order to establish an item and an “estimated cost-plus” account for that item. For guidance on preparing Construction Orders refer to Volume 1, Chapter 8 – “Construction Orders”.

• Cost-plus operations must have full time inspection. The inspector assigned to oversee a cost-plus operation will complete a Daily Report of Cost Plus for each day cost-plus work is performed and have it signed by the Contractor at the end of the day. Forms other than the Con-9 may be used provided the Inspector prepares them; they include all the requisite information and are signed by a representative of the contractor. The Con-9 form and an alternate daily report form are available in the Construction Manual folder (approved forms folder / con forms folder / Con-9 folder). This report must accurately document the labor, equipment and material used for the cost-plus work for the day. Before signing, the Inspector must compare the daily report with the Contractors’ daily record for the cost-plus work and note any discrepancies on the daily report. If the Contractor refuses to sign the report or does not provide a record for comparison, note this on the Daily Report of Cost-plus and Daily Work Report. These initial reports of cost plus are to be kept in the Volume III with the applicable item.
• On Daily Work Reports record observations and inspections of cost-plus work to provide reasonable basis for agreement on payment.

• Cost-plus payments are processed on a Payment Estimate within thirty calendar days after the work is performed regardless if the Contractor has furnished supporting documents or not.

• When supporting documents are missing the inspector will determine an estimated progress payment by using available information such as Daily Work Reports, previously submitted certified payrolls, prevailing wage scales, previous insurance and tax premiums, subcontracts, invoices, area prices for materials, etc.

• Estimated progress payments for cost-plus work are to be calculated by completing a Daily Report of Cost Plus, Form CON-9 and attaching it to the Daily Work Report, or for a cost-plus operation with limited labor, equipment and materials by making the calculation directly on the Daily Work Report. When a CON-9 is used for progress payment, the “Progress Payment” check box must be selected and the form must indicate the period covered, as shown in Figure 1-6.1. For payment purposes, progress payments will only be for 90% of the total estimated value for labor, material and equipment; 10% will be withheld until the Contractor furnishes all required documentation necessary to final the cost-plus payment. When appropriate, multiple cost-plus sheets may be generated for a day’s activities to allow for estimated payments for a portion of the work and final payments for the remainder (see 1-306A). The description for the estimated progress payment on the DWR will be clearly labeled indicating that this is an “Estimated Progress Payment”. A Summary Sheet is to be provided in the Volume III listing all progress and final payments and reference DWR.

• Before the final cost-plus payment can be made, the final Daily Reports of Cost Plus need to be prepared and checked to verify the information recorded agrees with the signed daily reports, certified payrolls, insurance and tax premiums, receipted bills and allowed equipment rates.

• When a subcontractor performs cost-plus work, an administrative expense is paid to the prime Contractor in addition to the amount determined by the Daily Report of Cost-plus. Refer to the Standard Specifications for the appropriate rate.

• Completed Daily Reports of Cost-plus are forwarded to the Contractor for signature.

• Completed original Daily Reports of Cost-plus are kept in a separate Volume III book, along with the supporting payrolls, material receipts, rented equipment invoices, and equipment rate sheets. Contractors’ Cost-Plus sheets or Daily Time Reports are not acceptable as back-up for payment.

• Project Engineers must review the project records periodically to assure that cost-plus payments are current and note this review by signing the Cost Plus sheets in the Volume III. Particular attention is to be given to the signed daily reports and associated Daily Work Reports that document the labor, material and equipment used.

I-602A Labor Rates

The Contractor is responsible to ensure appropriate wage rates are paid to all employees based on the type of work performed. When preparing a Daily Report of Cost-plus, record the actual rate shown on the certified payroll for employees working on cost-plus work. Verify that the employees’ classifications are appropriate for the work performed and the rates of pay are at least equal to the applicable prevailing wage rates, which are usually found at
the back of the contract special provisions. Do not correct the wage rates the Contractor has submitted. Any concerns about the rates shown on the certified payroll are to be resolved with the Contractor and the Contractor is to make correction if necessary. Refer to Volume 1, Chapter 12 – “Civil Rights.”

When cash benefits are paid, they are to be reported in the upper labor section, Item 1, of the Daily Report of Cost Plus, Form Con 9, see Figure 1-6.1. This information is obtained from the certified payrolls. Use a separate line to record this information for each employee that receives cash benefits. When overtime is authorized and used for cost-plus work, make sure time and half is only applied to the hourly wage rate and not the cash benefits unless the certified payrolls reflect otherwise.

Figure 1-6.1 Daily Report of Cost Plus, Form CON 9

When plan fringe benefits are provided, these costs are reported in the Health, Welfare and Pension section, Item 2, of the Daily Report of Cost Plus, Form Con 9. The plan benefit costs must be obtained from the Certified Payrolls. Refer to Volume 1, Chapter 12 – “Civil Rights”.

No one above the grade of foreman is to be included in the labor section of a Daily Report of Cost Plus except when the following three conditions are met: (1) the Contractor is entirely occupied with cost-plus work, and (2) the Project Engineer has authorized a superintendent and (3) the allowable pay rate for the Supervisor has been agreed upon with...
Before authorizing a superintendent and negotiating an allowable pay rate, the Project Engineer must discuss the need for a superintendent with the Supervising Engineer.

1-602B Labor Markup for Insurance and Taxes

For Worker's Compensation, public liability and property damage insurance premiums, unemployment insurance contributions, social security taxes, and bonding costs for cost-plus work, the Contractor must furnish satisfactory evidence of the cost paid for such insurances and taxes.

The Contractor should be asked to furnish the insurance and tax rates at the Preconstruction meeting; however, they are subject to change and need to be updated at least annually. Keep in mind that insurance and tax costs associated with straight time and overtime can be significantly different. In certain situations, such as when overtime has been approved for cost-plus work for an extended period of time, an insurance and tax rate for overtime hours should also be requested.

The District should request that the Contractor's submittal be addressed in a letter signed by an officer of the company, addressed to the District which identifies a breakdown of labor additives in writing. The letter must include the following:

- Worker's compensation rate,
- General liability and property damage insurance rate,*
- Social Security (FICA) rate,
- State unemployment insurance rate,
- Federal unemployment insurance rate, and

*A copy of the “Declaration Sheet” from their insurance company or a notarized letter certified by an officer of the company for self-insured contractors.

Benefits such as Vacation, Holiday and Sick leave should not be included in the tax and insurance markup for cost plus. This should be included in the benefits column (Health, Welfare and Pension) on the Cost-Plus sheet and must be supported by the certified payrolls. If the contractor includes this as part of their submittal for the tax and insurance markup the contractor shall be asked for a written explanation to be submitted to the District for review.

Insurance for all vehicles including pick-up trucks, company cars and construction equipment is included in the Blue Book rates and is not to be included in the Insurance and Tax rate percentage.

Copies of this submittal are to be maintained in the Volume III.

Reimbursement for insurance-and-taxes (the total of the above items) should not exceed 60 percent for general construction work. For steel erection and bridge painting work, the maximum additive should not exceed 80 percent. If the additive exceeds the above rates, the District should require the Contractor to submit a justification for the higher rates to the District for review and approval. The District is to copy the Office of Construction on their response letter to the Contractor. Also, if a Contractor's rate changes by 5 percent or more at any time, this change must be brought to the attention of the OOC District liaison.

Figure 1-6.2 shows how various insurance and taxes should be compensated for work performed on cost-plus operations, when premium time is authorized.
Figure 1-6.2 Premium Time Labor Additives

<table>
<thead>
<tr>
<th>Insurance and Taxes</th>
<th>Paid on Premium Portion</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers Compensation</td>
<td>No</td>
<td>None Paid on Premium Portion (1)</td>
</tr>
<tr>
<td>Social Security</td>
<td>Yes</td>
<td>6.2% of All Overtime</td>
</tr>
<tr>
<td>Medicare</td>
<td>Yes</td>
<td>1.45% of All Overtime</td>
</tr>
<tr>
<td>State Unemployment (Only up to 1st $15,000 of wages per year)</td>
<td>Yes</td>
<td>1% to 6.9% of Overtime</td>
</tr>
<tr>
<td>Federal Unemployment (Only up to 1st $7,000 of wages per year)</td>
<td>Yes</td>
<td>0.8% of Overtime</td>
</tr>
<tr>
<td>General Liability Insurance</td>
<td>No</td>
<td>None Paid on Premium Portion (1)</td>
</tr>
<tr>
<td>Union Dues</td>
<td>No</td>
<td>None Paid on Premium Portion (1,2)</td>
</tr>
<tr>
<td>Health Insurance</td>
<td>No</td>
<td>None Paid on Premium Portion (1)</td>
</tr>
</tbody>
</table>

(1) Example: If someone works 1 hour of overtime and normally makes $20 per hour (regular rate), then the total amount paid to that person is $30 (1.5 times $20). Only the $20 is subject to the add-ons identified on the chart as “No”. The ones stated as “Yes” would be applied to the entire $30, assuming they have not reached the maximum amounts. (Benefits with maximum amounts are listed in the table.)

(2) Payment differs union to union, depending on the agreement.

Figure 1-6.3 illustrates the labor mark-up for insurance and taxes. It is recommended that this be distributed with the written notice of preconstruction meeting to the contractor. If it is anticipated that a subcontractor will be performing cost-plus work the form should be completed prior to the start of work. A sample form can be found in the approved forms section of the Manual.
LABOR MARK-UP FOR INSURANCE AND TAXES

<table>
<thead>
<tr>
<th>PROJECT NO.</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACTOR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS:</td>
</tr>
<tr>
<td>TOWN/CITY, STATE, ZIP:</td>
</tr>
<tr>
<td>TELEPHONE NUMBER:</td>
</tr>
</tbody>
</table>

I certify the below rates, which are to be used for cost plus or cost-plus related work on the subject project. Revised rates will be provided annually or as needed in certain cost associated situations.

(Ex.: Straight time vs. overtime or additional risks)

<table>
<thead>
<tr>
<th>Workers Compensation Rate:</th>
<th>Straight Time Portion</th>
<th>Premium Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Liability and Property Damage Insurance Rate:</td>
<td>Straight Time Portion</td>
<td>Premium Portion</td>
</tr>
<tr>
<td>(Note: Insurance for construction equipment)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Social Security (FICA) Rate:

State Unemployment Insurance Rate:

Federal Unemployment Insurance Rate:

Total of Above Rates –

NOTE: A copy of the “Declaration Sheet” from our insurance company (or certified letter if self insured) is attached.

Signed by Officer of Company [Date]

Certified by Notary
1-602C Bonding Costs

Increased bonding costs associated with cost-plus work will be typically reimbursed in a single lump sum payment near the completion of the project after the Contractor has furnished documentation that substantiates the increased costs. Documents supporting increased bonding costs are to be maintained in the Volume III. The bonding cost should be between 0% and 2% of the total cost of the cost-plus work. If the bonding cost is greater than 2%, check with OOC to see if the percentage rate is acceptable.

1-602D Specialized Work

The Contractor may be directed to perform specialized work requiring skills, tools and equipment substantially different than those ordinarily used by the Contractor and its subcontractors. Items of work that are covered by the Standard Specifications or the original Contract documents are not specialized work unless specifically designated as such in the original Contract documents.

Approval from the Assistant District Engineer must be obtained before classifying work as specialized. Prior to performing such specialized work, the Contractor shall obtain and submit to the Engineer a minimum of three price quotes for the work, if requested by the Engineer. For specialized work, the Contractor will be reimbursed its actual costs plus administrative expenses per Standard Specification Article 1.09.04 (e).

1-602E Administrative Expenses

This Administrative mark-up is paid to Contractors in connection with Extra Work performed by an authorized subcontractor. The measurement and payment for the extra work is done in accordance with Standard Specification Article 1.09.04, specifically the reimbursement for the Contractor's administrative expenses is established in Article 1.09.04 (e) as a percentage.

The Department will pay the Contractor this additional payment over and above the percentage described in the Standard Specification Article 1.09.04 (a), (b), (c) and (d). Administrative expenses are applied at the conclusion of the extra work. When the extra work is concluded depends on how the scope of work was originally requested and subsequently directed to be done in accordance with Article 1.09.04.

- When a scope of work is in the specifications for a Contract item that is an estimated cost in the Bid Proposal then the appropriate time to apply the Administrative mark up should be detailed either in the sections Submittals, Construction Methods, Method of Measurement and Basis of Payment.

Examples:

- The Department includes in a contract an estimated item, Service Connections and the Contractor uses a subcontractor to perform the work that is certified by the utility. Because of the varying conditions and types of connections at each location, the work is directed to be performed on a cost-plus basis. After the completion of each Service Connection the cost-plus operation is considered concluded and therefore the Administrative mark up is added for that connection based on the cost associated only with that connection.

- The Department includes in a contract an estimated item, Construction Communication Equipment and the Construction Methods require three (3) proposals for the equipment to be submitted for selection. Upon the selection of the proposal and subsequent purchase of the equipment the cost-plus for that scope is considered concluded and therefore the Administrative mark up is added for that equipment purchase based on the cost associated only with that purchase. In addition to the purchase of the equipment, the communication specification requires a service plan that is billed monthly. When
receiving invoices on a monthly basis the cost-plus for that scope is considered concluded and therefore the Administrative mark up is added for that service based on the cost associated only with that invoice.

- When a scope of work is requested as extra work and the Contractor’s submitted price could not be justified and this work is direct on a cost-plus basis, the cost-plus operation is concluded when the original requested unit is finished and then Administrative mark up for any subcontractor’s cost is added for that unit.

Examples:

- The Department requested a price for two (2) C-L Catch Basins on an each unit basis and the unit price could not be justified so the work was directed on a cost-plus basis. The drainage work in the Contract is performed by a subcontractor in addition to a variety of other items. The two (2) C-L Catch Basins are to be installed in different stages. After the completion of each C-L Catch Basin the cost-plus operation is considered concluded and therefore the Administrative mark up is added for that unit based on the cost associated only with that unit.

- The Department requested a price for two (2) C-L Catch Basins on a lump sum basis and the lump sum price could not be justified so the work was directed on a cost-plus basis. The drainage work in the Contract is performed by a subcontractor in addition to a variety of other items. The two (2) C-L Catch Basins are to be installed together in a special weekend road closure. After the completion of both C-L Catch Basin the cost-plus operation is considered concluded and therefore the Administrative mark up is added for that work based on the cost associated both catch basins installed.

If either, the specifications do not clearly identify the appropriate time to apply the Administrative mark up or when the Contractor's submitted price is direct on a cost-plus basis, but because when negotiating the scope of work differed or could not be known, then the appropriate time to apply the Administrative mark up must be agreed upon prior to performing the work.

The administrative markup for cost plus work is payable to the (Prime) Contractor only. Additional markup when multiple tiers of subcontractors are involved is not allowed.

Inspectors should be aware that the July 2008 Supplement to the Standard Specifications includes the following new provision:

(e) Administrative Expense: When extra work on a cost-plus basis is performed by an authorized subcontractor, the Department will pay the Contractor an additional 7.5% for that work; such payment will be in addition to the percentage payments described in (a), (b), (c) and (d) above, as a reimbursement for the Contractor's administrative expense in connection with such work.

1-602F Rental Rate Blue Book™

Contractor owned equipment including equipment owned by a subsidiary, affiliate, or parent company of the Contractor that has been authorized for cost-plus work is reimbursed at the applicable rental rate determined from the Rental Rate Blue Book™ published by PRIMEDIA Business Magazines & Media Inc. This information is obtained from the District Office.

The maximum hourly rate used in paying for Contractor-owned equipment is the applicable monthly rate in the Rental Rate Blue Book™, divided by 176 (176 working hours per month).

The Rental Rate Blue Book™ rates reflect an amount an equipment owner should charge during a contractual period to recover equipment related costs based on single shift 8 hour/day, 40 hour/week, 176 hour/month basis. These rates take into consideration normal owner and operating costs for contractor-owned equipment including major overhaul costs; however, the estimated operating cost/hour may not include extraordinary operating expendables. The
excluded operating expendables will be noted on the worksheet. To obtain payment for operating expendables the Contractor must provide satisfactory documentation of their actual cost.

When equipment is exclusively assigned to cost-plus work and is consistently working in severe conditions, the Contractor may be entitled to additional payment for maintenance costs.

When requesting a *Rental Rate Blue Book™* rate, make sure to provide sufficient information to obtain the correct rate. The information provided should include year, make, model, H.P., diesel or gas, wheel or track, rollover protection, transmission type, attachments, bucket sizes, lifting capacity, etc. Inspectors need to exercise caution, as the wrong rate may be inadvertently provided if insufficient information is provided.

If there is no rental rate readily available from the *Rental Rate Blue Book™* for a piece of equipment, the publisher should be contacted to determine if they can provide one. If they cannot, a rate can be established by using rates listed by other publishers, organizations or rental companies or any other method approved by the Assistant District Engineer.

1-602G Idle Equipment

For any piece of Contractor-owned equipment assigned exclusively for cost-plus work the Contractor is guaranteed reimbursement for a minimum of 8 hours of use time, idle time, or combination thereof, excluding weekends, legal holidays which the Contractor does no work and other days he is ordered not to do Contract work. Idle time is only reimbursed at 50% of the applicable rental rate, excluding operating costs.

If the Contractor is actively working on cost-plus work, payment for contractor owned equipment that is idle or partially idle is as follows:

- For equipment that is also being used for non-cost-plus work no idle time is paid for the day.

- If a piece of equipment remains idle during any day or portion of a day, excluding Saturday, Sunday or a holiday which the Contractor does no work, or any other day the Contractor is ordered to do no work, payment is made at 50% of the applicable rental rate, excluding operating costs up to a maximum of 8 hours. When a contractor works a nonstandard 40 hour workweek, i.e. four – ten hour days and a piece of equipment remains idle for a portion of the day the Contractor is reimbursed for the equipment idle time for the workday, up to a maximum of 8 hours. For instance, a contractor uses a piece of equipment for only one hour during a 10 hour work day; the Contractor would be reimbursed for 1 hour at the active and 7 hours at the idle rate for the piece of equipment.

- If a piece of equipment is idle for the entire workday that is on Saturday, Sunday or a holiday which the Contractor does no work, or for any other day the Contractor is ordered to do no work, no payment is made for the piece of equipment.

- If the equipment is used for part of the work day that is on Saturday, Sunday or a holiday, payment is made for the actual number of hour’s active and idle time, if any, up to a total of 8 hours for the day.
I-602H Rented Equipment

The Project Engineer may direct the Contractor to rent equipment when it is determined the equipment is needed to perform cost-plus work. Before directing the rental of equipment, discuss with the Contractor the equipment they have available and the equipment needed to perform the work and how long they think the equipment will be needed. If after discussion, it is determined that a certain piece of equipment is needed that the Contractor does not have, ask the Contractor to furnish published rates from the rental company they plan to use.

The rates furnished should include:

- a daily rate per hour for equipment used for 7 consecutive days and less,
- a weekly rate per hour for equipment used from 8 to 21 consecutive days, and
- a monthly rate per hour for equipment used more than 21 consecutive days.

If the rates appear high, ask for additional quotes. You can also check the rates with those listed in the Rental Rate Blue Book™. The Contractor will be reimbursed the actual rental rate paid based on original receipted bills for the rental expenses incurred unless otherwise specified in the specifications.

Note: Rented Equipment that comes with an operator is not exempt from prevailing wage requirements. The operator must be reported on a certified payroll, refer to Volume 1, Chapter 12 – “Civil Rights.”

I-602I Materials

If the contractor is also the producer of the materials they shall provide an affidavit or a letter signed by an officer of the company and notarized in accordance with Article 1.09.04(c).

Sales tax included on invoices for work permanently incorporated into the project will not be reimbursed. It is the Contractor’s responsibility to obtain the Contractor’s Exempt Purchase Certificate from the State of CT Department of Revenue Services (CERT-141). Anything that is not permanently incorporated into the work may be considered temporary and therefore subject to sales tax. The tax exempt form (within the CM folder/approved forms/tax) from DRS has a very thorough set of instructions.
Chapter 7 – Schedules, Time Extensions & Suspensions

1-700 Scheduling

This section is intended for use on projects that employ Section 1.05.08 of the Standard Specifications. Section 1.05.08 was developed for use on all projects (excluding Vertical Construction) prior to the award of the contract and for use throughout the life of projects that do not contain the Project Coordinator Specification.

If a project is of the nature that requires the “Project Coordinator” Specification, Section 1.05.08 of the Standard Specifications shall be utilized up to the award of the Contract. After the award the “Project Coordinator” Specification will govern (if it is included in the contract). The project team should utilize the guidance in the “Project Coordinator” Specification after the award. In many cases however, Section 1.05.08 can be utilized as a starting point for the critical path schedule required by the “Project Coordinator” Specification.

For projects that do not contain the Project Coordinator specification (excluding Vertical Construction), Section 1.05.08 of the Standard Specifications will be utilized throughout the life of the project. The procedures outlined below should be utilized as a basis for review at the various stages of design and construction.

Although this section was drafted specifically for the administration of Section 1.05.08, the list of major elements and checklists referenced in this section can be utilized for review of proposed baseline schedules for any project.

1-700A Plan Reviews

1. 60% Plan Review:

The District staff assigned to perform the 60% plan review should look for and comment on the list of major elements as part of the plan review. The following paragraphs give guidance on what should be expected.

The “list of major elements” should be included in the 60% complete package of plans and specifications sent out for review. At a minimum, this list should include a breakdown by individual structure or stage, including major components of each. The following is provided as an example only and is not meant to be all-inclusive (or all-applicable).

**** Project Management items
- Winter shutdowns
- Environmental permit “window” periods
- Milestones and commitments
- Third Party approvals
- Long lead time items
- Fabrication of major elements (Structural steel, precast units, span poles, etc.)
- Adjacent Work by others

Award
Notice to Proceed
Signing (Construction, temporary and/or permanent, by location)
Mobilization
Permit Acquisition
Field Office
Utility Relocations
Submittals/shop drawings/working drawings/product data
Material procurement/fabrication

Construction of Waste Stock pile area
Clearing and Grubbing
Earthwork (Borrow, earth ex, rock ex etc.)
TPCBC
Temporary markings
Roadway Construction (Breakdown into excavation, fill, subbase,
membrane, pavement, curbing, sidewalk, guiderail etc.)
Drainage (Breakdown into excavation, bedding, pipe, manholes, catch
basins, backfill, rip-rap etc.)

Culverts

**** For bridges, include major components such as: Abutments, wingwalls, piers, decks and retaining walls;
further breakdown by footings, wall sections, parapets etc.

Temporary Sheeting
Cofferdam and Dewatering
Structure Excavation
Piles/test piles
Temporary Structures
Removal of Superstructure
Bearing Pads
Structural Steel (Breakdown by fabrication, delivery, installation, splicing, painting, etc.
Illumination
Signalization
Pavement Markings
Plantings
Turf Establishment
Clean-up

Traffic signal, incident management, lighting, planting and guiderail projects will be driven more by multiple
locations, than multiple operations. Therefore, the list of major elements should be broken down first by location,
then by operation e.g. Route 2 and 165 – “Trenching and backfilling”, Rte 12 and Rte 184 – “Span pole
installation”. Other major elements of these types of projects should include, but are not limited to:

Material submittals
Material procurement/fabrication
Installation of anchors
Driving posts
Foundations
Trenching and Backfilling
Installation of Span poles/mast arms
Installation of luminaries
Installation of cameras
Installation of VMS
Hanging Traffic Signal Heads
Saw Cut loops
Energized by power company
Pavement markings
Excavation of plant pits
Setting Plants
Establishment Period
Fertilization

2. 90% Plan Review:

The District staff assigned to perform the 90% plan review should again look for and comment on the list of major
elements (in following with the 60% plan review), as well as the proposed bar chart and contract time (generated by
the designer). The key elements to look for are mentioned in the paragraph below. The reviewer should keep in mind the feasibility or constructability of the project as illustrated by the proposed schedule.

As part of the 90% plans and specification review package, the number of required calendar days shall be computed and a proposed bar chart schedule for the project using the above list(s) as a guide shall be included. All milestones, environmental permit “window” periods, winter shutdowns etc. should be identified and included in the bar chart schedule under the corresponding dates.

1-700B Pre Award Submittal

The Bidding and Award Manual language has been revised to include requirements for the pre-award submission of a comprehensive bar chart schedule by the low bidder, for all projects. This pre-award bar chart is to meet the requirements of Section 1.05.08 (this bar chart will become the “baseline” bar chart referred to in Section 1.05.08).

Within two to three weeks after the bid opening the District should receive the pre-award bar chart submission from the Division of Contracts. If the bar chart schedule is not received by this time the District should contact the Division of Contracts and the Office of Construction to inquire as to why the required submission has not been received.

Once the District receives the bar chart schedule they shall review it in accordance with Section 1.05.08 of the Contract and return any comments to the Division of Contracts prior to award. If the District feels there are significant issues with the pre-award bar chart that reflect a lack of understanding of the work required to complete the project, the need for a pre-award meeting to discuss the schedule shall be communicated to the Division of Contracts (depending on the project requirements, a major issue may range from missing a structure or phase of the project to something like critical submittals).

If the District indicates there are particular areas of concern, the Division of Contracts will meet with the Contractor and District to discuss any issues prior to the award of the contract.

1-700C After Contract Award

The post award procedure for the scheduling requirement depends upon the Scheduling Specification that applies to the subject project. If the Project Coordinator item exists as a special provision in the contract it will supersede Section 1.05.08 after the award of the contract and the District should proceed in accordance with the requirements of that specification.

In either case once the project has been awarded, the District will be responsible to review and approve the baseline schedule, as well as review all monthly updates and bi-weekly schedules. They will provide feedback as necessary to the contractor and will ensure that all concerns are incorporated in future submittals. If necessary, the District will direct the preparation of recovery schedules in order to get a delayed project back on track. It will be the responsibility of the Department’s on-site staff to ensure that all requirements of the specification are complied with (e.g. cover letter narratives, critical path identified, % complete etc.).

The second payment for mobilization may be withheld if no schedule, or an inadequate schedule has been submitted. Likewise, if the contractor fails to provide the required monthly updates, or if they are deemed unacceptable, 10% of the monthly estimate may be withheld, until such time as an acceptable schedule update has been provided. These schedules and updates shall form the basis of any request for additional contract time, or the assessment of liquidated damages.

Office of Construction Claims and Litigation Unit will provide assistance to the District personnel, if requested, for the review of proposed schedules, and any procedural questions related to the scheduling requirement.
1-701 Documentation of Delays and Affect on Project

The Standard Specifications allows the Contractor to present in writing a request for an extension of Contract time if the time needed to complete the work increased due to added or extra work, or due to causes beyond the Contractor's control. Any delay that the inspector is aware of should be well documented in the Daily Work Reports. The information on the Daily Work Reports will be essential for evaluating the time extension request in a fair and equitable manner.

Information that should be reported in the Daily Work Reports includes:

- Date the delay first arose.
- Date the delay ceased to exist.
- The cause for and a description of the delay.
- Effect of delay on entire project.
- Operations in progress during the delay.
- List labor and equipment, in detail, that was idled each day of delay. Photographic documentation should also be made.
- Orders to work in other areas.

1-702 Time Extensions Procedures

The following procedures are used for evaluating, approving, and issuing time extensions:

1-702A Time Extension Authority

The authority for granting time extensions is found in Article 1.08.08 of the Standard Specifications. This article covers acceptable reasons for a time extension “for completion of the work due to extra or added work or delays resulting from unforeseeable causes beyond the control and without the fault or negligence of the Contractor.”

When the District is uncertain the reasons given by a Contractor to support a request for an extension are acceptable under Article 1.08.08, they should discuss the issue with the Construction Administrator or Construction Division Chief.

1-702B Time Extension Requests

Time extensions must be requested by the Contractor in a timely manner. Contract provisions require that time extension requests with adequate substantiation be provided by the Contractor “within 60 calendar days of the event that is the basis of the request or of the first effect of such an event on the work.” The Contractor is responsible for providing the necessary documentation to support the reasonableness of the additional time requested. This will
include the number of days requested (including dates) and proving documentation.

The Project Engineer will provide written acknowledgement of each Contractor’s time extension request. If the information is determined to be incomplete, or fails to meet the requirements of the Contract, the Project Engineer will reject the time extension request. See Figure 1-7.1.

Figure 1-7.1 Sample Letter Project Engineer Time Extension Response

```
Contractor Name/Address  
Town, State, Zip Code  

Subject: Project No.  
FAP No.  
(Project Description)  
Town  
Time Extension Request  

Dear Sir or Madam:  

On (date), you submitted a request for an extension of Contract time for Project No. _______.  

(This request has been received and is presently under review. Upon completion of the Department’s review, you will be notified of the Department’s finding.)  

Or  

(The information you submitted is incomplete and is being returned. Upon receipt of complete information, we will continue to review your request.)  

Or  

(Your request fails to meet the requirements of the Contract for consideration for the following reasons:) (State Reasons)  

VTY  

Project Engineer  

bcc: DE-ADE-PE-SE, Project  

Date:  
```

1-702C Time Extension Analysis

The District staff should prepare its own written analysis of each time extension request including:

- A description of the request.
- An evaluation of the request based on the field records. Each specific delay needs to be identified and explained in detail including the periods of the delay on the critical path of the project as well as explaining any time determined to be concurrent with another delay on the project.
- A conclusion.
• A recommendation
• A time chart comparing the Contractor’s anticipated and actual schedules and the effect of each cause of delay, including the Contractor’s original time charts.

When preparing an analysis you will need to consider the following:
• Did the condition causing the delay exist at the time bids were received?
• Was the condition discussed at the Preconstruction Meeting?
• Do you believe the Contractor might have reasonably expected to have full knowledge of the conditions causing the delay?
• Could the delay be attributed to the Contractor's method of operation?
• Did the Contractor have other areas in which to operate?
• Was the Contractor advised to work in other areas, to utilize idled workers and equipment?
• What other operations were in progress during the delay?
• Did the delay affect the entire project?
• Was the delay beyond the Contractor's control?
• Was the contractor responsible for any portion of the delay which could have been concurrent with the requested delay period.

The analysis is to be forwarded to the Assistant District Engineer by memorandum for approval / disapproval. Figure 1-7.2 shows the layout of the transmittal memorandum.

When the time extension, if granted, will expose the Department to liability for costs incurred during or resulting from delay of project work, it must be discussed with the Office of Construction (Transportation Principal Engineer level or higher) before approval.

1-702D Federal Agency Approval

Before approving a time extension for federal oversight projects, the Assistant District Engineer will submit by letter the time extension request and analysis to the FHWA Division Administrator for approval. Figure 1-7.3 shows a Sample letter to FHWA requesting concurrence and participation in a time extension. The request for concurrence should briefly explain the reasons for the request. Upon written concurrence from the FHWA, the Assistant District Engineer may act on the time extension recommendation.

1-702E Assistant District Engineer Approval/Disapproval

Before approving any time extension, the Assistant District Engineer should ensure that the District’s analysis is complete and, that the Contractor, as well as the District, has provided the required documentation and that said documentation adequately supports the recommendation. If the Assistant District Engineer disapproves or modifies any time extension recommendation, the reasons for disapproval or modification will be documented, and the documentation attached to the package.
Upon approval or disapproval of any time extension request, a copy of the recommendation package, including all substantiating documentation, will be forwarded to the Office of Construction.

Once the Assistant District Engineer has approved the time extension, the time extension will be incorporated into the Contract by Construction Order.

Figure 1-7.2 Time Extension Approval/Disapproval Memorandum

STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION
OFFICE OF CONSTRUCTION

Memorandum

to:
Assistant District Engineer
Bureau of Engineering and
Highway Operations

from:
Supervising Engineer
Bureau of Engineering and
Highway Operations

subject:
Project No.
FAP No.
(Project Description)
(Town)

date:

Attached, for your review and approval, is a copy of the justification for a (number) day (non-compensable) time extension for the completion of work on the subject project.

Project No.:
FAP No.:
Towns:
Standard Specifications:
Original Contract Value:
To Date Contract Value:
Award Date:
Order to Start Date:
Actual Start Date:
Original Calendar Days:
Original Completion Date:
Actual Completion Date: (include only if completed)
Days Used: (include calendar, winter and suspension)
Calendar Days Allowed:
Winter Days (or other period time not counted):
Suspension Days:
Previous time Extension Granted:
Apparent Time Overrun:
Time Extension Recommended:
Revised Completion Date:
Liquidated Damages Recommended:

Please indicate your approval/denial by your signature in the appropriate space.

Approval: ___________________________ Disapproval: ___________________________

Assistant District Engineer
Date: ___________________________ Date: ___________________________

Attachments

cc: Construction Administrator-Construction Division Chief
 District Engineer-Assistant District Engineer
 Supervising Engineer-Project Engineer
 Chief Inspector
Figure 1-7.3 Sample Letter to FHWA Requesting Concurrence with Time Extension

Date:

Mr. (Division Administrator)
Division Administrator
Federal Highway Administration
Connecticut Division
628-2 Hebron Avenue, Suite 303
Glastonbury, CT 06033-5007

Attention: (FHWA Engineer)

Re: Project No.
 FAP No.
 (Project Description)
 (Town)
 Recommendation on Time Extension Request

I am writing to request FHWA’s concurrence and participation in a time extension of (____) days for completion of work on the above noted project. Project No. (_____), FAP No. (______) is a Federal oversight project. Enclosed is the District’s evaluation of the subject time extension request.

Our analysis concludes the following time extension item(s) is/are justified.

(List each item, number of days requested and number of days granted, and short summary of the basis for the decision to grant time)

If you concur with the justification please sign and return the enclosed memorandum.

Very truly yours,

Assistant District Engineer
Bureau of Engineering and Highway Operations

Enclosures

bcc: Construction Administrator-Construction Division Chief-Liaison Engineer
 District Engineer-Assistant District Engineer-Supervising Engineer
 Project Engineer
 Chief Inspector
1-703 Temporary Suspensions and Resumptions

The District Engineer has the authority to suspend the work wholly or in part for such period or periods as necessary, in the best interests of the State or in the interests of public necessity, convenience or safety. Before a temporary suspension is issued the matter should be discussed with the Construction Administrator or Construction Division Chief.

When temporary suspension is granted by the District Engineer through the Assistant District Engineer, the Assistant District Engineer notifies the Contractor in writing of the effective date of such suspension and resumption date (if known).

Whenever a project is wholly suspended a Contract Status Report (CON-100) must be completed within seven days of the suspension date and within seven days of the resumption date. See Section 1-205 for more information.

Notification of resumption following a temporary suspension is handled in the same manner as the Notice to Proceed. When establishing the resumption date, remember to take into consideration the time required for the Contractor to remobilize his workforce.

No suspensions will be granted for a time period excluded from the Contract. For conventional construction projects (highways and bridges), this period is from December 1 through March 31 provided Contract provisions don’t designate the winter period as chargeable Contract time. In determining Contract time, it is assumed that no construction operations are performed during excluded time periods.
Chapter 8 – Construction Orders

1-800 General

Construction Orders are issued to authorize changes to the Contract. They may make increases and/or decreases in quantities of Contract items, add extra work essential for the satisfactory completion of the project, increase or decrease the Contract time, add or modify Contract Plan sheets, or alter the sequence or character of the work. A Construction Order must be processed to gain approval of the change.

For the purpose of this manual the terms Construction Order, Change Order and Contract Order are interchangeable.

The terms of an executed Construction Order are enforced as though they were part of the original Contract. It is essential that Construction Orders explicitly describe the change proposed, including:

- the character and scope of the change,
- where and within which limits the change applies,
- the method of compensation, and
- any changes in the allowed Contract time.

The Construction Order needs to explain why it has been prepared. It should be short and concise yet detailed enough to provide persons with no knowledge of the project with an understanding of why the change is needed.

When a Construction Order is done properly it will identify:

- What is the change
- Who initiated the change
- Where is the specific location of the change
- Why was the change needed
- When the change is initiated

1-801 Review of Proposed Changes

Changes and extra work should be held to the minimum and limited almost exclusively to revisions and additions necessitated by conditions that could not reasonably be anticipated before the project was advertised for bid. The Department must carefully review changes that involve a substitute material or product or a change in the method of construction.

Review of a proposed change will involve the following considerations:

- Is the change in the public interest?
- Does it provide an equal or better material or product than originally planned?
- Does it provide a better method of construction than originally planned?
- Does the Contractor benefit from the change, and if so, is there a corresponding benefit to the project?

Design changes, substitution of materials, revised methods of construction, and specification modifications must satisfy the criteria to provide adequate justification for consideration and approval.
1-802 Need for Construction Orders

Inspectors should use the following criteria in determining the need for a Construction Order.

Construction Orders are required for design-initiated changes in the plans or typical sections, when any changes result in monetary increases or decreases, and/or when an adjustment in Contract time is required. The changes can be made part of the Contract only through Construction Orders. Design changes and cost-plus work should be submitted promptly with estimated quantities, rather than waiting until accurate quantities are available.

Revised quantity determinations are to be made as the work progresses, and final-quantity revisions are to be included on intermediate Construction Orders as items are completed. Updating quantities on intermediate Construction Orders reduces the time required to prepare the final Construction Order, enables one to keep better track of the projected Project cost, and avoids unnecessary revisions to the performance bond which may increase costs (Refer to Chapter 1-19).

Additional Contract time is to be processed on intermediate Construction Orders whenever a Contractor’s request for an extension of Contract time is approved. A full explanation justifying the additional time must be attached to the Construction Order. Refer to 1-702, “Time Extension Procedures”.

1-803 Design Initiated Change Orders

The following guidelines have been established for “Design” initiated Change Orders:

- For change orders less than $25,000, a Construction Order Initiator from design will not be required. Emails, facsimiles, phone call reports, or meeting minutes will be sufficient supporting documentation for the project inspection staff to prepare the Change Order.

- For change orders greater than $25,000, a Construction Order Initiator memorandum will be required from the initiating unit which will include details for the change and an analysis of how the change will affect the project. (Refer to Section 1-803A)

- For complex changes involving unforeseen conditions, changes in scope, or a revision to the contract specifications, regardless of the cost, a Construction Order Initiator memorandum will be required. An analysis similar to that described in Section 1-803A will also be required.

1-803A Analysis of Design Initiated Change Orders

The following analysis procedures are recommended for major change orders:

- The effect the proposed revision has on contract lump sum items such as mobilization, maintenance and protection of traffic, and construction staking should be assessed and included in the estimated cost when applicable.

- If contract items do not exist or if the character of the work differs from the existing contract, unit cost pricing for the extra work may be based on the weighted unit prices for the current time period or an independent evaluation of the work.

- Impacts (direct and indirect) caused by the change order to other construction activities on the project should be considered and reviewed.

- The effect of the change order upon the project schedule should be analyzed and reviewed.
• Applicable specifications should be noted and/or provided for the work.

If it is determined that the proposed change will result in substantial impacts to the scope, schedule or budget for the project, District management and Engineering management must be advised and consulted regarding the proposed change. In all cases financial impacts of the proposed change shall be coordinated with the Financial Administration office and FHWA must be consulted on full oversight projects.

1-804 Additional Approval Requirements

Construction Orders which incorporate major changes into the contract may require review and approval by the Office of Construction or the FHWA. Project staff must obtain prior approvals for construction orders in the following instances.

1-804A Change Order Approval Requirements by Office of Construction

Change orders must be discussed with the Office of Construction when (1) they are valued in excess of 25% of the original contract value or $500,000, or (2) may cause a delay to the project of more than 6 months. Background materials shall be forwarded to the appropriate Liaison Engineer as soon as the information becomes available. The District shall not proceed with the work until authorized by the Construction Administrator or Construction Division Chief. The combined value of all related change orders shall be used to determine if approval by the Office of Construction is required.

For price adjustments that involve Article 1.04.03 or 1.04.04 and the total adjustment is greater than $250,000, the District Engineer must obtain concurrence from the Office of Construction. This approval will be documented.

1-804B Change Order Approval Requirements by Federal Highway Administration (FHWA)

On Full-Federal oversight projects, FHWA must approve each and every change order. For contract changes which involve: 1) changes to the project scope 2) time extensions totaling 30 days or more and/or impacts a contract milestone date 3) cost increases greater than or equal to $100,000; a prior approval in order to proceed with the given Change Order is required. This FHWA approval shall be obtained using the Form “Record of Prior Approval for Major Contract Change Orders” (Figure 1-8.1). This prior approval requirement shall include changes that need to be further increased on subsequent change orders that result in an aggregate increase greater or equal to $100,000. Change Orders less than $100,000 can be approved retroactively by FHWA and do not need a prior approval in order to proceed.

For State Administered oversight projects involving Federal-Aid Funds, a prior approval in order to proceed is also required from FHWA when the project change: 1) has a cost increase in excess of 25% of the original contract value or $250,000 whichever is less 2) results in delays or time extensions to the project of more than 3 months 3) results in any scope changes. This FHWA approval shall be obtained using the Form “Record of Prior Approval for Major Contract Change Orders” (Figure 1-8.1).

Upon receipt of any Change Order initiator from the Office of Engineering, the Project Engineer must confirm that the Office of Engineering has advised FHWA as stated in 1-803A, if there has been no notification by the Office of Engineering to FHWA; the Project Engineer shall coordinate with Design Project Engineer to be certain FHWA has been informed.

Whenever a project change requires a “Record of Prior Approval for Major Change Order Form” the subsequent Change Order also shall be submitted to FHWA for final approval, regardless of oversight. The Change Order package shall include the approved “Record of Prior Approval for Major Change Order” form as part of its documentation.
Note - If a change order is processed without FHWA approval as required above then the State may be responsible for any cost that has not received prior approval from FHWA.

FHWA should be informed as soon as possible of all change conditions that result in those situations as stated above.

The decision on whether or not a project is Full-Federal Oversight occurs prior to advertisement. This determination should have been entered into the appropriate cell in Site Manager. It is the Project Engineers responsibility to know the oversight determination for a given project.

1-805 Construction Order Preparation

The process to initiate a Construction Order should be started as soon as the potential need for a change is identified. Work that will be authorized by a Construction Order, other than minor increases and decreases in existing contract items where no change in the Contract plans has occurred, should not be initiated until the Supervising Engineer reviews the requested change and the work is approved. In addition, when a Construction Order exceeds $250,000 the Office of Financial Management, Office of Construction Liaison Engineer, and the District Engineer should be notified in advance of the forthcoming Construction Order; See also Section 1-804.

The Chief Inspector is the primary project staff member responsible for the preparation and content of Construction Orders. Construction Orders are prepared and processed using the procedures and format of SiteManager. For detailed explanation on how to create a Construction Order refer to the SiteManager Help Files. All Method of Measurement/Basis of Payment changes to existing contract items must have prior approval from the Office of Construction. A copy of the memo approving the Method of Measurement/Basis of Payment change is to be included in the Volume III with the applicable item number.

Construction Orders that involve price adjustments, differing site conditions, or claim settlements cannot be initiated until the Supervising Engineer obtains required approvals. For all price adjustments that involve articles 1.04.02, 1.04.03, and 1.04.04 the Supervising Engineer must obtain concurrence from the Principal Engineer or Assistant District Engineer. For price adjustments that involve Article 1.04.03 or 1.04.04 and are less than $250,000 the Assistant District Engineer must obtain concurrence from the District Engineer; if the total adjustment is greater than $250,000 the District Engineer must obtain concurrence from the Office of Construction. Generally claim settlements will not be processed by Construction Order unless directed to do so by the Office of Construction. This approval will be documented by memorandum unless the approval authority signs the approval letter sent to the Contractor.

1-806 Construction Order Addendums

Construction Order addendums provide an explanation as to why the change is needed, and documentation that the proposed contract changes have been approved. The addendum should be complete, yet simple and clear so that auditors and other reviewers will understand them. In preparing Change Order Addenda, remember that the auditor or reviewer of a Construction Order usually is unfamiliar with the project. The explanations provided must clearly explain the need and authority for the change and provide an analysis that people unfamiliar with the project can understand. Use the following guidelines:

- Dimensional Changes or a Change in the Plans or Typical Sections (with the exception of minor revisions in the location of culverts, manholes and catch basins): Incorporate revised plan sheets when available. When the change is being made to benefit the contractor make sure to indicate as such and also identify the corresponding benefit to the Department if one exists.
Overruns/Underruns (no design change): Provide a detailed Change Order Explanation whenever both of the following conditions are met: 1) the cumulative quantity change of an item varies by 10 percent or more from the original estimate, and 2) the value of the quantity change is more than $10,000. If the item was increased or decreased on more than one Construction Order, an item summary must be provided. The reason why the quantity differs from the design estimate should be explained in detail whenever possible. Avoid simply stating that Design overestimated or underestimated the item. If the designer provided insufficient detail to determine why there is an overrun or underrun, indicate so. Do not include quantity changes caused by design revisions when determining overrun/underrun percentages.

For federal-aid projects, when non-participating work is involved apply the item change to the appropriate non-participating section (line item). Unused construction materials transferred to State Stores are always non-participating.

When an item relates to more than one project section the quantity applicable to each section (line item) must be specified.

Cost-plus work must be authorized by a Construction Order before any payments can be made for the work. The initial estimate for anticipated costs for a cost-plus item must be established using reasonable assumptions. Attach a copy of the letter ordering or confirming the work done on a cost plus basis to the Construction Order. If not included in the body of the letter, also attach the calculations or assumptions made to establish the reasonable estimate. When the Contractor has submitted a price that is unacceptable, use the assumptions made to analyze the Contractor’s proposal to establish the initial estimate. If a CON-9 is used to calculate the initial estimated value, this form must be clearly labeled “For Estimate Purposes to Get on Change Order” and the Scope Estimate box must be checked. A sample Estimate using a CON-9 is shown in Figure 1-8.2.
Figure 1-8.1 Record of Prior Approval for Major Contract Change Order

<table>
<thead>
<tr>
<th>STATE PROJECT NO.</th>
<th>FEDERAL AID PROJECT NO.</th>
<th>COMMOT DISTRICT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REQUESTED BY:

PROPOSED CHANGE:

REASON FOR CHANGE:

TIME EXTENSION

- [] NONE _____ DAYS

ESTIMATE OF COSTS

$__________ [] INCREASE [] DECREASE

ACTIVITY ON CRITICAL PATH AFFECTED BY CCO (IF TIME EXTENSION INVOLVED)

- [] CCO METHOD OF PAYMENT
 - [] CONTRACT ITEMS
 - [] AGREED PRICE
 - [] FORCE ACCOUNT

THE WORK COVERED BY THE PROPOSED REVISION AS DESCRIBED ABOVE IS APPROVED SUBJECT TO THE CONDITIONS MARKED BELOW.

- [] EVALUATION OF COST DATA
- [] LIMITATIONS EXTENT OF FEDERAL PARTICIPATION
- [] DETERMINATION OF SATISFACTORY ADJUSTMENT IN TIME
- [] ADEQUATE SUBMITTAL OF WRITTEN SUPPORTING DATA

PRIOR APPROVAL TO PROCEED GRANTED BY:

DATE OF AUTHORIZATION:

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
CONNECTICUT DIVISION OFFICE
On completion of the cost-plus operation, another Construction Order must be processed, showing the exact cost of the work. The same item number and line item(s) are used when the adjustment is made. The detailed explanations for this Construction Order will list any adjustments made and reference the original and any supplemental Construction Orders.

Documentation used to support the Construction Order must be referenced and identified in the Change Order Explanations, i.e. memorandum requesting design revision, price approval letter establishing price for new items, etc.

Supplementary Construction Orders are to be initiated to increase or decrease the original construction order item, so that appropriate project funding can be maintained. The change order explanations to these Construction Orders need to reference the original Construction Order.

Each item in a Construction Order must have at least one standard explanation applied to the specific item (line item) to classify the change. With the exception of minor overruns and underruns of existing Contract
items, additional explanations must be provided to describe in detail the change. For further explanation on how to create explanations for Change Orders in SiteManager refer to the SiteManager Help Files.

- Separate records must be kept for “emergency break out projects.” to identify and clearly track the project.

1-807 Standard Explanations - Classification of Line Item Changes

The standard paragraph explanations focus on WHY the change occurred, not who initiated the change or how big the change is. Also, they are organized so that the inspector can quickly determine which explanation applies and so that uniform application of the explanations may be created throughout the Districts.

To apply an explanation to a change, the inspector must first determine the reason for the change. To do this, the inspector begins with the first explanation (1-U) and proceeds down the list until the appropriate explanation is determined. If more than one explanation applies to the particular change, the change shall be assigned the first explanation from the list. Only one paragraph classification is to be used to classify a change.

1-U Unforeseen Condition – Additional work necessitated by encountering reasonably unforeseeable conditions which differ materially from those indicated in the contract or unusual conditions differing from those normally encountered. Items applying to this explanation are defined by Article 1.04.04-Differing Site Conditions of the Standard Specifications. Examples: underground storage tank, contaminated materials, concealed decay, unanticipated rock or groundwater.

2-S Change in Scope – Changes from the original intent or purpose of the project, extension of projects limits (i.e., additional signalized intersection, limits more than 100’ beyond original, etc.), elimination of contract work, and work not normally associated with the type of work originally bid.

3-C Contract Revision – Changes in the original design initiated by design or construction which falls within the original scope of the project and does not alter the basic character of the project. This also includes revised specifications. Examples: revisions to pavement markings, revisions to base materials, revisions to stage construction, revisions to signalized intersection.

4-Q Quantity Adjustments – Minor increases or decreases in original quantities not attributable to any of the above explanations. (Increase or decrease less than 10% of the original estimate or the value of the quantity change is less than $10,000.)

5-O Other Adjustments – Revisions to the contract or plans to correct foreseeable changes which reasonably could have been expected. (Ex. Work shown on the plans for which no pay item was provided - no rock in trench item where rock outcrops are plainly visible, revisions to comply with environmental permit requirements or R-O-W agreements, incorrect original computations, and elevation bust resulting in extra work to correct.)

This explanation also includes contract adjustments. (Ex. Liquidated Damages, incentives/disincentives, sanctions, material escalation clauses, etc.)

6-T Time Extension – Adjustment in the allowable contract time for any portion of the work.

1-808 Documentation

Generally, the documentation should include the following:

- The District’s letter to the Contractor advising of additional work and requesting a price submittal for new Contract items.
The Contractor’s letter outlining requested prices, with breakdowns showing the methods of computation.
- The District’s letter to the Contractor approving prices or, if the prices cannot be substantiated, notifying the Contractor that work will be done on a cost-plus basis.
- A summary of the cost-plus documentation and a reference to the Volume III or DWR where the source documentation is located.
- Correspondence should be listed in chronological order following each paragraph and numbered “1A”, “1B”, etc. If the same correspondence is used for multiple paragraphs, reference the previous paragraph rather than attaching a second copy. Label each copy of correspondence in the lower right-hand corner with the project number, construction order number, the paragraph and the correspondence letter.

Figure 1-8.2a Deleted

1-809 General Processing Guidelines

Construction Orders are processed according to the following guidelines:

- The Project Engineer and Chief Inspector must make regular checks of the project records to identify any need for a Construction Order.

- All Construction Orders that have been initiated should be processed and sent to the Contractor within a 60-day period, with appropriate backup information.

- Draft Construction Orders for emergency work or work of a critical nature must be submitted to the District within 5 working days after the start of the extra or additional work. If actual costs are not known, they should be estimated and processed as “estimated cost-plus”.

- Funding for the Construction-Order work must be checked out as soon as the cost is estimated.

- Project modifications and Work Orders must be processed as soon as possible.

- Any Construction Orders not returned or returned unsigned by the Contractor must be noted as such and processed unsigned.

- Contractor objections for not signing a Construction Order will be investigated and the Contractor will be advised in writing of the action the Department has taken. The letter must be included with the Construction Order.

1-810 Review and Processing Procedure

Each District will implement a review process that enables the majority of the Construction Orders to be sent to the Contractor for signature within 60 days of initiation. The only Construction Orders not sent to the Contractor within 60 days should be those where the Project is waiting for documentation from the Contractor. A routing slip is to be used to document the review process, including the approval authority (refer to 1-810C). See Figure 1-8.3.
1-810A Review by Project Engineer

The Project Engineer has the primary review responsibility. They will:

- Review the Construction Order for scope, completeness, and accuracy. Check for appropriate specification references and accurate descriptions of any changed conditions.

- Review the explanations and attachments to ensure an adequate basis is established for the changes contemplated and that all relevant attachments are provided.
• If the Construction Order will trigger the need for a new performance bond, confirm with the Chief Inspector that quantities have been revised or finaled to accurately reflect the work remaining.

• Make minor revisions.

• Return the Construction Order to the Chief Inspector if major revisions are required. Note the reason and date returned on the routing slip.

• Sign and date the routing slip and forward package to the Transportation Supervising Engineer.

1-810B Review by Supervising Engineer

The Supervising Engineer ensures that the Construction Order complies with current Department policies. They will:

• Review the Construction Order and attachments as necessary.

• Determine the appropriate level for approval of the draft Construction Order in accordance with the guidelines listed below.

• Meet with the Transportation Principal Engineer or the Assistant District Engineer, as appropriate, to obtain approval of the draft Construction Order.

• Return the Construction Order to the Project Engineer if revisions are required.

• Signs and date the routing slip and return to District staff for initial processing.

1-810C Authorization to Process Construction Order

District Management (D.E. or A.D.E.) shall obtain the concurrence (phone, fax, email etc.) of the Construction Division Chief or Construction Administrator when:

• Prior to authorizing any change order that is valued in excess of 25% of the original contract value.

• When the aggregate value of all related change orders exceeds $500,000.

• Price adjustments greater than $250,000 in accordance with Article 1.04.03 and 1.04.04.

• May cause a delay to the project of more than 6 months.

The Transportation Principal Engineer or the Assistant District Engineer must authorize the processing of Construction Orders when:

• the Construction Order value exceeds $150,000;

• the cumulative value of all C. O.’s reaches 5%, 10%, 15% etc. of the original contract value;

• the Construction Order adjusts the price of an item under Article 1.04.02, 1.04.03, or 1.04.04;
• the Construction Order addresses a potential claim issue;
• the Construction Order grants additional time; or
• the Construction Order contains an item change that involves a design error or material change.

The Supervising Engineer will authorize the processing of Construction Orders for:

• routine quantity revisions,
• extra and additional work that has received prior approval by the Department, and
• any other item not reserved for other authorities.

1-810D Review and Initial Processing by District

The District Office Staff performs the following when processing a Construction Order:

• Check funding (both Federal and State).
• Review general format.
• Ensure required corrections are made. Return to the Chief Inspector or Project Engineer, if necessary.
• Prepare the package with a cover letter to the Contractor.
• Return the completed package to the Project Engineer for signature.

1-810E Processing by Project Engineer

The Project Engineer reviews the completed package to ensure comments have been incorporated, signs all copies and sends it to the Contractor for their signature. Typically only two copies of the Construction Order are sent to the Contractor for signature.

If the Contractor does not return the Construction Order within 15 days, a follow-up letter is sent to the Contractor to determine the status. See sample letter in Figure 1-8.4. A copy of this letter is included with the Construction Order.

1-811 Guidelines for Approval of Construction Orders

The Supervising Engineer has the primary responsibility for approval of Construction Orders. The District Office receives the Construction Order from the Contractor and sends it directly to the Transportation Supervising Engineer for approval.
If the Contractor fails to return a Construction Order after the second notice, the District Office provides the Transportation Supervising Engineer with copies of the Construction Order for approval.

The Transportation Supervising Engineer signs the Construction Order and forwards it to the District Staff for further processing.

Figure 1-8.4 Second Letter to Contractor Transmitting Construction Order

<table>
<thead>
<tr>
<th>CONTRACTOR NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRACTOR ADDRESS</td>
</tr>
</tbody>
</table>

Gentlemen:

Subject: PROJECT NO.
FAP NO.
Description
Town

In a letter dated [date], we sent to you for signing Change Order No. [number] for the above referenced project.

This Change Order has not yet been returned to the District Office by your firm. Please sign and return the Change Orders by [date]. If it is not returned by this date we will process this order and you will receive an approved copy in the mail.

If you have not received the Change Order in question, please contact me and I will send out a new one for your signature. If you have any questions, please contact me at telephone number (860) XXX-XXXX.

Very truly yours,
District Representative (TE3 or above)

cc: Construction File

When a Contractor returns a Construction Order unsigned, and the Contractor has stated their objection, preferably in writing (a copy of this letter is included with the Construction Order), the stated objections are investigated to the satisfaction of the Transportation Supervising Engineer. The Transportation Supervising Engineer will consult with the Transportation Principal Engineer or Assistant District Engineer as appropriate. If the objections are determined to be invalid, the Construction Order is processed unsigned and the Contractor is notified of the action. If the objections are determined to be valid, a subsequent Construction Order is processed with the appropriate corrections; the Construction Order is processed unsigned, and the Contractor is notified that the corrections will be addressed by a future Construction Order.
1-811A Final Processing by District

The District Office Staff completes the final processing:

- Adds the explanations (addendum) and attachments to the Construction Order copies, as required.
- Sends an approved copy to the Contractor and, if necessary, to FHWA. The District number must be placed in the upper right-hand corner of the first sheet of the copy sent to FHWA.
- Files the approved copies.

1-811B Distribution

Once a Construction Order is approved, hard copies are distributed in accordance with the charts in Figure 1-8.5.

The following Construction Order addenda are sent from the Assistant District Engineer to the Construction Division Chief for information and reference.

- Non-participating construction orders on direct FHWA oversight projects
- Construction orders over $250,000.
- Any construction order which incorporates the following:
 - time extension
 - claim payment
 - liquidated damages
 - incentive payment
 - project incidents which trigger a “construction issues” form

On Contracts reimbursable by Department of the Army Corps of Engineers, one extra copy of the Construction Order is required for its records.

1-812 Final Construction Orders

A project must not be accepted, and retainage must not be released, prior to receipt of all required paperwork from the prime Contractor. Once the project has been accepted, the State is required, by Statute, to make full and final payment to the Contractor within 60 days of acceptance or pay interest at the rate of 6 percent per annum on the unpaid balance of the final estimate. In many cases, the interest charge could be a significant amount of money, and in all cases, it is an unnecessary cost that requires much extra work and explanation by the District.

Occasionally, delays resulting from disagreements on quantities, submission of agreed prices, incomplete final quantities, or disagreement on the interpretation of the special provisions or plan notes contribute to the overall delay in the processing of the final Construction Order and estimate. The Assistant District Engineer should be advised promptly of any problems that may affect the expeditious processing of the necessary papers.
When all of the work pertinent to a Contract item has been completed, the original or revised estimated quantity is adjusted to the final pay quantity by Construction Order, for payment on an estimate. Minor adjustments to quantities, due to actual field measurements, computation corrections, etc., can be made on final Construction Orders; however, no new or cost-plus items can be initiated. New items must be introduced on intermediate Construction Orders.

If the final Construction Order has been accepted and quantity changes are required for any reason, a supplemental final may be initiated. The Construction Order is designated “Supplemental Final Construction Order” on the front sheet.
Table 1-8.5 Distribution of Construction Order Copies

<table>
<thead>
<tr>
<th>Project Type</th>
<th>#s</th>
<th>Contractor</th>
<th>Office of Construction</th>
<th>Central Files</th>
<th>District</th>
<th>Inspector</th>
<th>Laboratory</th>
<th>FHWA</th>
<th>Public Trans</th>
<th>Aviation & Ports</th>
<th>Aviation & Ports</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHWA Funded (Federal Oversight)</td>
<td>C O</td>
<td>3/4</td>
<td>O</td>
<td>**</td>
<td>O</td>
<td>C</td>
<td>C</td>
<td>C*</td>
<td>C</td>
<td></td>
<td></td>
<td>Send Construction Orders to Designated FHWA representative at FHWA 628-2 Hebron Ave. Suite 303 Glastonbury CT 06033-5007</td>
</tr>
<tr>
<td>Specifications</td>
<td>5</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addendum</td>
<td>4</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachments</td>
<td>4</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHWA Funded (Non-Federal Oversight)</td>
<td>C O</td>
<td>2/4</td>
<td>O</td>
<td>C</td>
<td>See note</td>
<td>C</td>
<td>C</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td>For certain C.O.’s see below**</td>
</tr>
<tr>
<td>Specifications</td>
<td>4</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addendum</td>
<td>3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachments</td>
<td>3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% State Funded (Emergency, Salt Shed, etc.)</td>
<td>C O</td>
<td>2/4</td>
<td>O</td>
<td>O</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td>See below**</td>
</tr>
<tr>
<td>Specifications</td>
<td>4</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addendum</td>
<td>3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachments</td>
<td>3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTA and other Projects involving funding through Bureau of Public Transportation</td>
<td>C O</td>
<td>2/5</td>
<td>O</td>
<td>O</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>See below**</td>
</tr>
<tr>
<td>Specifications</td>
<td>5</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addendum</td>
<td>4</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachments</td>
<td>4</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAA and other Projects involving funding through Bureau of Aviation and Ports</td>
<td>C O</td>
<td>2/6</td>
<td>O</td>
<td>O</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>See below**</td>
</tr>
<tr>
<td>Specifications</td>
<td>5</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addendum</td>
<td>4</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachments</td>
<td>4</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C C C C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Note: Whenever a Project includes funding from the Army Corps, a copy of the Construction Order will have to be sent to that Agency.

The Laboratory only needs copies of C.O.’s if new items are being incorporated. The District has to coordinate with the Lab to establish and/or set up the testing requirements for new items.

**Non-participating C.O.’s on direct FHWA oversight projects, C.O.’s over $100,000 and/or any C.O. which incorporates the following: time extension, claim payment, liquidated damages, incentive payment or project incidents which trigger a “construction issues” form.*

***For State administered oversight projects involving Federal-Aid Funds certain Construction Change Orders require both prior approval to proceed and final approval of the subsequent change order; reference Construction Manual section 1-804B for guidance.*
Chapter 9 - Contract Payments

1-901 Progress Estimates

Progress payments are made to the Contractor on all projects under Contract on the Payment Estimate and must include payment for work completed up to and including the ending date of the estimate period. Typically, the Payment Estimate is computer generated. Figure 1-9.1 shows a Payment Estimate. The monthly and semimonthly progress estimates for projects under Contract are explained below and the procedure for processing is explained in the SiteManager Help Files. The final estimate preparation is discussed in Volume 1, Chapter 10 - “Contract Completion” of this Manual.

Include all contract item work that is completed satisfactorily in accordance with the Contract in progress estimates. Do not include in progress estimates preparatory or organizational work such as assembling equipment, shop work, falsework, or forming, unless provided for in the special provisions. Do not pay for material placed or installed for which the required evidence of acceptability (Certified Test Reports, Material Certificates or acceptance tests) has not been obtained, unless approval is given by the Project Engineer.

1-902 Estimate Period

The period covered by the first estimate begins with the ordered starting date and ends on the first typical ending date established by the District, normally the first or last day of the month, in which the amount payable on the estimate exceeds $2,500.00.

![Figure 1-9.1 Payment Estimate](image-url)
All succeeding estimates cover a period of one calendar month or half a month and have a fixed due date, that is the same for each month, unless the project is suspended or completed. If the project is suspended or completed, the last day prior to the date of suspension or completion concludes the estimate period. Intermediate suspensions and resumptions do not affect the processing date of an estimate, as the fixed due date applies throughout the term of the Contract.
After the first estimate all subsequent estimates in which moneys are owed the Contractor will be paid regardless of the amount payable.

I-903 Estimate Preparation and Review

Each District will establish a procedure that enables the majority of the progress estimates are initialed, reviewed and processed in an accurate and timely manner.

The Chief Inspector is responsible for the preparation of the estimate; they must generate it in SiteManager. Before a progress estimate is generated they must make sure all Daily Work Reports, including those for sub-inspectors are entered, reviewed and authorized for the estimate period. Refer to the Reports and Records Section of this manual. The Chief Inspector must also make sure that any item paid on a monthly basis is on their Daily Work Report or a designated sub-inspector’s Daily Work Report.

Once all the Daily Work Reports are accepted, the Chief Inspector will generate an estimate and then address all the discrepancies that are associated with it and make appropriate adjustments. After all the discrepancies have been addressed and adjustments made, the Chief Inspector will go over the quantities with the Contractor to try to work out any differences. If the differences can’t be worked out the Project Engineer will be notified and provided with details. After going over the estimate with the Contractor the estimate will be forwarded for review and approval.
The Project Engineer should review each estimate with the Chief Inspector or Resident Engineer. Among the items that are to be discussed are:

- Quantity over-runs
- Material/Testing deficiencies
- Defective workmanship
- Work in progress
- Estimated quantities and payments (refer to Sections 1-308 and 1-912)
- Contractor disputed items

Items of concern noted in the discussion between the Project Engineer and the Chief Inspector should be brought to the attention of the Supervising Engineer. At the completion of this review process the Project Engineer shall sign the “Examined and Checked By” portion of the Estimate.

The Supervising Engineer shall be satisfied that the proper procedures have been followed in preparation of the Payment Estimate prior to signing. Upon review and approval of the estimate by the Supervising Engineer, it will be forwarded to the Assistant District Engineer for review and signature. All signatures on contractor payment estimates shall include the typewritten, stamped, or printed name of the signer.

1-904 Funds

The District office and field staffs are to monitor Progress Estimate expenditures. The Chief Inspector should keep the Project Engineer informed of the available funding on the Contract and must advise the Project Engineer when 75% of Project funds have been expended. Upon notification the Project Engineer will discuss the remaining work with the Chief Inspector and determine if additional funds are likely required to complete the project. Also refer to the Volume 1, Chapter 8 – “Construction Orders” for additional requirements for monitoring funding.

If the total cost of the Payment Estimate exceeds the approved funds set up for the construction activity, the District Fiscal Officer should be contacted to determine why additional funding has not been approved. (Additional funds should have been requested when the original Contract value plus the value of all approved and pending Construction Orders exceeded the funding allotment.) The Fiscal Officer will research the delay and expedite approval of a Project Modification and/or a Work Order. After notifying the Fiscal Officer, the Payment Estimate process will continue, however, it will not be sent to Accounts Payable Unit until the required funding is in place.

1-905 Retainage and Securities

Retainage is held in accordance with the terms of the Contract. Payments may be made to draw down from funds held in retainage when it is determined that it is in the best interest of the State to reduce the amount retained. Refer to Chapter 10 for further guidance on the reduction or release of project retainage.

Connecticut General Statues allows the substitution of securities for retainage on state contracts. For this to occur, the following will happen:

- The Contractor writes to the Comptroller advising them of their intention to deposit securities.
- The Comptroller sends application for substitution of securities.
- The Contractor sends signed application back to the Comptroller’s Office.
- The Comptroller sends application to the Office of Construction for approval.
- The Office of Construction sends the approved application back to the Comptroller’s Office for further processing, with cover letter.
- The Comptroller advises the Office of Construction by letter that securities have been deposited.
The Office of Construction advises the District by memorandum that the Contractor has substituted securities for retainage.

After the Comptroller notifies the Office of Construction that securities have been deposited by the Contractor, the Office of Construction will contact the District and direct them to set up a securities account in SiteManager. The value of securities available to encumber shall equal the market value of the securities at the time of deposit or the par value of such securities, whichever is lower. This information will be contained on the Comptroller’s letter indicating that securities have been deposited.

At the end of the Project the Contractor should send a letter to the District requesting the release of retainage and/or securities. Upon notification from the Contractor and completion of a Certificate of Acceptance of Project (CON-501), the District will notify the Office of Construction to release securities. The Office of Construction will then notify the Comptroller’s Office, by letter, that all securities can now be released.

1-906 Extra or Additional Work

Payments for extra or additional work that are added by Construction Order should not be made until the Construction Order is approved. SiteManager payments cannot be made for new items or cost plus items until there is an approved Construction Order incorporating the item. Payments for Contract item overruns that are not the result of a change in the Contract may be made without a Construction Order in place provided 1) there are sufficient funds available to pay for the additional work, 2) the cumulative increase for the item is not greater than 25% of the original estimated quantity, and 3) the item overrun will be incorporated by Construction Order or be contained in a draft/pending Construction Order before the next progress estimate.

Whenever possible, extra work involving estimated expenditures that exceed the funding set up for the Contract should not be performed until the Financial Unit has issued a Work Order increasing the funds to pay for the extra work. Refer to the Volume 1, Chapter 8 - “Construction Orders” for further explanation.

1-907 Liquidated Damages, Sanctions, and Item Adjustments

Liquidated damages for Contract time must be deducted when the allowable Contract time or completion date has been exceeded and no time extension has been granted unless otherwise approved by the Assistant District Engineer.

Liquidated damages for lane closures must be deducted when a lane is kept closed beyond the time permitted unless the Contractor has been given advance approval to keep the lane closed for an extended period of time; or is directed to keep the lane closed for reasons not caused by the Contractor, i.e. traffic accidents, unless otherwise approved by the Construction Division Chief.

Sanctions will be deducted by the District unless directed otherwise by the Office of Construction. Typically sanctions are imposed when the Contractor fails to pay the prevailing wage or comply with the respective DBE or SBE provisions.

Item adjustments will be incorporated per the Contract provision.

Liquidated damages, sanctions, and item adjustments will be incorporated by Construction Order. Inspection staff must make sure they use the appropriate item number when setting them up.
1-908 Deductions

Deductions (as opposed to Liquidated Damages, Sanctions, and Item Adjustments) are those amounts held back for specific purposes i.e. overweight vehicles, deficient material testing, warranty period has not completed, final finishing has not been completed. These deductions may be either temporary or permanent. The Chief Inspector in conjunction with the Project Engineer must identify, initiate and control all deductions.

It is preferable to base deductions on known amounts, but, if necessary, they can be estimated.

Chief Inspectors must keep source documents and summary sheets in the appropriate Contract records to cover all deductions.

1-909 Payment for Stored Materials

Due to the complexity of the documentation necessary for payment of stored materials this section is divided into subdivisions in an effort to outline the specific requirements depending on storage location and other conditions. The first subsection (1-909A) addresses general requirements for stored material payments. The subsections that follow (1-909B, C, D) explain special requirements for materials stored in state, out of state, raw and partially fabricated materials. The entire article should be reviewed to determine the case that you are dealing with.

1-909A General Requirements

Article 1.09.06-B of the Standard Specifications provides for payment of materials, stored either on or off the project. Under the specifications, payment for stored materials is discretionary. Therefore, the State’s interests must be protected and adequate protections must be in place to ensure that the State actually owns what is paid.

The Standard Specifications Article 1.09.06 states that material payments shall not exceed the contract unit price less the actual value of delivery and installation of the materials. The actual value of delivery and installation is to be interpreted as all work remaining for completion of the item at the point of payment for material stored.

Schedule of Values:

A Schedule of Values is required whenever a contractor submits a request for payment for stored materials. The Schedule of Values shall contain all elements of work included in the contract item such as but not limited to, material costs, fabrication costs, delivery costs, any assembly costs (offsite and on site) and installation costs. If the request is for a part or components of a larger unit, the price, description, etc. of each individual component shall be provided. If the contractor is unwilling to submit the schedule of values or does not agree with the adjustments required by the specification, the request for payment of materials stored shall not be approved.

Prior proceeding with further evaluation of a request for Material Stored payment the District shall make a determination of the remaining costs of the item and verify that the schedule of values submitted is reasonable and consistent with Article 1.09.06 of the Standard Specifications. Payment for material stored shall be reduced to be no more than the contract price less the remaining costs of the item, even if it is less than the stated cost of the material. In the event that a reduction is required, the Contractor (Principal of the Company) must agree in writing to the reduced compensation for material stored in accordance with the specification. If the contractor does not agree in writing to the reduced compensation then material stored payment shall not be made. The District shall generate a written approval of the schedule of values as well as any adjustments made.
Certificate of Title and Receipted Bill:

The standard specification states that a receipted bill or Certificate of Title is acceptable documentation for material stored. An acceptable receipted bill is one generated by a supplier or manufacturer which describes the material in question and documents full payment by a contractor. The only time a receipted bill is acceptable without a Certificate of Title is when the material is fully fabricated, stored on the site and the receipted bill is from the supplier to the prime contractor stating that the prime contractor has made full payment for the materials.

If the conditions of the previous paragraph are not met then a fully executed Certificate of Title is required. The Certificate of Title must be executed by all parties (Vendor, Subcontractor if applicable, and Prime Contractor) to establish ownership of the stored material by the State. The Certificate of Title shown in figure 1-9.2 shall not be altered in any way (language added or deleted), except for completion of the required fields. If it is altered, it will be considered invalid and payments will not be made.

The Certificate of Title (or receipted bill) submitted by the prime contractor shall provide the location, method of identification, and quantity of the material. The identifying markings as noted on the Certificate of Title or receipted bill must be affixed to the materials. Markings must be clear for easy identification while the materials are in storage. Heat numbers are not an acceptable marking.

If there are several components to the requested material, a separate page may be attached as long as the page is referenced in the description field of the certificate of title. The material list shall be of such detail that the Department representative can utilize the list for the inventory required prior to payment. The cost of the material, costs of assembly or fabrication, the cost of shipping and cost of installation shall be contained in the schedule of values previously mentioned.

Material Identification:

A positive means of identification must be affixed to the materials and noted on the Certificate of Title or receipted bill furnished by the Contractor. Markings must be clear and visible for easy identification while the materials are in storage. Heat numbers are not an acceptable marking.

Testing:

All testing requirements (Mat 100 approved) must be met prior to payment unless approval in writing is received from the Office of Construction. or the subject material is raw or partially fabricated. If the material is raw or partially fabricated the conditions of subsection 1-909D apply.

Inspection and Inventory:

The storage site and material must be personally inspected and the material inventoried to make sure the site is secure and the material inventory matches the certificate of title. Written approval of the storage site by the Supervising Engineer shall be retained in the project records (Volume IV). The inspection should be performed by the Chief Inspector or above. The Assistant District Engineer may request assistance from Division of Materials Testing as required.

Initial and quarterly inventories are to be performed by designated personnel depending upon the storage location. Along with the inventory, the Department representative must note if there is any visible damage to the material. Damaged materials shall be brought to the attention of the Division of Material Testing and shall not be paid as material stored. If the material was paid prior to identifying that it was damaged a deduction from the next payment estimate must be made.

All documentation of the inventories must be made part of the project records noting the material, quantity, location and identification and recorded in a Material Stored Inventory Log. In addition to the written inventory, the Department representative should take photos of the material.
Any discrepancies between inventories shall be immediately adjusted on the next payment estimate. All stored materials that have a universal use (such as guiderrail, poles, luminaires, signal equipment, pipe, etc.) shall be carefully monitored to ensure the inventories haven’t changed. If the District determines that it is not feasible to perform the initial or quarterly inventories the Assistant District Engineer shall contact the Construction Administrator in order to determine whether the request for payment of material stored can be granted.

If after review of the site it is determined that the material may be susceptible to damage or loss, the request for material stored shall not be approved.

Right of Entry and Lien Waiver:

A right of entry and a waiver of lien (against the material stored) are required any time the property that the material is stored at is not owned by the Vendor or contractor(s) named in the Certificate of Title. The right of entry will be required to grant the State of Connecticut Department of Transportation access to the property and material for access and/or removal in the event that the Supplier or contractor is unable to deliver it (due to default or other reason). The waiver of lien shall state that no lien has been placed against the material for any reason by the owner (or leaseholder) of the property. Due to the nature of the lien waiver it will be required to be updated at the time of the quarterly inventory. If the Contractor fails to update the waiver of lien then the material payments shall be deducted from the next payment estimate. The Contractor should be informed that additional time will be required for review and approval of these documents by the DOT Legal Staff.

Site Inspection:

The inspection staff must inspect and document that the materials brought to the site appear to be undamaged and in the same condition as when they were initially inspected. If the material is not delivered to the project in an acceptable condition, it cannot be incorporated into the work. Also, the cost of the damaged material must be deducted from the next payment estimate to the contractor.

For example, if the inspection staff finds a structural steel member that appears to have damage to the coating system or physical damage to the steel shape itself, the inspector should first document the damage and notify the Contractor in writing that the materials are damaged and that depending upon the recommendations of the Division of Materials Testing (DMT) the materials may be found unacceptable. They should bring the issue to the attention of their immediate supervisor and request an inspection from the DMT.

Unit Price Correlation:

For lump sum items or other instances when the unit of material being paid under Material Stored on Site does not equal the item pay unit, a correlation between the two must be determined prior to any payments being made. The Chief inspector or Resident Engineer shall discuss the proposed unit with the Project Engineer prior to making payment for material stored. Upon completion of the item for which material stored payment is made the project staff shall review the payments made to the item and determine if a credit must be taken for materials not used.

Documentation:

All documentation required for material stored on site shall be kept in the separate folder or Volume IV. The Project Engineer shall review the material stored on site documentation and initial the material stored inventory log summary. The Project Engineer shall verify that all necessary documentation is in the folder or Volume IV, payments are being properly made, all necessary inventories are performed and documented and in the case where a lien waiver is required that the lien waiver is updated quarterly.
Excess Material:

Excess stored materials should be returned to the Contractor and appropriate adjustments made to the prior payment(s), unless otherwise approved by the Assistant District Engineer.

Stock Items

Generally, stock items or off-the-shelf items will not be considered for payment under Article 1.09.06, unless the material has been delivered to the job site. Exceptions should be referred to the Construction Division Chief or Construction Administrator.

1-909B Materials Stored On-Site or Off-Site within State (Except Raw or Partially Fabricated Materials)

Approval Authority:

Approval of the request for material stored within the State is the responsibility of the District. The District shall follow the guidelines of subsection 1-909A.

Inventory:

Initial and quarterly inventories are to be performed by District inspection staff or the Division of Material testing as stated in subsection 1-909A.

1-909C Material Stored Out of State (Except Raw and Partially Fabricated Materials)

All conditions and requirements as outlined in Subsection 1-909A shall apply with the exception of the following:

Approval Authority:

Requests for material stored out of state must be approved by the Construction Division Chief.

Cost of Inspection:

The first step in the evaluation of a request for payment of material stored out of state is for the Assistant District Engineer or their designated staff member to determine if there are extra costs to the Department involved in the initial and quarterly inspections of the materials. If extra costs are anticipated the Assistant District Engineer shall consult the Office of Construction Division Chief for concurrence on the Department's disposition on the payment for material stored.

If the costs are deemed excessive or Department personnel are not available for periodic inspections, the Contractor may be required to agree to periodic inspections and self certifications of the inventory including but not limited to a written statement with a full inventory, as well as photographic documentation of the materials. This shall be agreed to prior to further evaluation of the request for payment of material stored. If an agreement is not reached then material stored will not be paid unless approved by the Construction Administrator.

District Review:

Prior to forwarding the request for material stored payments to Construction Division Chief the District shall evaluate and make a recommendation as to whether the Contractor’s request should be granted.
The request for approval forwarded from the Assistant District Engineer shall include all required documentation including the schedule of values, certificate of title (a copy of the entire Contractor submittal), storage site approval, testing recommendations, inventory and the District’s determination as to the item costs and the validity of the proposed schedule of values.

Review Period:

The Contractor should be informed that due to the coordination necessary for the payment of material stored out of state they should expect a minimum of 30 days review prior to payment.

Inspection and Inventory:

Out of state storage sites for structural steel and precast concrete units should be evaluated by the Division of Materials Testing (DMT) or their designated on-site inspector. For other materials, District personnel (Chief Inspector or above) may inspect the site only if it can be accomplished within a normal workday and out of state travel is authorized. If inspection of the material cannot be accomplished payment for material stored will not be granted unless specifically authorized by the Construction Administrator.

The request for out of state storage site inspection and material inventory will be made from the Assistant District Engineer to the Assistant Manager DMT. The District shall forward the detailed list of materials provided by the Contractor to be utilized for the inventory with the request for the inspection. If the material list is not of adequate detail or the markings are not adequate for the Department representative to complete the verification of the materials proposed for payment of material stored, then the Contractor’s request will be denied.

Follow up Inspections:

If the Department and the contractor come to an agreement for the Contractor to perform the periodic inspections (as mentioned in section 1-909C) and the Contractor does not submit the certifications as agreed then the payments shall be deducted from the next payment estimate with the approval of the Assistant District Engineer.

1-909D Raw or Partially Fabricated Materials

Generally, raw or partially fabricated materials will not be paid for as stored materials. An exception may be made when raw materials are required to be purchased early in the project (e.g. steel for stage construction) and the Contractor can demonstrate that payment for such materials is in the best interest of the project. In those instances consideration will be given for partial payment under the Material Stored on Site provisions. **Note: This discussion does not pertain to the item, “Material for Structural Steel” or other furnish items which may be in the contract. Projects should follow the Basis of Payment and Method of Measurement described in the specifications.**

Assistant District Engineer Review:

Prior to proceeding with the request for inspection of the storage site and inventory of material the Assistant District Engineer will consult with the Construction Division Chief as to the Department’s position on payment. If the Department conceptually agrees to the payment for raw or partially fabricated material, the District shall proceed as directed in Subsections 1-909A, B and C above – subject to the following additional requirements.

Schedule of Values:

For items that require extended fabrication, manufacturing or assembly time, the contractor’s proposed Schedule of Values shall be based on completion of major elements or completed assemblies or processes (i.e. fabrication complete, coating complete, delivery, installation, touch up painting, etc.) As stated in
Subsection 1-909A the schedule of values shall include all costs that equate to the item unit price. Payments shall only be made for definable elements and stages of completion of the materials. Partial payments for completion of a percentage of the item or element (work-in-progress) is not acceptable.

The following information will be required to be submitted with the request for payment of raw or partially fabricated material, in addition to the standard requirements as outlined in the previous subsections:

- Original contract value.
- Original calendar days.
- Days used to date.
- When the material will be incorporated into project.
- Justification for the request (stage construction, etc.).

Testing:

For raw or partially fabricated material the DMT will inspect the storage site as described in the previous subsections. The DMT will also evaluate the material based on its acceptability for use in manufacturing the final product and recommend whether or not it is acceptable. The DMT will forward their findings to the District to be submitted to the Office of Construction with the other supporting documentation.

Final testing will be performed when the material is 100% fabricated and a MAT-100 is submitted to the DMT for approval. To accomplish this, the inspector will generate a MAT-100 when the material is delivered to the site or as instructed by the DMT contact.

Review Period:

The Contractor should be informed that due to the coordination necessary for the payment raw or partially fabricated material stored they should expect a minimum of 30 days review prior to payment.
Figure 1-9.2 Certificate of Title Sample Form

STATE OF CONNECTICUT

CERTIFICATION OF TITLE
TO MATERIALS STORED OR TO BE STORED
FOR INCORPORATION IN DEPARTMENT OF
TRANSPORTATION PROJECT

WHEREAS, ___, hereinafter referred to as the "Contractor", is engaged in the performance of a certain construction contract with the State of Connecticut, Department of Transportation, hereinafter referred to as the "Department", designated as

Contract No. __________________

WHEREAS, the Contractor has purchased from __, hereinafter referred to as the "Vendor", for incorporation in Contract No. _____________________________, in accordance with the plans and specifications therefore, or as ordered by the Engineer, and has stockpiled or stored, or intends to stockpile or store certain materials at the contract site, or at a place and in a manner approved by the Engineer, namely, the following materials:

DESCRIPTION of materials and quantities

and,

WHEREAS, to comply with the provisions of the Department's Specifications (Subsection 1.09.06) requiring certification of the Contractor's absolute legal title to the materials hereinabove, described before the Department can pay the Contractor for the actual cost thereof, the Contractor and the Vendor have entered into the following agreement:

NOW, THEREFORE, for and in consideration of the foregoing premises, the Contractor and the Vendor agree, with the intention of being legally bound hereby, as follows:

1. The Vendor has executed this document for the purpose of acknowledging that the Vendor has made an outright sale and transfer of title of the above-described materials lawfully owned by the Vendor to the Contractor free of all restrictions, Uniform Commercial Code or other filings, or liens and does not have any interest of any kind in the said products, has the right to make such transfer of title, and will not in the future make any claim whatsoever to such title.

2. The Contractor certifies and represents that he is the lawful holder of the absolute legal title to the above-described materials and has the full legal right, power and authority to sell and transfer title to the same without restriction, Uniform Commercial Code or other filings, or liens of any kind on the part of the Vendor and/or any Subcontractor.
3. The Contractor and/or any Subcontractor and the Vendor, their successors and assigns, will and do by these presents, warrant the title to the above-described materials to the Department.

4. In the event the Vendor has furnished or sold the above-described materials, or transferred title to such materials to a Subcontractor of the Contractor rather than directly to the Contractor, this Certification of Title is hereby amended at all applicable points to reflect this fact. By the execution of this Certification by any such Subcontractor, such Subcontractor is executing this document for the purpose of acknowledging that such Subcontractor has made to the Contractor an outright sale and transfer of title which it may have to the above-described materials as it may be lawfully owned by the Subcontractor free of all restrictions, Uniform Commercial Code or other filings, or liens and does not have any interest of any kind in the said products, has the right to make such transfer of title, and will not in the future make any claim whatsoever to such title.

IN WITNESS WHEREOF, the parties hereto have caused this Certification of Title to be executed this __________ day of ____________________, 20______.

ATTEST: CONTRACTOR
__
By __
Title __

ATTEST: SUBCONTRACTOR
__
By __
Title __

ATTEST: VENDOR
__
By __
Title __
1-910 Payment to Subcontractors and Suppliers

State statutes and Federal regulations require the prompt payment to subcontractors for amounts due for labor performed or materials furnished when charges for such labor or materials have been included in a progress estimate paid by the State including the release of retainage. Upon payment of a progress estimate that includes labor or materials provided by a subcontractor or the release of retainage for work satisfactorily performed by a subcontractor, the Contractor must pay such subcontractor within 30 days of receipt of payment from the State, unless the Contractor believes they have a valid reason to withhold payment from such subcontractor. In which case, the Contractor must notify the subcontractor and the Department of the reasons for the withholding of payment. (For the purpose of this section the term subcontractor shall include suppliers.)

The prompt payment provisions also apply to any lower tier subcontractor. Subcontractors must pay their subcontractors for work performed or materials supplied within 30 days after such subcontractor receives payment for labor or materials furnished by such subcontractor.

Federal regulation requires the Department to release retainage to the prime Contractor for subcontract work that has been satisfactorily completed. Upon the request of a subcontractor and satisfactory completion of their work, the Contractor must be reimbursed the retainage for that portion of the work completed. A subcontractor’s work will be considered satisfactorily complete when:

- The subcontractor has fulfilled the contract requirements of both the Department and the subcontract for the subcontracted work, including the completion of any specified material and equipment testing requirement or plant establishment period and the submission of all submittals (i.e.; certified payrolls, material samples and certifications, required state and federal submissions, etc.) required by the specifications and the Department, and

- The work done by the subcontractor has been inspected and approved by the Department and the final quantities of the subcontractor's work have been determined and agreed upon.

For direction on how to handle prompt payment complaints received from subcontractors, unions and suppliers refer to Volume 1, Chapter 14, Section 1-1409.

1-911 Credits due State

CONNDOT contracts can include construction work that is requested and benefits second parties such as Public Utility Companies, Towns and Municipalities. When this occurs there is usually an agreement between the State and second party for the reimbursement of the costs associated with the construction work. The agreement will describe the improvement and estimated cost. The final cost is determined by an audit performed by the External Audits unit of the Bureau of Finance and Administration.

Before Contract work begins the Chief inspector should review all agreements with second parties to determine what work involves credits due state. At this time it is also beneficial to review the Design Report as it may indicate what agreements should be in place. If you think agreements are missing check with the designer.

Contract work included in a contract or added to the contract for the benefit of a second party such as public utility, town or municipality must be distinguished from other contract work in the Project records. This is done so that a determination can be made of the value of the betterments and salvage at the completion of the work.

If during construction it is noted that the actual costs will exceed the limits set forth in the agreement, the District should initiate a supplemental agreement to cover the increased cost. When possible the supplemental agreement should be approved before additional work is performed.
When the construction work is completed the District will send to the Director of External Audits, Bureau of Finance and Administration a “Request for Audit of Credits Due State.” To assist with the audit, the District’s request will include the following:

- Name of Second Party
- State and Federal Project Numbers for the construction contract
- Copy of the agreement between the State and Second Party
- Information pertaining to all demand deposits made by Second Party
- Signed and dated calculation of Credits due State based on actual cost of work performed.
- Copy of the Certificate of Acceptance of Project, CON-501
- Copy of the Federal Voucher Report listing final quantities and costs for all item of work.

1-912 Estimated Payments

An “estimated” payment is a rough calculation of an approximate amount to meet a payment deadline. The calculation must be re-computed to reflect the final or actual quantity. It is emphasized that the posting of “estimated payments” on DWRs must include some form of backup documentation. When paying a portion of a unit price item, the payment must be supported by field measurements and/or computations. (Note: Paying a percentage of the original quantity as an estimated payment and noting an estimated payment as a “progress payment” is not acceptable.). Estimated payments are to be kept to a minimum and should be used only when actual measurements or computations can not be completed. If estimated payments cannot be avoided, final or actual payments should be made as soon as possible thereafter. The project staff shall establish a system for tracking the closeout of estimated payments, which shall be reviewed and approved by the Project Engineer. The agreed upon procedure shall be written and included in the Volume III (Refer to Figure 1-9.3)

The Project Engineer shall review all estimated payments to the Contractor with each Payment Estimate (refer to Section 1-903). Estimated Payments must be re-computed to reflect actual or final quantities as soon as practical, typically within 60 days, but not later than the following winter.

The following procedure shall be followed when posting and adjusting estimated quantities on DWRs:

- All entries shall be so noted (Est.) on the hard copy DWR and entered in the “remarks” field in SiteManager. This reference field will show on the “Work Item Detail Report” in the SiteManager Reporting icon. This aids the field forces and other people checking the records to designate quantities paid by estimation.

- The justification for the estimated payment is being made must be entered on the DWR and in SiteManager in the “Remarks” field.

- When the actual adjustment is made on a DWR to the previously estimated payment, the hard copy DWR shall be cross-referenced to the original DWR the estimated payment was made on. Also, the inspector shall enter in adjustment (Adj.) and list the estimated payment original DWR in the “remarks” field in SiteManager. This information must also be noted on the Volume III summary sheet if the item is contained in a Volume III book.

- The original payment entered must be deducted in its entirety and replaced with the actual payment. Using the difference of the estimated payment to the adjusted payment is not acceptable. The deduction payment and the actual payment must be entered on the same DWR.
1-912A Partial Payments

A “partial” payment is paying a part of a calculation that is accurate and will not require re-computing. For items bid on a unit basis, include in progress estimates work that is substantially complete; however, withhold a sufficient number of units to cover the value of the incomplete incidental work. In each case, a source document must be on file showing the details of the quantity’s determination. Base withheld amount on a cost plus analysis of the remaining incidental work or other method approved by the Project Engineer.

The following examples are listed to illustrate the procedure:

- **Roadway Excavation**
 In normal situations material is excavated, hauled, placed in final position in embankment and compacted, but slope finishing is not done. This is considered incidental work and a quantity may be withheld to cover the value of the work remaining.

- **Aggregate for Subbase and Base**
 Material may be produced, hauled, placed, and compacted, but final trimming to tolerance has not been performed. This is incidental work and a quantity may be withheld to cover the value.

- **Fence**
 Posts and wire or mesh may be in place and securely fastened but bracing wires not completed. Withhold units to cover this incidental work.

- **Structure Concrete**
 When structure concrete has been placed but items such as removing forms and falsework, curing, finishing, and other similar items have not been completed, withhold a number of units sufficient to cover the cost of this work.

- **Structural Steel**
 When steel placed is paid by unit price, withhold units to cover incidental work such as additional bolting and welding.

- **Trees, Vines or Shrubs**
 When trees, vines or shrubs have been installed withhold units to cover anticipated plant loss during the establishment period.
1-9.3 Lump Sum Items

Lump sum items may or may not have detailed guidance (i.e. in the Special Provision) on how to measure the work for payment. The Inspector must verify the Method of Measurement and Basis of Payment for a lump sum item before any payment is made.

For lump sum items that do not have detailed guidance on how the work is measured for payment, an agreement should be reached with the Contractor for the basis of determining progress payments before the work starts. One method for lump sum items with many distinguishable elements is to ask the Contactor to propose a Schedule of Values for the different elements and come to agreement on these values. As the work progresses base the payments on the elements that have been completed or portions thereof. Appropriate reductions should be taken for incomplete or deficient work. The Schedule of Values method is required with facility construction projects. Another method, which may be more appropriate for less complex lump sum items, is to pay a percentage of the lump sum bid price as work progresses based on the ratio of the number of working days an item of work has been in progress divided by the estimated total number of working days required to complete the item work. However, the
Chief Inspector should be aware that such a simplified method might not actually reflect the value of the work completed.

For lump sum items or other instances when the unit of material being paid under Material Stored on Site does not note the pay unit, a correlation between the two must be determined prior to any payments being made.

1-914 Accuracy of Measurements and Computations

Computations of volumes, areas, etc. are based on measurements made with the degree of accuracy consistent with the unit value of the item and the practical precision of measurement. The following is a guide to be used for measuring and computing quantities.

![Figure 1-9.4 Accuracy of Measurements and Computations](image)

<table>
<thead>
<tr>
<th>Bid Price (Dollars)</th>
<th>Quantities to nearest</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 to 10.00</td>
<td>unit</td>
</tr>
<tr>
<td>10.01 to 25.00</td>
<td>1/2 unit</td>
</tr>
<tr>
<td>25.01 to 50.00</td>
<td>1/10 unit</td>
</tr>
<tr>
<td>50.01 and above</td>
<td>1/100 unit</td>
</tr>
</tbody>
</table>

1-915 Estimated Items / Adjustment Items

Contract items may have a unit of measure of “Estimated”. The purpose of estimated items is to set up a budget or an allowance for this work within the contract. Examples of these items are Asphalt Adjustment, Lead Health and Safety, Handling Contaminated Groundwater, Fuel Adjustment, Reinforcing Steel Adjustment, Cement Adjustment, Disposal of Debris and others. Normally the Method of Measurement/Basis of Payment is in accordance with Article 1.09.04 “Cost-Plus”. It is acceptable to pay under the estimated contract item number when it is paid in accordance with cost-plus. It is also acceptable to pay an agreed price for a portion of the work. In that case a new item would be created and paid according to the unit cost that was agreed upon instead of paying cost-plus. The estimated contract item should be reduced by a similar amount. The addition of the new item and the reduction of the estimated item shall be shown on the same construction order. All payments related to the estimated item must be shown on a Volume III summary sheet showing the reduction of the estimated item quantity. All spreadsheets, calculations and supporting back-up documentation must be contained in a Volume III book.

Some of the adjustment items may have a unit of measure as tons. All spreadsheets, calculation and supporting back-up documentation must be contained in a Volume III book and must have summary sheets.

1-915A Asphalt (HMA) Adjustment Procedures

There are several different types of adjustments that may have to be made for HMA items that have been placed on a project. See Volume 2, Chapter 6 for guidance on these adjustments.
Some of the adjustments cannot be made by using original contract items. Within SiteManager, three adjustment items have been added at the project line item level under Category 01 to standardize the way the adjustments are made. When the inspector determines that an HMA Adjustment is required, a DWR must be created identifying the appropriate HMA Adjustment Item.

It is important that the DWR documents why the adjustment applies, date(s) the adjustment is for, how it was calculated, and any associated references to the Project’s Volume III.

These Adjustment Items are:

- **HMA Material Deficiency Adjustment**, unit = Est., price = $1.00. This adjustment is monetary and is always a negative value. Item Code will be HMAM001, Line Item 5005

- **HMA Density Adjustment**, unit = Est., price = $1.00. This adjustment is monetary and can be either a positive or a negative value. Item Code will be HMAD001, Line Item 5006

- **Rideability Adjustment**, unit = Est., price = $1.00. This adjustment typically occurs only once during the project. However, some larger projects that are staged may require multiple adjustments throughout the course of the project life. This adjustment is monetary and can either be a positive or a negative value. Item Code will be HMAR001, Line item 5007.

A sample form for all asphalt adjustments along with a directions page is shown in Vol. 2, Chap. 6, Form 2-6.28.

1-915B HMA Overweight Adjustment (tons)

Net weight adjustment will be made when a truck delivers material to the project and the truck exceeds the allowable gross weight for that vehicle type. The quantity of overage, in tons, will be deducted from the total delivered tons measured for payment. This adjustment may be applied even after the material has been incorporated into the project. See Vol. 2, Chap. 6, Form 2-6.28, Adjustment Schedule Form.

1-915C Material Deficiency Adjustment (dollars)

Ten percent of the total quantity of material that exceeds one or more of the mix tolerances will be used to determine the Material Deficiency Adjustment. The job mix formula adjustment tolerances can be found on Table 3 (Job Mix Formula Tolerances for Consecutive Tests) in Article 4.06.04--1C of the Standard Specifications, Form 816. See Vol. 2, Chap. 6, Form 2-6.28, Adjustment Schedule Form.

1-915D HMA Density Adjustment (dollars)

The average of theoretical maximum specific gravity calculations for the material placed in a continuous paving operation will be used to establish the average percent density. (The paving of bridges will be treated as a separate continuous paving operation per bridge.) This average percent density will then be used for any adjustment according to Table 6 (Mat and Longitudinal Joint Adjustments) in Article 4.06.04-1D of the Standard Specifications, Form 816. See Vol. 2, Chap. 6, Form 2-6.28, Adjustment Schedule Form.

1-915E Rideability Adjustment (dollars)

The rideability of the section of roadway will be taken after all the paving has been completed. This will produce a figure that will be used only once to adjust the payment for the complete roadway.
1-915F Measured Weight Adjustment (tons)

The material in all courses of bituminous concrete, except leveling, wedge and one-course applications, will be subject to adjustment for thickness and width. The averages of the thicknesses or widths of each lift will be determined by measurements taken by the Engineer. When the total thickness or width exceeds the theoretical yield, an adjustment will be applied to the installed bituminous concrete pavement. When a deficiency in thickness or width is found, with the approval of the Engineer, the contractor shall take corrective action. Areas that are corrected will be measured as though originally constructed. No payment will be made for material removed and disposed of, or for the restoration of affected base or adjusted construction, for the purpose of corrective work. See Vol. 2, Chap. 6, Form 2-6.28, Adjustment Schedule Form.

1-915G Liquid Asphalt Adjustment (dollars)

This adjustment is associated with the price of performance-graded binder component of bituminous concrete mixtures. The asphalt price adjustment will only be applied to HMA mixtures such as Class 1, 2 and 4, Superpave .375, .5 and 1.5. The adjustment will be applied on a monthly or semi-monthly basis in accordance with the payment schedule of the bituminous concrete pay items. Asphalt adjustment will be made upward or downward only when the asphalt period price varies more than $5.00 from the asphalt base price. The Connecticut Department of Transportation will provide the Asphalt Price of the performance-graded binder. See Vol. 2, Chap. 6, Form 2-6.30, Liquid Asphalt Adjustment Form.

1-916 Water Pollution Control

A Water Pollution Control item is included in the Contract for each project if it is anticipated additional controls will be required to prevent soil erosion. This is an umbrella item intended to provide funding for these additional controls. Payments are not made under the Water Pollution Control Item; they are made under the applicable Contract items when available, such as riprap, hay bales, and turf establishment, or as provided for under Extra and cost-plus Work. Work paid under this item is incorporated through Construction Orders and either paid for on an item-by-item basis or as a single construction order item subject to the approval of the District.

A summary of Water Pollution Control activities must be maintained. See Figure 1-9.6 for a sample summary sheet. The listings on this summary must include all item payments, including new or cost-plus items used and must be maintained in the project records, in the Volume III.

A reconciliation of payments must be made periodically from the summary log, as Contract items are paid and deducted from the funds in the Water Pollution Control item.

If additional control measures are required and the original fund for Water Pollution Control is exhausted, additional monies cannot be added to the item by a Construction Order. Additional funding must be requested through normal project methods.
Figure 1-9.6 Volume III – Water Pollution Control Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Item</th>
<th>Quantity</th>
<th>Cost</th>
<th>Total to Date</th>
<th>Balance Remaining</th>
<th>DWR/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/31/04</td>
<td>#07013000 - Riprap</td>
<td>24 c.y.</td>
<td>$930.00</td>
<td>$930.00</td>
<td>$99,070.00</td>
<td>DWR-jenney-7/31/04</td>
</tr>
<tr>
<td>8/5/04</td>
<td>#200001 - Install Hay Bales</td>
<td>$116.92 c.p.</td>
<td>$116.92</td>
<td>$1,046.92</td>
<td>$98,023.08</td>
<td>DWR-jenney-8/5/04 Cost Plus Sheets</td>
</tr>
<tr>
<td>8/6/04</td>
<td>#055005 - Turf Establishment</td>
<td>5,842 s.y.</td>
<td>$2,252.30</td>
<td>$3,339.22</td>
<td>$94,683.86</td>
<td>DWR-doe-8/6/04 & Vol. III Page 12</td>
</tr>
</tbody>
</table>

TOTALS

<table>
<thead>
<tr>
<th>Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>0</td>
</tr>
<tr>
<td>Quantity</td>
<td>0</td>
</tr>
<tr>
<td>Cost</td>
<td>$3,339.22</td>
</tr>
<tr>
<td>Total to Date</td>
<td>$5,316.14</td>
</tr>
<tr>
<td>Balance Remaining</td>
<td>$291,776.94</td>
</tr>
</tbody>
</table>

Comp by:

Printed Name:

Signature:

Checked by:

Printed Name:

Signature:

Date:

Date:
Chapter 10 - Contract Completion

1-1000 General

This Chapter contains guidelines that are followed on projects inspected and administered by the Department and its construction engineering and inspection Consultants.

The project inspection staff should begin to prepare for the end of the project as early as possible by completing quantity computations, materials testing, and other administrative requirements shortly after the physical work on an item (or group of related items) is complete in the field. Any problems or deficiencies during item closeout should be noted and resolved while the contractor is still on site. As the work on the project nears completion the requirements to accept the work, including any administrative requirements, should be regularly discussed. A standing item should be included at the job site Progress Meetings to address these issues.

Generally, the following sequence should be followed by projects as they near completion:

- Contractor’s request for semi-final inspection.
- Semi-Final Inspection
- CON-100 Substantial Completion
- Final Inspection
- CON-502s
 - Contractor Certificate of Compliance (CON-502D)
 - Inspector Certificate of Compliance (CON-502B/C)
 - Project Engineers Certificate of Compliance (CON-502A)
- CON-500 (Relief of Responsibility)
- Final Material Certification (and other close-out activity)
- CON-501

These forms shall be included in the Finals Package.

For projects that are administered by municipalities refer to the Municipality Manual and updates.

1-1001 Project Retainage

Project retainage is withheld from the payments due the Contractor in accordance with the terms of the contract. The retained amount protects the Department in the event of a default by the Contractor and can also be used as an offset of various items at the end of the project. The specifications allow for the amount of the retainage to be reduced when in the best interests of the State. Project retainage may only be reduced or released with the approval of the Assistant District Engineer. Each of the following items must be satisfied before considering a reduction in the retained sums held under the contract.

A. The Contractor has earned at least 95% of the revised contract value.
B. The semi-final inspection has been held.

C. The amount of retainage held (after reduction) exceeds the estimated value of all punchlist/corrective work plus the value of any credits or sanctions that might apply to the contract. Including but not limited to; liquidated damages, sanctions (i.e. DBE, SBE, Labor, etc.), quantity or payment adjustment provisions from the Contract, rejected materials, non-compliance notices, punchlist work, and any outstanding credits due the Department.

D. Consent of the Surety has been obtained for any project that the Department has contacted the holder of the Performance Bond as a result of Contractor performance issues.

The District shall be guided by the following requirements (1 thru 5 below) when considering a reduction in retainage. It is not necessary for all projects to follow the four-step progression, but the requirements below must be achieved prior to reduction or release. If the District feels that a lower retainage amount is appropriate, it shall be discussed with the Office of Construction Division Chief or Construction Administrator.

1. The District may reduce retainage to 2.0% when A thru D (above) have been satisfied.

2. When the contract work is substantially complete as defined hereinafter (refer to section 1-1004) and items B thru D have been satisfied, the retainage may be reduced to 1.5%.

3. When the CON-500 has been issued and items C and D have been satisfied, the retainage may be reduced to 1.0%.

4. When the CON-500 has been issued, the apparent final quantities have been reviewed and approved by the District Finals Section, and the Contractor has satisfied all the administrative requirements of the Contract, the retainage may be reduced to 0.5%.

5. When the headquarters final audit is complete, the material certification has been received and all the final papers have been submitted by the Contractor, and items C and D have been satisfied, the remaining retainage may be released.

Refer to 1-905 for further guidance on the reduction or release of project securities / retainage.

1-1002 Opening to Traffic or Occupancy

The Inspector must record the date the project is opened to traffic or occupancy in the job records. On Interstate projects, the Assistant District Engineer must notify the Construction Division Chief of the opening date.

On occasion, the Department and or other interested agencies/parties may want to publicize the opening of a transportation facility to the public. When it is anticipated that a transportation facility, or major portion thereof, will be opened to the public, the District should notify the Office of Construction Liaison Engineer at least 14 days prior to the anticipated opening. Examples of events requiring notification include opening of:

- New or reconstructed roadways
- Additional travel lanes or new operational lanes
- Completed structures
- New or reopened highway ramps
• Facilities reopened after emergency events
• Opening parking, rail or other transportation facilities

Notification should be as far in advance as possible preferably two weeks ahead of the tentative opening date, so that arrangements can be made with the Director of Communications, the FHWA and other interested agencies regarding ceremonies for the opening.

For roadways and bridges, all traffic-control devices must be in place prior to the scheduled opening date—all safety devices installed, all pavement markings in place, and all temporary and permanent signs erected. For other transportation facilities, the facility must be ready and approved for occupancy. If for any reason this work cannot be completed prior to the scheduled opening, the District Office and the Office of Construction Liaison Engineer should be notified immediately and advised of the revised opening date.

1-1002A Post Construction Review

In an effort to improve the quality of the contract documents and to prevent recurring problems on our projects, the Office of Quality Assurance, Constructability Review Unit conducts post construction reviews for all projects. The information obtained is disseminated as “Lessons Learned” semi-annually to the pertinent units throughout the Department.

Shortly before the semifinal inspection or three months prior to the anticipated completion of the project, whichever occurs earlier, a Post Construction Review Form, Figure 1-10.13, will be completed by the Chief Inspector, reviewed by District Management and sent to the Office of Quality Assurance, Constructability Review Unit. They will determine if a formal meeting should be scheduled for the Project to discuss the issues further with the project personnel, including the contractors.

1-1003 Semifinal Inspection

When the project is nearing completion and all structures and other elements of the project have been constructed, the Project Engineer will notify the Transportation Supervising Engineer that the project is ready for a semifinal inspection. The Project Engineer will coordinate with the Transportation Supervising Engineer to determine the date of the semifinal inspection and notify the involved participants. Representatives of the following offices usually participate in the semifinal project review. See Figure 1-10.1 for the list of potential invitees. Projects may vary in scope and additional units or agencies may need to be invited.

• the Contractor
• District Construction
• Traffic
• Highway and Bridge Design
• Environmental Planning
• Surveys and Plans
• Roadside Development
• Maintenance
• Bridge Safety
• Bridge Maintenance
• Highway Operations
• Federal agency on federal-aid projects
• Town officials, if appropriate
• Utility companies, if applicable
Other parties invited to the preconstruction meeting
Other involved parties, if applicable

All details of the work completed to date must be carefully reviewed by the semi-final inspection party to determine the remaining work that must be done by the Contractor to fulfill the obligations of the Contract as well as any extras or additions that may be required to satisfactorily complete the Project.

All findings of the semi-final inspection must be carefully documented. Questions relating to the status or acceptability of the completed work, the work required on the remaining items, and any additional work required should be positively resolved at this time. Should the Design Unit, Bridge Maintenance, Bridge Safety, Traffic, Maintenance, etc. not provide punch list comments during the scheduled semifinal they shall be required to provide their comments within two weeks after the semifinal is held in order to ensure timely completion of the Project. After the project has received all the comments, a letter documenting the semi-final inspection report is sent to the Contractor.

The semi-final inspection of the physical work on the project shall also be a trigger for an assessment of the administrative contract requirements. At the time of the semi-final inspection the Chief Inspector shall complete a review of the project records and provide an assessment to the Project Engineer. The purpose of this assessment is to evaluate the overall condition and completeness of the records and to estimate the work effort required to close out the project. A punchlist of administrative requirements shall be developed at the conclusion of the evaluation of the project records a copy of which shall be provided to the contractor. (See sample transmittal letter in the Approved Forms folder). The Chief Inspector and Project Engineer shall also develop a work plan to complete the administrative requirements of the contract within the closeout period allowed by the Department.

The Chief Inspector will record the dates that the remaining contract work and any corrective work noted on the semi-final inspection report were completed. The Chief Inspector will also notify the Project Engineer when all items noted on the report have been satisfactorily addressed and the Project is ready for a final inspection. A similar tracking procedure should be developed for the resolution of the administrative requirements of the contract.

I-1004 Notice of Substantial Completion and Stopping Contract Time

The project work is considered complete when all items of work under the Contract have been accomplished and all items noted in the semi-final inspection report have been satisfactorily addressed; however, under certain conditions the Project may be deemed substantially complete and the time charges under the Contract stopped in advance of the completion of all aspects of the work. A project may be considered substantially complete when the improvements called for in the Contract are safe and convenient for use by the Department and the Public, and all of the following conditions have been met:

- A semi-final inspection has been conducted documenting all the remaining work required on the Project.
- All traffic lanes including shoulders and ramps are in their final alignment and the final wearing surface has been installed.
- All operational and safety devices have been installed in accordance with the contract documents.
- Only a minor amount of work remains to be completed on the project. The value of the remaining work (contract work plus punchlist work) should be less than one percent (1%) of the total final contract price.
- The incomplete work will not affect the safety or operations of the transportation facility.
- The incomplete work will not affect the terms or conditions of any environmental permits.
The actions required to complete the remaining work will not significantly impact the Public or the operations of the facility.

If all the conditions described above have been met, the Project Engineer should notify the Supervising Engineer that the Project may be substantially complete. The Supervising Engineer will then review the Project and the remaining work. If the Supervising Engineer is in agreement with the Project Engineer’s assessment, then a CON-100, Contract Status Form, will be prepared noting the date on which the Project was substantially completed. Please refer to Figure 1-2.1 of Volume 1, Chapter 2 for a copy of the form. The form must be prepared within 7 days after the date of substantial completion and forwarded to the Assistant District Engineer for signature. The original CON-100 will be signed by the Assistant District Engineer and distributed to all concerned. The Contractor will also be notified by letter of this substantial completion date and be provided a copy of the consolidated Semi-Final Inspection Report. Together these two documents constitute the Notice of Substantial Completion.

1-1005 Final Inspection

When all work on the project is complete and the Contractor requests a Final Inspection, the District will schedule the final or partial final inspection as soon as practical. The Supervising Engineer (or designee) will notify the Liaison Engineer in the Office of Construction of the date to afford them the opportunity to attend the final inspection. The person conducting the inspection will be at the Supervising Engineer level or higher. Upon completion of the inspection, the District will furnish a copy of the inspection report to the Liaison Engineer. If there are exceptions noted at the final inspection, then a subsequent inspection will be scheduled when the exceptions have been addressed. The Chief Inspector will record the dates the remaining contract work or corrective work noted on the final inspection report were completed for inclusion in the Project records. Also after the remaining or corrective work has been completed a supplemental final inspection must be performed and a report prepared. At the Supervising Engineer’s discretion this supplemental may be performed by the Project Engineer.

At the conclusion of the final inspection and after all remaining corrective work has been completed; a final inspection letter will be transmitted to the Contractor. Shortly after the final inspection the Chief Inspector should provide the contractor with a complete list of outstanding administrative items which must be resolved to closeout the contract. This administrative punchlist must be formally transmitted to the contractor and include a deadline for submission of the required information. A sample letter is included in Appendix C.

1-1005A Partial Final Inspection & Partial Relief of Responsibility:

On projects consisting of two or more individual, geographically separated sections of roadways, a final inspection of individual, fully completed sections will be arranged in response to a specific request by the Contractor. A Contractor’s request will only be considered when:

- A significant portion of the work has been completed for which the Department can take unconditional ownership.
- Traffic is in final alignment.
- Subsequent work on the Project will not impact the completed section.
If the Contractor’s request meets the above requirements, then a semi-final inspection as described in Section 1-1002 will be scheduled for that portion of the work. When all work identified in the semi-final inspection has been satisfactorily completed as determined by the Chief Inspector and Project Engineer, then a partial final inspection will be scheduled for the work in question. Upon successful completion of the partial final inspection, the District Engineer will notify the Contractor that the specific portion of work is acceptable and that the Department accepts responsibility for the completed work. The appropriate Department offices including the responsible maintenance officials (municipal or state), the Bridge Safety and Evaluation Unit, and the Office of Construction shall be copied on this relief of responsibility letter. Such partial acceptance of the work does not affect any other requirements governing the completion and acceptance of the Contract as a whole.

1-1005B Semifinal and Final Pavement Inspections

Semi-final pavement inspections and final pavement evaluations are required on all projects that have 2,500 tons or more of final course, which include final courses made up of multiple lifts of the same class of material. These inspections can, however, be performed on any project the District deems appropriate. The Pavement Advisory Team (PAT) will perform the semi-final pavement inspections and final pavement evaluations with the assistance of the Project Engineer and/or the Chief inspector.

All required corrections are the contractor’s responsibility, and no payment should be made for the material, labor and equipment used.

See Figures 1-10.10a and 1-10.10b for sample Final Pavement Evaluation Report.
Figure 1-10.1 Semi-Final Inspection Invitee List

<table>
<thead>
<tr>
<th>INVITEE (If Applicable)</th>
<th>SEMI-FINAL</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>
| **FHWA** – Division Administrator | X* | F.A.P. Highway Projects
 *Full Federal Over-sight only. |
| **FRA** – Division Administrator | X | F.A.P. Rail Projects |
| **FAA** – Division Administrator | X | F.A.P. Airport Projects |
| **STATE DESIGN** – Engineering Administrator, Manager, Principal Engineer (Highway, Bridge, Facility) | X | cc: Engineering Administrator on all Semi-Final Inspection Reports (CA 25-96) |
| **CONSULTANT DESIGN** – Engineering Administrator, Manager, Principal Engineer (Highway, Bridge, Facility) | X | cc: Engineering Administrator on all Semi-Final Inspection Reports (CA 25-96) |
| **PROPERTY AND FACILITIES SERVICES** – Director | X | Facilities Construction |
| **OCCUPYING UNIT / AGENCY** – Representative | X | Facilities Construction |
| **OFFICE OF CONSTRUCTION** – Administrator, Manager, TSE (Facilities) | X | Facilities Construction |
| **TRAFFIC ENGINEERING** – Manager | X | |
| **ENVIRONMENTAL PLANNING** – Director | X | |
| **CONTRACT COMPLIANCE** – Director | X | |
| **OFFICE OF MAINTENANCE** – Maintenance Operations Principal Engineer | X | All Projects involving Traffic Signals |
| **MAINTENANCE** – District Manager | X | |
| **ELECTRICAL MAINTENANCE** | X | |
| **BRIDGE MAINTENANCE** | X | |
| **BRIDGE SAFETY** | X | Bridges and New Overhead Signs (CA 6-96) |
| **DISTRICT CONSTRUCTION** – DE, ADE, PE, PE (Surveys), TSE, Project Engineer, Chief Inspector, Environmental Inspector, EEO Officer | X | |
| **TOWN/CITY** | X | |
| **LOCAL AUTHORITIES** | X | Facilities Construction |
| **UTILITIES** | X | |
| **CONTRACTOR/SUBCONTRACTOR** | X | |
| **PAVEMENT ADVISORY TEAM** | X | Also Final Pavement Evaluation required – 2,500 tons or greater surface course |
Figure 1-10.2A Certificate of Compliance – Project Engineer (CON-502A)

CON-502A REV. 1007
STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION
CERTIFICATE OF COMPLIANCE

Project No:
Project Location:
Project Name:

This is to certify that to the best of my knowledge, information and belief, the completed Project, as identified above, has been constructed in substantial compliance with the Contract plans, specifications and all approved Change Orders.

DOT Project Engineer:

Signature
Print Name
Title
Date
Figure 1-10.2B Certificate of Compliance – DOT Inspector (CON-502B)

CON-502B REV. 1/07
STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION
CERTIFICATE OF COMPLIANCE:
STATE INSPECTION

Project No: ___________________
Project Location: ___________________
Project Name: ___________________

This is to certify that to the best of my knowledge, information and belief, the completed Project, as identified above, has been constructed in substantial compliance with the Contract plans, specifications and all approved Change Orders.

DOT Inspector:

Signature

Print Name

Title

Date
Figure 1-10.2C Certificate of Compliance – Consultant Inspector (CON-502C)

CON-502C REV. 1.9.07
STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION

CERTIFICATE OF COMPLIANCE:
CONSULTANT INSPECTION

Project No:
Project Location:
Project Name:

This is to certify that to the best of my knowledge, information and belief, the completed Project, as identified above, has been constructed in substantial compliance with the Contract plans, specifications and all approved Change Orders.

Consultant Inspector:

Signature

Print Name

Date

Name of Firm

Sworn and subscribed by me on this ______ day of ________, 200_.

Commissioner of the Superior Court/Notary Public
Figure 1-10.2D Certificate of Compliance – Contractor (CON-502D)

CON-502D REV 10/07
STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION
CERTIFICATE OF COMPLIANCE

Project No: ______________________
Project Location: ______________________
Project Name: ______________________

This is to certify that to the best of my knowledge, information and belief, the completed Project, as identified above, has been constructed in substantial compliance with the Contract plans, specifications and all approved Change Orders.

General Contractor:

Signature ______________________
Print Name ______________________
Title ______________________
Name of Company ______________________

Date ______________________

Sworn and subscribed by me on this ___________ day of ___________, 200_.

Commissioner of the Superior Court/
Notary Public
1-1006 Final Certifications and Acceptance of the Work

Upon completion of the project, the applicable Certificate of Compliance Statement must be completed and incorporated into the project records. One form must be completed and signed by each of the following: Project Engineer (CON-502A), Chief Inspector (State Inspected) (502B), the Resident Engineer or Project Manager (Consultant Inspected) (CON-502C), and the Contractor’s Project Superintendent or other authorized representative (CON-502D). (Refer to Figures 1-10.2A, 1-10.2B, 1-10.2C and 1-10.2D).

1-1007 Termination of Contractor's Responsibilities & Certificate of Acceptance of Work

The construction work is considered completed when the final inspection has been held, any additional work and the final cleanup have been completed, and all equipment has been removed from within the project limits. When these requirements have been met, the Transportation Supervising Engineer will have the prescribed Certificate of Acceptance, Form CON-500 prepared, and forward it to the District Engineer for signature. The CON-500 is then sent to the Construction Division Chief for final approval. Form CON-500 is shown in Figure 1-10.3. The form must clearly identify all sections of roads or transportation facilities covered by the Contract, as well as all bridges or structures and the maintenance responsibility. If the road is town-maintained, all agreements covering the work (type and date) must be recorded on the CON-500. The Office of Construction will forward the signed Certificate of Acceptance to the Contractor. On projects owned or maintained by a municipality, a copy of the CON-500 should also be forwarded to the designated Municipal Official of the municipality.

1-1008 District and Headquarters Final Review

The District is responsible for ensuring that all final estimates are reviewed to ensure that all source documentation has been compiled in accordance with the Construction Manual and other pertinent directives and that all pay quantities have been measured and paid for in accordance with the Standard Specifications or special provisions of the Contract. The District will conduct sufficient review of the project records to ensure that these requirements have been complied with.

Once the District review of the project records is complete the records will be forwarded to the Office of Quality Assurance for a Headquarters Final Review. Guidelines for performing a Headquarters Final Review of the project records are contained in Volume 1, Chapter 11. The Chief Inspector and Project Engineer are responsible for resolving any problems or deficiencies noted in the report of the Headquarters final review. Any corrections to the project records shall be completed and noted in a response to the Office of Quality Assurance.

Once the final quantities and payments under the contract have been determined, the Chief Inspector should compile a list of any administrative items in the contract that have not been satisfied. A letter should be drafted for the Supervising Engineer’s signature and sent to the Contractor describing the remaining administrative requirements. A deadline should be provided for resolving the remaining issues. If the Contractor fails to meet the prescribed deadline, the ADE should follow up with a letter notifying the Contractor of the manner in which the matter will be resolved (unless the Contractor provides the necessary information). The District Engineer should be notified whenever unilateral actions are required by the District to close out a project.
1-1009 Checks to Final a Project

The timely close out of Department contracts is an important part of project activities and is necessary for a project to be considered a success. The Chief Inspector and Project Engineer should work closely with the District Finals section to complete all the necessary project closeout tasks and coordinate the archiving of project records.

The following are some important points or milestones in closing out a project.

- Records of daily cost-plus work must be checked to the satisfaction of the examiner. Particular attention must be directed to the labor and equipment rates, taking of discounts when available, insurance rates, and taxes on labor. The receipted bills must be checked and correspond with the Daily Reports of Cost Plus. When found satisfactory, the Daily Reports of Cost Plus, receipted bills, equipment rate sheets and representative copies of payrolls are retained in a Volume III book.

- When all deficiencies from the District and Headquarters Final Reviews have been resolved the Contractor should be notified of the “apparent final quantities” for the project.

- A Final Material Certification must be requested from Research and Materials as soon as final quantities have been established. To accomplish this, the District will forward to the Division Chief of Research and Materials, copies of the Federal Voucher Report and the summary of all nuclear density compaction reports. A form for summary of nuclear density reports can be found in the Construction Manual Approved Forms folder (DensitySummarySheets).

- The final Federal Voucher must be checked in its entirety with the original Contract and all Construction Orders to ensure that the final quantities are correct and in order. When checked, the final estimate is initialed by the checker just above the “Examined and Checked” box.

- Contractor Evaluation forms are required for the prime and all subs. See Section 1-1016 for more information.

- The Statement of Working Days, as submitted in detail on the Construction Report, must be carefully checked with existing office records. See Figure 1-10.4a & b.

- The Construction Report is checked for accuracy, completeness and signatures. All lengths of projects are given in horizontal measurements. If found correct, the Construction Report is initialed in the upper left-hand corner.

 - Under “Work Done by Others” in the Construction Report, show the division doing the work with a brief description, service order numbers, and stores requisition numbers. Examples are:
 - “Maintenance forces,”
 - “Materials Furnished by State—SR-G 18632, SR-G 35678,” and
 - “Transfer of Materials—TV-18610, TV-26783.”

 - If the work is performed by subcontractors of utility companies, list the companies and describe the work.

 - Confidential information of value to the Contracts Section in prequalification should be excluded from the Construction Report and should be made available in a separate confidential memorandum.
The Index of Construction Orders must be checked with the Orders on file.

A Cost Overrun Report, Figure 1-10.9, must be completed, when necessary, and transmitted to the Office of Construction. This report can be SiteManager generated as long as paragraph classifications were consistently applied and are the same as those shown in the figure.

As-built drawings are complete and returned to archive storage.

The District Finals Section must maintain a log of all projects in the process of being closed out. The log should show the status of each project and identify the remaining tasks required to close out the contract. The Chief Inspector must therefore coordinate all project closeout activities with both the Project Engineer and the District Finals Section.

1-1010 Final Estimates

The District processes the final estimate to release retainage and any other withholdings, if the releases are authorized. The releases can be made on the semifinal estimate. In most cases, final estimates are zero estimates—they include no payments to Contractors. Once the final payment estimate has been processed, the project is ready to be processed for acceptance.

If the final estimate involves a payment to the Contractor, the final estimate must be processed by the District within six weeks after the District establishes the acceptance date. This allows two weeks for processing payments to the Contractor. Final estimates submitted after the six-week period must contain a full explanation of the delay.
Figure 1-10.3 Certificate of Acceptance of Work (Form CON-500)

<table>
<thead>
<tr>
<th>CERTIFICATE OF ACCEPTANCE OF WORK</th>
<th>STATE OF CONNECTICUT</th>
<th>FEDERAL AID PROJECT NO(S)</th>
<th>STATE PROJECT NO(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON-500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION OF CONTRACT</th>
<th>TOWNS(S):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME OF HIGHWAY / ROUTE NO:</th>
<th>BEGINNING AT (Specific Location - No Station Nos.)</th>
<th>ENDING AT (Specific Location - No Station Nos.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TO CONTRACTOR (Street Address Only - No PO Boxes)</th>
<th>FINAL INSPECTION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF IMPROVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTRICT ENGINEER</th>
<th>MUNICIPAL OFFICIAL (Signature in BLUE Ink)</th>
<th>TYPE NAME AND TITLE (USE - Name Only)</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE ABOVE DESCRIBED WORK IS HEREBY ACCEPTED AS OF

The transfer of improvement —

BY CONSTRUCTION DIVISION CHEF (Signature in BLUE Ink)

<table>
<thead>
<tr>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark D. Rollis, PE</td>
<td></td>
</tr>
</tbody>
</table>

Instructions:

Addresses:
Include street addresses - not PO Boxes.

If municipal project, provide the mailing (street) address below for the municipal official who signed the CON-500, and include this with the CON-500 submitted to Office of Construction:

Location:
BEGINNING AT / ENDING AT
Include a physical description in addition to available Milepoints - Do NOT use stations.

<table>
<thead>
<tr>
<th>EX: 1</th>
<th>EX: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEGINNING AT</td>
<td>ENDING AT</td>
</tr>
<tr>
<td>East Main Street</td>
<td>East Main Street</td>
</tr>
<tr>
<td>@ School Street</td>
<td>@ Harris Hill</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>I-91 @ EX 3</td>
<td>I-91 @ EX 8</td>
</tr>
<tr>
<td>BR. 1234</td>
<td>MP. 20.4</td>
</tr>
<tr>
<td>MP. 04</td>
<td></td>
</tr>
</tbody>
</table>
1-1011 Acceptance of Contract

The Contract may be accepted when the work on the project is completed, the construction signs are removed, and all supporting information, reports and forms are submitted and accepted within established Department procedures.

The following items should be initiated or completed before acceptance of the project is considered:

- All contract work has been completed and Certificate of Acceptance of Work (CON-500) has been issued.
- Headquarters final review (completed);
- Final Change Order (processed);
- Final Estimate (initiated);
- All reports and forms required on federal-aid projects (completed);
- The Final Materials Certificate has been issued;
- The correct submission of all documents required under the terms of the Contract;
- All other contract requirements have been satisfied or resolved (e.g. contract time, DBE set-aside goals, etc.)
- Warranty requirements are met (i.e. all terms and conditions of the warranty must be satisfied). If the project includes an extended warranty that would delay acceptance of the project, the District should notify the Office of Construction.

The Certificate of Acceptance of Project, Form CON-501 shown in Figure 1-10.4, and transmittal letter to the Contractor is prepared in the District Office within 30 days of the Contractor completing all of the contractual requirements. All copies are sent to the Office of Construction for signature by the Construction Division Chief. Normally, the final package documents should be complete by this time; if not, the District still must send the transmittal memorandum for the final packet. This memorandum must identify the missing items and provide an explanation and probable date the items will be forwarded. The Office of Construction will complete the Form CON-501 and send it to the Contractor via letter. The acceptance date is recorded in the Office of Construction’s “Contract Record Database.”

1-1012 Final Papers

To finalize a project, a final package must be put together and forwarded to the Office of Construction. Figure 1-10.5 shows the transmittal memorandum that is used to forward these documents.

The final submittal requirements for each category of project are shown in Figure 1-10.6. The table lists the number of copies that are required to be forwarded to the Office of Construction with the Final Transmittal Memorandum for each category of project listed. For Projects that do not fall into any of the listed categories or those projects that have multiple categories, contact the Office of Construction to determine the number of copies required for each document.
1-1013 Submission of Final Documents to Other Offices and Agencies

For all projects with FHWA funding, the Federal Billing Unit and FHWA Connecticut Division need to be notified when all final paperwork supporting documents have been completed; and for all projects with FAA funding, the Bureau of Aviation and Ports needs to be notified. Shortly after the Certificate of Acceptance of Project, CON-501, is signed by the Construction Division Chief and all supporting documents have been received by the Office of Construction, the Fiscal Administrative Officer prepares correspondence transmitting the documents. Figure 1-10.11 and Figure 1-10.12 are samples of the memorandum sent to the Federal Billing Unit and letter sent to the FHWA Division Administrator when FHWA funding is involved. A memorandum similar to the one shown in Figure 1-10.11 is sent the Bureau of Aviation and Ports when FAA funding is involved.

Figure 1-10.4 Certificate of Acceptance of Project (Form CON-501)
Figure 1-10.5 Final Transmittal Memorandum

| STATE OF CONNECTICUT | subject: | Project No. |
| DEPARTMENT OF TRANSPORTATION | F.A.P. No. |

memorandum

| date: |

Mr. Mark D. Rolfe
Construction Division Chief
Bureau of Engineering and Highway Operations

From:
Bureau of Engineering and Highway Operations

FINAL PACKAGE -- SUPPORTING DOCUMENTS CHECKLIST

Directions: Check off all supporting documents in the appropriate box.

- [] Contract Status (CON-100)
- [] Construction Report
- [] Index of Construction Orders
- [] Final Construction Order
- [] Materials Certificate (Federal and State Projects)
- [] Final Estimate (Signed and Dated)
- [] Final CLA-3
- [] Certificate of Compliance (CON-502 A)
- [] Certificate of Compliance: State Inspection (CON-502 B)
- [] Certificate of Compliance: Consultant Inspection (CON-502 C)
- [] Certificate of Compliance (CON-502 D)
- [] Federal Voucher Report
- [] Credits Due State (Audit Request)
- [] Headquarters Final Review Report of Project Records and the No Further Action Necessary Memo
- [] Final DBE or SBE Participating Report (Form 88-1)
- [] Certificate of Acceptance of Work (CON-500)
- [] Certificate of Acceptance of Project (CON-501)
- [] Time Extension(s)
- [] Financial Summary Checklist
- [] Project Cost Overrun Report (If final cost exceeds the original bid by 10% or more.)
- [] Pavement Evaluation (Greater than 2500 MT or tons of top course HMA)
- [] Letter from Force-Account Contract Holder or Agreement Holder, accepting all materials incorporated into the Contract, if applicable.
- [] Final Contractor Evaluations for Prime and Subcontractors
- [] CLAIM (Check this if a Claim is pending.)
Figure 1-10.6 Table for No. of Attachments for Final Transmittal Memorandum

<table>
<thead>
<tr>
<th>Category</th>
<th>FHWA Funded Projects (Federal Oversight)</th>
<th>FHWA Funded Projects</th>
<th>State Funded Projects</th>
<th>State Funded Projects - Municipal</th>
<th>Airport Projects (State Funds)</th>
<th>Street and Maintenance Facility Projects</th>
<th>Emergency Project (State Funds)</th>
<th>Rail Projects by Contract - Vertical (all)</th>
<th>Rail Projects by Contract or 3rd Party - all</th>
<th>Force Account Projects (Municipal or 3rd Party – all)</th>
<th>Force Account Projects (Rails – all)</th>
<th>Airport Projects (Federal Funds)</th>
<th>Emergency Projects (Federal Funds)</th>
<th>Federal Oversight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmittal Memorandum</td>
<td>1</td>
</tr>
<tr>
<td>CON-100</td>
<td>1</td>
</tr>
<tr>
<td>Construction Report</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Index of Construction Orders</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Final Construction Order</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Material Certification</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Final Estimate</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Final CLA-3</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>1</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Federal Voucher Report</td>
<td>2</td>
<td>3</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Credits Due the State</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Headquarters Final Review/Report of Project Records</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Form 88-1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>n/a</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CON-500</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CON-501</td>
<td>1</td>
</tr>
<tr>
<td>CON-502's</td>
<td>1</td>
</tr>
<tr>
<td>Time Extension(s)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Financial Summary Checklist</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Project Cost Overrun Report</td>
<td>2</td>
<td>3</td>
<td>2*</td>
<td>2*</td>
<td>2*</td>
</tr>
<tr>
<td>Pavement Evaluation</td>
<td>1</td>
</tr>
<tr>
<td>Letter accepting all materials incorporated into the project (from Municipality or third party)</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: The table shows the number of copies that are required to be forwarded to the Office of Construction with the Final Transmittal Memorandum for each category of project listed. For projects that do not fall into any of the categories listed or those projects that have multiple categories, contact the Office of Construction to determine the number of copies required for each document.

* Case 2 projects only.
Construction Report

Project No: District #

FAP No:

Description of Project:

Contractor: (name/address)

Road(s):

Bridge(s):

Contractor Ordered to Start On:
Contractor Started:
Contractor Completed:

Original Calendar Days:
Revised Contract Increase:
Time Extension Granted:

Total Days Elapsed (excluding winter
 Shutdowns – if applicable):

Last D.W.R.
Date: Number:

of Days Suspended: Date Suspended: Date Resumed:

Date Road Closed to Traffic:
Date Road Opened to Traffic:

Total Calendar Days Allowed:
Total Calendar Days Used:

Liquidated Damages Assessed:
(days x dollars =)

DBE or DOL Sanctions:
(money value)

Reason for Sanction/Liquidated Damages:
Figure 1-10.7b Construction Report (continued)

Construction Report
Page 2

Changes Made:
Design Changes:
Drainage Changes:

Difficulties Encountered:

Work Done by Others:
(List Subcontractors & Work Performed)

Credits Due State:

Conn. DOT Project Engineer(s):

Resident and/or Chief Inspector(s):
Employed by:

Consultant Firm:

______________________________ ______________________
Assistant District Engineer Date

(Attach additional sheets if necessary)
Figure 1-10.8 Financial Summary Checklist

<table>
<thead>
<tr>
<th>Financial Summary Checklist</th>
<th>Contract No. ____________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project No.______________</td>
<td></td>
</tr>
<tr>
<td>FAP No.________________</td>
<td></td>
</tr>
<tr>
<td>Federal Voucher Report</td>
<td>Part. $_________ Non-Part. $_________ Total $_________</td>
</tr>
<tr>
<td>Final Construction Order</td>
<td>$_________ $_________ $_________</td>
</tr>
<tr>
<td>Final Estimate</td>
<td>$_________ $_________ $_________</td>
</tr>
<tr>
<td>Const. Unit Summary Total</td>
<td>$_________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Project No.______________</td>
<td></td>
</tr>
<tr>
<td>FAP No.________________</td>
<td></td>
</tr>
<tr>
<td>Federal Voucher Report</td>
<td>Part. $_________ Non-Part. $_________ Total $_________</td>
</tr>
<tr>
<td>Final Construction Order</td>
<td>$_________ $_________ $_________</td>
</tr>
<tr>
<td>Final Estimate</td>
<td>$_________ $_________ $_________</td>
</tr>
<tr>
<td>Const. Unit Summary Total</td>
<td>$_________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Project Total (if applicable)</td>
<td>$_________</td>
</tr>
</tbody>
</table>

The purpose of this checklist is to be sure all Final Document Totals agree with each other and with the Construction Unit Summary.

This form is to be used for State funded projects as well as Federal funded projects.

If the project is 100% State funded, disregard the FAP No. item and the Federal Voucher Report item.

ALL figures should agree.
ConnDOT

Office of Construction

Project Cost Overrun Report

<table>
<thead>
<tr>
<th>Report Type:</th>
<th>Annual _____ Year _____ Final __________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td>_______________________ District: _______</td>
</tr>
</tbody>
</table>

Project Description:

(i.e. Resurfacing and Safety Improvements including bridge rehab, traffic signals, etc.)

<table>
<thead>
<tr>
<th>Orig. Bid $</th>
<th>Final Cost $</th>
<th>Difference $</th>
<th>% Increase %</th>
</tr>
</thead>
</table>

CATEGORY DESCRIPTION

- **Unforeseen Conditions:**
 - ______________________________________
 - ______________________________________

- **Change in Scope:**
 - ______________________________________
 - ______________________________________

- **Contract Revisions:**
 - ______________________________________
 - ______________________________________

- **Quantity Adjustments:**
 (attach list of affected items with their original and final quantities)
 - ______________________________________

- **Other Adjustments:**
 - ______________________________________

See Construction Manual Section 1-807 for definitions of categories.

Submittal Requirements:

- **Annual** – Required prior to February 1st for any active project where estimated final construction costs exceed original bid by more than ten (10) percent for the previous calendar year.

- **Final** – Required when final construction costs exceed original bid by more than ten (10) percent. Submittal required within 30 days of initiating final construction order.

Rev. 10/4/07
Figure 1-10.10a Pavement Evaluation Form

Note: This report is required for all projects with a top course of 2,500 tons or more.

FINAL PAVEMENT EVALUATION REPORT

District No._________ Project No._________ Route/Town: __________________________

Project Engineer: ____________________ Chief Inspector: _______________________

Pavement Information (Top Course)

<table>
<thead>
<tr>
<th>Paving Contractor</th>
<th>Class</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date Started: __________ Date Completed: __________

Plant(s) used: Drum _____ Silo Used? ______
Batch _____ Silo Used? ______

Dates of evaluation: __________ Reviewer(s): __________________

Pavement Rating System:

<table>
<thead>
<tr>
<th>Rating</th>
<th>1= Excellent</th>
<th>2= Good</th>
<th>3= Fair</th>
<th>4= Requires Repair</th>
</tr>
</thead>
</table>

A. Pavement Appearance (overall)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Segregation (Rating of 1 = none or minimal)

Check next to type, if present: Truck End Centerline Joint/Edge Random

2) Surface Appearance (overall)

Check next to type, if present: Shadows (center/outside) Cracks Flushing Rutting

Roller marks/lights Screed marks/lights Fuel/solvent spills Non-uniformity

3) Joint Construction (overall)

- Transverse (excessive handwork, bumps, etc.)
- Longitudinal (excessive handwork, cracking, etc.)

4) Rideability (overall)

- Transfer Device Used?

B. Other Problems Encountered – Circle examples

1) Mix condition: Overheated / Cold / Dry / Tender (cracks when rolled) / Bleeding / difficult to compact / Inconsistent-nonuniform

2) Was any paving done during: Rain / Cold (under 40°F or 10°C) / Surface damp or wet

3) Compaction/Density: Difficult / Easy to achieve

4) Paving Delays due to: Insufficient Equip. / Equip. Breakdown / Plant Breakdown / Traffic / Waiting for Trucks

- If repairs are required has the contractor been notified?

Page 1
Figure 1-10.10b Pavement Evaluation Form (continued)

Unit 590, PAT

Rev. 6/03

Note: This report is required for all projects with a top course of 2,500 tons or more.

Additional Comments:

Submitted By: __________________________

Approved By: __________________________

Cc:
MEMORANDUM

STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION

Subject: Construction Activity Closeout
Supporting Documents

Date:

To: Federal Billing Unit
 Bureau of Finance and Administration
From: Transportation Engineer 2
 Bureau of Engineering and Highway Operations

Attached for your information and further processing are the following supporting documents:
CON-13 or CON-501 (Certificate of Acceptance); Construction Report and Federal Voucher:

<table>
<thead>
<tr>
<th>Project No.</th>
<th>F.A.P. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please acknowledge receipt of the documents indicated above by signing and returning the attached copy of this memorandum.

_______________________________ __________________________
John E. Ryng Date

Attachments
SMO/smo
cc: Office of Construction File
 Federal Billing File
 Const Activity Memo
Figure 1-10.12 Sample Letter to FHWA Division Administrator

(860) 594-2660
(Date)

Division Administrator
Federal Highway Administration-Connecticut Division
628-2 Hebron Avenue, Suite 303
Glastonbury, Connecticut 06033-5007

Dear Mr. __________________________:

Subject: Project No. ____________________
Submission of Final Documents

We have attached the final documents for the subject project. Please provide this office with confirmation that these documents are acceptable. If we do not hear from you in the next 60 days, we will close out the project and archive the records.

Very truly yours,

Construction Division Chief
Bureau of Engineering and Construction

Attachments:
- Construction Report
- Final Construction Order*
- Final Materials Certificate*
- Final Quantity Report*
- Federal Voucher Report*
- Final DBE or SBE Participation Report*
- Certificate of Acceptance of Work*
- Certificate of Acceptance of Project*

* Full Oversight Projects Only

1-1014 Consultant-Inspected Project

After the construction work is completed on a consultant-inspected project, the Consultant is required to complete all inspection-related paperwork and administrative requirements before the Consultant’s personnel are released from the Project. The District should ensure that sufficient staff is maintained by the Consultant at the site to complete the paperwork within a reasonable time—generally, 30 to 60 days after completion of the work.
If, upon completion of all paperwork, it is not possible to process the final Construction Order or final estimate because of outstanding corrective work and administrative submittals from the Contractor, the District may deem it in the State's interest to terminate the Consultant’s contract and complete the remaining processing with State forces. When this is the case, the project records should be examined by the District, and the Consultant should make any necessary corrections before being released from the project. Consultants do not have to stand by on a project while the audit is prepared, but they must be available when requested to correct any errors or omissions.

Consultants must complete all project-related paperwork before they are released from their responsibilities under the Consultant agreement.

Consultant Evaluations are discussed in Volume 1 Chapter 17.

1-1015 Storage of Revised Plans and Notebooks

As soon as the project is complete, the Chief Inspector must put together a complete set of white paper tracings with all as-built information compiled during the project and have prepared a complete set of as-built Mylar drawings for the project. The revised plans and cross-section tracings are then sent to the Map File Room. Refer to Section 1-329 ‘Final Revisions of Plans and Cross Sections (As-Builts)’ for revision requirements. For Consultant inspected projects, the Consultant is responsible for preparing the as-built mylars.

The Inspectors' notebooks and all supporting project records are stored in an approved, safe and secure area at the District Office until arrangements can be made for storage at the Department of Transportation Records Center or archive storage at the District Office.
Figure 1-10.13a Post Construction Review Form

POST CONSTRUCTION REVIEW FORM

(Please use additional pages if necessary)

Statements must include facts and information already incorporated into the contract documents and records. Do not include any opinions or personal remarks.

<table>
<thead>
<tr>
<th>Project Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Original Contract Value: ________________

Current Revised Contract Value: ________________

Contract Completion Date: ________________

Estimated (Revised) Completion Date: ________________

CONTACTS

- Transportation Engineer 3: ____________________________
- Chief Inspector: ____________________________
- Consultant Inspection Firm (If applicable): ____________________________
- Designer: ____________________________
- Consultant Design Firm (If applicable): ____________________________

Major Project Issues

(Including but not limited to cost overruns, design revisions, traffic impacts, environmental impacts, quantity estimates, completeness of the contract documents)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Project Positives

(Including but not limited to construction methods, new products, quality of the contract documents, traffic conditions, constructability, maintainability, appearance, function)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
1-10.12 Post Construction Review Form (Continued)
Figure 1-10.13b Post Construction Review Form (continued)

| POST CONSTRUCTION REVIEW | Page 2 of 2 |

Project Negatives
(Including but not limited to construction methods, new products, quality of the contract documents, traffic conditions, constructability, maintainability, appearance, function)

Suggestions for Improvement

Submitted By: ________________________________

Reviewed By: ________________________________

(To be filled by Constructibility Review Unit Personnel):

Reviewed By: ________________________________

Follow up meeting: _______ Recommended _______ Not recommended

1-1016 Contractor Evaluations

Each District evaluates the performance of all prime contractors with active projects in the District, annually and at the completion of each project. Subcontractors are evaluated only at the completion of each project. The evaluation is prepared by field personnel on each project, preferably the Resident Engineer or Chief Inspector with input from the Sub inspectors and District support staff. It is then reviewed and signed by the Project Engineer. A sample Contractor Performance Evaluation Rating is shown in Figure 1-10-14. Review parameters are outlined with the form in the Approved Forms folder.
Interim ratings shall be performed by District Personnel for substandard contractor performance on a project. Interim ratings may also be requested by the Office of Construction, the Office of Contracts or at the discretion of the District field personnel.

A final rating is used to evaluate a prime contractor’s or subcontractor’s overall performance on a completed project.

The annual review covers the period from January 1st through December 31st. A copy of the rating is sent to the Construction Division Chief no later than the 15th of January. A copy of the final ratings shall be included in the finals package forwarded to the Office of Construction. In addition to sending a copy of the annual and final rating to the Office of Construction, a copy of the rating is to be sent to the Contractor being evaluated. Copies of subcontractor ratings are not to be sent to the prime contractor unless requested by the prime. Interim ratings shall be forwarded to the contractor evaluated after Department processing by the Office of Construction.

Persons taking responsibility for rating a contractor should take the time to prepare a complete and accurate evaluation. This may be a composite effort between the project and district staff. The quality of work and workmanship are to be considered for all aspects of the work, including the administrative requirements of the project.

The reviewer is encouraged to include comments pertinent to the ratings given especially if those ratings are at the extreme high or low end of the scale. Some examples of valuable comments are as follows:

- Project staff needs little to no supervision in order to operate on a day to day basis.
- Contractor’s staff anticipates constructability issues prior to the construction schedule.
- Coordination with the City has been a balancing act.
- Contractor handled I-95 SB lane shift well as it entailed four lanes of over two miles of highway to be shifted.
- Timely ordering of catch basin risers may have prevented delays.
- Certified payrolls not received for last 3 months of project.

These forms from all Districts are compiled and the five (5) year average is used to determine an overall, representative rating for each Contractor. They are used by the Department when determining the qualification of contractors, as well as responsibility issues. The Office of Construction provides the five year average to the Office of Contracts and other interested units or agencies as requested.

If any annual project or overall project rating is at or below a 2.0, the Office of Construction sends a memorandum to the District requesting that the District meet with the firm to discuss the problems or deficiencies noted on the review.

If the five-year average rating is at or below a 2.5, the Office of Construction sends the firm a letter (copy the Office of Contracts), noting that their performance was lacking in certain areas and that they need to improve on future projects.

If the five-year average rating is at or below a 2.0, the Office of Construction sends the firm a letter (copy the Office of Contracts), putting the firm on notice that the firm is at risk of being found non-responsible. A finding of non-responsibility may impact a firm’s future ability to be awarded work on Department projects.
CONSTRUCTOR PERFORMANCE EVALUATION RATING

Contract No. (s): 1234-1234

Contract Description: Restoration of Historic Structure

Name of Firm: XYZ Construction Company Inc.

Vendor ID/FEIN:

Type of Contractor: (Check One) Prime Sub

Type of Report: (Check One) Annual Interim Final

Evaluation Year: 2003

<table>
<thead>
<tr>
<th>Category</th>
<th>Average Rating</th>
<th>Weight Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>0.25</td>
</tr>
<tr>
<td>B</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>C</td>
<td>4.00</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>4.00</td>
<td>0.15</td>
</tr>
<tr>
<td>E</td>
<td>2.00</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Overall Performance Rating: 2.95

Numerical Rating Scale

Excellent (4) Good (3) Acceptable (2) Not Acceptable (1) Not Applicable (NA)

A. Quality of Work:
1. Quality of Prime/Sub Contractor’s work including work performed by Subcontractors 4

Average Rating for Category A: 4

B. Performance of Work:
1. Adherence to Contract Specifications & Plans 1
2. Compliance with Limits of Operations 1
3. Timely responses to Field Directives na
4. Compliance with Maintenance & Protection of Traffic . 1

Total: 3

Average Rating for Category B ((Total)/No. of Items): 1.00

C. Adherence to Project Schedule:
1. Adequate Equipment to Perform Work 4
2. Timely ordering of material 4
3. Timeliness in addressing Punch List Items/Unacceptable Work 4
4. Adequate starting of Job 4
5. Timely Notification of Possible Delays na
6. Timely submission of shop drawings 4

Total: 20

Average Rating for Category C ((Total)/No. of Items): 4.00

D. Implementation of Federal, State and Local Policies, Procedures and Regulations:
1. Compliance with Environmental Requirements 4
2. Prompt Payment to Subcontractors/Supplies 4
3. Compliance with Labor Standards na
4. Compliance with AAEEC Requirements 4
5. Compliance with DBE/SBE Requirements 4
6. Compliance with Training Requirements 4

Total: 20

Average Rating for Category D ((Total)/No. of Items): 4.00

E. Procedural/Administrative
1. Quality of Supervisory Personnel 2
2. Relationship with Subcontractors 2
3. Cooperation with Other Contractors 2
4. Quality of Housekeeping, Job Cleanliness 2
5. Cooperation with Field Engineer, Authority Personnel, Consultant na
6. Attendance at Job Meetings 2
7. Timely Submission of Progress/AA Reports etc . . . 2
8. Knowledge of Department Standards 2
9. Knowledge of Work Performed 2

Total: 16

Average Rating for Category E ((Total)/No. of Items): 2.00

*Are there any area or types of work where performance has not been acceptable or contractor had problems performing?__

If Yes, Explain:

(Attach additional sheets if necessary)

Prepared by:

Date:

Reviewed by:

Date:

Reviewed with Contractor on:

Contractor Signature: 7/9/1996
Chapter 11 - Guidelines for the District and Headquarters Intermediate and Final Reviews

With the transfer of the Record-Examiners to the Office of Quality Assurance, various duties described in this chapter will be reassigned to that office.

1-1101 Intermediate and Final Review

The purpose of the District Intermediate and Final Reviews is to ensure that project records are maintained in conformance with current record-keeping procedures required by the Office of Quality Assurance and the Districts. The purpose of the Headquarters Examiners Review Section is to also ensure that the project records are maintained in conformance with current record-keeping procedures implemented by the Office of Quality Assurance. These records are vital to document the proper completion of a project, meet the requirement for the Federal reimbursement of a project, and to document field conditions in the case of a claim or dispute between the State and the contractor. The goal is to have complete, uniform records for all projects.

Records required to perform a review are:

- Volume I;
- Volume II (for non-SiteManager Projects);
- Volume III;
- Volume IV;
- Delivery tickets;
- A copy of a report showing apparent final quantities (Final Review only);
- Copies of the approved Construction Orders with back-up;
- A copy of the contract;
- A copy of half-size plans; and
- A copy of the original or breakdown federal voucher.
- A copy of Intermediate Review(s) performed by Headquarters or District

Also reports available from SiteManager and SiteManager Reporting assist in the review of the records.

Intermediate Reviews are optional and are performed as deemed necessary. If new Inspectors or Consultant firms, unfamiliar with the CONNDOT record-keeping procedures, are assigned to a project, it is highly recommended that a review be performed in the early stages of the Contract work. Other Intermediate Reviews should be conducted at various times during a project's duration to spot-check project record keeping. When performing Intermediate Reviews “final” quantity verification is not addressed and the attention is focused on estimate payments and project documentation. The findings of an Intermediate Review are forwarded to District and Project staff by a report for their action. A copy is also forwarded to the Office of Quality Assurance if the review was performed by the District. These reports do not require a written response by the District or Project staff, unless directed otherwise; however, the Project personnel are expected to review these reports and take appropriate steps to address the issues that were reported. Any subsequent reviews including the final will ensure findings in previous reviews have been addressed.

A Final Review is performed at the District level and at the Headquarters level. First the District performs their Final Review. The District Final Review must be done by an independent person not affiliated with the project inspection or part of the project staff (including Consultant inspected projects).
After the District Final Review is performed and the exceptions noted in the review have been corrected, the records and other required information are sent to Office of Quality Assurance for the Headquarters Final Review.

The letter of transmittal from the District must state that a thorough review of the final-estimate pay quantities and related documentation has been completed in the District and that all quantities appearing on the final estimate have been computed and documented to conform to current Department procedures.

The District will submit along with the “Letter of Transmittal” a copy of their “District Level” Final Review report indicating as to what was checked and where, including a list of the discrepancies found and corrected.

Upon receipt of notice from the District, the Office of Quality Assurance will conduct a Headquarters’ Final Review. Any exceptions resulting from this review will be transmitted to the District for resolution and response. The memorandum from the District responding to the Headquarters’ Final Review shall be addressed to the Division Chief of the Office of Quality Assurance from the Assistant District Engineer or District Engineer.

NOTE: The records should not be submitted to the Office of Quality Assurance until all items and punch-list work is complete unless directed otherwise by the Office of Quality Assurance. All construction orders must also have been forwarded to the Contractor with the exception of the final construction order, which is left open for possible quantity adjustments resulting from the Headquarters final review.

The following data is forwarded with the letter of transmittal:

- Volume I;
- Volume II, for non-SiteManager projects;
- Volume III;
- Volume IV;
- delivery tickets;
- A copy of a report showing apparent final quantities;
- copies of the approved and pending Construction Orders, with backup;
- a copy of the Contract;
- a copy of half-size plans;
- a copy of the original or breakdown federal voucher;
- copies of Daily Reports of Cost Plus, with backup; and
- A copy of the District's final review.

Following the Headquarters Final Review the examiner(s) who performed the review prepares a Headquarters Final Review report. The Project records are returned to the District along with the Headquarters Final Review Report. The District addresses the exceptions noted in the report and sends written verification to the Office of Quality Assurance Division Chief that explains how the exceptions were corrected. The written verification must state that the corrections were verified by the Project Engineer. When all exceptions have been addressed to the satisfaction of the Office of Quality Assurance, the District is sent a “no further action necessary” memorandum.

The sections that follow provide guidance on what to review when performing an Intermediate or Final Review.
1-1101A Items

Examine various items to determine if the Method of Measurement/Basis of Payment and administrative procedures are being followed. For final reviews at least twenty-five items should be reviewed. Report the findings and areas examined in the Intermediate or Final Review report. If significant discrepancies are discovered in the items examined, the number of items reviewed should be increased.

For the Final Review the following items should be examined if applicable to the Contract.

- Processed aggregate base
- Cost-plus
- Bituminous concrete
- Material Stored on Site
- Concrete
- Water Pollution Control
- Asphalt adjustment
- Trafficperson
- Hazardous material
- Drainage
- Lead health and safety
- Trainee
- Items with an “Estimated” unit of measure

When reviewing Construction Order items make sure all back-up documentation is attached to substantiate payment i.e. price justifications, approval letters etc. (Refer to Volume 1 Chapter 8 for additional information).

Check that the testing for all items examined is sufficient. (Refer to Volume 1 Chapter 4 for additional information).

Cost-plus (Refer to Volume 1 Chapter 6 for additional information).

Follow up on previous Intermediate Review Reports if applicable.

1-1101B Volume I – Inspector’s Daily Work Report

Review the Diaries and Daily Work Reports (DWRs) for sufficient detail: (Refer to Volume 1 Chapter 3 Section 1-306 “Review of DWR’s” for additional information.)

- Do the Diaries and DWRs provide an audit trail to the source documentation?
- Are the DWRs filled out completely and with detail?
- Are the DWRs signed by Inspectors?
- Has the Project Engineer reviewed the DWRs including those of sub-inspectors for a minimum of 3 days per month and signed them?
- Are field notes attached to DWRs?
- Is equipment used listed on DWRs?
- Are estimated payment procedures reviewed and approved by the Project Engineer?
1-1101C Volume III – Computations

Refer to Volume 1 Chapter 3 Section 1-305A Computations and Measurements for additional information.

Make sure all items contained in Volume III have summary sheets. The final quantity posted on the summary sheet must agree with the quantity complete and paid to date (final quantity).

A Master Summary Book is required for all items with entries in more than one Volume III book. The final quantity posted on these sheets must agree with the quantity complete and paid to date (final quantity).

Drainage books are required to be setup as outlined in Section 1-305C, Drainage Systems. A Master Summary sheet is required for the drainage book(s). The Master Summary sheet must show totals. Factor sheets must be included if used.

Page numbering for computations and items must provide an acceptable audit trail.

Computations and measurements must be signed “Compiled by” and “Checked by”. Computations in Volume III should refer to a plan sheet number.

Appropriate sketches should be present.

If items have been paid “estimated” the Record of Estimated Payment Procedures sheet must be included with the Volume III summary sheet.

1-1101D Volume IV – Miscellaneous Contract Data

Refer to Volume 1 Chapter 3 Section 1-306, Miscellaneous Contract Data for additional information.

The following is a list of documents that are required. Electronic spreadsheets are also acceptable for other listed reports provided they are kept up to date.

- Record of Payrolls (not required if kept in SiteManager)
- Record of Labor Wage Checks (not required if kept in SiteManager)
- Record of Project Personnel
- Material Stored Inventory Log
- Record of Shop Drawings

Additional sheets for Non-SiteManager projects:

- Record of Prime and Subcontractors
- Record of Insurance and Bonding
- Anticipated Source of Material
1-1102 Emergency Cost-Plus Projects

Emergency cost-plus Projects have their own set of record keeping requirements addressed in Chapter 18. Typically these projects are for a short duration and Intermediate Reviews are not performed. The person(s) performing the Final Review on an emergency cost-plus project should review Volume 1 Chapter 18 for required documentation. The reviewer needs to ensure the Project records contain sufficient information to provide an audit trail for the work performed.
Chapter 12 - Civil Rights, Labor and Contract Compliance

1-1200 General

Project staff has a responsibility to monitor contractor’s adherence to EEO/AA rules and regulations prohibiting discriminatory activities, and contractor’s payment of state and federal prevailing wages to their workforce. They also monitor contractor’s compliance with provisions such as the Disadvantaged Business Enterprise (DBE) program, Small Business Enterprise (SBE) program and On the Job Training (OJT). Each District has staff assigned the role of EEO Coordinator who assists project staff in performing these functions.

EEO, prevailing wage, DBE, SBE and OJT requirements call for the submission of many documents. They also involve the preparation of reports to quantify accomplishments. The EEO Coordinator is tasked with making sure required documents are obtained and reports are prepared. They also have a key role in resolving issues that may occur between the contractor, project staff, Division of Contract Compliance, Department of Labor (State and Federal) or other agencies.

A list of duties for the EEO Coordinator is provided below and is not intended to be all inclusive.

Project Initiation:

- Setup EEO project files (to be maintained throughout the entire project).
- Review the project contract (including all EEO provisions in the project contract).
- Conduct the EEO Pre-Construction Meeting with the Chief Inspector (refer to 1-203, EEO Preconstruction Meeting).
- Discuss the EEO provisions of the project contract and the subcontractor provisions with the prime contractor (including subcontractor approval process, discuss the DBE/SBE program provisions (certification, good faith effort analysis, etc.), labor wage rates/payroll regulations, workforce utilization (minority/female utilization requirements), OJT provisions, etc.). The prime contractor may download required EEO/AA posters and handouts from CT DOL and USDOL web sites.

Throughout The Project:

- Maintain the EEO project files.
- Act as a liaison between prime contractor and ConnDOT for disputes involving any of the EEO contract provisions.
- Answer questions from ConnDOT staff relative to EEO procedures and provide EEO status reports.
- Project Site Record/Affirmative Action Compliance Reviews: Perform annual and final site record reviews. Attend compliance reviews as requested.
- Meet with the prime contractor and Project Inspector to review compliance with EEO provisions of the contract. Review with Contractor and Project Inspector that the project bulletin board has the required EEO/AA posters posted.
- Provide a follow-up letter to the prime contractor identifying areas of concern with the EEO contract requirements and request from the Contractor an action plan to address areas of concern noted. Follow-up with telephone contacts and letters on an as-needed basis.
- Prevailing wage: Compile data for Semiannual Labor Compliance Enforcement Report (Form FHWA-1494) and submit it to the Office of Construction. The OOC submits a combined report to USDOL with a copy to FHWA.
• Act as a liaison between ConnDOT, CT DOL and USDOL involving any questions pertaining to the prevailing wage rates and workforce classifications.

• Verify that the issues listed on the Project Payroll/Wage Check Monthly Summaries are being addressed.

• OJT Program: Review Monthly Trainee Reporting forms (Form 1409) with the Project Inspector for on-site trainees and check the file to verify trainee(s) is/are approved and that the training is in substantial conformance with the agreed upon training outline and the contract provision. If an on-site trainee is not approved, contact the Division of Contract Compliance via email to verify that the appropriate paperwork has been submitted. If so; request a copy of the approval letter. If the trainee obligation is not being met, notify the prime contractor by letter to correct the deficiency. Review the Form 1409 during the following month to verify that the deficiency has been resolved. Follow-up with telephone contacts and letters on an as-needed basis to track progress.

• DBE Goal/SBE Set-Aside Goal: Review on a monthly basis the DBE/SBE status to find out if the Contractor is using their designated DBEs/SBEs and ascertain whether the goal/set-aside is likely to be achieved. If there is a question as to whether the goal/set-aside will be attained, notify the prime contractor by letter and orally contact the Project Engineer or Project Inspector to monitor the situation and discuss at the progress meetings. Follow-up with additional letters and/or telephone contacts on an as-needed basis.

Completion of Project:

• Determine if all required correspondence has been received and if all issues have been resolved. Notify the prime contractor by telephone and prepare letters requesting missing documentation, etc. Review responses for accuracy and perform follow-up on an as-needed basis.

• Prepare memorandum to Division of Contract Compliance summarizing training achieved under OJT provisions and requesting authorization to make payment.

• Complete Form 88-1 to determine if the DBE goal/SBE set-aside has been achieved. If the goal/set-aside has not been met, prepare a letter to the prime contractor stating the shortfall and requesting “Good Faith Effort Documentation”. Follow-up with additional telephone contacts and letters on an as-needed basis.

1-1201 Subcontracts

Contract provisions (Article 1.08.01 of the Standard Specifications) require the contractor to receive written permission from the Department to sublet any portion of the Contract. The Contractor must submit the Subcontract Agreement (Form CLA-12) in triplicate to the Construction Division Chief (Note: See 1-1201A for Subcontracting - Trucking Firms). The Contractor must state on the form which items, or portions of items, will be subcontracted, the name and address of the subcontractor, the estimated quantities to be performed, and the subcontracted unit prices. This information must reference the appropriate Project Number(s) and Line Item Number(s) as outlined in the “Line Item Category Report”, the pay unit, the unit price, the quantity, the subcontract item value and the percentage that it represents of the original bid quantity. The “Line Item Category Report” is typically provided to the Contractor at the beginning of each project by the Project Engineer.

The CLA-12 must be signed and dated by the Contractor and subcontractor, with the signatures witnessed. Subcontracts must be approved by the Bureau Head or designated representative. The designated representative is typically a Supervising Engineer or above in the Office of Construction. Additional requirements (i.e. approved Affirmative Action Plan, Ethics Affirmation, and Sub-Contract Agreement) must also be met when applicable. Instructions and forms are available to the contractors on the Department’s webpage: www.ct.gov/dot/construction.

Upon approval, the three signed CLA-12 forms are distributed with an approval letter to (1) the contractor, (2) the Office of Construction files and (3) the District. The District copy is to be incorporated into the project records.
If the contractor’s request for approval is for a SBE or DBE subcontractor for the purpose of meeting the applicable Contract SBE Set-aside or DBE Goal, then a copy of the legal contract between the prime and the subcontractor must be submitted along with the request for subcontractor approval. The Contractor and Subcontractor are required to comply with the applicable SBE or DBE provisions.

The following additional paperwork is also required:

- An Ethics Affirmation (Form 6), “Subcontractor and/or Consultant Affirmation of Receipt of Summary of State Ethics Laws” is required to be submitted with the CLA-12 for each and every subcontractor and lower tier subcontractor on projects that are valued at $500,000 or more. The required form is available from the OOC webpage or from OPM's webpage under Ethics Affidavits: http://www.ct.gov/opm/

- An approved Affirmative Action Plan Statement (AAP) for each firm is required to be on file with the Division of Contract Compliance for each subcontract valued at $10,000 or more.

Unless specified otherwise in the Contract provisions, the Contractor must perform at least 50 percent of the work as defined by the original total Contract amount with their own workforce. The amount subcontracted is checked by the Office of Construction when subcontracts are approved.

Inspection staff should not allow Subcontractors to proceed to work on Contract items until the Department has approved the subcontract for those items. Inspectors must ensure that the subcontractor only works on the portion of the Contract they have been approved to perform.

1-1201A Subcontracting – Trucking Firms

Due to the various scenarios involved in the use and subcontracting of trucking firms on ConnDOT projects the following decision matrix is used to indicate the appropriate type of submittal and subcontract approval that is required:

1. **Is the firm proposed for DBE/SBE credit?**
 - Yes - **Submittal A** is required.
 - No – Go to next question.

2. **Is the firm hired by a Supplier or a disposal facility?**
 - Yes - No action required.
 - No – Go to next question.

3. **Is the firm only hauling to/from a commercial facility? In this scenario, the firm is solely performing in the capacity of a material man/hauling/supplier.**
 - Yes - **Submittal C** is required.
 - No – Go to next question.

4. **Is the firm working within the project limits or to/from location established exclusively for the project?**
 - Yes - **Submittal A** is required.
 - No – Go to next question.

5. **Is the firm an owner-operator?**
 - Yes - **Submittal B** is required.
 - No – Go to next question.

6. **Other.**
Yes - **Submittal A** is required.

<table>
<thead>
<tr>
<th>Submittal A (same as in 1-1201)</th>
<th>Submittal B</th>
<th>Submittal C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required:</td>
<td>Required:</td>
<td>Required:</td>
</tr>
<tr>
<td>• CLA-12</td>
<td>• Owner Operator Certification</td>
<td>• List of trucking firms</td>
</tr>
<tr>
<td>• AAP</td>
<td>by Prime and Owner Operator</td>
<td>• Ethics Statement for each</td>
</tr>
<tr>
<td>• Ethics Statement</td>
<td>• AAP</td>
<td>firm</td>
</tr>
<tr>
<td>• Certified Payrolls</td>
<td>• Ethics Statement</td>
<td>• Certified Payrolls</td>
</tr>
<tr>
<td>• Prime submits to OOC.</td>
<td>• Prime submits to District.</td>
<td>• Prime submits to District.</td>
</tr>
<tr>
<td>• Upon OOC approval entered into</td>
<td>• District provides Prime with</td>
<td>• District incorporates into a</td>
</tr>
<tr>
<td>SiteManager and approval letters transmitted.</td>
<td>approval letter if all</td>
<td>separate file within the</td>
</tr>
<tr>
<td>• District incorporates into a</td>
<td>conditions met.</td>
<td>Project records.</td>
</tr>
<tr>
<td>separate file within the Project</td>
<td>• District incorporates into a</td>
<td>• No response required from</td>
</tr>
<tr>
<td>records.</td>
<td>separate file within the Project records.</td>
<td>District, unless conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not met.</td>
</tr>
</tbody>
</table>

The Owner Operator Certification indicated under Submittal B must include a certification statement by the owner operator that they are the owner and operator of the truck and not an employee of another entity; the make, model and plate of the truck; a copy of the registration and a copy of the lease agreement if they are not the owner.

The list of trucking firms indicated under Submittal C must include the name and address for each trucking firm, and indicate the hauling/supply operations that they will be utilized on.

1-1202 Labor Compliance

General. Most contracts will contain prevailing wage determination schedules. If there are federal funds involved there will typically be two schedules; one Federal and one State. In case of a conflict, the higher rate applies.

The appropriate prevailing wage rates for each contract are typically requested from CT DOL and USDOL and inserted into the contracts prior to advertising by the Office of Contracts. Occasionally a wage rate for a particular position is not included in the listed rates. In these cases, the District should forward the Contractor’s request for the appropriate wage determination to the following:

USDOL:

Mr. Enrique Lopez-Mena, Jr.
U.S. Department of Labor
Wage and Hour Division
The Curtis Center, Suite 850 West
170 South Independence Mall West
Philadelphia, Pennsylvania 19106-3317
Phone: (215) 861-5830
Fax: (215) 861-5840

CT DOL:

Attention: Holly Carter
Connecticut Department of Labor
Wage & Workplace Standards Division
200 Folly Brook Blvd
Wethersfield, CT 06109
Fax Number (860) 263-6541
http://www.ctdol.state.ct.us/wgwkstnd/forms/99-142form.htm

Annual Adjustment. Public Act No. 02-69 requires an annual adjustment of the prevailing wages. The State prevailing wage rates applicable to any contract or subcontract awarded on or after October 1, 2002 are subject to annual adjustments each July 1st for the duration of any project that was originally advertised for bids on or after October 1, 2002. The Inspector should ensure that these adjustments are made.

CT DOL maintains the revised prevailing wage rates on their web page. Both contractors and administrating agencies, such as ourselves, get the updates for existing projects from the web.
The District should get the appropriate county/area rates from the web page for the affected projects and forward them to the respective project staff. The revised wage schedules are available at the following link: http://www.ctdol.state.ct.us/wgwkstnd/prevailing-rates/rates.htm

The Contractors should get the revised rates from the CT DOL page for both their use and that of their sub-contractors. The Contractors need to fill in or register on-line at: http://www.ctdol.state.ct.us/wgwkstnd/wgemenu.htm and then proceed to the prevailing wage pages.

1-1202A Statements and Payrolls

Contract provisions require the submission of certified copies of payrolls showing the names of all employees working on the project (Article 1.05.12 of the Standard Specifications). This provision also applies to all subcontractors. In addition, State and Federal regulations require the submission of statements of compliance when prevailing wage rates apply. Two statements of compliance are required for each payroll on federal-aid contracts. The State statement of compliance and Federal statement of compliance are different. State prevailing wage rates apply to all new construction projects greater than or equal to $400,000 and all remodeling, refinishing, refurbishing, rehabilitation, alteration or repair projects greater than or equal to $100,000. Federal prevailing wage rates apply to Federal-Aid projects exceeding $2,000 except for projects located on roadways classified as local roads or rural collectors, which are exempt. Projects exempt from Federal wage rates are not exempt from State prevailing wage law.

The requirements and instructions for the submission of certified payrolls and statements of compliance are contained in the special provisions of every Contract. These payrolls and statements of compliance are required to comply with State and Federal laws. A project folder is set up to record the receipt, transmittal and filing of each certified payroll (Figure 1-12.1), State statement of compliance (Figure 1-12.2), and Federal statement of compliance (Figure 1-12.3).

The most recent versions of the certified payroll and statement of compliance forms are available on the CT DOL and USDOL websites. Current copies are also maintained in the approved forms folder. The Contractor is to submit the completed forms to the District Engineer or their designated representative. Certified payrolls and statements of compliance are required to be submitted weekly on projects where Federal prevailing wage rates apply. For projects where only State prevailing wage rates apply, certified payrolls and statements of compliance may be submitted on a monthly basis.

The prime Contractor is responsible for ensuring that the prime contractor and all subcontractors furnish the necessary payrolls and certifications.

- Federal wage regulations require weekly certified payrolls be furnished for each week in which work is performed.
- Connecticut Statutes require certified payrolls to be furnished every month until the respective firm’s work is complete. Payrolls should be sequentially numbered. If no work was performed during the noted period, then the firm should indicate “no work performed” on the submitted payroll. Once the firm’s work is complete, the final payroll should be labeled “final payroll”.

On contracts bid prior to January 18, 2009 and where federal wage rates apply, each firm must list the worker’s social security number and address. The social security numbers may be included on the certified payroll form or on a separate page that clearly cross-references the workers’ names and their social security numbers.
On contracts bid on or after January 18, 2009 and where federal wage rates apply, each firm must list the last four digits of the worker’s social security number. This four digit number serves as the required individual identifying number for the worker. The worker’s address is still required by CT DOL to appear on the certified payrolls.

In accordance with Connecticut General Statute 31-53b and Public Act No. 08-83, on contracts awarded on or after July 1, 2009 the contractors are required to document that workers performing prevailing wage positions have completed a course of at least ten hours in duration in construction safety and health approved by the Federal Occupational Safety and Health Administration or, has completed a new miner training program approved by the Federal Mine Safety and Health Administration in accordance with 30 CFR 48 or, in the case of telecommunications employees, has completed at least ten hours of training in accordance with 29 CFR 1910.268.

Proof of compliance with the ten hour construction safety and health course requirement consists of a student course completion card issued by the federal OSHA, or other such proof as deemed appropriate by the Commissioner of the Connecticut Department of Labor, dated no earlier than five years prior to the commencement of the project. Each firm is required to affix a copy of the construction safety course completion card for each applicable employee to the first certified payroll submitted to ConnDOT on which the worker’s name first appears. Any employee required to complete a construction safety and health course as required that has not completed the course, shall have a maximum of fourteen (14) days to complete the course. If the worker has not been brought into compliance, they shall be removed from the project until such time as they have completed the required training.

Under Public Act 93-392, individuals may request to inspect and copy a Contractors’ certified payroll records. With the exception of an employee’s Social Security Number, these records are considered public records under the Freedom of Information Act. Please refer to Section 1-1208, “Freedom of Information” for how to handle requests.

Figure 1-12.1 Certified Payroll

In accordance with Section 31-53b, of the CGS, each contractor shall provide a copy of the OSHA 10 Hour Construction Safety and Health Card for each employee, to be attached to the first certified payroll on the project.
Figure 1-12.2 Certified Payroll/State Statement of Compliance

Figure 1-12.3 Certified Payroll/Federal Statement of Compliance
1-1202B Salaried Employees

Inspectors should use the following guideline for reviewing payrolls if any of the Contractor’s personnel are listed as salaried employees:

- A salaried employee must be acting in a supervisory capacity and must not be working with tools or equipment, regardless of the classification.

If an Inspector finds that an individual is incorrectly listed as a salaried employee, the Contractor must be notified and required to provide an explanation. If the explanation is inadequate, follow the procedure for complaints and apparent violations in Section 1-1202E, “Processing Complaints or Violations”.

In accordance with Connecticut General Statute 31-53, all persons working on the Project as either a mechanic or laborer must be listed on a certified payroll and must show the hours worked and hourly rate. The hourly rate listed must be greater than or equal to the prevailing wage. This requirement applies to owners of companies as well as owner-operators of trucks and other hauling equipment.

1-1202C Wage Rate Checks

The responsibility for carrying out procedures to ensure compliance with minimum wage requirements rests in part with the Department. The following procedures are Department policy. Strict compliance is required.

- The Inspector will ensure that a wage rate information poster (supplied by the Contractor) is available for viewing by all Contractor employees at all times that the project is under way, usually at the Contractor’s field office.

- The Inspector must make a monthly examination of the Contractor’s and subcontractors’ employment records to determine the following:
 + That wages being paid appear to be at least the minimum prescribed in the Contract;
 + That the classifications appear to be correct; and
 + That the work being performed by the persons, including helpers and apprentices, appears to conform to labor classification for which they are being paid.

Note: The contractor must provide a copy of the approved CT DOL Apprenticeship Registration Agreement (Form AT-5, see Figure No. 1-12.4) for each apprentice on the project. This registration is not particular to the project, but it is particular to the sponsor (employer) and the apprentice (employee). In addition, the contractor should submit “CT DOL Davis–Bacon Apprentice Certification Questionnaire” (Form AT-71) to the CT DOL in order to obtain project specific “Davis - Bacon Apprentice Certification” for prevailing wage purposes. The contractor may go directly to the CT DOL web page for these forms and information particular to the apprenticeship program.

The Inspector will make labor wage checks as below:

- Projects Under $5,000,000 in Construction Costs. One monthly labor wage check on prime Contractor employees and one monthly labor wage check on employees of each subcontractor.
Projects Over $5,000,000 in Construction Costs. Two monthly labor wage checks on prime Contractor employees and one monthly labor wage check on employees of each subcontractor.

- A List of Wage Checks will be kept in either SiteManager or in the Volume IV. The number and frequency of labor wage checks may be increased if the reviews indicate problems. If no more employees are available for a wage check interview this should be noted in SiteManager or in the Volume IV, List of Wage Checks for each month this situation occurs.

Figure 1-12.4 CT DOL Apprenticeship Registration Agreement

- The Inspector will use Form CON-131, Labor Wage Check (Figure 1-12.5), when interviewing the employees of the Contractor and subcontractors to establish the following:
That there is apparent compliance with the minimum wage rate provisions, and

That there is no apparent misclassification of labor.

- The Inspector must inform the Project Engineer and EEO Coordinator promptly of any apparent violations.

Contractors must pay the equivalent health, welfare and training benefits listed in the wage decision, either directly to the employees or to an approved plan. If the benefits are not listed on the certified payroll as being paid into an approved plan, they must be paid directly to the employee in the form of wages. The payment of the benefits should be checked against the payroll, and if a question concerning the payment of benefits exists, the Inspector must inform the Project Engineer and EEO Coordinator. Apparent violations in payment of benefits are handled in the same way as violations in wage rates.

All apparent violations of base wage rates or benefits that cannot be resolved by the District will be forwarded to the Department of Labor using a Prevailing Wage Referral Form (Figure 1-12.6).

Figure 1-12.5 Labor Wage Check (Form CON-131)

When project personnel are unable to complete Form CON-131 within 30 working days, the following actions should be taken:
• Forward the original copy of Form CON-131 to the District with a note or letter explaining the reason the incomplete form is submitted; and

• Record the appropriate notes on the field copy of the form, for informational purposes.

\[\text{Figure 1-12.6 Prevailing Wage Referral Form}\]

![Figure 1-12.6 Prevailing Wage Referral Form]

The District will follow through to address the problem and provide a copy of the Form CON-131 to the project office when the problem is resolved. If the District is unable to complete the Form CON-131 within 60 days of the actual date of the employee interview because of a certified payroll, or labor classification issue, the matter will be forwarded to the Connecticut Department of Labor, Wage and Hour Division for resolution using the Prevailing Wage Referral form. All other reasons for not completing the wage check within 60 days of the employee interview will be forwarded to the Office of Construction by memorandum. Contract Compliance, Office of Construction, District and Project will be included in the distribution list for all correspondence sent to the Labor Department and Office of Construction. The incomplete CON-131 will be returned to the Project by attaching it to the Project’s copy of correspondence sent to the Labor Department or Office of Construction.
1-1202D Processing Complaints or Violations

For complaints not related to wages, certified payrolls or EEO, please refer to Volume I, Chapter 14 – “Project Incidents and Complaints.”

The following procedure is used on receipt of a complaint or discovery of an apparent violation:

- The District notifies the Contractor in writing, via certified mail return receipt, of the details of the complaint or violation. The Contractor should be required to respond with the methods to be taken to resolve the complaint or violation within 14 days.

- If the Contractor’s response satisfactorily resolves the issues, no further action is necessary.

- If the response does not resolve the issues to the satisfaction of the District, the Assistant District Engineer notifies the Connecticut Department of Labor, Wage and Hour Division of the alleged complaint or violation using the Prevailing Wage Referral form (Figure 1-12.6) and includes copies of all documents pertaining to the issue. The Labor Department determines the appropriate actions and initiates further investigations, if required.

- Occasionally, the Labor Department may request assistance from the Districts in compiling documentation (wage checks, payrolls, etc.). District personnel will assist the Labor Department in compiling this documentation.

The District should inform the Office of Construction of all labor wage complaints, investigations and violations.
1-1203 Equal Employment Opportunity and Affirmative Action

Project Site Record Review

The Construction Project Site Record Review form is shown in Figure 1-12.8. It is prepared for all projects, except Class 1—Emergency Declaration Projects. The reviews monitor and document the Contractor’s accomplishments including subcontractors in Equal Employment and Affirmative Action.

Reviews are conducted once a year and at the end of the project. The initial Review on a project should be held late in the construction season of the first year of activity. This Review will report on a Contractor’s activities including his subcontractors from the beginning of the project. Succeeding Reviews will only report on activities performed since the previous Review.

To perform a review the following procedures are to be followed:

- Schedule review meetings at least four (4) weeks in advance.
- Invite District EEO Coordinator, Contract Compliance, and Contractor’s EEO officer to the meeting.
- When meeting is scheduled, forward Packet “A” - Prime Contractor Data and Packet “B” - Subcontractor Data to the Contractor. Make sure to fill in the review period on the employment data sheets prior to sending packets to the Contractor. If necessary, the package may be forwarded to the Contractor in advance of setting the actual meeting date in order to facilitate completion of the required information. A sample Project Site Record Review Request letter is shown in Figure 1-12.9.
- Direct the Contractor to return completed packets prior to the meeting.
- Advise the Contractor that if he is unable to obtain a completed packet from a subcontractor, he must provide documentation at the meeting that shows efforts made to obtain information.
- The EEO Coordinator in conjunction with the field personnel will review all packets submitted by the Contractor. They are to check information to see if it is representative of what actually has occurred on the project. If possible, the packets should be reviewed before the meeting. The Contractor is to be asked to address all discrepancies.
- During the review, the Construction Project Site Record Review form (see Figure 1-12.8) is to be completed by the Project Engineer, Chief Inspector or EEO Coordinator.
- Shortly after the meeting, the EEO Coordinator is to review the packets provided by the Contractor and Project Site Record Review form and determine if there are any areas of concern and, if warranted, recommend a full compliance review. Any errors found on the Site Record Review form are to be corrected. Errors are not to be erased. They are to be crossed out with the correct response inserted and initialed.
CONNECTICUT DEPARTMENT OF TRANSPORTATION
CONSTRUCTION PROJECT SITE RECORD REVIEW

Review Date: __________________________
Percent Complete: ______________________
Project Number: ________________________
Contractor Name: ________________________

Contractor Representatives Present:

Title __________________________________
Title __________________________________
Title __________________________________

DOT Representatives Present:

Title __________________________________
Title __________________________________
Title __________________________________

FHWA Representatives Present:

Title __________________________________

Does this project appear to be in compliance? Yes ___ No ___ (If no, explain) ___

Full Compliance Review Recommended: Yes ___ No ___

District EEO Coordinator: ________________________

Construction Division Chief: ________________________

comments:

(To be answered by the Office of Equal Opportunity and Diversity only)

Date Received by Office of Equal Opportunity and Diversity: ________________________

Reviewer: ________________________

Date Reviewed by Office of Equal Opportunity and Diversity: ________________________

Full Compliance Review/Audit Scheduled: ________________________
Figure 1-12.8 (Continued) Construction Project Site Record Review

(To be completed at the time of review by the reviewer) 2 of 2

1) Has your company’s EEO policy, affirmative action policy and grievance procedures been brought to the attention of the employees on this project?
 How? ____________________________ When? ____________________________

2) How many minorities have been employed on this project? ______
 How many are currently employed? ______

3) Is the minority employee-hour utilization of ____% per craft being met?
 Yes ___ No ____ (if no, explain)

4) How many females have been employed on this project? ______
 How many are currently employed? ______

5) Is the female employee-hour utilization of 6.9% per craft being met?
 Yes ___ No ____ (if no, explain)

6) List recruitment sources utilized to staff this project (Attach copies of documentation)

7) Are the materials listed below posted where the project personnel can review them?
 EEO Posters ______ EEO/Affirmative Action Policy ______
 Wage Schedule ______ Grievance Procedures ______ Union Notice ______

8) Has each job opening been listed with Connecticut State Job Service as required by Executive Order 17?
 Yes ___ No ____ (if no, explain)

9) Has the required number of the On-the-Job Training (OJT) hours been provided by you and/or your subcontractors?
 Yes ___ No ____ (if no, explain)
 N/A to the Contract ______

10) Have you discussed with your subcontractors their EEO/Affirmative Action contract obligations? Yes ___ No ____ (if no, explain)

11) Are your subcontractors being paid within 30 days after you receive payment?
 Yes ___ No ____ (if no, explain)

12) Have you and your subcontractors received Davis Bacon Apprentice Certification from the Department of Labor for apprentices working on this project?
 Yes ___ No ____ (if no, explain)

13) Has the applicable DBE goal or SBE set-aside been met and/or does it appear that it will be met?
 Yes ___ No ____ (if no, explain)
December 2, 2004

Jane Smith
Earth Construction Company
400 Main Street
Anytown, CT 06123

Dear Ms. Smith:

Subject: Project No(s). 123-3245
FAP No(s).
Description
Town
Project Site Record Review

This letter is being provided to assist you and your subcontractors in preparing the attached packages required for a “Construction Project Site Record Review”.

Each contract is required to have one (1) review annually and at the completion of the project. This review shall report on the Contractor’s activities, including all his subcontractors, from the beginning of the project. Succeeding reviews shall only report on activities performed since the last review.

The contract was awarded to you on October 15, 2002. Construction began on October 29, 2004 and was completed on November 23, 2004. This review will cover the period of October 2004 through November 2004.

Before a review can be performed, the following procedures and documents need to be completed:

1. The review will be held approximately four (4) weeks from the receipt of this letter. Please contact me at (860) 654-3210 to schedule the meeting.

2. The Contractor is responsible for filling out Packet “A”. These forms must be completed thoroughly and accurately. If you did not have any activity in a particular area, please write “no activity” on that form. A listing of recruitment sources utilized to staff the project should also be provided at the time of the meeting.
Jane Smith - 2 - Project No(s). 123-3245
Earth Construction Company December 2, 2004

Included in the Contractor’s Packet “A” are the following forms:

A. Employment Data: Report all hours worked by craftpersons during the specific reporting period. The “Minority Percent of Total Work Hours” must be calculated and the number of craftpersons needs to be entered in the “Total Employment” columns for all employees and minority employees.

B. The next three sheets pertain to:
 1. New Hires: A craftsperson working for a Contractor for the first time or craftsperson referred from a Union or Hiring Hall in response to a request by the Contractor.
 2. Rehires: A rehire is a craftsperson who worked for the Contractor the previous construction season and is recalled for work by the same Contractor when that same contract commences in the next construction season.
 3. Transfers: A transfer is a craftsperson who works for the Contractor and who moves from contract to contract working for the same Contractor.

Note: The total number of employees shown on the Employment Data sheet must equal the total number of employees shown on the above three sheets.

C. On-The-Job Trainees (OTJ): List the Trainee’s Name, Craft, Total Hours Completed, Hours to be Completed, Active/Inactive or Terminated and if the Training was completed.

D. DBE / SBE Participation: List all Subcontractors or Suppliers, DBE or SBE, Percent Contracted out, Subcontract or Agreement Value, Monies Paid to Date, and the total DBE/SBE percentage of the original contract completed to date. (Note – Only indicate the one program that applies: DBE on Fed. Participating or SBE on State only project.)

The Contractor must forward Packet “B” to all of their subcontractors performing work on the contract. The packet must be completed thoroughly and accurately. If no activity was performed during a particular time period, please write “no activity” on that form. The contractor should review the submittals for completeness and accuracy prior to submitting them to the District.
If you are unable to obtain a completed Packet “B” from a subcontractor, you must provide documentation at the meeting that efforts were made to obtain this information. It is advised that the subcontractor be notified that failure to fill out this package may result in the suspension of his Affirmative Action Plan and other actions.

The following forms are included in the Subcontractor’s Packet “B”:

1. Employment Data: See above Instruction 2A.

2. The next three sheets pertain to:
 B. Rehires: See above Instruction B2.
 C. Transfers: See above Instruction B3.

Packets “A” and “B” should be submitted to the District Office for review prior to the meeting. The Contractor will be asked to address all discrepancies. Any errors found on the Site Record Review forms are to be corrected and resubmitted to the District office within two (2) weeks. Failure to submit missing information will result in the package being forwarded to the Office of Construction with the recommendation that a full compliance review be performed.

Any questions regarding this Review or the procedures required should be directed to me at (860) 654-3210. Again, please call to arrange a meeting.

Sincerely,

Name
Title

Attachments: Packets “A” and “B”

Author/typist
bce: DE – ADE
TPE
TSE
Project Engineer
Chief Inspector/Resident
District EEO Coordinator
Upon completing the review, the EEO Coordinator will sign the Project Site Record Review Form and forward it to the Construction Division Chief for further processing. If packets are missing for subcontractors, documentation showing Contractor’s effort to obtain information is to be attached to the Project Site Record Review. The District should forward the Site Record Review, along with the accompanying packets and documentation, within 60 days of the review.

- Once all offices have signed off on the Project Site Record Review it will be returned to the District for the project records.

1-1204 DBE Goal or SBE Set-Aside Goal Contract Participation

Certain contracts include Disadvantaged Business Enterprise (DBE) or Small Business Enterprise (SBE) percentage requirements depending on the funding. The DBE program is a USDOT program and only applies on federally participating contracts. The SBE program is a State program and only applies to state funded contracts with no federal participation.

DBEs are certified by the CTDOT Certification Panel. The directory of DBEs is maintained by the Division of Contract Compliance and is available at: http://www.ct.gov/dot/dbe

SBEs are certified by CT DAS. The directory of SBEs is maintained by the CT DAS and is available at: http://www.das.state.ct.us/Purchase/New_PurchHome/busopp_template.asp?F_ID=25

Note: Both programs are referred to throughout the manual, but only one program applies to a contract (DBE on Fed. Participating or SBE on State only project). Project correspondence and meetings should only refer to the one applicable program to avoid confusion and possible conflicts.

The DBE goal or SBE set-aside requirements are a Contract provision and, therefore, fall under the jurisdiction of the District Engineer, who will ensure that they are met. If the prime Contractor does not fulfill the requirements of the applicable DBE or SBE provision, Contract payments can and will be reduced, in accordance with the Contract specifications.

The Contractor’s progress in meeting the DBE goal or SBE set-aside percentage requirements should be closely monitored by project personnel. It is essential that the Project Engineer and Inspector become familiar with the applicable DBE or SBE requirements that apply to the Contract, including the names of the subcontractors and the Contract items originally declared at the time of the pre-award of the Contract. Any deviation must immediately be brought to the attention of the Assistant District Engineer, who consults with the Construction Division Chief. A determination is made to see if the Contractor’s actions are acceptable. If they are not, the Assistant District Engineer will require the prime Contractor to provide an explanation.

DBE firms must perform their assigned work independently. If a DBE performs work on a project and uses another firm’s labor, equipment or supervisory personnel without the approval of the Department, the Inspector must notify the Project Engineer and the EEO Coordinator immediately. The District should then take action to assure that the questionable practice is stopped. The DBE specification indicates that work performed by other than the designated DBE, without the concurrence of the Office of Construction, will not be paid.

SBE firms must perform at least 15 percent of the work they were designated and approved to do with their own workforce and not sublet with any person whom they are affiliated.
To ensure that the Contractor complies with the Contract provisions in this area, the following procedures are to be used:

- The details of the applicable DBE or SBE Program are to be thoroughly discussed at the preconstruction meeting.

- Field staff will make sure that the DBEs or SBEs designated in the pre-award DBE or SBE Participation Approval Request are used for the items of work they were proposed to do or that the Contractor requests and receives written approval from the Office of Construction to change their plan to meet the specified goal requirement.

- Any perceived deviation from the pre-award plan will be brought to the attention the EEO Coordinator and the Project Engineer who will investigate and determine action to take.

- If an unapproved change in the pre-award plan has occurred the Contractor will be notified in writing of the Contract requirement to submit documentation to the Office of Construction to substantiate and justify the change.

- Each project will maintain DBE or SBE records that can be used to monitor goal or set-aside compliance for the project and verify report information. These records will be kept in a project folder.

- The documents submitted by the Contractor will be reviewed by the Chief Inspector, Project Engineer, and District EEO Coordinator.

- Field staff will review the progress of the Contractor in achieving the goal requirement and remind the Contractor of their obligation to make good faith effort to achieve the goal. The Contractor must continually make efforts to meet the specified goal by allowing and encouraging DBEs or SBEs to compete for subcontract work.

1-1205 DBE and SBE Reports

1-1205A Quarterly Contractor Reports

Each quarter the Contractor is required to submit a report to the District indicating the work done by and the dollars paid to DBEs or SBEs, depending on which program applies, for the current quarter and total to date (Figure 1-12.10). These reports allow the Department to monitor the Contractor’s progress in achieving the specified DBE goal or SBE set-aside goal.

The District distributes these reports to the District EEO Coordinator and project office.

The EEO Coordinator will compile the data from these reports for all projects in the District. An Excel file is available for completing the report. Submit the completed form electronically to the designated individuals in the Division of Contract Compliance and Office of Construction.

The project will review these reports and keep them with the DBE or SBE records. Any discrepancies in the reports must be reviewed and resolved as expeditiously as possible. All indications of Contract shortfalls should be reviewed with the Contractor and they should promptly resolve the issue.
1-1205B Quarterly Consultant Reports and Subconsultant Payment Log

Each District prepares a quarterly report that details expenditures approved to date for DBE or SBE consultant work. Submit the completed form electronically to the designated individuals in the Division of Contract Compliance and Office of Construction. (Figure 1-12.11).
Consultants are required to complete and submit the Subconsultant Payment Log for all subconsultants (Figure 1-12.12). This requirement typically appears in agreements subsequent to January 2003.

Figure 1-12.12 Subconsultant Payment Log

<table>
<thead>
<tr>
<th>Prime Consultant</th>
<th>Consultant Project No.</th>
<th>Federal Aid Project No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Person:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telephone:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subconsultant:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-12.12 (Continued) Subconsultant Payment Log

Prime consultant to complete one Subconsultant Payment Log for each subconsultant assigned to the project per calendar year.

The log will be submitted quarterly (January, April, July and October) to the ConnDOT Project Engineer. Each subsequent quarter, the form will be updated and submitted as indicated below.

Prior to submission to ConnDOT, the log will be signed by the prime consultant and forwarded to the subconsultant for review.

The subconsultant will sign and date the form indicating the date they received the form from the prime and then return the form to the prime.

The log must be kept on file by the administering ConnDOT unit (i.e.: Consultant Design, Construction, etc.) by the 15th of the respective month. The log should include both the prime and subconsultant signatures for that quarter.

The prime consultant's portion of the payment log must be completed and up to date through the quarter that is being submitted.

The subconsultant portion should also be completed and up to date for the current quarter, however it will be acceptable to be no more than one quarter behind.

If there are any comments or conflicts between the information provided from the prime and subconsultant, fill in the remarks column. If extra space is required, the information should be included on an additional piece of paper and be attached to the log.
1-1205C Final DBE / SBE Reports

A Final DBE or SBE Participating Report, Form 88-1, (Figure 1-12.13), showing the applicable Contract DBE goal or SBE set-aside accomplishments, is prepared by the EEO Coordinator. This report needs to be prepared for all Contracts, including consultant agreements, whether a goal was established or not.

The report is sent to the Construction Division Chief, where the information is compiled for inclusion in reports on Contract goal achievements. Only DBE or SBE firms that appeared in the Preaward should be shown in the Preaward column.

Figure 1-12.13 Final DBE or SBE Participating Report

<table>
<thead>
<tr>
<th>FINAL DBE or SBE PARTICIPATING REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FORM 88-1, Rev. Date 2/03)</td>
</tr>
<tr>
<td>Contract No. 123-3456 FAP No. STTP(2)-23</td>
</tr>
<tr>
<td>Prime Contractor: Earth Construction Company</td>
</tr>
<tr>
<td>Completion Date: September 13, 2004</td>
</tr>
<tr>
<td>Original Contract Value: $889,361.00</td>
</tr>
<tr>
<td>Final Contract Value: $964,356.33</td>
</tr>
<tr>
<td>Specified Goal: 7% Type DBE X SBE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>List of DBE or SBE Firms Approved to Work on Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Firm</td>
</tr>
<tr>
<td>Guardrail, Inc.</td>
</tr>
<tr>
<td>Santoro, Inc.</td>
</tr>
<tr>
<td>Warning Lights & Scaffolding Service, Inc.</td>
</tr>
<tr>
<td>Totals</td>
</tr>
<tr>
<td>Percent of Original Contract Value</td>
</tr>
<tr>
<td>Percent of Final Contract Value</td>
</tr>
</tbody>
</table>

Note: Only one program applies. DBE on Fed. Participating Projects and SBE on State only Projects.
1-1206 DBE or SBE Fulfillment and Shortfall Procedure

The following procedure must be used to verify the Contractor’s fulfillment of a contract goal or set-aside requirement as well as the method to follow if a shortfall occurs and to handle Good Faith Effort documentation:

1) When the contract has been completed, a letter is forwarded to the Contractor requesting documentation to substantiate payment to DBE or SBE for work performed by them on the Contract. Figure 1-12.14 is a sample letter to be used and Figure 1-12.15 is a form letter to be used by the Contractor to verify the amounts paid to the DBE (SBE). If the Contractor cannot obtain the payment verification signed by the DBE (SBE), then the Contractor may provide copies of cancelled checks. If the Contractor does not provide the information within 60 days, then the District will send a second letter referencing the first letter and advising them that if the documentation is not furnished within 30 days, then reduction in contract payments will be made and the project will be closed out.

2) When the packet of DBE (SBE) verification documents is received from the Contractor, they are to be reviewed by the District. If the payment verification documents equal or exceed the specified contract goal, the District will complete the Form 88-1. If the review shows that there is a shortfall, the District will send a letter to the Contractor advising him of the shortfall with the dollar amount that may be withheld if he doesn’t provide acceptable written justification of a Good Faith Effort with backup documentation.

If it is apparent that there may be a shortfall prior to sending the payment substantiation letter (Figure 1-12.14), then the request for the Contractor to provide acceptable written justification of a Good Faith Effort with backup documentation may be included in the payment substantiation letter.

Documentation is to include, but not be limited to the following:

a) A detailed statement of the efforts made to select additional subcontracting opportunities to be performed by DBEs (SBEs) in order to increase the likelihood of achieving the stated goal and the reasons, if any, why DBE (SBE) subcontracting opportunities were not available.

b) A detailed statement, including documentation of the efforts made to contact and solicit bids with certified DBEs (SBEs), including the names, addresses, dates and telephone numbers of each DBE (SBE) contacted, and a description of the information provided to each DBE (SBE) regarding the scope of services and anticipated time schedule of work items proposed to be subcontracted and nature of response from firms contacted.

c) Provide a detailed statement for each DBE (SBE) that submitted a subcontract proposal, which the Contractor considered not to be acceptable stating the reasons for this conclusion.

d) Provide documents to support contacts made with the CONNDOT (for DBE program) and DAS (for SBE program) requesting assistance in satisfying the Contract specified goal.

e) In cases where the contract value increased above the original bid amount, the Contractor shall provide documentation of its efforts to increase DBE (SBE) participation as a result of each construction order issued that increased the contract value. The documentation shall include documentation of work remaining when the construction order was issued, efforts made to select additional subcontracting opportunities, reasons additional opportunities were not available, etc.

f) Provide documentation of all other efforts undertaken by the Contractor to meet the defined goal.

3) When the District receives the Contractor’s Good Faith Effort documentation, they will review the packet and prepare a memorandum transmitting the Good Faith Effort packet to the Construction Division Chief, with a complete copy to the Director of Contract Compliance. The memorandum should include the District’s review comments, the Form 88-1, the Contractor’s Good Faith Effort package and any related correspondence. The District’s review comments will include comments on each of the documents (both those included and requested), indicating whether they are confirming or disagreeing with the submitted information, and why, or
why not a document does not apply and/or was not included. The District SHOULD NOT make any recommendations.

4) Once the Office of Construction and the Office of Contract Compliance have reviewed the information furnished, a determination will be made of what Good Faith Effort was done by the Contractor and what, if any, reduction in payment will be imposed. The Office of Construction will notify the District of the findings by memorandum.

Note: The same procedure must be followed for Consultant agreements with DBE (SBE) goal requirements.

Figure 1-12.14 Sample Letter to Contractor Requesting Documentation to Substantiate DBE Payments

In accordance with the contract documents, “not less than %” shall be performed by and paid to the DBE’s (SBE’s).

Please submit to this office, documents to substantiate your total and final payment to your DBE’s (SBE’s) for the work performed by them on this contract.

Enclosed for your information is a form letter that can be duplicated on your letterhead that is acceptable to this Department, which you may use to substantiate your DBE (SBE) requirements.

Very truly yours,

Assistant District Engineer Construction
Bureau of Engineering and Highway Operations

writer:

cc: Supervising Engineer
 Project Engineer
 Final Section
 EEO Officer

(Amendment A)
1-1207 On-the-Job Training

The requirement for the Contractor to provide On-the-Job Training (OJT) aimed at developing individuals to full journeymen in the type of trade involved may be included in larger federally funded contracts. The Division of Contract Compliance is responsible for the administration of the On-the-Job Training Program.

On unit-price Contracts, a bid item for training is included if training is required. Lump-sum Contracts, such as those used for vertical construction projects, may not have a separate line item for training, even though a training requirement is included in the special provisions. In these cases, the prime Contractor must be instructed to include the item “Training” in the submission of the original Schedule of Values.
1-1207A Contractor Preconstruction Requirements

When a project has a trainee requirement in the Contract, the District, at or prior to the preconstruction meeting, will require the Contractor to provide the District and the Division of Contract Compliance with:

- A letter describing the classifications in which the Contractor intends to provide training and the number of trainees in each classification.

- If applicable, a written explanation to document anticipated problems in satisfying the training requirement of the Contract, for consideration by the Contract Compliance OJT Coordinator or the OJT Supportive Services consultant.

The District reviews trainee requirements with the Contractor as part of the EEO portion of the preconstruction meeting. Comments on the trainee requirements are included in the preconstruction meeting report.

The Contractor is required to submit their proposed training program, proposed trainees/apprentices, and monthly summaries to both the Division of Contract Compliance and the District EEO Coordinator.

The Division of Contract Compliance reviews the information from the Contractor. If the Contractor’s proposed training program is approved, a letter stating the approval is furnished to the Contractor, with a copy to the Assistant District Engineer and the District EEO Coordinator. The letter includes the approved training classifications, the number of trainees in each classification, and the number of required hours of training. The EEO Coordinator logs this information and forwards the letter to the project for inclusion in the project records.

When submitting a Trainee or Apprentice for consideration under the Training Item, the Contractor includes the following information to both Division of Contract Compliance and the District EEO Coordinator:

- Completed Trainee Approval Form, Form 1415 (Figure 1-12.16), clearly indicating the proposed trade and number of hours to be trained.
- Copy of I-9.
- Copy of Driver's License, or other photo ID.
- If apprentice, copy of apprentice participation/registration.

The Division of Contract Compliance reviews and approves the training candidates. If the Contractor’s proposed training candidate is approved, a letter stating the approval is furnished to the Contractor, with a copy to the Assistant District Engineer and the District EEO Coordinator. The letter includes the approved training classification and the number of required hours of training. The EEO Coordinator logs this information and forwards the letter to the project for inclusion in the project records. This triggers the monitoring of the approved trainee at the District and project levels.
Figure 1-12.16 Trainee Approval Form (Form 1415)

CONNECTICUT DEPARTMENT OF TRANSPORTATION
ON-THE-JOB TRAINING – TRAINEE APPROVAL REQUEST
Form 1415 (Rev. Jan.2007)

Instructions: To be completed by the Contractor and submitted to both the Division of Contract Compliance and the District EEO Coordinator. Include the required attachments.

Prime Contractor: ____________________________ Date: ______________
Contract No.: ______________________________ Phone No.: ____________

PROPOSED TRAINEE INFORMATION

1. Training Candidate: ____________________________ Sex: ☐ Male / ☐ Female
 Address: ____________________________________ Program Hours: ______
 Phone No.: ________________________________

2. Social Security Number: _______________________

3. Ethnic Background:
 ☐ American Indian, ☐ Asian, ☐ Black, ☐ Hispanic, ☐ Portuguese, ☐ White, ☐ Other.

4. Training Classification: _________________________

5. Employed by ☐ Prime Contractor / ☐ Subcontractor: __________________________

6. Proposed Utilization as: ☐ Trainee / ☐ Apprentice (select one)
 If an apprentice, indicate the Apprenticeship Program:
 a) Union Local: ____________________________
 b) Apprentice Coordinator: __________________

6. Prior Training on ConnDOT Project: ☐ Yes / ☐ No
 If yes, list project(s): ____________________________

7. If non-minority male, describe efforts made to select a minority or female:

Required Attachments:
• Copy of I-9.
• Copy of Drivers License, or other photo ID.
• If apprentice, copy of apprentice participation/registration.
• Clearly indicate the proposed trade and number of hours to be trained.

Information provided by: ____________________________ Title: ______________
Information taken by: ______________________________ Date: ______________

Division of Contract Compliance Approval: ______________ Date: ___________
I-1207B Trainee Monitoring

The following procedure is used to monitor and document trainees on projects that have a training requirement:

- When the project records are set up, a Training Summary, shown in Figure 1-12.17, is made out for each proposed trainee and incorporated in the project records in the Volume III.

- When the trainee is approved, as indicated on Form 1415, information should be added to the Training Summary as required.

- All pertinent information (approval letter, Form 1415, Form 1409, training outline, etc.) should be attached to the Training Summary for each trainee.

- When the trainee starts, the starting date is entered on the Training Summary. The Inspector in charge of the operation on which the trainee is working must note on the DWR the name of the trainee and the work force involved (laborers, carpenters, etc.), and the Inspector must list what the trainee is doing daily.

- A Monthly Training Report (Form 1409) is prepared for each trainee by the Contractor and is sent to both the District EEO Coordinator and the Division of Contract Compliance or designated representative each month. The Monthly Training Report, Form 1409, is shown in Figures 1-12.18a and 1-12.18b. The District EEO Coordinator logs the report and forwards it to the project for inclusion in the project training records. When an apprentice is being utilized as the trainee, the contractor has the option of substituting a signed copy of the DOL Apprentice Handbook and Progress Record for the Form 1409 (Figure 1-12.19a-d).

- Project personnel review the Form 1409, check the hours worked against the DWRs and the Contractor’s payrolls to verify the hours claimed and the work performed. The District should be informed of any problems, so that the Contractor can be notified of discrepancies.

- After the information on the Form 1409 has been verified, the hours are entered on the Trainee Summary and filed as backup documentation.

- No payment is made to the Contractor under the trainee item until the training program is complete. When completed, the District will furnish the Division of Contract Compliance or designated representative with a copy of the Training Summary (Figure 1-12.17) for each trainee for its review.

- The Division of Contract Compliance or designated representative jointly reviews the District’s Summary of Trainee Program and advises the District via memorandum of their recommendations for payment. A sample memo is shown in Figure 1-12.20.

- The District, upon receiving the recommendations, reviews them and pays the Contractor accordingly.

The Project Engineer or Chief Inspector periodically reviews the status of training with the District EEO Coordinator to ensure that the Contractor is complying with the Contract provisions.
Figure 1-12.17 Training Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>Classification</th>
<th>Date Approved</th>
<th>Date Started</th>
<th>Date Completed</th>
<th>Hours Required</th>
<th>Hours Completed</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-12.18a Monthly Training Report (Form 1409 – Front)

CONNECTICUT DEPARTMENT OF TRANSPORTATION

ON-THE-JOB TRAINING – MONTHLY REPORT

Form 1409 (Rev. Jan 2007)

INSTRUCTIONS: This report consists of two sides. It is to be completed by the Contractor or Subcontractor providing the training and is to be signed and dated by (1) the Contractor’s EEO Officer; (2) the Contractor representative who provided the training during the reporting period and (3) the individual that received the training during the reporting period. The completed 1409 is to be submitted by the 15th day of the month after the end of the reporting period, as follows: the original copy of the report is to be submitted to the Division of Contract Compliance, and a copy to the respective Department Unit or District Office that is in charge of the Contract. Incomplete reports will be returned for completion.

<table>
<thead>
<tr>
<th>Contractor:</th>
<th>Address:</th>
<th>Contract:</th>
<th>Person Training Trainee or Apprentice:</th>
<th>Subcontractor Providing Training:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trainee or Apprentice:</th>
<th>Address:</th>
<th>Federal #:</th>
<th>No. of hrs. in Approved Training Program:</th>
<th>ADDRESS:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training Classification:</th>
<th>Social Security #:</th>
<th>Appointment:</th>
<th>Trainee:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age:</th>
<th>Start Date of the Project:</th>
<th>Start Date of CMT on this Project:</th>
<th>New Hire</th>
<th>Upgrade</th>
<th>Union Local</th>
<th>Permit Carrying:</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender:</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnic Group Background:</th>
<th>Black</th>
<th>Asian</th>
<th>American Indian</th>
<th>Hispanic</th>
<th>Portuguese</th>
<th>White</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS: One vertical column is to be completed for each month. Start with the first month of training and complete each subsequent month.

<table>
<thead>
<tr>
<th>Hours of Training Date</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training Hours Provided During the Month on Project:</th>
<th>Training Hours Provided to Date on Project:</th>
<th>Training Hours Remaining to Complete Approved Program:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1-12.19a CT DOL Apprentice Handbook and Progress Record Sample

<table>
<thead>
<tr>
<th>Name</th>
<th>Jane J. Smith</th>
<th>Trade</th>
<th>Electrician, E-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor</td>
<td>Date Electric Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full term of apprenticeship (months)</td>
<td>0900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours awarded for previous experience</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Previous on-the-job record

<table>
<thead>
<tr>
<th>Employer</th>
<th>From</th>
<th>To</th>
<th>Hours</th>
</tr>
</thead>
</table>

Previous technical training record

<table>
<thead>
<tr>
<th>Name of School</th>
<th>From</th>
<th>To</th>
<th>Hours</th>
</tr>
</thead>
</table>

Apprenticeship started on 8/12/2003

Related classroom instruction started on 9/10/2003

To the Apprentice:

This monthly log is for the purpose of keeping a daily record of your shop and your related classroom instruction. It is to be used in conjunction with your work schedule. At the close of each day’s work, you should enter under the operation column, the number of hours worked on each operation. At the end of each month, your supervisor should grade your progress and have it recorded on a permanent record.

This journal is for a period of one month.

Please contact the Connecticut Department of Labor, Office of Apprenticeship Training at 860-525-6605 if you have any questions or email cta@ctdol.state.ct.us.

Figure 1-12.19b Monthly Training Report (Form 1409 – Back)

<table>
<thead>
<tr>
<th>Area of Concern</th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Problem Area</th>
<th>Probable</th>
<th>Possible</th>
<th>Contributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance in Skill Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punctuality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attendance Record</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation of Safety Rules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hygiene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attendance to Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diligence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to Work with Trainer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date of Training:

<table>
<thead>
<tr>
<th>Anticipated</th>
<th>Recalled</th>
<th>Completed</th>
</tr>
</thead>
</table>

Name of individual providing training this month:

<table>
<thead>
<tr>
<th>Job Title</th>
<th>Date Trainee Received Copy of Training Program</th>
</tr>
</thead>
</table>

Training Activity Conducted:

Date Trained Conducted	Date Training Provided	Total hours Provided	Total Hours Provided to Date	Hrs. Remaining

In conjunction with the approved training programs for the training identified above, the designated trainer completed the following training for the month of

20

Contractor Representative / Trainer / Signature

Date

Contractor DOL Office / Signature

Date

I certify that during the month indicated above, I was provided the training listed under "Training Activity Conducted" and that

(Insert Trainer’s Name)

provided the training as indicated above. I have also received a copy of this month’s training report.

Trainer / Signature

Date

CDOT - Reviewed by:

CDOT Project Inspector / Date

Division of Contract Compliance / Date

1-12.31
Figure 1-12.19b CT DOL Apprentice Handbook and Progress Record Sample

TRADE: Electrician, E-2

<table>
<thead>
<tr>
<th>CODE</th>
<th>OBTAINED FROM WORK TRAINING SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Orientation and Safety</td>
</tr>
<tr>
<td>B</td>
<td>Tools-Equipment-Safety</td>
</tr>
<tr>
<td>C</td>
<td>Residential Wiring- installation,maintenance,repair</td>
</tr>
<tr>
<td>D</td>
<td>Commercial Wiring- installation,maintenance,repair</td>
</tr>
<tr>
<td>E</td>
<td>Industrial Wiring- installation,maintenance,repair</td>
</tr>
<tr>
<td>F</td>
<td>Low Voltage Wiring- installation,maintenance,repair</td>
</tr>
<tr>
<td>G</td>
<td>Cable Installation- installation,maintenance,repair</td>
</tr>
<tr>
<td>H</td>
<td>Basic Knowledge-associated trades</td>
</tr>
<tr>
<td>I</td>
<td>Related Instruction</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-12.19c CT DOL Apprentice Handbook and Progress Record Sample

<table>
<thead>
<tr>
<th>Month</th>
<th>Year 2003</th>
<th>HOURS WORKED ON EACH TYPE OF OPERATION (Refer to Code Explanations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>E=Excellent</th>
<th>G=Good</th>
<th>F=Fair</th>
<th>U=Unsatisfactory</th>
<th>OFF GRADE THIS MONTH</th>
<th>SUPERVISOR'S SIGNATURE</th>
</tr>
</thead>
</table>

12.32
Figure 1-12.19d CT DOL Apprentice Handbook and Progress Record Sample

ELECTRICIAN (F-2) 024.261.010

Work Schedule

The following schedule of work experience is intended as a guide. It need not be followed in any particular sequence, and it is understood that some adjustments may be necessary in the hours allotted to different work experiences. In all cases, the Apprentice is to receive sufficient experience to become fully competent and have good scholarship in all work processes which comprise the trade. It should be noted that please note that Connecticut Construction Licensing Regulations require a minimum number of 2,512 hours of experience if not specified.

A. ORIENTATION AND SAFETY: (500 HOURS)
B. TOOLS, EQUIPMENT, INSTRUMENTS: (500 HOURS)
C. RESIDENTIAL WIRING: INSTALLATION, MAINTENANCE, REPAIR: (1,050 HOURS)
D. COMMERCIAL WIRING: INSTALLATION, MAINTENANCE, REPAIR: (1,050 HOURS)
E. INDUSTRIAL WIRING: INSTALLATION, MAINTENANCE, REPAIR: (210 HOURS)
F. LOW VOLTAGE WIRING: INSTALLATION, MAINTENANCE, REPAIR: (300 HOURS)
G. CABLE INSTALLATION/SPlicing: INSTALLATION, MAINTENANCE, REPAIR: (500 HOURS)
H. BASIC KNOWLEDGE/ASSOCIATED TRADES: (300 HOURS)

TOTAL = 3,050 HOURS
I. RELATED INSTRUCTION: (120 HOURS)
Minimum C.T. Years = 4

WIRE SCHEDULE

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-1,000</td>
</tr>
<tr>
<td>1,001-1,500</td>
</tr>
<tr>
<td>1,501-2,000</td>
</tr>
<tr>
<td>2,001-2,500</td>
</tr>
<tr>
<td>2,501-3,000</td>
</tr>
<tr>
<td>3,001-3,500</td>
</tr>
<tr>
<td>3,501-4,000</td>
</tr>
<tr>
<td>4,001-4,500</td>
</tr>
<tr>
<td>4,501-5,000</td>
</tr>
<tr>
<td>5,001-5,500</td>
</tr>
<tr>
<td>5,501-6,000</td>
</tr>
<tr>
<td>6,001-6,500</td>
</tr>
<tr>
<td>6,501-7,000</td>
</tr>
<tr>
<td>7,001-7,500</td>
</tr>
<tr>
<td>Journeymen's Rate</td>
</tr>
</tbody>
</table>

Figure 1-12.20 Sample Training Payment Recommendation Memorandum

STATE OF CONNECTICUT

DEPARTMENT OF TRANSPORTATION

memorandum

subject: Project No: [Redacted]
OFF Final

date: December 7, 2004

to: Asst. District Engineer
Bureau of Engineering and Highway Operations

from: Division of Contract Compliance

The training data on the above referenced project has been jointly reviewed by Harold Sippola and myself. The original estimate was for eight trainees on this project. The following summarizes the training provided:

<table>
<thead>
<tr>
<th>Trainee</th>
<th>Training Classification</th>
<th>Approval Date</th>
<th>Compl. Date</th>
<th>Required Hours</th>
<th>Compl. Hours</th>
<th>Recommended Hours for Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operator</td>
<td>Sep-02</td>
<td>Oct-03</td>
<td>1040</td>
<td>1040</td>
<td>1040</td>
</tr>
<tr>
<td>2</td>
<td>Laborer</td>
<td>Sep-02</td>
<td>Dec-02</td>
<td>520</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td>3</td>
<td>Laborer</td>
<td>Sep-02</td>
<td>Jan-03</td>
<td>520</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td>4</td>
<td>Laborer</td>
<td>Sep-02</td>
<td>Feb-03</td>
<td>520</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td>5</td>
<td>Laborer</td>
<td>Sep-02</td>
<td>Mar-03</td>
<td>520</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td>6</td>
<td>Carpenter</td>
<td>Aug-03</td>
<td>Apr-04</td>
<td>1040</td>
<td>1040</td>
<td>1040</td>
</tr>
<tr>
<td>7</td>
<td>Laborer</td>
<td>Aug-03</td>
<td>Nov-03</td>
<td>520</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td>8</td>
<td>Laborer</td>
<td>Aug-03</td>
<td>Oct-03</td>
<td>520</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td>9</td>
<td>Laborer</td>
<td>Oct-03</td>
<td>Mar-04</td>
<td>520</td>
<td>520</td>
<td>520</td>
</tr>
</tbody>
</table>

Total = 5,200.00 hrs

Based on this information, the number of hours recommended above should be paid under the training item at the specified rate of $4.80 per hour. (Redacted) has completed this item.

A change order should be processed, changing the On-the-Job Training Item from 6 EA at $800.00 EA to 5,200 hrs at $4.80/hr.

cc: Division of Contract Compliance
Project Engineer – Chief Inspector
District EEO Representative
1-1208 Freedom of Information

Please note that several documents that our units typically handle (ex. certified payrolls and training records) include social security numbers.

Social security numbers are protected information. Documents containing social security numbers may not be reviewed or copied without the social security numbers being redacted.

In order to allow someone to review these documents we need to make copies of the payrolls or affected document to redact the social security numbers. A typical response to a FOI request to review documents that include information that must be redacted first is:

“This letter confirms receipt of your Freedom of Information Act (FOIA) Request dated XXXX YY, ZZZZ.

You have requested to review the following documents:
1) Contractor and sub-contractor certified payrolls.
2) Wage and rate information.

Please note that the requested payrolls listed in Item No. 1 above contain social security numbers. In order to allow you to review these documents we need to make copies of the payrolls to redact the social security numbers. Because of this process we will charge you $0.25 per page for the payrolls and will provide you with the copies. Prior to making copies, you will be provided with a page count and the corresponding cost. Upon receipt of payment, we will make the copies.

You will be contacted shortly by a District representative to set up a meeting to review the other requested documents.

In the interim, if you have any questions about this issue, please feel free to contact me.”

Charges up to $0.25 per page for copies may be made in accordance with Public Act 94-112. Payment for copies should be made by check to the Treasurer, State of Connecticut.
Chapter 13 - Utility Coordination and Administration

1-1300 General

This section defines the District’s role and responsibility as it relates to utility work, including Railroad, being performed on a construction project. The responsibilities of the District are described for the Design Phase, the Preconstruction Phase, and during the construction of the project. The roles of the Utility Section and the Financial Management Office are also defined for the change-in-scope/cost overrun process. Further information is also contained in the policy and procedure manual entitled “Public Service Facility Policy and Procedures for Highways in Connecticut” issued by the Department’s Utility Section.

1-1301 Design Phase

During design development, the District shall assign a Project Engineer to each project. The Project Engineer should attend the Utility Design meetings and become familiar with the work and utilities involved. The Project Engineer will also conduct plan reviews and field visits to assist the Utilities Section and the Office of Design in developing the scope of the utility relocation work and staging for the project. A general schedule for the relocation of work, an estimated cost breakdown and utility relocation plan sheets must be prepared by the Utility. The Project Engineer should assist the other units so that all issues are addressed through the plan review process prior to the contract being advertised.

1-1302 Preconstruction Phase

The Utility Company will be notified by the Department to order materials after the start of construction. On all projects before the utility can begin its field work, the State’s construction contract must have been awarded and a Construction Project Authorization Letter (PAL) or an Agreement with a valid purchase order has been received from the Engineering Administrator. The Order to Start Letter will be issued by the District Engineer.

Under certain circumstances a utility can start relocation work prior to the award of the State’s contract. In these situations the Federal Highway Administration will allow a utility breakout project to be initiated in advance of the construction project. Utility relocation work may also be undertaken as part of the Right of Way activities for the project. If early utility work is authorized, the District will hold a Utility preconstruction meeting and have weekly coordination meetings.

It is the Chief Inspector’s responsibility to obtain utility agreements, plans, specifications and the estimates for the utility work from the Project Engineer/District Utility Coordinator/Office of Rail and the Utility Section. These documents should be obtained and reviewed by the Chief Inspector so that they are familiar with the information contained in the documents prior to the utility coordination meetings and/or preconstruction meetings.

At the Utility preconstruction meeting, the Chief Inspector should obtain the name, title and telephone number of the person(s) responsible for each utility’s daily work and contact information for that person’s supervisor, as backup. At all preconstruction meetings the District shall review and discuss the following:

- District Contacts
- Planned Scope of Work
- Survey
- Problems and Concerns
- Maintenance and Protection of Traffic
- Schedules
- Administration of Agreements
1-1303 Construction Phase

1-1303A Utility Coordination

The Project Engineer shall ensure that there is regular communication and coordination among the utility representatives, Chief Inspector and the prime contractor’s representative relative to work schedules (starting-completing, etc.), sequencing of the work, and traffic control.

A separate discussion will be introduced at all project progress meetings regarding project utility work. The discussion will include the following topics for each utility. Minutes of the meeting will be prepared and copies distributed to all those in attendance.

- Current status of the utility work.
- Each utility company’s estimate of percent complete
- Problems or delays in accomplishing the work.
- Current budget status as reported by the utility.
- Anticipated completion date.
- Anticipated changes to the utility plans.
- Anticipated change in scope and the reasoning.
- Anticipated cost overruns as reported by each utility.
- Status of submission on CON 40 and CON 41 reports.
- Status of Railroad Force Account Reports.

These items and pertinent discussions will be part of the report of meeting. The appropriate Utility Section Engineer should be invited to all progress meetings where significant utility issues are expected to be discussed. Distribution of meeting minutes will include the Principal Engineer-Utilities Section and the Financial Management and Support Unit.

All requests by the utilities to work scheduled overtime must be submitted to the District Engineer prior to performing the work. If approved, a copy of the approval letter sent to the utilities should be forwarded to the Financial Management and Support Unit and the Utilities Section.

Should the project experience delays in having the utility or utilities perform required work or if the utility company fails to attend the progress meetings, the Project Engineer should elevate this issue to the District and the Utility Section Engineer for their intercession in the matter.

1-1303B Inspection and Record Keeping

The Chief Inspector should require that the utility check-in at the start of each workday, providing the work force, major equipment, location, nature of work, and anticipated end of workday.

The inspector should record on their inspection report the classes of utility labor and equipment that are present on the project site and how many hours were worked as well as the nature and location of the work.

It is the District’s responsibility to ensure proper inspection coverage involving utility work during regular work hours. If a utility company schedules construction activity outside the regular work hours of the inspection team, overtime may be necessary. Generally, utility work is considered non-essential inspection. Exceptions to this rule may be allowed for critical work or when there is major impact to traffic or railroad operations. The approval process outlined in the Office of Construction overtime policy should be followed if additional inspection oversight seems warranted.
An essential part of the monitoring of reimbursable utility work is the detailed record keeping and description of the utility work performed each day. The work performed by each utility is to be recorded on the inspector’s daily report form. This documentation should include the following:

- Name of utility company performing the work – also list utility’s subcontractor – if applicable.
- Type of work being performed.
- List of work locations by stations. If the work includes overhead utility, pole numbers are also required; railroad catenary structures should be noted.
- List labor, equipment, and major materials involved such as poles, conductors, ducts manholes, pipes, valves, etc.

1-13.3C Review and signature of CON 40s, CON 41s and Railroad Force Account Reports

The CON 40 (or an approved equivalent including Railroad Force Account Reports), shall be prepared by the utility to report the daily labor, equipment, and materials (permanently) installed for review by the inspector.

A separate CON 40 shall be furnished for each utility company and each of its subcontractors, if applicable. The Inspector should be proactive to ensure that CON 40’s are submitted in a timely manner. It should be an issue discussed at coordination and progress meetings and requested in writing if necessary.

The heading of the CON 40 must be filled out completely and accurately. Each CON 40 must include:

- The utility name
- The percentage complete
- The utility subcontractor (if applicable)
- Date(s) of the work
- The State project number (Federal No. – if applicable)

The sections of the CON 40 are filled out as follows:

- Labor

 All labor by the utility or its representative, including inspection, engineering, supervision, traffic control, equipment operators must be included on the CON 40.

 Labor must be shown by classification of employee(s), number of employees, and total hours of work.

 All overtime must be segregated from regular time and shall be clearly indicated as “O.T.” Overtime must also be authorized by the District Engineer by letter.

- Equipment

 Equipment must be listed by type, manufacturer, model, equipment # if available, size or capacity, with total number of units.

 The total number of hours must be reported the same way as for labor. Equipment operators shall be listed under labor and not equipment.

- Materials

 All major and minor materials installed for permanent use shall be recorded on the CON 40.

The CON 41 shall be used to report all temporary material installed as well as temporary and existing material removed. This report is prepared and submitted by the utility. Information reported on the CON 41 form
determines depreciation and salvage credit on permanent material as well as credits for temporary material removed. The CON 41 is used to determine credits that are due the State.

The inspector shall compare the CON 41, indicating temporary materials removed, to the previous CON 40 and/or CON 41, which lists temporary material charged to the project. The correct reporting of temporary materials used is important because the State receives at least 90% credit for materials returned to stores or for temporary materials installed that the utility company chooses to retain as their permanent facility.

The CON 41 must be filled out completely and accurately. Each CON 41 must include:

- The utility name.
- Dates of work.
- The State Project Number (Federal No. – if applicable).
- The temporary material installed and/or materials removed.
- The disposition of removed material, i.e. Junked, scrapped or material returned to stores.

It is the Chief Inspector’s responsibility to verify that the work was actually performed by comparing the daily inspection report against the CON 40 and CON 41. The Chief Inspector should only sign in the DOT signature box if they agree that the information in the CON 40 appears reasonable and appropriate. The Project Engineer must initial any CON 40’s noting minor overtime that they authorized. Project Engineers may authorize overtime work in advance of the District Engineer’s approval letter when necessary to eliminate a hazard or to avoid an additional shift.

At times, some utility work may be non-participating. The Chief Inspector should be familiar with the utility agreements and ensure that on Federal Aid Projects that all non-participating work is segregated on the CON 40 and clearly identified as non-participating.

If a CON 40 or CON 41 does not appear reasonable and appropriate, the Chief Inspector should attempt to resolve the discrepancies with the utility representative. If the discrepancies can not be resolved, the Chief Inspector shall include an explanation as to why the CON 40 or CON 41 should not be signed.

The Utility Company will furnish three copies of the CON 40/41 to the Inspector. After the Inspector has signed all three copies of the CON 40/41 one copy shall be given to the Utility Company representative, one copy shall be retained for the project records and the original shall be forwarded to the District Utility Coordinator for processing and transmittal to the Financial Management and Support unit. If the project field office has access to a copier or scanner, the Utility Company need only present a single copy of the CON 40/41 for signature with copies distributed as described above.

Review of Railroad Force Account Reports. The Inspector shall follow the same review procedures listed above for the Con 40/41 as far as documenting Labor, Materials and Equipment. The Railroad will provide an approved Force Account Report containing the same information as the Con40/41. Distribution of the various force account reports will be handled thru the District Utility Coordinator.

Amtrak

In lieu of the Con – 40 or 41, Amtrak is authorized by Financial Management and Support to submit the following supporting documentation for force account work.

- **Statement of Payroll Costs Report** - this report identifies all Amtrak labor utilized on a project for a one week period. The report includes each employee's name, dates worked and hours worked.
- **Materials Report** - this report identifies all material incorporated into a project. This includes material purchased or material issued from inventory.
- **Equipment Report** - this report identifies all vehicles and equipment utilized on a project. The report includes description, date and hours used.
Amtrak's field representative will provide the Chief inspector with Statement of Payroll Costs Report on a weekly basis. This report identifies all labor utilized on a project for a week period. The Chief Inspector reviews the labor report against his records. Any differences are reconciled with the Amtrak field representative who then provides the Chief Inspector with a corrected labor report for the Chief Inspectors signature. The materials report and equipment report are provided by Amtrak field representative to the Chief Inspector for review, reconciliation and signature. The reports will be provided periodically as needed but within one month of the work. Upon signature of the respective reports, the Chief Inspector will distribute copies consistent with Con-40 distribution.

Metro North

Procedure for recording Metro-North Railroad Force Account work:

Processing of invoices is currently handled in the Office of Rail by one of two methods:

- The Office of Rail receives the invoice from the railroad, sends it out to the District for review of force work charges and returns it back to Rails with any discrepancies or verifies invoice for payment.

- With the above information properly recorded in SiteManager, the ability to generate a report of all railroad force account work for any given period on any project makes it possible for the Office of Rail to conduct the invoice review without sending the report to the District. This option must be discussed with the Office of Rail’s Project Manager as not all have SiteManager access.

In SiteManager, it is the inspector’s responsibility to record all onsite railroad personnel, equipment and materials covered by the force account agreement and verify that all railroad personnel are applying their charges to the appropriate railroad force account work order established by Metro-North Railroad and authorized by the Office of Rail. The inspector must enter the railroad employee’s name, employee number and work period in the remarks section of the Railroad Force Account screen on the DWR header as well as the work equipment, equipment number and quantity of materials (estimate if delivery slips are not provided by the railroad). Furthermore, the inspector should note the failure of railroad forces to show when scheduled and should also note cancellations by either the railroad or the contractor. Without this information the invoicing for these charges can not be dealt with appropriately.

Other Rail Lines

Procedures for force account activities to be followed are coordinated by the Utility Unit.

1-1303D Change in Scope and Cost Overrun Requests

All utilities are to be reminded to submit their formal requests for a change in scope/cost overrun to the District as soon as the need is recognized. The need for a change in scope/cost overrun can be initiated by the Utility Company, District or Financial Management and Support.

The District utility coordinator is responsible for handling and processing all incoming change-in-scope/cost overrun requests from the start of the utility relocation work until 60 days after the completion date of the construction project. The Project Engineer and/or the Utility Section will provide assistance to the District utility coordinator in determining the validity of a request for change in scope/cost overrun. Cost overruns submitted by the Utility Company more than 60 days after the completion of the construction project (CON-500 date) will be addressed as outlined in Section 1-1303E.

Procedure to follow:

- The need for a Change in Scope/Cost Overrun may be identified by the Utility, District, Utilities Section or Financial Management and Support Unit. If the Financial Management and Support Unit or District identifies the need, they will request the Utility to comply with the following steps.
When requesting a Change in Scope/Cost Overrun the Utility must forward a letter to the District Engineer including a detailed explanation and estimate of cost.

When the District receives the request from the Utility for cost overrun they will forward a copy of the request to the Utilities Section for review and comment. The Utilities Section will respond to the District with any comments or exceptions within 7 business days.

The District is responsible for the review of scope changes. The Utility Section may be consulted if necessary.

If the District determines the request is to be authorized, the District must review funding needs with Financial Management and Support. If additional funds are needed, the District will secure them.

The Project Engineer / Utility Coordinator will prepare an Authorization of Change-in-Scope/Cost Overrun letter.

The utility coordinator will process the Authorization of Change in Scope/Cost Overrun letter for signature and distribution by the District Engineer. A copy of the utility’s letter will be an attachment to the bcc list. Both the Utility Section and Financial Management and Support must be copied on each Change-in-Scope/Cost Overrun letter.

Upon receipt of the Authorization of Change-in-Scope/Cost Overrun, the Utilities Section will prepare and process an amended agreement if required.

Tracking System: The utility coordinator for each District, in conjunction with Financial Management and Support unit, will track all requests for Change-in-Scope/Cost Overrun from the time the District receives the Utility’s letter to final resolution. The Utility Section will be responsible for maintaining a database of agreement values and approved Change-in-Scope/Cost Overruns for each Project. Financial Services will be responsible for ensuring that utility company expenditures do not exceed approved amounts.

1-1303E Handling of Requests More Than 60 Days After Project Completion

When a Change in Scope/Cost Overrun request is received greater than 60 days after completion of the project as reported on the CON-500, the Utilities Section will be responsible to prepare the Change in Scope/Cost Overrun authorization. The District staff will provide information and support. The District shall incorporate the following steps into the process:

- Written concurrence from the District staff to the Utilities Section that the work described in the submitted cost overrun letter has in fact been completed by the Utility company as specified on the State project.

- The Utilities Section will verify availability of funding with Finance and Administration. If a need for additional funding exists, the Utilities Section will inform the District to prepare and execute project modification.

- Upon completion of the above steps, the Utilities Section Engineer will prepare and process the cost overrun authorization letter for the Engineering Administrator’s signature.
Chapter 14 – Project Incidents and Complaints

I-1401 Reporting Complaints and Damage or Injury Claims

Complaints or claims for personal injury or damage to property because of project details or the operations of the contractor may be received by the Inspector, Project Engineer, the District Office, or the main office of the Bureau. When complaints or claims are received, the following steps must be taken to minimize future involvement of the Department and to improve public relations.

- If the complaint or claim is made by telephone or in person, the complainant should be advised to submit the complaint or claim in writing. The Inspector must document all pertinent information in the project records.

- The individual taking the complaint or claim should get complete details and notify the District or another office (Maintenance, Permits, etc.), if appropriate. The individual should send a follow-up transmittal of the written details immediately.

- For complaints or claims involving construction work, the Project Engineer should be notified of the incident immediately.

- Complaints or claims for apparent damage to private property may be satisfied by an explanation of the final product or an explanation of already planned corrective work. Early correction of an unsatisfactory condition may avert future complaints. If the complainant persists on subjects beyond the scope of the construction work, advise the individual to submit the claim in writing.

- The written complaint or claim should be acknowledged.

- The District should investigate the claim and file a report of the findings in the project records. Photographs should be taken whenever possible to show physical features.

- Copies of all claim correspondence and the results of any claim investigations should be forwarded to the Director of Documents Processing.

- The file on the complaint or claim should be kept open, and timely checks should be made to ensure that the complaint or claim is not being ignored.

I-1402 Telephone Complaints

Telephone complaints usually involve inconvenience, displeasure, concern, or the like, but not property damage or bodily injuries. When you receive a telephone complaint you should be courteous and document the call and all pertinent information paying particular attention to the location and exact nature of the complaint. Don’t make any promise that you can’t personally guarantee. Don’t transfer the call to another office or unit without confirming someone is there and able to assist the complainant. And don’t ignore the complainant. Advise the complainant their complaint will be investigated and someone will get back to them. If they want a follow-up call provide the individual with your name and telephone number or the name and telephone number of the individual who will be investigating the complaint. If you don’t know who will be responding, offer to call the complainant back when
you find out. Make sure that you follow through on what you promise and advise your supervisor of the nature of
the complaint you received and action taken or being taken.

The proper handling of complaints will save us time and provide a positive image of the Department.

1-1403 Property Owner Complaints

All complaints from property owners that are received by project personnel must be investigated by the Project
Engineer and Chief Inspector and discussed with the property owner for resolution at the project level. Any
additional work necessary to satisfy the property owner must be cleared with the Office of Rights-of-Way to ensure
that the property owner has not already been compensated for the additional work. The right-of-way agreements list
the items in the settlement, including any damages for which the property owner was compensated.

If the property owner is not satisfied and desires to pursue the complaint, the Project Engineer should instruct the
property owner to send a letter to the District Engineer, with information substantiating the complaint. The District
Engineer and Assistant District Engineer review the complaint, investigate it, and meet with the property owner, if
necessary. Then they reply by letter to the complainant with the Department's position.

1-1404 Improprieties

Allegations of improprieties by State staff or contractor and subcontractor personnel must be taken seriously. Any
field employee who receives an allegation of impropriety from a citizen should follow the procedures listed below.

- Obtain and record as much information as possible from the person making the allegation. Be objective in
 compiling the information. Do not argue that the incident could not have occurred.

- Ask for the complainant's name, address and telephone number where the person can be contacted by
 Department security personnel. Inform the complainant that the information will be held in confidence.

- Immediately inform the Transportation Construction Administrator or the Construction Division Chief of
 the allegation. Do not attempt to conduct an investigation unless directed to do so. The Office of
 Construction will notify Management Services of the allegation and will notify the District of any actions
 to be taken.

- If the complainant does not wish to be identified, provide the person with the telephone number of the
 Office of Management Services. Again, assure the caller that the information will be kept confidential.

- Under no circumstances is the complainant to be advised to call any office other than Management Services
 with the allegations.

1-1405 Motorist Claims

District procedures for handling motorist claims of damage caused by road conditions are summarized below.

- Each District designates an individual in the administrative office to be responsible for receiving and
 reviewing motorists' claims.
When a claim is received, it is reviewed to determine liability, either the construction contractor or maintenance. If the investigation indicates that the liability or responsibility is the contractor's, a standard claim letter is sent to the contractor by certified mail. See Figures 1-14.1 and 1-14.2 for copies of a sample letter to the contractor, and a sample letter to the claimant. Copies of the claim and letters are sent to the contractor's insurance company by certified mail. If there is no response from the contractor within 30 days, a second letter is sent requesting a response.

Figure 1-14.1 Sample Letter to Contractor Regarding Claim from Motorist

CERTIFIED MAIL

(Current Date)

(Contractor)
(Address)

Gentlepersons:

Subject: Project No:
F.A.P. No.:
Claim No. and/or File No.:
Insurance Claim:
Claimant:
Address:

In a letter dated____________, a copy of which is attached,______________________ has notified us concerning a claim of________as a result of __________________ (explain: paint overspray, roadway debris, etc. be as specific as possible).

Under the terms of your contract with the State, you are required to carry Public Liability and Property Damage Insurance, including Contractual Liability Insurance, as required by the Standard Specifications for Roads, Bridges, and Incidental Construction, Form _____, Article 1.03.07-2. As the contractor you furthermore agree, under the terms of your contract and Standard Specifications, Form _____, Article 1.07.10, to indemnify and save the Stat harmless from claims of this description.

Please keep this office informed of the action you take to resolve this matter. A response is required within 30 days.

You should also notify ____________ of the Department’s Office of Property and Facilities, as to the status or resolution of this claim. The address is:
State of Connecticut
Department of Transportation
Office of Property and Facilities
Room 2442 SW
2800 Berlin Turnpike, P.O. Box 317546
Newington, CT 06131-7546

Very truly yours,

(Name)
District Engineer
Bureau of Engineering and Construction

cc: (Insurance Company)
(Insurance Company)
(Address)
(Certified Mail Number)

Writer/Typist

bce: Construction Administrator – Construction Division Chief
Office of Property and Facilities
District Engineer
Assistant District Engineer (Principal Engineer) – Supervising Engineer
Project Engineer
Chief Inspector
File
Figure 1-14.2 Sample Letter to Claimant

LETTER TO PERSON MAKING THE CLAIM

(Current Date)

(Claimant)
(Address)

Dear:

Subject: Project No.: Town:
F.A.P. No.: Claim No./File No.:
Claim No./File No.:
Insurance Claim

This is in response to your letter dated ____________ concerning damage to ____________________________
allegedly caused by ________________ (paint overspray, debris in road, etc. be specific as possible) on the above noted project.

This construction is being performed by an independent contractor and the terms of the contract require that he hold
the State harmless in matters of this nature.

The contractor and his insurer are being advised of this matter; however, if you feel it appropriate to contact them
yourself, for your information, the following are the names and addresses of the contractor and his insurer:

CONTRACTOR
INSURER

Very truly yours,

(Name)
District Engineer
Bureau of Engineering and
Construction

Writer/Typist

cc: Construction Administrator-Construction Division Chief
 Office of Property and Facilities
 District Engineer
 Assistant District Engineer (Principal Engineer) – Supervising Engineer
 Project Engineer
 Chief Inspector/Inspector
 File
If the claimant writes or calls the District directly, the District Engineer's Office assigns a file number to the claim. The first digit is the District number, the second two digits are the year, and the following digits are the number of claims received by the District for the year. For example, file number 104106 would be the 106th claim received in 2004 in District 1.

When a response is received from the contractor, the information is entered on the Notice of Motorist Claim form, and a copy is again sent to the Office of Property and Facilities.

The Project Inspector must review all roadways affected by construction daily and notify the appropriate parties of the need for any repairs.

The contractor is responsible for repairing potholes that develop within a contractual overlay, whether temporary or permanent, until relief of responsibility is granted or anywhere within the project limits if the contractor is in the area. Repairs must be made as soon as possible. If the contractor is not in the area, Maintenance should be contacted. If potholes or other hazards are discovered within the travelway in a construction area, the first priority is to correct the problem. The construction staff should coordinate with Maintenance to determine who can respond to the problem more quickly.

1-1406 Other Property Damage and Personal Injury Claims

All claims of property damage and personal injury—except motorist claims—must be forwarded to the Commissioner of Transportation. If the claim letter is received in the District Office, the original is forwarded to the Commissioner's Office, a photocopy is retained, and an investigation is initiated. If it is determined that the claim is within the project limits, letters similar to Figure 1-14.1 are sent to the contractor and the insurer notifying them of the claim. A letter similar to Figure 1-14.2 will also be sent to the claimant acknowledging receipt of the claim and notifying the claimant that any future correspondence should be directed to the contractor or the insurer.

1-1407 Claims Against the State

Claims against the State of Connecticut, Department of Transportation, should include the following information:

- name, address and telephone number of the claimant; and

- an account of the accident or occurrence that led to the claim, including the date, the time of day, the precise location, the cause, and the property damage and bodily injuries.

The claim should be made in writing within 90 days of the date of occurrence and directed to:

Commissioner
Department of Transportation
Administration Building
2800 Berlin Turnpike
PO Box 317546
Newington, Connecticut 06131-7546

ATTENTION: Claims Division
1-1408 Claims Against the Contractor

If a written complaint or claim that involves the contractor is received, a copy of the complaint or claim should be forwarded to the contractor and the contractor's insurer. When the letter acknowledging the complaint or claim is sent, the claimant should be advised that the contractor and the contractor's insurer have been sent a copy of the written claim or complaint. The letter to the complainant should include the addresses of the contractor and the contractor's insurer. The contractor and the insurer must be requested to advise the Department of the action taken and the disposition of the claim or the complaint.

1-1409 Prompt Payment Complaints

All claims against contractors for labor or material payments are answered by notifying the claimant of the name and address of the contractor's bonding company. Letters are also sent to the contractor and bonding company notifying them of the claim. For prequalification purposes, the District Engineer should notify the Engineer of Contracts about claims against a contractor for unpaid debts, unless the claim has been resolved by the contractor in a timely manner.

Prompt payment complaints are taken seriously by the Department. Each District and the Office of Construction is to keep a log of the prompt payment complaints they have received for any contractor (prime or sub) working on a Department project. One person at each District and the Office of Construction will be designated as a clearinghouse for prompt payment complaints. This person shall maintain the Quarterly Prompt Payment Complaint Log depicted in Figure 1-14.3.

Figure 1-14.3 Prompt Payment Complaint Log

<table>
<thead>
<tr>
<th>Prepared by:</th>
<th>OFFICE OF CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared: October 13, 2004</td>
<td>QUARTERLY PROMPT PAYMENT COMPLAINT LOG</td>
</tr>
<tr>
<td>DATE COMPLAINT RECEIVED</td>
<td>PROJECT NO.</td>
</tr>
<tr>
<td>3/26/04</td>
<td>108</td>
</tr>
<tr>
<td>3/26/04</td>
<td>111</td>
</tr>
<tr>
<td>3/26/04</td>
<td>152</td>
</tr>
<tr>
<td>4/9/04</td>
<td>103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIME</th>
<th>SUBCONTRACTOR/ PERSON'S NAME</th>
<th>WRITTEN/ VERBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written</td>
<td>3/20/04 & 4/22/04</td>
<td>4/21/04</td>
</tr>
<tr>
<td>Written</td>
<td>3/20/04</td>
<td>4/21/04</td>
</tr>
<tr>
<td>Written</td>
<td>3/20/04 & 4/22/04</td>
<td>4/21/04</td>
</tr>
<tr>
<td>Written</td>
<td>3/20/04 & 4/22/04</td>
<td>4/21/04</td>
</tr>
<tr>
<td>Fax</td>
<td>10/9/03</td>
<td>10/30/03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE WORK PERFORMED</th>
<th>EST. NO. DATE</th>
<th>DATE PRIME NOTIFIED</th>
<th>PRIME'S RESPONSE DATE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/20/04 & 4/22/04</td>
<td>4/21/04</td>
<td>4/21/04 & w/ 10 days</td>
<td>Letters from Mr. to</td>
<td></td>
</tr>
<tr>
<td>3/20/04</td>
<td>4/21/04</td>
<td>w/ 10 days</td>
<td>Letters from Mr. to</td>
<td></td>
</tr>
<tr>
<td>3/20/04</td>
<td>4/21/04</td>
<td>w/ 10 days</td>
<td>Letters from Mr. to</td>
<td></td>
</tr>
<tr>
<td>3/20/04</td>
<td>4/21/04</td>
<td>w/ 10 days</td>
<td>Letters from Mr. to</td>
<td></td>
</tr>
<tr>
<td>10/9/03</td>
<td>10/30/03</td>
<td>Ltr. from Mr. Attty. to Mr. responded in ltr. dated 4/28/04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Whenever a complaint is received (verbal or written) at any level, information is to be collected and forwarded to the designated individual as quickly as possible. The information should include date of complaint, Project No., name of contractor accused of non payment, name of prime contractor, name of complainant and firm representing, how complaint was received (verbal/written), and date work was performed. If the complainant also provides a description of the work and date(s) performed, the Project Engineer is to be contacted and asked to provide the
Estimate No. the work was paid on and the date payment was made. Although, little information may be provided, anonymous complaints are also to be reported and logged; this information can be valuable in identifying problems.

The prime contractor is to be notified, in writing, of any prompt payment compliant except those that are anonymous. It is the responsibility of the designated individual to have prepared a standard prompt payment letter to the contractor. A copy of this letter is shown in Figure 1-14.4. If the Contractor does not respond to the first letter within the time frame requested the designated individual is to have a second letter prepared and sent to the contractor by certified letter and clearly labeled “SECOND REQUEST.” The bonding company is to be copied: on the second letter. If the prime contractor fails to respond to the second letter the Office of Construction is to be contacted for further instructions.

Figure 1-14.4 Standard Prompt Payment Letter to Contractor

(860) 823-3204

Subject: Project No. ______________________
FAP No. ______________________

Prompt Payment Complaint

The Department has been contacted by ___________________ regarding your alleged failure to make prompt payment for all work performed by them during __________________________. Under the terms of your contract (Section 1.03.04 of the Standard Specifications) and Connecticut General Statutes, Section 49-41a-c, you are required to make payment to your subcontractors/suppliers within 30 days of payment to you by the State.

Please review the status of your account with ___________________ to determine the reason(s) for this apparent lack of prompt payment. If there is a bona fide reason for withholding payment from the subcontractor, you are required by CGS 49-41c to notify the subcontractor/supplier and the Department of the reason(s) for withholding payment.

Your prompt attention to the issue is required. Please respond no later than ________________ with the results of your findings and/or the reason(s) for withholding payments from this subcontractor/supplier.

Very truly yours,

Carl E. Nelson, P.E.
District Engineer
Bureau of Engineering and Construction

cc: Subcontractor

bcc: Construction Administrator-Construction Division Chief
Contract Compliance (if DBE)
District Engineer-Assistant District Engineer
Project Engineer
Project
On a quarterly basis the designated individual is to forward to the Office of Construction the prompt payment log. If more than three complaints are received during any reporting period for any contractor, regardless of the number of projects they are working on, the Assistant District Engineer is to be advised. The Assistant District Engineer will investigate and discuss the matter with the Construction Division Chief.

1-1410 Major Project Incident

Major project incidents include but are not limited to:

- a traffic accidents involving a lane closure of more than a 20-minute duration or serious or possibly fatal injuries;
- a construction accident, such as a crane tipping over, a form collapse, or a cofferdam collapse;
- a serious construction injury, such as a worker falling from a bridge, a worker being hospitalized, or a call to Lifestar;
- erection of a picket line;
- a fire or natural disaster impacting transportation facilities;
- a security threat to transportation facilities; or
- an incident significantly affecting the traveling public, such as detour being required, a lengthy delay or an incident that will not be cleared by peak traffic/commuting periods.

If an incident occurs, the first and foremost action required of the project staff is the notification of emergency personnel and the safety and protection of the public and workers at the site. Once emergency personnel respond to the incident, project personnel must notify the District Office by telephone. Shown in Figure 1-14.5 is the Incident Notification Process. In most cases, this notification can and should be made within 30 minutes of the occurrence of the incident.

When notifying the District of the incident, provide as much information as possible. The Report of Major Road Closure/Project Incident/Emergency Work form available in the Approved Forms folder shows the type of information that is required.

The District personnel who receive notification of an incident must complete the Report of Major Road Closure/Project Incident/Emergency Work form and immediately provide the information by emails or fax to both the Office of Construction liaison engineers and the Highway Operations Center. If none of the Liaison Engineers are available, contact either the Principal Engineer in the Office of Construction, Construction Division Chief or Construction Administrator. In the event of serious injuries or a major road closure a telephone call confirming receipt of the incident report is required.

Provide updates on progress of incident to Highway Operations and Office of Construction deemed necessary or as directed.

Provide a report upon conclusion/clearing of the incident.
Figure 1-14.5 Incident Notification Process

- Provide updates on progress of incident to Highway Operations and Office of Construction hourly or more frequently if necessary.
- Provide a report upon conclusion/clearing.

Figure 1-14.6 Deleted
If a major incident occurs after normal working hours, District supervisory personnel and the Highway Operations Center must be notified by both telephone and fax. Each District should have procedures in place for making the after-hours notification. The supervisory personnel receiving notification must determine if further notifications are required and, if they are, contact the District Engineer or the Assistant District Engineer.

After-hours incidents that require higher-level notification include but are not limited to:

- a serious injury or fatality of a construction worker or Inspector;
- a construction accident resulting in a fatality;
- an incident resulting in complete closure of major routes;
- an incident that will not be cleared before peak traffic periods and therefore will result in public impacts;
- interruption of utilities;
- interruption of rail service;
- obstruction of major waterway;
- major environmental damage;
- an incident that results in media attention;
- third party incidents that have a major impact to transportation facilities
- security threats that impact transportation facilities or traffic; or
- natural disasters that impact transportation facilities.

The District Engineer (or Assistant District Engineer in his absence) is responsible for notifying the Construction Division Chief or Transportation Construction Administrator of the incident.

In addition to the above after hours notification, a copy of the Report of Major Road Closure/Project Incident form must be faxed to the Office of Construction as soon as possible.

1-1411 Report of Burglary, Theft, or Vandalism of State-Owned Property

The Inspector is responsible for reporting all incidents of burglary, theft or vandalism of State-owned property assigned to the project.

The following procedure is used whenever any State-owned property has been stolen, damaged or vandalized.

Immediately notify the local or State Police of the incident and as soon as possible notify CONNDOT security by phone at:

- 860-594-3333 Monday-Friday, 6:30 a.m. – 8:30 a.m.
- 860-594-3053 Monday-Friday, 8:30 a.m. – 4:30 p.m.

If the incident occurs on the weekend or holiday CONNDOT security is to be notified by phone as soon as possible on the next business day.

Within 24 hours of the incident a Report of Burglary, Theft or Vandalism form shown in Figure 1-14.7 should be faxed to the following:

<table>
<thead>
<tr>
<th>Type of Equipment</th>
<th>Office</th>
<th>FAX</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Office of Construction</td>
<td>860-594-2678</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>Security</td>
<td>860-594-3073</td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td>Office of Information Systems</td>
<td>860-594-3590</td>
<td></td>
</tr>
</tbody>
</table>
OFFICE OF CONSTRUCTION
REPORT OF BURGLARY, THEFT OR VANDALISM

Incident Information
Date of Incident: (mm/dd/yy)
(or Date Discovered)
Time Discovered:
Discovered by:
Person's Phone

Report Information
DOT Unit No.:
Date of Report:
Time of Report:
Report Prepared by:
Phone # of reporting person:

Location of Incident
Address:
Building Name:
Project No.:
Contact Person with Title:
Phone # of Contact Person:

Description of Incident:

What Police Department was Notified?
PD Case

Items missing, stolen or vandalized
State Equipment # or Registration # Description of Property

Contact the District Liaison in the Office of Construction and fax this form to the Office of Construction (860-594-2678) as soon as possible, even if all the information is not available. If the equipment involved is computer related the Office of Information Systems is also faxed the form (860-594-3590). CONNDOT Security MUST be notified by telephone at (860) 594-3053 after the incident is discovered.
Chapter 15 - Disputes & Claims

1-1501 Contractor’s Right to Claim

In accordance with Connecticut General Statutes Section 4-61, the Department of Transportation is subject to claims from its construction contractors. If a claim is not resolved to their satisfaction, a contractor may pursue it further in either Superior Court or formal arbitration. The Department acknowledges the validity of warranted claims and will offer the contractor payment of those sums the Department deems appropriate. We have found that the sooner we make a concerted effort to resolve a claim after it is received, the more likely it is that an amicable resolution will be achieved.

1-1502 Notification Requirements

The following is a list of events and situations that the Assistant District Engineer or District Engineer shall bring to the immediate attention of the Office of Construction.

- Receipt of a written notice of a claim.
- Receipt of a demand for payment of costs which District personnel are not able to verify, such as, but not limited to, overhead.
- Receipt of a request for extension of contract time that, if granted, may expose the State to liability for costs incurred during or resulting from delay of project work.
- Alleged differing site conditions and/or significant change in the character of project work, receipt of a request for the adjustment of contract prices based on alleged differing site conditions or a significant change in the character of project work, if the aggregate adjustments would increase contract costs by $250,000 or more.
- Request to modify or waive contract requirements, as in situations in which a credit to the State should be proposed, a revision of the limitations of operations is requested, or the contractor is proposing design revisions.
- Any situations in which the Department's action may set a significant precedent, or in which the Department's actions or inactions may have a significant effect on later or larger demands or claims by a contractor.

In addition, the Assistant District Engineer or District Engineer must discuss the following with the Construction Division Chief or the Construction Administrator prior to implementation:

- Directed acceleration of a project;
- Any change, alteration, modification, or waiving of Division 1 of the General Conditions of the Standard Specifications or any changes that may have been made to them by the Special Provisions or the Supplemental Specifications;
- Any change of the method of measurement for an item;
- Any request for a payment of home office overhead.

The Districts should follow this procedure on all projects, including projects being partnered. Partnering decreases the amount of time that the field staff has to resolve the dispute prior to escalating it to the next level. However, partnering does not change or alter the requirements of the contract nor does it give the District the authority to settle disputes beyond the ability given to them by the contract and the Construction Administrator.
1-1503 The Dispute & Claim Process

This section describes the procedure, which should be followed in handling contractor disputes and claims. The purpose of this process is to protect the State’s interests and to ensure that appropriate resources are dedicated to a prompt resolution or, failing that, to a vigorous and well-planned defense of claims made against the Department.

Dispute: A dispute is a contractual problem involving a conflict between the Department and the contractor concerning extra work, increased costs, etc., which can be resolved at the District level or at the Contract Board of Review under the terms of the contract. A dispute is a problem that has not been formalized by any legal action.

Claim: A claim is a dispute that has progressed to the stage of a formal notice of claim, demand for arbitration or suit. A dispute may become a formal claim when it is not resolved at the District level and is passed up to the Office of Construction for formal processing. A claim is also defined as a dispute that cannot be resolved at the District level as explained further in this procedure.

Step 1. Whenever there is a potential contractual dispute on a project, the project Inspector involved should immediately bring the matter to the attention of the Chief Inspector who will make a note of it on their Diary. The Chief Inspector shall notify the Project Engineer of the potential dispute. The project personnel should research the facts and begin efforts to resolve the dispute. If the dispute is not resolved within twenty-one (21) days, the project engineer shall discuss the issue directly with the Assistant District Engineer on the twenty-first day. The project personnel should then discontinue discussions with the contractor regarding the dispute unless otherwise directed by the Assistant District Engineer.

Step 2. The Assistant District Engineer will assume responsibility for coordinating further efforts to resolve the dispute. Throughout Step 2, the Assistant District Engineer will keep informed with regard to the dispute and participate, as appropriate, in attempts to resolve it. The Assistant District Engineer will confer with the District Engineer and the District Engineer may attempt to negotiate an equitable settlement of such matters, including issues regarding significant changes in the character of the work or regarding differing site conditions, for sums which can be justified, not to exceed $250,000.00. For disputes exceeding $250,000.00 in value, the District Engineer shall consult with the Office of Construction before proceeding with a dispute resolution.

If the District is unable to resolve the dispute or claim, the District Engineer or Assistant District Engineer must then discuss it with the Transportation Principal Engineer of Claims in the Office of Construction.

Step 3. Upon notification of the dispute or claim, the Office of Construction will talk with involved District and/or field personnel about the subject dispute in order to better understand the relevant issues. The Office will then discuss the matter with representatives of the Office of the Attorney General, and follow the advice received in all future activities relating to the dispute. All reports, opinions, recommendations, and other documents which the Office of Construction is advised by legal counsel to obtain, will be produced with limited or no copies and will be treated confidentially, and handled in whatever manner is necessary to protect the attorney-client privilege which may apply to them. The object is to protect those documents from being disclosed to third parties except as our attorney may deem appropriate. The Transportation Principal Engineer of Claims, with advice from the Construction Administrator and/or the Construction Division Chief, will use all means at their disposal to produce a settlement of the dispute. The District will discontinue all communications with the contractor or its agents regarding the dispute unless otherwise instructed by the Office of Construction or by legal counsel.

Step 4. When the contractor or its attorney files suit in Superior Court or a demand for arbitration in an arbitration forum, the attorney representing the State will assume responsibility for the State's defense in the ensuing litigation, arbitration or mediation. The attorney's primary contact person within the Department, for purposes of handling such a defense, will be the Transportation Principal Engineer of Claims. The Office of Construction will arrange to have all the resources within the Department available to the attorney as they may be needed to carry out the defense or settlement of such formal claims.
Summary: The determination of when a discussion or dispute has become a claim is frequently a matter of subjective judgment. Consequently, it is important that those employees, who deal with the Department's contractors regularly, such as Chief Inspectors and Project Engineers, keep their supervisors informed regarding disputes and demands for additional payment. It is equally important that the Assistant District Engineer and the District Engineer keep the Construction Administrator, the Construction Division Chief, and the Transportation Principal Engineer of Claims well informed regarding claims and potential claims.
Chapter 16 – Design Error Procedure

1-1600 General

It is the responsibility of those engaged in the supervision of projects to notify the Transportation Principal Engineers from the Office of Construction of all potential design problems that may reflect design errors, omissions, or oversights and that may lead to increased costs or the construction of any project that may make unfeasible or impracticable any construction as designed and bid. This notification should be made during construction, using the “Construction Issue Form”. This form is to be submitted by the Assistant District Engineer to the Office of Construction – Claim Unit after consultation with the Office of Construction.

1-1601 Construction Issue Form

A Construction Issue Form is required when any problem is encountered that potentially prevents construction from moving forward as designed and that may require changes in the contract or plans in order to complete the original scope of the project, see Figure 1-16.1. A construction issue may or may not entail an actionable design error or omission. This determination, however, will NOT be made at the District level. A Construction Issue Form should be submitted when the issue is anticipated to increase the cost of the project by 5% or $100,000, whichever is less, or is a significant issue as determined by the Assistant District Engineer.

1-1601A The District Responsibilities

The District responsibilities are as follows:

Complete Construction Issue Form, to be signed by the Assistant District Engineer.

Send the form to the Transportation Principal Engineer responsible for Claims within the Office of Construction.

Send the form when a problem arises, after consultation with the Office of Construction (TPE or higher).

Include statements of fact only (no opinions). Support the facts with written contemporaneous documentation such as letters from the Contractor, field memoranda, or meeting minutes.

State potential effects and ramifications of the design problem such as, but not limited to, delays, costs, environmental impacts, property impacts, or traffic impacts.

1-1601B The Office of Construction Responsibilities

The Office of Construction’s responsibilities are as follows:

The Transportation Principal Engineer responsible for claims from the Office of Construction will forward the Construction Issue Form to the appropriate Transportation Principal Engineer from the Office of Engineering and, if appropriate, to the Division Chief for the Office of Quality Assurance. If further investigation is necessary, the Office of Engineering will investigate the matter, consulting with the Consulting Engineer, the Office of Construction and others, as necessary or appropriate. After completing its investigation, the Office of Engineering will arrange a meeting with the Office of Construction to make final evaluations of the matter. An attorney for the
Department will be included if the Office of Engineering’s conclusions indicate the existence of a possible error or omission. In such an instance, a confidential report of meeting will be prepared by the Office of Engineering, with limited circulation. If the Office of Engineering determines that there is no substantial possibility that an actionable designer error has been made, and the Office of Construction concurs, no further action will be necessary at that time. If the two offices do not agree, the Office of Engineering will arrange a meeting with the Chief Engineer, legal counsel, and the Office of Construction to resolve the issue. The Office of Engineering will prepare a confidential report of the meeting, with limited circulation.

Figure 1-16.1 Construction Issue Form

![Construction Issue Form](image-url)
1-1602 *Active Claim by Contractor*

When a possible error or omission is alleged in a claim by the Contractor, or the Office of Construction determines, that a design error or omission has been made, the Office of Construction will forward appropriate sections of the claim to the Office of Engineering via a memorandum from the Construction Division Chief to the appropriate Design Division Chief. The Office of Engineering will forward appropriate information to the Consulting Engineer. After the claim is resolved, the Office of Engineering will investigate the possible error or omission in accordance with the procedure described above, if so requested by the Office of Construction.
Chapter 17 - Consultant Engineers

1-1701 Consultant Evaluations

Consultant engineers are evaluated bimonthly and semi-annually in accordance with this section. Figure 1-17.1 shows the Bi-Monthly form and Figure 1-17.2 shows the Semi-Annual form.

1-1702 Bi-Monthly Evaluation of Consultant’s Performance Guide

- Bi-monthly evaluation of consultant’s performance shall be done for the following Periods: Jan. – Feb., Mar. – April, May – June, July – Aug., Sept. – Oct., and Nov. – Dec. The evaluations will be submitted to the Office of Construction no later than the 10th of the month following the rating period. For example, the evaluation for a Jan. – Feb. period should be submitted no later than March 10.

- The bi-monthly form establishes a standard method to rate a consultant’s performance for items listed on the semi-annual rating by asking questions under each item. The responses to these questions will be used to determine the consultant’s semi-annual rating. The rater shall check the answer he/she believes represents the consultant’s performance. If the rater believes a question is not applicable he/she shall mark the question as N/A.

- The rater is encouraged to list the consultant’s strengths and weaknesses for each category in the comment section. This will assist in completing the semi-annual forms. In addition, this will enable the consultant to address weaknesses. If any question is rated 1 or 5, comments will be mandatory.

1-1703 Semi-annual Consultant Evaluation Procedures

- Connecticut General Statutes require the evaluation of consultant’s performance on a semi-annual basis. The Office of Construction will conduct semi-annual consultant performance evaluation ratings of all consultants providing services to the Office of Construction. The unit responsible for administration of the contract shall perform the evaluation. The evaluations will be submitted to the Office of Construction no later than the 20th of the month following the rating period.

- The semi-annual evaluation will rate the consultant’s performance in the following categories: Administration, Procedural, and Technical. To determine the consultant’s overall rating for a category, specific items will be evaluated under that category. Only those items that are applicable to the assignment will be rated. If the rater believes a question is not applicable he/she shall mark the question as N/A. Comments are now mandatory for each category on the new semi-annual evaluation.

- In addition to the semi-annual consultant performance evaluation ratings, bi-monthly evaluation of consultant’s performance will be prepared for all consultants. The bi-monthly evaluations will be used as a basis for the formal semi-annual evaluation. The bi-monthly evaluation will determine the consultant’s performance in each item by establishing a numerical value based on responses to specific questions listed under each item.

- Copies of the bi-monthly evaluations will be provided to the consultant through his/her on-site representative.

Upon completion of each semi-annual evaluation the consultant will be advised by the administrating unit of the results of the evaluation. If requested by the consultant, the administering unit will afford each consultant with the opportunity to schedule a meeting to discuss measures needed to improve the services which they provide to the Department.
1-1704 Consultant Performance Evaluation Rating Guidance

The following guidance is to be applied to rating items identified in the Consultant Performance Evaluation Rating Form.

1-1704A ADMINISTRATION

- **Operational:** The project was properly staffed with qualified personnel, and the staff was adequately equipped to perform the assignment. Displayed cooperation with and disclosure of good faith efforts to subcontract with DBE/SBE to the state (refer to explanation of Good Faith Effort at end of this section).

- **Project Management:** Lead personnel assigned responsibilities in a timely manner, properly supervised their staff, and provided training for staff when required. When applicable, assured that other parties under his/her supervision were responsive, adequately supervised, and adequately trained. All elements of project development were well coordinated. Responsive in submitting documents required to execute agreements (e.g. insurance certificate, Affirmative Action plan) and registrations with applicable boards and the Secretary of the State.

- **Contract Financials:** Proposals, billings and audits were submitted in a timely manner and were accurate, complete and justifiable. Requests for Extra Work were justifiable. Payments made to sub consultants in accordance with Connecticut General Statutes. DBE/SBE requirements monitored and required documentation was submitted in a timely fashion.

- **Affirmative Action:** Knowledge, application, and implementation of federal, state and local policies and regulations regarding Affirmative Action. (Contact the Office of Equal Opportunity and Diversity at 860 594-2163 to determine the status of the Affirmative Action Plan, monthly compliance report 1391(b) and other specific contract requirements).

- **Supervision:** The ability to complete tasks and assignments independently with little Department oversight and direction. The ability to supervise staff and sub consultants.

1-1704B PROCEDURAL

- **Knowledge of Federal, State and Local Policies, Procedures and Regulations:** Knowledge, application and implementation of federal, state and local policies, procedures and regulations, as required. Abides by these policies, procedures and regulations and assures that other parties under his/her supervision comply.

- **Method(s) and/or Procedures Applied:** The consultant follows procedures and specifications listed in appropriate federal and state manuals and/or management plans. When applicable, establishes and enforces safety requirements for his/her staff and ensures that proper safety and warning devices are in place and operational.

- **Coordination and Cooperation:** Demonstrates the ability to coordinate with Department offices, federal, local and other state agencies and the general public in accomplishing the assignment. Has the ability to coordinate the work of the contractor, subcontractor, utilities, Department units, railroads, etc.

- **Supervision:** Has the ability to complete tasks and assignments independently with little Department oversight and direction. Supervises staff and sub consultants appropriately.
1-1704C TECHNICAL

- **Knowledge of Assignment:** Knowledge of all aspects of the assignment.

- **Accuracy of Data:** The data generated and presented to the Department is accurate and reliable.

- **Quality of Work:** Demonstrates the ability to collect, generate, apply, interpret and present information. All project documents are generated and presented in a timely manner and are complete and understandable.

- **Supervision:** The ability to complete tasks and assignments independently with little Department oversight and direction. The ability to supervise staff and sub consultants.

1-1704D Good Faith Effort (Administration)

Check list for internal evaluation of good faith effort:

- Pre-bid meeting held by/sponsored by prime for DBE/SBE
- Used advertising in minority focus media concerning subcontracting opportunities
- Reached out to DBE/SBE through media, trade associations, private and public sector agencies
- Followed up outreach efforts
- Provided interested DBE/SBE with adequate information about plans, specifications and requirements of contract
- Negotiated in good faith with interested DBE/SBE
- Made an effort to identify and work with DBE/SBE who may not have previously worked for them
- Made efforts to assist qualified DBE/SBE
- Worked with DBE/SBE organizations to recruit DBE/SBE
Figure 1-17.1 - Bi-Monthly Consultant Performance Evaluation Rating Form

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road & Bridge Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Design (Vert. Constr.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity: Highway Design

Activity: Bridge Design

Activity: Road & Bridge Design

Activity: Facility Design (Vert. Constr.)

Activity: Miscellaneous

Rating Period:

Year:

Project Number:

Firm:

Consultant Project Manager:

Project Description:

Numerical Rating Scale:

- Exceptional: 5
- Exceeds Contractual Expectation: 4
- Meets Contractual Expectations: 3
- Inadequately Meets Contractual Expectations: 2
- Unsatisfactory: 1

Administration: (Weight = 30%)

1. Operational
2. Project Management
3. Scheduling (meets Department's financial obligations)
4. Contract Financials
5. Affirmative Action Compliance
6. Supervision Required

Total: __________

Average Rating for Category (Total/No. of Items x .30) __________

Comments (required, if any questions are rated 1 or 5)

Procedural: (Weight = 30%)

7. Exhibits and employs the knowledge of federal, state and local policies, procedures and regulations, as required
8. Understands and employs methods/or procedures applied to accomplish scope of work
9. Coordination and cooperation with Department and joint operating agencies (federal, state and local), as required
10. Milestone submission scheduling
11. Supervision required

Total: __________

Average Rating for Category (Total/No. of Items x .30) __________

Comments (required, if any questions are rated 1 or 5)
Figure 1-17.1 - Bi-Monthly Consultant Performance Evaluation Rating Form (cont.)

TECHNICAL: (Weight = 40%)

12 Knowledge, Application and Presentation of data generated

13 Accuracy of Data

14 Quality of Work

15 Construction Cost Estimating

16 Supervision required

Average Rating for Category (Total/No. of Items x .40)

Comments (required, if any questions are rated 1 or 5)

PERFORMANCE RATING

Sum of all Average Rating Categories (Maximum Rating = 5)

General Comments (Required: at a minimum, discuss milestones achieved this past rating period)

Prepared by: __________________________ Date: __________________

Reviewed by: _________________________ Date: __________________
Figure 1-17.2 Semi-Annual Consultant Performance Evaluation Rating Form

SEMI-ANNUAL

CONSULTANT PERFORMANCE EVALUATION RATING

Rating Period: January 1, to June 30, ______ or July 1, to December 31, ______

Project Number: ___________________________ Firm: ___________________________

Activity:
Highway Design Construction Inspection
Bridge Design Bridge Inspection
Road & Bridge Design Environmental
Facility Design (Vert. Constr.) Acci.-Audit-Financial
Miscellaneous

Team(s):
Consultant Project Manager: ___________________________
Project Description: ___________________________

NUMERICAL RATING SCALE:
Exceptional: 5 Exceeds Contractual Expectation: 4 Meets Contractual Expectations: 3
Inadequately Meets Contractual Expectations: 2 Unsatisfactory: 1

ADMINISTRATION: (Weight = 30%)
1. Operational...
2. Project Management..
3. Scheduling (meets Department’s financial obligations)..............
4. Contract Financials..
5. Affirmative Action Compliance.......................................
6. Supervision Required..
Total: ...

Average Rating for Category (Total No. of Items x 30).................................
Comments (required)

PROCEDURAL: (Weight = 30%)
7. Exhibits and employs the knowledge of federal, state and local policies, procedures and regulations, as required.........................
8. Understands and employs method(s) and/or procedures applied to accomplish scope of work..
9. Coordination and cooperation with Department and joint operating agencies (federal, state and local), as required...........
10. Milestone submission scheduling..
11. Supervision required..
Total: ...

Average Rating for Category (Total No. of Items x 30).................................
Comments (required)
Figure 1-17.2 Semi-Annual Consultant Performance Evaluation Rating Form (cont.)

-2-

TECHNICAL: (Weight = 40%)

12 Knowledge, Application and Presentation of data generated
13 Accuracy of Data
14 Quality of Work
15 Construction Cost Estimating
16 Supervision required

Total

Average Rating for Category (Total/No. of Items x 40)

Comments (required)

PERFORMANCE RATING

Sum of all Average Rating Categories (Maximum Rating = 5)

General Comments (Required: at a minimum, discuss milestones achieved this past rating period)

Prepared by: __________________________ Date: ______________________
Reviewed by: ________________________ Date: ________________________
Chapter 18 - Emergency Projects

1-1800 General

The Commissioner has the authority to issue an emergency declaration in accordance with Section 13b-26(f) of the Connecticut General Statutes.

There are two distinct types of emergencies.

Case 1: A natural disaster, structural failure, rock slide, etc., any of which require the Department, either through its own resources or contractual services, to take action by mobilizing the necessary resources as quickly as physically practical.

And,

Case 2: An emergency condition which demands immediate attention to insure the safety of the traveling public, however, there is a need and time to complete survey and design before commencement of construction of the project. These projects are typically handled like routine projects; however the schedule for design, advertising, award and completion is greatly accelerated.

This Chapter explains the procedure established for Case 1 emergencies; Case 2 projects are handled like any other routine project during the construction phase.

1-1801 Case 1 Initiation Procedure (Office of Construction)

The recommendation for an Emergency Declaration is brought to the attention of the Chief Engineer and discussed with the appropriate Deputy Commissioner. After the Emergency Declaration is prepared and signed by the Commissioner, copies are made by the Office of the Chief Engineer and hand-carried or faxed to the following:

- Deputy Commissioner(s)
- Transportation Engineering Administrator
- Transportation Maintenance Administrator
- Transportation Construction Administrator
- Director of Environmental Planning
- Transportation Rights of Way Administrator
- Director of Financial Management/Special Projects
- District Engineer
- District Maintenance Manager
- Any others as appropriate
A contractor is selected and contacted by the Transportation Construction Administrator, usually after conferring with the Chief Engineer, the appropriate District Engineer, and the Construction Division Chief.

The Transportation Construction Administrator assigns the project to a construction Liaison Engineer, who will:

1. Set up a field review and concept meeting with the appropriate and knowledgeable individuals in the Office of Engineering (OOE), Office of Construction (OOC) and District. Immediately following the site review, a concept meeting will occur to thoroughly discuss the scope of work and arrive at a method to proceed. At this time, a plan of action for finalizing the documents detailing the scope of work must be established identifying responsibilities and deadlines. 1) All logistics and arrangements for progress copies of sketches and special provisions are to be sent directly to the District Engineer; and 2) the Transportation Construction Administrator is to be made aware of the arrangements and review procedures established.

2. Assist the Engineering Office (or Office of Fiscal/Special Projects when no Engineering Office is involved) in the preparation of a Recommended Project Memorandum which will require the following information:
 - Specific location of project
 - Scope of work
 - Estimate of Duration of Project
 - Estimate of construction cost
 - Contingency
 - Estimate of incidental cost

3. Obtain a project number and financial coding (if not already assigned) from the Office of Fiscal/Special Projects. If necessary the Construction Associate Fiscal Administrative Officer will provide assistance. The Construction Liaison Engineer will advise the Office of Fiscal/Special Projects of the nature of the work and estimated cost.

4. Notify the appropriate District Engineer by telephone and transmit a copy of the Emergency Declaration, project number, and financial coding.

5. Prepare the Emergency Work Letter of Agreement. See Figure 1-18.1.

The following are available from the Contract Section and must be attached to the Emergency Work Letter of Agreement (all originals and copies):
 - Index of Special Provisions
 - Required Contract Provisions
 - Governor’s executive orders and guidelines
 - Supplemental Specifications (if applicable)
 - Special provisions prepared specific to the project by the Office of Engineering or others. (Remember to add these to the Index of Special Provisions.)
6. Contact the contractor by telephone and set a date and time for award meeting. At this meeting the Emergency Work Letter of Agreement will be signed and the contractor will provide the required Certificate of Insurance on CON-32 Form. (The Transportation Construction Administrator will likely be able to provide the name of the contact person on the contractor’s staff.) If an emergency arises after normal work hours, on weekends or a Holiday, and it is necessary to dispatch a contractor immediately to assure the safety of the public, the construction liaison engineer must initiate and attempt to process all necessary paperwork on the next work day. The contractor should also have the Certificate of Insurance completed and submitted on that day. In no case will lack of paperwork delay the contractor in effecting the repair.

7. Put together three (3) originals of the Emergency Work Letter of Agreement (with attachments) and obtain the required signatures. See Figure 1-18.1. After the Chief Engineer or Transportation Construction Administrator signs the originals, three (3) more copies will be made and distributed as follows:

- One (1) original and one (1) copy to the contractor
- One (1) original to Central Files
- One (1) original to the Office of Construction
- Two (2) copies to the District Office

8. Send copies of all information in the Office of Construction’s Project folder to the District for inclusion in the District’s Project file.

9. Notify the District that they must obtain the required Certificate of Insurance (CON-32) if the contractor has not already done so.

10. Provide assistance to the District, Contractor and/or Engineering Office until the project is completed.
EMERGENCY WORK LETTER OF AGREEMENT

PROJECT NO. ___________________

DATE: __________________________________

LOCATION OF WORK TO BE DONE: ___

CONTRACTOR: ___

ADDRESS: __

PHONE: ________________________________

Pursuant to Section 13b-26f of the General Statutes of Connecticut, Revised and Supplements thereto, the Commissioner of Transportation has declared that an emergency condition exists on the above-named highway facility in the State and hereby engages the above-named Contractor to provide the necessary materials and services needed to provide ________________________________

_____________________ as directed by the Engineer.

Upon direction to start by the Bureau of Engineering and Highway Operations, to be confirmed in writing, the above-named Contractor shall proceed at once to supply the materials and/or perform the services specified herein.

The method of payment for the emergency work required shall be as defined under Article 1.09.04 of Standard Specifications Form 816 and Supplemental Specifications thereto. Administration or engineering costs, above and beyond normal overhead costs considered in the allowed 20% markup on wages, benefits, insurance and taxes on labor, may be considered payable if the scope of administrative or engineering services, including staff hours and rates, has been approved in advance and in writing by the Engineer. All work performed at the site will be under the direction of the Department of Transportation or its designated representative. The Commissioner may cancel the work at any time and the State shall pay the Contractor for all work performed and for all materials ordered by the State and delivered to the project site.

The Contractor warrants that he is fully covered by insurance as described in a “Certificate of Insurance” which he agrees to furnish prior to beginning work; said insurance shall be in accordance with and in the amount stated in the Form 816, Supplemental Specifications thereto and Special Provisions included with this Contract.

The parties hereto agree that, because of the existing emergency, the work described herein shall be started at once and carried forward with utmost dispatch under the terms of this agreement until such time as the work is cancelled or completed, all in accordance with the procedures set forth hereinafter or as noted in the “Contract Documents.”

The attached appendix of “Required Contract Provisions” and Governor’s Executive Orders and Guidelines are hereby made a part of this agreement.

Description of services required: ___

__

__
Figure 1-18.1 Emergency Work Letter of Agreement (cont’d)

This work shall include securing and all subcontractor(s) necessary to perform the required work and any other work as directed by the Engineer, all in accordance with the Form 816, Supplemental Specifications thereto and Special Provisions included with this Contract.

The Contractor further covenants and agrees that all of said work shall be done and performed in the best and most workmanlike manner, and that all and every of said furnished material and labor shall be in strict and entire conformity, in every respect, with said specifications and plans, and shall be subject to the inspection and approval of the Commissioner or his duly authorized representative, and in case any of said furnished material or labor shall be rejected by said Commissioner or his representative, as defective or unsuitable, then the said materials shall be removed and replaced with other approved materials and the said labor shall be done anew to the satisfaction and approval of the said Commissioner or his representative, at the cost and expense of the Contractor.

The Contractor further covenants and agrees that all and every of the said materials shall be furnished and delivered, and all and every of the said labor shall be done and performed, in every respect, to the satisfaction and approval of the Commissioner.

The Contractor agrees to commence work in conjunction with the notice to proceed and pursue the work until completed, unless terminated by the Department.

The Contractor further agrees to accept the payment method defined in this Contract as full compensation for furnishing all materials and labor which may be required in the prosecution and completion of the whole of the work.

This document, to be valid, must be signed by a representative of the Department of Transportation holding one of the following offices: Commissioner, Deputy Commissioner, Chief Engineer, or Construction Administrator.

Accepted as of this date ________________________________

Contractor ________________________________ Witness
by
Name ________________________________ Title ________________________________ Witness

STATE OF CONNECTICUT

Transportation Chief Engineer
Bureau of Engineering and Highway Operations

by
Name ________________________________ Title ________________________________ Witness

Witness
1-1802 Case 1 Emergency Projects (District)

If the Commissioner issues an emergency declaration for a case 1 type construction project, the progress of the project must be closely monitored. The Emergency Project Status Report, shown in Figure 1-18.2, is completed by the District on a biweekly basis, beginning with the District's receipt of the Emergency Declaration and continuing through completion of the work.

Figure 1-18.2 Emergency Project Status Report

<table>
<thead>
<tr>
<th>Connecticut Department of Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Construction</td>
</tr>
<tr>
<td>Emergency Project Status Report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emergency Declaration Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project No.:</td>
</tr>
<tr>
<td>Date of Report:</td>
</tr>
<tr>
<td>Town:</td>
</tr>
<tr>
<td>Route No.:</td>
</tr>
<tr>
<td>Const. Start Date Est.:</td>
</tr>
<tr>
<td>Const. Start Date Actual:</td>
</tr>
<tr>
<td>Project Description:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Orig. Est. Compl. Date:</td>
</tr>
<tr>
<td>Rev. Est. Compl. Date:</td>
</tr>
<tr>
<td>Contractor:</td>
</tr>
<tr>
<td>Phone:</td>
</tr>
<tr>
<td>Project Engineer:</td>
</tr>
<tr>
<td>Phone:</td>
</tr>
<tr>
<td>Chief Inspector:</td>
</tr>
<tr>
<td>Phone:</td>
</tr>
<tr>
<td>Orig. Cost Estimate $:</td>
</tr>
<tr>
<td>Complete-to-Date $:</td>
</tr>
</tbody>
</table>

Work Performed Past Two Weeks

Work Planned Next Two Weeks

Problems/Concerns/Delays/Additional Work

Roadway Status
- Open:
- Closed:
- Alt. One Way:

Rev. 4/20/93
The Status Report is completed using the following procedure:

- On receipt of the emergency declaration, the District assigns a Project Engineer to the project.
- The Project Engineer coordinates with Design on the status of the plans, design completion date, etc., and reports the information biweekly on the Status Report. Any problems with completion of the design are noted, along with the anticipated completion date.
- On issuance of the Emergency Work Letter to the contractor, the District coordinates all necessary meetings, utility notifications, maintenance of traffic schemes, etc.
- The District provides Inspectors for the project.
- The Project Engineer completes and submits the Status Report every two weeks. The value of work completed should be estimated for each two-week period. One copy is retained for the project files, and a copy is faxed to the OOC, Liaison Engineer and OOE Lead Engineer.

1-1803 Volume I – Inspector’s Daily Work Reports:

Daily Work Reports are required when the prime contractor or subcontracts are working. These sheets shall be signed accordingly and contain detailed documentation to verify the payments made on the Cost-Plus sheets. See Figure 1-6.1 for a sample Cost Plus sheet.

A CON-136 Base and Bituminous Report is required when placing bituminous concrete or processed aggregate base. See Figure 2-6.26 for a sample CON-136.

NOTE: If it is determined that a portion of the existing project is an emergency and is designated as an “emergency project” it should be determined as soon as it is possible if a separate project number will be assigned for the emergency portion. If that is the case a separate Volume I, III and IV will be created and kept separate from the existing project.

(Refer to Volume I Chapter 3 “Project Documentation” for additional information on record-keeping)

1-1804 Volume III:

Measurement and payment for work performed on an emergency project will be made in accordance with The Standard Specifications for Roads, Bridges and Incidental Construction, Form 816, Article 1.09.04. The method of measurement and basis of payment for elements of work will be conveyed to the Contract via Construction Orders. In the event there is a dispute as to the method of measurement and basis of payment the work will be ordered done on a cost plus basis. Further information is available in the Construction Manual Volume 1 Chapter 6 “Extra and Cost Plus Work”.

All work performed by subcontractors is to be considered specialized work and is subject to the requirements set forth in the Article 1.09.04. Invoices are not acceptable for cost plus documentation - unless it is for materials or rented equipment (and even then proof of payment is required). The only other time an (received or paid) invoice would be acceptable documentation for cost plus work is if the work fits the narrow definition of specialized work shown in the 816 and the CM.
If there is some other well defined element of a larger cost plus operation, the District may agree to a price for that element or activity. In general however it is not advisable to mix agreed price and cost plus work because of the potential for overlap.

Administration or engineering costs, above and beyond normal overhead costs considered in the allowed 20% markup on wages, benefits, insurance and taxes on labor may be considered payable if the scope of administrative or engineering services, including staff hours and rates, has been approved in advance and in writing by District Management. Copies of such written approval shall be maintained as part of the permanent project records.

The Volume III must have summary sheets showing the totals of all items of work. The summary sheets must provide a clear audit trail throughout so that anyone unfamiliar with the records will be able to follow them. A calculator tape shall be attached to the summary sheet showing a tally of the cost-plus sheets and the final quantity. Cost-plus sheets are made out daily and signed by the Inspector and Contractor. The original cost-plus sheets must be contained in the Volume III. A representative copy of payrolls (excluding certification statements) is required in back of the applicable cost-plus sheet(s). Material invoices to support any material paid on the cost-plus sheet are included behind the applicable cost-plus sheet. Material invoices must be receipted. Receipted bills shall be referenced to an actual invoice, which documents the amount of the cost-plus item.

Acceptable documentation for Receipted bills is:

- Copies of the cancelled checks for invoiced material/rented equipment.
- Invoices signed, “Paid in Full” by the Vendor.
- Invoices stamped, “Paid” and the Contractor’s check number noted and a copy of a bank statement showing the check was paid.

Equipment Rate sheets shall be included behind the applicable cost-plus sheet or behind the last cost-plus sheet for the item. The total of all of the cost-plus sheets for each item must agree with the final Invoice invoice. A copy of each Invoice must be included in the project records. Refer to Standard Specification for Roads, Bridges and Incidental Construction Article 1.09.04 and manual Section 1-602 for additional instruction on Extra and Cost Plus Work.

Emergency projects must follow the minimum testing requirements as outlined in the Construction Manual and in the Schedule of Minimum Requirements for Sampling Materials for Test unless modified by the District.

When an estimated payment procedure is used to make payment for an item a record that this procedure has been approved by the Project Engineer must be placed in the Volume III. For further explanation refer to Section 1-912. A sample record is shown in Figure 1-3-8A.

Refer to Volume 1 Chapter 6 Section 1-602D for information on “Specialized Work”.
This Volume is set up to contain all miscellaneous construction data pertaining to the project. The index may be added to; however the following minimal sheets are required for emergency type projects paid by agreement.

Request for Test Index
Record of Prime and Subcontractors
Payroll logs showing payrolls received
Record of Labor Wage Check
Material Stored on Site
Record of Shop Drawings
Non-compliance and Compliance Notices
Chapter 19 – Insurance and Bond Requirements

1-1901 Insurance Requirements

The Contract requires Contractors to carry insurance at least in accordance with the requirements stipulated. Before award the Contractor must submit evidence of insurance by providing a completed Certificate of Insurance (CON-32) form. See Figure 1-19.1.

The following are guidelines for enforcing and administering the requirements in the Contract for contractors to carry insurance. The designated District staff must do the following:

- Ensure the evidence of insurance conforms to the specified requirements.
- Ensure the contractor’s required insurance does not lapse during the life of the project.
- Forward a copy of any revised evidence of insurance received for renewal or changes in coverage to DOT Contracts Section.
- Verbally request new Certificate of Insurance 30 days in advance of the expiration date of any coverage.
- If the contractor fails to provide evidence of insurance coverage by the expiration date, request the contractor to immediately obtain the necessary coverage. Figure 1-19.2 shows a sample letter.
- If the above procedure does not result in obtaining evidence of coverage, contact the Office of Construction for guidance.

1-1902 Performance Bonds

Under the terms of performance bonds issued for CONNDOT projects, the bond remains valid as long as the contract is not increased or decreased by more than twenty-five percent of the original contract value. In order to ensure that the state is afforded full protection under the performance bond, a new bond must be issued whenever the contract value increases or decreases more than twenty-five (25) percent beyond the value listed on the current bond.

During the Construction Order process the District must determine whether approval of the Construction Order will trigger the need for a revised performance bond. When the contract value increases or decreases more than twenty-five percent of the original (or revised) bond value, the contractor and surety must be notified that a new bond is required. The contractor and surety must submit the bond to the Office of Contracts in the same manner that the original bond is submitted and executed. The notice to the contractor and surety should first be requested via facsimile with hard copy to follow. The notice is to require submission of a new bond within fourteen (14) days of the date of the facsimile. If the new bond is not received within 14 days of the facsimile a second notice shall be sent by a method that documents delivery, i.e. UPS ground service or Certified Mail – Return Receipt. Figure 1-19.3 shows example of letter requesting new bond and Figure 1-19.4 shows example of a performance bond rider that may be used.

On a quarterly basis the District will provide the Contracts Section and Office of Construction with a list of projects that had new bonds issued during the reporting period.
Insurance and Bond Requirements

This is to certify that the insurance company named herein has issued to the named insured the policies listed below, that these policies are written in accordance with the Insurance Company's standard policies and endorsements, except as indicated below, and as noted in the attachments hereto, which policies and endorsements will be made available to the Department of Transportation upon request, that they provide coverages and limits of liability shown with respect to the hazards indicated, that they are in force on this date, and that this Certificate is furnished in accordance with and for the purpose of satisfying the requirements of the Department of Transportation in connection with the award and the performance of any contract or agreement, or the issuance of any permit or authorization by the Department of Transportation or its authorized agent. The Insurance Company agrees to investigate and defend the insured against all claims for damages, even if groundless.

NAME OF INSURED

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>CITY</th>
<th>STATE</th>
</tr>
</thead>
</table>

HAZARDS

<table>
<thead>
<tr>
<th>POLICY NUMBER</th>
<th>EFFECTIVE DATE</th>
<th>EXPIRATION DATE</th>
<th>coverages and limits of liability, bodily injury liability and property damage liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>All persons / Allsummers - Each Accident or Occurrence</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>Aggregate</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>** Workmen's Compensation **</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>statutory coverage and limits</td>
</tr>
</tbody>
</table>

* State of Connecticut is named as Additional Insured.

** Compensation Commissioner's Certificate shall be supplied hereon by self-insured party.

Note: If Excess/ Umbrella Liability Insurance is needed to meet the Agreement/Contract, etc. minimum requirements, complete Section F above.

Check

☐ Construction Contracts
☐ Lease Agreement Rights of Way
☐ Demolition Contracts
☐ Permit Work No. __________
☐ Agree No. __________
☐ Engineering
☐ Project No. __________
☐ Other Specify & including all operations incidental thereto.

PARTY FOR NOTICE

<table>
<thead>
<tr>
<th>Name:</th>
</tr>
</thead>
</table>

(1) It is agreed that the herein named Insurer Company will not use the defense of sovereign immunity in the adjustment of claims or in the defense of any suit brought against the State unless the Connecticut Department of Transportation Commissioner consents in writing to do so.

(2) It is agreed that the Insurance Company will bill premiums and audit charges earned under the protective liability policies to the above named insured; however, if named insured is different from the vendor, consultant, contractor or party of record, the vendor, consultant, contractor or party of record will be billed.

IN THE EVENT OF ANY RESCISSION OR AMENDMENT TO ANY CONTRACT, CANCELLATION OF OR FAILURE TO RENEW ANY ONE OR MORE OF SAID POLICIES THE INSURANCE COMPANY SHALL GIVE NOT LESS THAN THIRTY DAYS WRITTEN NOTICE TO THE PARTY FOR NOTICE TO WHOM THIS CERTIFICATE IS ISSUED OF SUCH AMENDMENT, CANCELLATION, OR FAILURE TO RENEW.

DATED THIS __________ DAY OF __________, __________

ISSUED TO: CONNECTICUT DEPARTMENT OF TRANSPORTATION
CONTRACT ADMINISTRATION
2800 Berlin Turnpike
Newington, CT 06111

(Insurer Company) (Address) (State) (Zipcode) (Telephone) (Facsimile)

(endorser's name & signature)
Figure 1-19.2 Sample Letter to Contractor Requesting Evidence of Insurance

(Contact) (Title) (Contractor) (Address) (Town), (State) (Zip Code)

Dear ______________ :

Project #: (Project No.) (FAP No.) (Town) (Route) (Description)

Subject: Notice of Insurance Expiration

Our records indicate that your insurance coverage for _______________ expired on _______________ (please refer to enclosed CON-32 which was previously submitted to this office). We require evidence that coverage has been maintained or reinstated in order that work may continue on the above noted project. Please have the insurer complete the form provided by the Department, "Certificate of Insurance – CON-32", and have it faxed to _______________ and mail the original to the following address as soon as possible:

(NAME) Department of Transportation District (#) (Address) (Town), CT (Zip Code)

Coverage for electronic data equipment insurance must also be included on the "Certificate of Insurance" (Form Con-32).

If you have any questions, please contact __________ at ___________________.

Very truly yours,

Bureau of Engineering and Highway Operations

Enclosures

cc: Construction Administrator-Construction Division Chief District Engineer-Assistant District Engineer-Supervising Engineer Project Engineer Project
Figure 1-19.3 Sample Letter Requesting New Performance Bond

<table>
<thead>
<tr>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

VIA FACSIMILE – HARD COPY TO FOLLOW

<table>
<thead>
<tr>
<th>Surety Name</th>
<th>Contractor Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
</tbody>
</table>

Subject: Town – Route

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Project Description</th>
<th>Contractor Name</th>
<th>Bond No.</th>
</tr>
</thead>
</table>

Revisions to this contract have resulted in (increases) (decreases) to the contract value in excess of twenty-five percent (25%). As a result of these changes, a rider to the original performance bond will be required. The revised contract value at this time is $__________.

A performance bond rider (refer to attached sample form) must be submitted to Mr. Gary W. Belina of the Contracts Section, Room 1318, 2800 Berlin Turnpike, P.O. Box 317546, Newington, CT 06131 within fourteen (14) calendar days of the date of this letter.

If you have any question regarding this matter, please contact (Assistant District Engineer, or other designated personnel) at (telephone no.).

VTY

<table>
<thead>
<tr>
<th>Assistant District Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bureau of Engineering and Highway Operations</td>
</tr>
</tbody>
</table>

/___

bcc: Lewis S. Cannon-Mark D. Rolfe
Gary W. Belina-Pall B. Oushana
District Engineer
Figure 1-19.4 Sample Performance Bond Rider

STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION

RIDER TO
PERFORMANCE AND/OR PAYMENT BOND

Project/Contract Number ____________________________

Rider to be attached to and form a part of Bond Number ____________________________
on behalf of __ (Name)
__ (Principal).
__ (Address)
and in favor of __ (Oblige).
exeected by the Company indicated below (Surety) in the amount of ____________________________
__ Dollars ($__________________) effective ____________________________
__________ 20_________.

The Principal and Surety hereby consent to changing the said bond as follows:

SAMPLE

This change is effective ____________________________ 20_________.

Nothing herein contained shall vary, alter or extend any provision or condition of the bond other than as above stated.

Signed, Sealed and dated this ___________ day of ___________ 20_________.

__
Surety L.S.
(Please attach a Power of Attorney)

__
Attorney-in-Fact

By __
Contractor
Chapter 20 – Maintenance and Protection of Traffic (M&PT) Changes and Public Relations

1-2000 General

This Chapter describes the procedures for revising contract provisions for maintenance and protection of traffic (“M&PT”) and press releases. It must be emphasized that these are separate procedures and both are required to be followed.

Some larger projects designated as “significant projects” have a Traffic Management Plan (TMP) as part of the contract documents. This plan has been devised to accommodate the traffic of the entire region and is to be followed as closely as possible. The FHWA’s Work Zone Safety and Mobility Rule is discussed in Section 1-2002 and includes a definition of significant projects.

1-2001 Procedures for Revising Contract Provisions for M&PT

Sections 1-2001A through 1-2001C describe the procedures to follow for revising Contract provisions for the Traffic Management Plan (if applicable), Maintenance and Protection of Traffic, Limitation of Operations and Prosecution and Progress, and emergency situations.

1-2001A Case 1 – Revision to the Traffic Management Plan (TMP) or M&PT Plan

Revisions to the traffic control plan or project staging requires concurrence from both the Office of Construction and Office of Engineering. Revised construction staging sequences or limits, detour and ramp closures are considered to be a revision to the traffic control plan. Before the proposal is forwarded to the Offices of Construction and Engineering, the District must evaluate the proposal to ascertain if it will benefit the State, in terms of time or money. Revisions proposed by the Contractor should be evaluated in accordance with Section 1.04.03. After evaluation by the District the proposal is transmitted by a memorandum from the Assistant District Engineer or District Engineer to the Construction Administrator, with copies to the Engineering Administrator and Maintenance Administrator. The memorandum must include:

- Details of the proposed revision in the form of sketches or narrative.
- The reason for the proposed revision.
- The exact location with Stations and the anticipated duration the revision will be in effect.
- The impacts of the revisions on 1) condition of the roadway (examples are: reduced shoulder or lane width, traffic shifted temporarily on shoulders, barrier on both sides with no shoulders, revised cross-slope), 2) neighborhoods affected by the proposed change or the community at large (examples are: ramp or road closure that may affect residential or business access), and 3) contract provisions (calendar day allowance, liquidated damage clauses, completion schedules, prosecution and progress).
- The mitigating measures proposed (examples: paving the shoulders, additional drainage, additional signing and delineation, temporary pavement to improve the cross-slopes, etc.).
Proposed detour and the signing/marking plan that shows the M&PT traffic devices and proposed locations of traffic persons to assist in traffic control.

Written concurrence from City/Town for detours utilizing roads other than State Highways or impacting the traffic flow in the local community.

Approximate cost of the revision and the potential benefits to the State. If contractor initiated the request, generally shall be at no cost to the State including any costs for physical work, traffic control items and traffic persons.

The deadline for implementing the revisions beyond which the stated benefits may not materialize.

The District’s recommendation on the proposed revision.

The Office of Construction will coordinate with the Offices of Engineering and Maintenance to discuss the merits of the proposed revision, the feasibility of implementing the revision within the proposed time frame and the impacts of the proposal on maintenance operations of the roadway and will make the final determination as to whether to go forward with the proposed revisions. If it is determined to go forward with the proposed revision, the Designer will prepare a change order to the Contract and issue the revised construction sequencing and staging plans and special provisions by a memorandum to the District. The District may direct the Contractor to proceed with the revision with the concurrence of the Offices of Construction and Engineering before the final change order is issued. Appropriate press releases must be issued if not already in place, see Section 1-2003.

Exceptions to Traffic Staging to be processed as Case 2:

- Transition stage and traffic shifts involved in proceeding directly from one planned contract stage to the other.
- Revisions to the traffic staging that do not involve reduction in lane or shoulder widths, lane configuration or alignments, and elimination of barrier runs.
- Permitting work shown in one stage to be performed in another stage as long as proposed stage revision does not adversely impact traffic during current and future stages.

1-2001B Case 2 – Revision to Limitation of Operations

Case 2 scenarios are the result of revisions to the Limitation of Operations and Prosecution and Progress Provisions of the Contract. Any revision proposed by the Contractor must be evaluated by the District to ascertain if it has merit and should be evaluated in accordance with Section 1.04.03. A memorandum from the Assistant District Engineer or District Engineer is sent to Construction Division Chief informing of the District’s approval. This memorandum is to have attached to it a completed form, shown in Figure 1-20.1. The memorandum must also be submitted in a timely manner and when appropriate a revised press release issued. For information on press releases see Section 1-2003.

If significant impacts to traffic operations are anticipated due to the revised limit of operations, the District shall advise Office of Construction at least seven days before the proposed change is implemented.

1-2001C Case 3 – Emergency Operations

When Contract operations of emergency nature are required to be performed, such as hazardous potholes patching, cleaning up the damaged sand barrels, repairing damaged bridge joints, etc., the Chief Inspector/Project Engineer will request authorization to perform the necessary repairs from the Assistant
District Engineer or District Engineer. The Assistant District Engineer/District Engineer will direct the appropriate course of action to the Chief Inspector/Project Engineer. If the condition does not pose an imminent safety hazard, the repair work will be performed within the allowable hours for lane closures.

The Chief Inspector/Project Engineer will be responsible for notifying the Operations Center and Office of Construction of the proposed work. The field inspectors are responsible for notifying the Operations Center at the completion of the emergency work.

Figure 1-20.1 Case 2 Backup Documentation Form

Procedure for evaluating the revisions to the Limitation of Operations and Prosecution and Progress:

1. Complete description of the proposed revision.

2. The location, time of occurrence and the duration of the work.

3. The reason for the proposed revision.

4. Benefits of the revisions and the ramifications of not allowing the revisions.

Recommendation:

Recommended: ________________________ Approved: _______________________________

Project Engineer Assist Dist. Engr./Dist. Engr.

Attach supporting documents

- Pertinent specification highlighting the appropriate articles where changes are being proposed.
- Hourly traffic volumes.
- Comments and/or recommendation from the Division of Traffic.
- Proposed detour and the signing/marking plan that shows the M&PT traffic devices and proposed locations of trafficpersons to assist in traffic control
- Written concurrence from City/Town for detours utilizing roads other than State Highways or impacting the traffic flow in the local community.
1-2002 Work Zone Safety and Mobility

The Work Zone Safety and Mobility (WZS&M) policy systematically considers and manages work zone impacts of significant projects. This provides a high level of safety for both workers and the public. It also minimizes congestion and community impacts as well as provides both field forces and contractors adequate access to the highway to efficiently conduct their work.

In order to meet these objectives, appropriate planning, design, construction, maintenance and public awareness strategies shall be employed on all significant projects. For the purposes of this policy, a significant project is defined as:

“A stationary highway construction or maintenance activity which causes sustained mobility impact on I-84, I-91, I-95, I-691, I-291, or I-384 for more than 3 days with either intermittent or continuous lane closures. In addition, any highway construction or maintenance activity that alone or in combination with other concurrent activities nearby, which is expected based on engineering judgment, to cause sustained mobility impacts that are considered greater than what is considered tolerable relative to typical traffic operations experienced in the area of the work zone, may be declared a significant project”.

It is recognized that the Department’s emergency operations may not always allow a systematic consideration of work zone impacts. In such situations, the objectives of this policy will be honored as much as practicable.

Construction project staff will monitor their work zones and make appropriate adjustments based on their observations of accidents and traffic operations. Multiple reviews will be limited in scope until the planned improvements to the data system become available. All data collected will be retained by the Office of Construction with a copy to the Traffic Division and the Bureau of Policy and Planning’s Office of Inventory and Forecasting.

On active projects, construction project staff and the contractor will each designate a trained person to properly implement the Transportation Management Plan (TMP). In addition to the Inspection of Temporary Traffic Control (TTC) and the Transportation Operation (TO) components of the TMP, construction project staff will take the lead in the coordination and implementation of Public Awareness (PA) strategies. Construction staff will monitor and collect data on work zone incidents for the purpose of identifying problematic trends and implementing appropriate adjustments.

1-2003 Press Release Procedures

The Department provides press release information for current and planned maintenance and construction activities.

To efficiently process press releases, the following routing procedure has been developed to:

- Promote linear routing of press releases from the Project to the Communication Office.
- Permit electronic transmittal wherever possible.
- Distinguish press release submittals from limits of operations change authority.
- Task the managers and administrators with review and approval only as necessary.
- Differentiate between “Routine” (Contract Compliant) and “Special” (Contract Change) events.

The Office of Construction District Liaisons are the primary Headquarter (HQ) recipients for District and brokerage generated press releases.

For routine contract compliant events, the Final Copy Press Release from the Project Staff or consultant/broker is transmitted through the Project Engineer to the District Liaison who will forward it to
the Office of Communications. District Managers and Office of Construction Administrators are to receive a copy for information only.

For significant contract changes and special events there is a higher level of notification required. The procedure requires the change authority to precede the press release by a separate established process for Case 1, Case 2 or Case 3 scenario, which ever applies. See Section 1-2001.

The District Liaisons are the primary Headquarter recipients for District and Consultant/broker generated press releases. It is required that a press release be in a complete and finished form when it is sent to the District Liaison. Incomplete press releases or outdated (late) ones will be returned for revision. E-mail and fax are the preferred method of transmittal. The Construction Division Chief and Office of Construction Principal Engineer are to be included in the distribution list for all press release transmittals to ensure efficient processing by the Office of Construction to the Office of Communications.

A graphic representation of the Construction Press Release procedure is shown in Figure 1-20.2

1-2004 Public Relations on the Job Site

If for any reason, a member of the press contacts the field staff or comes to the job site, the project personnel are to direct them to the Department’s Public Relations (Communications) Office, (860) 594-3062. The Project Engineer should be notified as soon as possible if members of the media contact the field office.

If the project personnel are contacted by First elected officials or anyone who holds statewide office, they should be directed to speak to a District Manager and/or the Department’s Legislative Program Manager. Lesser ranking officials may be addressed directly by project staff. All contacts, concerns or discussions should be documented on the DWR and the Project Engineer should be notified.

Project personnel should deal directly with property owners, business owners, public works officials, town employees and utility companies to the extent of their project involvement and within the limits of their authority. Any questions or discussions should be brought to the Project Engineer’s attention.

1-2004A Pedestrian Access - Americans with Disabilities Act

All Maintenance and Protection of Traffic (M&PT) plans shall be reviewed prior to the onset of the project to assure that accessibility accommodations for all users of the roadway are met. Accessibility must be maintained during all stages of construction and throughout the project. The M&PT plans must include provisions for movement of pedestrian traffic through a work zone in a safe and efficient manner. Pedestrian traffic includes but is not limited to pedestrians, bicyclists and disabled individuals. It may include temporary sidewalks, barrier, safety fencing, lighting, signalization and line striping. It is also recommended that this is discussed with the Contractor at the Pre-Construction Meeting.

At times the M&PT plans may not adequately address all aspects of construction operations. Such conditions should be anticipated and the inspection team should develop traffic control plans for the particular phase or activity to address these concerns. Minimally, the level of accessibility for pedestrian traffic that was experienced prior to the project should be provided during construction operations. In instances where it is impractical to maintain such access during a phase of construction, alternate access should be provided. In particular, if access for the disabled cannot be provided through the work zone during construction, then alternate arrangements around the work zone must be provided.

Pedestrian access should be monitored daily by the Chief Inspector and if the Contractor is not in compliance, action should be taken to correct the situation as soon as it is possible. If necessary a Non-Compliance Notice form shall be issued to the Contractor to correct the situation.
Figure 1-20.2 Construction Press Release Flow Chart

Routine Events: Compliant with Contract Limits of Operations
Special Events: Involve a Change to Contract Limits of Operations

*AUTHORIZATION
Case 1: Office of Construction with Concurrence of Design and/or Chief Engineer
Case 2 and 3: District or Office of Construction Management
Field Personnel are to review the Trafficperson and Maintenance and Protection of Traffic specifications for procedures pertaining to the use of Trafficpersons and/or State Police Officers within the Work Zone. The following are general guidelines.

- Before the start of operations requiring use of Trafficpersons and/or State Police, a meeting is scheduled with all parties to discuss the Trafficperson/State Police operations, lines of responsibility and operating guidelines which will be used on the Project.

- A person is designated on every Contract the responsibility to ensure proper payment of the Trafficperson and/or State Police Invoices. The duties of this individual will include the review of sign-in sheets to ensure accuracy and prevent overlapping of the work hours when services are moved from one duty station to another or from one project to another.

- The payment is in accordance with the specification and established procedures.

Note: The Trafficperson item will be used as payment for services provided by contractor or subcontractor workforces or by municipal police. Reimbursement for State Police will be by Invoice between the Department of Transportation and Department of Public Safety (DPS).

1-2005A Municipal Police Officers and Uniformed Flaggers

- When Municipal police officers are used and surcharges are included on the invoice, the Project staff must ask the Contractor to provide a letter from the agency, documenting the rates and surcharges, if any, that are regularly charged for their police and police vehicle services. This should be requested at the initial meeting discussing Trafficperson operations. A copy of this letter must be kept in the Volume III with the monthly statements or receipted bills.

- The monthly statements or receipted bills for Municipal Police Officers are kept in the Volume III. If the statements or bills are not itemized with the Municipal Police Officers’ names, hours, dates, police vehicle, etc., a revised statement or bill that is detailed is requested.

- The DWR’s record daily services of trafficpersons.

- It is recommended that the trafficperson information is entered in SiteManager under the item conversation. A zero quantity may be used to enter information for Municipal Police Officers. The following information should be included in the remarks section:

 - Name of Municipality/company providing trafficperson, i.e. (name of municipality) Police, contractor’s workforce or subcontractor, (in SiteManager, when a Subcontractor performs the service with their workforce, associate the work item with the subcontractor, and only show the name and hours of employee in the remarks)

 - Name of Trafficperson

 - Badge number, if law enforcement officer
o Hours worked
o Lunch or no lunch period
o Hours of police vehicle service, if appropriate
o Duty station and function performed

Sample:

1. Municipal Police Officer

Coventry Police
Doe #55, 1000-1800, 0.5 hr lunch
Closed high speed lane 00+15 to 00+25
Police vehicle, 7.5 hrs.
Intersection of Swamp Rd. and Rte. 44

2. Contractor/Subcontractor

John Smith, 1000-1500, no lunch
Closed breakdown lane Rte. 68

• Before payment of the Trafficperson (Municipal Police Officer) item is made, the Officers listed on the DWRs are compared against the monthly statement or receipted bills from the Municipality that actually provided the service. For projects using SiteManager, a summary of the Trafficperson (Municipal Police Officer) item entries on all project DWRs can be created by running a DWR Work Item Detail report in the SiteManager Reporting program.

• The DWR Work Item report is used for the initial review of statements or receipted bills. If a discrepancy exists between the entries and the statement or receipted bills, it must be fully investigated and a determination made by the Project Engineer as to the appropriateness of the payment. The reasons for payments made, for which there were discrepancies, must be fully documented on the DWR where the payment is made. In addition, it is encouraged to maintain a list of trafficpersons used on the project in the Volume III with the monthly statements or receipted bills in order to facilitate the proper payment for services rendered. On projects that do not use SiteManager, this list is mandatory.

• If the number of trafficpersons ordered by the Contractor on the project exceeds the number approved by the engineer, the engineer will review the need for extra personnel in accordance with the contract documents and specific field conditions. If it is determined that the Contractor ordered the trafficpersons for their own use, those costs will be deducted from the Trafficpersons item payments.

• The Contractor’s log should not be used as the source for payment of the trafficpersons.

• The payment for Trafficpersons must be made under the appropriate item. There is no need to create a new item changing the unit of measure from “Estimated Cost.” When necessary the quantity is increased by Construction Order.
Separate payments are made for each Municipal law enforcement agency providing trafficperson services. Each payment should be clearly labeled on the DWR with the respective agency for which the payment is being made. This is important because various administrative reports are dependent upon this information being clearly labeled.

1-2005B State Police

Reimbursement for State Police will be by Invoice between the Department of Transportation and Department of Public Safety in accordance with the Memorandum of Understanding.

1-2005B-1 Ordering State Police Services

- The contractor fills out Form DPS-0691-C Request Form for State Police Service.
- The engineer reviews and approves the request, then faxes or emails the request form to Department of Public Safety’s Overtime Office between normal business hours (8:00 am to 2:00 pm, Monday – Friday, except holidays)

 DPS Special Duty Overtime Coordinator
 1111 Country Club Road
 Middletown, CT 06457
 Fax: 860 685-8495
 Telephone: 860 685-8420
 E-Mail: specduty.clerkl@po.state.ct.us
- The request form must be submitted no later than Wednesday morning of the week prior to the scheduled operations.
- A fax confirmation sheet is attached to the Request Form and placed in the designated file.
- Emergency or last minute ordering of State Police: The engineer may fax or email the request form to the overtime coordinator during business hours (8:00 am to 3:30 pm). After hours the request should go to the State Police Duty Supervisor at the State Police troop in the DOT job site area and the overtime coordinator in Middletown.

1-2005B-2 State Police on the Project

- State Police officers are to sign in before and after their shift on a designated State Police Sign-In Sheet in the field office. Field personnel note on the sheet where the trooper was assigned.
- The DPS-693-C form provided by the State Police is signed off only at the end of shift, and the canary (contractor) copy is retained in the project records.
- The fax confirmation sheet shall be attached to the State Police Sign-In Sheet, with the corresponding Form DPS-693-C canary copy and placed in the designated file.
- The State Police Sign-In Sheet will also act as the Trafficperson Log for the master file.
- It is required to document on the DWR that State Police are present on the jobsite. Details and references will be maintained in the Trafficperson Log.
1-2005B-3 Cancelling of State Police Services

- The Troopers can be cancelled up to 28 hours in advance without incurring the four hour minimum charge.

- Revisions to an existing order should be clearly marked on the ordering form and faxed to DPS Overtime Office from 8:00 am to 3:30 pm. After hours, the revisions are faxed to the State Police Message Center: 860 685-8346.

- State Police Officers will be given a minimum of four (4) hours time if operations cannot commence due to weather or other unforeseen conditions or a cancellation is not made in a timely manner.

- State Police Officers will not be required to show up at the field office to receive four (4) hours minimum if the cancellation was forwarded prior to the start of the work shift.

1-2005B-4 Invoice Processing for State Police Services

- State Police invoices will be distributed to projects by the District Utility Coordinator for review.

- Field Personnel will review the invoice based on DWR reports, the State Police Sign-In Sheet(s), and the original Contractor request.

- Minor adjustments will be noted directly on the invoice and faxed or emailed back to the Accounts Receivable Unit of the State Police at (860) 685-8357 with a brief explanation. Once discrepancies are accounted for, if a revised invoice is required, one will be issued by DPS.

- A field memo will transmit all invoices back to the Utility Coordinator with a narrative describing the balance to date along with a corresponding copy of the State Police Sign-In Sheet.

- Index Sheet, copies of the invoice, State Police Sign-In Sheet, and transmittal narrative will be kept in a designated file at the field office.

NOTE: When the number of troopers ordered by the contractor on the project and shown on the invoice exceeds the number approved by the engineer, the invoice will be processed as normal so as not to delay reimbursement to the Department of Public Safety. However, the engineer will review the need for the extra State Police Officers. If it is determined that the Contractor has ordered the Trafficpersons for their own use, then the resulting deduction of State Police costs will be made under a construction order item “Credit Due State – Excess State Police”.

1-2005B-5 Project Close Out

- The Department of Public Safety will have 90 days to close out billing for any particular project. To trigger this 90 day “clock”, send DPS a copy of the Project’s CON-500 form. The time will start from the Final Inspection date.
1-2006 Barricade Warning Lights

Use the following recordkeeping guidelines for Barricade Warning Lights. Barricade Warning Lights must be listed initially, with locations, on a DWR, then noted on a DWR only when a change in the count occurs. Payments may be made daily, weekly or monthly. A summary sheet must be maintained in Volume III for these items. A Flasher Summary Sheet is shown in Figure 1-20.3. However, the summary sheet may be prepared using Microsoft Excel spreadsheets, provided all of the summary-sheet information is included on the spreadsheet.

Figure 1-20.3 Volume III – Flasher Summary

| LOCATION | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | TOTALS |
|----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------|
| Sta 19+085 | A | A | A | A | D | D | D | D | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | 26 |
| Sta 19+085 | A | A | A | A | A | B | B | B | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | 28 |
| Sta 20+000 | A | A | A | A | A | A | A | A | A | B | B | B | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A | 29 |
| Sta 20+000 | A | 31 |
| Sta 20+000 | A | A | C | A | 30 |

Flashers (All Types) are to be listed initially with locations on an inspector's field report, then noted on a DWR only when a change in the count occurs. This form is to be used to maintain daily totals. Summarize monthly on item entry sheet.

| TOTALS | 6 | 6 | 6 | 6 | 6 | 5 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 172 |

A Working
B Missing
C Missing
D Sign missing

Comp By: Printed Name:
Signature:
Date:

Checked By: Printed Name:
Signature:
Date:

TOTAL THIS MONTH 172
TOTAL TO DATE 272
Chapter 21 - Municipal Systems Oversight Procedures

1-2100 General

A Municipal Systems Action Team (MSAT) exists in each of the four Districts. The primary function of each MSAT is to oversee all Municipal administered projects from inception to the finaling out of the projects in their District. The teams consist of one Transportation Engineer III (the team Leader) and additional staff to handle all the duties and responsibilities as outlined in this chapter. The MSAT’s are ambassadors for the Department and must conduct the oversight of the municipal projects in a thorough and professional manner. For a general description of municipal requirements refer to the latest version of the Department’s Municipal Construction Manual.

1-2101 MSAT Responsibilities

- Oversee all District projects administered by municipalities.
- Meet with the Municipal Administrator prior to the start of the project and explain the municipality’s responsibilities.
- Perform Design/Constructibility Plan Reviews of municipal designed projects.
- Monitor municipal conformance with Federal and State procedures.
- Prepare record review reports on project activities for each project reviewed or visited. Review project records, as needed, with a minimum of one review per month, per project.
- Assist Municipal Administrator with scope change requests, time extensions and construction orders.
- Review, evaluate and process CLA-3 invoices for reimbursement.
- Team Leaders to meet monthly, at a minimum, with the Municipal Administrator to review project status, administrator’s responsibilities and any project issues that require attention. If necessary, meetings can be more frequent.
- Establish uniform procedures for use by Districts in overseeing municipal administered projects.
- Provide guidance and assist Municipal Administrators and Municipal Inspectors with project close out procedures.
- Perform a District Final Review of all the project records. Return the records to the municipality, if necessary, to correct any deficiencies and/or omissions.

1-2102 Design/Constructibility Reviews

- A field review of the site may be performed, if necessary.
- The following items/issues should be reviewed
- Major pay items
- Construction staging
- Available site access
- Appropriate rights of way
- Maintenance and Protection of Traffic
- Environmental issues
- Special provision items
- Potential Utility conflicts

- Ensure that the Specifications that govern the contract are clearly identified. (Ex. Standard Specifications, Form 816 or Municipal Specifications).

1-2103 Preliminary Meeting with the Municipality

- Once the District is notified that a project has been awarded and a preconstruction meeting is scheduled, contact the Municipality to set up a preliminary meeting. The Consultant should attend, if applicable.

- If plans have not been received at the District, contact the Design Project Manager or the Municipality and make arrangements to secure plans and contract.

- Inspection staff should be approved prior to the meeting. Explain to the Municipality that any changes or substitutions in inspection personnel must be approved.

- Use the Checklist shown in Figure 1-21.1 to conduct the meeting.

- Review administrative responsibilities of the Municipal Administrator.

- Review project record keeping requirements.

- The District should perform the following prior to the meeting:
 - Review the Agreement between the State and the Municipality.
 - Review the Agreement between the Municipality and Consultant (if applicable).
 - Check to see who is responsible for doing the nuclear density testing, all other testing must be done by the District Lab. If the agreement requires the Municipality to perform the density testing, the nuclear density gauge must be calibrated at the State Lab.
 - Review the plans and contract specifications.
 - Perform a field review.

- Provide the Municipal Representative with all required paperwork and review it with them.

- Ensure the Municipality is aware that they must pay the Contractor and the Consultant prior to being reimbursed.

- Make the Municipality aware that they may not be reimbursed for additional items or increases in quantities without prior State approval.

- Make the Municipality aware that if testing requirements are not met, the State will not pay for those items.
Figure 1-21.1 Preliminary Meeting / Municipal Projects Check List

1. Does the State have a set of plans & Specs?
 - Yes - No
2. Does the State have a copy of the Municipal /State Agreement?
 - Yes - No
3. Does the District have the approval to award letter?
 - Yes - No
4. Does the State have a copy of the Municipal/Consultant agreement and the Consultant/Sub Consultant agreement?
 - Yes - No
5. Does the District have a copy of the agreement approval letter from the State?
 - Yes - No
6. Does the State have the DBE Preaward Documents?
 - Yes - No
7. Have the consultant names and wages rates been submitted to the Department for approval.
 - Yes - No
8. Has the Municipality submitted a request for approval to the State for the Inspector and Town Administrator?
 - Yes - No

8. Municipality Requirements:
 a. Assign a Municipal official or employee to administer and be in charge of the day to day operations of both the Contractor and the inspection services. This person is hereby referred to as the “Town Administrator (TA)”
 - Reviewed
 b. The TA will visit the jobsite regularly and be familiar with the project activities.
 - Reviewed
 c. The TA will review the Project records monthly and at that time sign five (5) daily work reports (DWR). This is a cursory review of the DWR to determine if the appropriate information is provided. Any sub-inspector DWR’s for the same day shall be reviewed and signed. The TA will also sign the Volume IV monthly.
 - Reviewed
 d. The TA will attend project meetings as required or warranted.
 - Reviewed
 e. The Town is reminded that if for any reason the inspector or TA can not complete their tasks on the Project the Town must notify the State of the proposed replacement(s) and request approval.
 - Reviewed
 f. The Municipality must request a Supplemental Agreement through the District as soon as the need for one is known. Reimbursement for project costs can not exceed the limits spelled out in the original agreements between the State and Municipality and between the Municipality and Consultant. (Approval of a Supplemental Agreement can take several months.) This request must include a breakdown of the estimated final contract value.
 - Reviewed
 g. For consultant agreements, the Town must request in writing to the State, approval to use “Extra Work” monies. A full explanation is needed as to why the additional money is required.
 - Reviewed
 h. The Town must make no change to the character or scope of work, which will increase the cost or alter the termini, or grant time extension without prior authorization from the MSAT Team leader. Failure to follow this procedure may result in some or all of the extra work being judged “non-participating”. This means not reimbursable. See handout entitled, “Change in Scope Approval Process.”
 - Reviewed
i. When a new item is required the Municipality must present in writing to the State the reason(s) for the new item, unit cost and the estimated quantity and dollar value of the new item and the price justification then request the State’s approval for the item to be considered a “participating” cost.

j. The Municipality shall issue a notice to proceed to the Contractor. This date is the start date, which is the date used to begin tracking contract days.

9. Provide the Town with the requirements for the recordkeeping format. Refer to Section 8-2 of the Municipal Manual

10. A pre-paving meeting shall be held in advance of the actual paving operation.

11. The Contractor must request “in writing” to the Town his request to work during the winter period. In his letter the contractor must list the items he will work on and provide a new construction schedule for review by the Town. The Town will then forward this request to the State for final approval. The Town should be reminded that the approval of winter work will also increase the inspection costs. The benefits/gain of allowing the Contractor to work must justify this additional expense.

12. Every computation must be checked by the TA or Consultant other than inspector. Every sheet must show the date and name of the persons (signature and printed name) “computed by _______ , checked by ________”.

13. Volume 4 information Refer to Chapter 12 of Municipal manual

14. The Construction Manual, schedule of minimum testing requirements, and assurance testing requirements can be obtained on the department website reference to location is in municipality manual. The Town or consultant is responsible for concrete testing and all the equipment necessary to perform the tests.

15. It is the practice of the Department that all installed materials must have paperwork in process to the lab (pending approval) prior to payments. If the inspector fails to test items they will be considered non-participating. Also, the Department will not pay for any items which have rejected material.

16. Refer to Section 18-9 of the Municipal Manual for nuclear density testing.

17. Go over Construction order process. The Town should submit a draft copy with backup for District approval prior to getting the construction order signed by the contractor. Refer to Municipal manual Chapter 14

18. All subcontractors, regardless of value, must have prior approval from the Town before starting any work.

19. For all subcontracts over $5,000.00 on state funded projects or $10,000.00 on federally-funded the following is required. The subcontractor must have an approved affirmative action plan form on file at CDOT. Refer to Municipal manual Chapters 5 & 6.

20. The inspector must perform wage checks once a month on the prime contractor and subcontractors employees.
21. Go over the DBE work and its requirements, and what to do if there is a shortfall in reaching the set goal. DBE Sub-Contractors must be submitted for approval on DBE participating forms, (this should be done prior to award.) The Contractor is required to submit quarterly reports to the Municipality and the State showing DBE payment made to date. Refer to Chapter 4 of Municipal manual for monitoring of DBE. ___ Reviewed

22. The Municipality is to perform an EEO site review. There is to be one done annually and at the end of the project. Refer to Chapter 23 of the Municipal manual. ___ Reviewed

23. CLA 3 forms should be submitted on a monthly basis.

 a. Municipality is responsible for ensuring all supporting documentation is with the CLA3 prior to submission to the MSAT Team. ___ Reviewed

 b. Municipality is to ensure any wage raises for consultants have been previously approved prior to payments. ___ Reviewed

 c. Municipality is to ensure that Direct Costs Billed are allowable. ___ Reviewed

24. The Consultant shall write a request to the Municipality for approval of “rate of pay” for all its consultant employees. The Municipality should review the agreement to be sure the request is within the maximum rate listed in the agreement. The Department should be cut in for a copy of this letter. The municipality shall request Department approval of these rates. Any consultant billings submitted to the Department with personnel or pay rates not approved by them will not be reimbursed by the Department. Any pay increases given during the course of the project must be submitted to the Department for approval and must not be more than a 3% increase in pay per year. ___ Reviewed

25. If the inspector is a Town employee the Town must send a letter to the State stating the pay rate and all billable benefits, taxes, etc that apply. ___ Reviewed

26. The Municipality is reminded that this is a reimbursable program and they shall pay its contractor then furnish a proof of payment to the consultant or contractor along with the submission to the State for reimbursement. ___ Reviewed

27. When submitting CLA 3’s for reimbursement to the State the Town shall provide 2 sets of backup along with the invoice. For Town inspectors or force account work, signed copies of time sheets are required as part of the back-up information with the CLA-3. ___ Reviewed

28. The Municipality shall be aware of the Cost Guide with regard to Consultant invoices and the cost allowed. This may be found in the consultant pamphlet. ___ Reviewed

29. Give Municipality disc which has copy of manual and forms on it. ___ Reviewed
Make the municipality aware that they must have proper equipment that is in good working order on the project and they must be doing the testing according to specifications. They should have the assurance testing done early in the project to address any issues right away.

- Review record keeping forms by the municipality, if different from State forms.

- Provide the Municipality with E.E.O. documents.

- Note that projects with a contract value greater than $150,000.00 require full time inspection. (Whether Town inspected or Consultant inspected.)

- Note calendar days, and if the contract time spans a winter period, review how the Municipality handles winter shut down or winter work.

- Inform the Municipality that the E.E.O. meeting should be incorporated into the preconstruction meeting, using the information provided by the District.

- Municipalities must request in writing the personnel to be utilized on the project and their respective wage rates. These include all personnel of the Consultant who will be billing on the project, field and office personnel. These letters must be submitted to the District MSAT team for review and approval prior to construction or reimbursement.

- Notify the Municipal official that any Consultant raises must be approved by the Municipality and submitted to the MSAT team leader for Department participation. No raises will be participating without these approvals. Wage increases are based on the Department’s cap of 3% per year, within the maximums in the agreement.

1-2104 MSAT Project Status

- MSAT Project Status logs shall be updated on a regular basis by the MSAT teams.

1-2105 Municipal Preconstruction Meeting

- Perform a site review prior to the preconstruction meeting.

- Inform the Municipality that they must contact the Department of Labor Office - Federal Contract Compliance, Cathy Bourdette (current) at 860-240-4278 to invite a representative to the meeting.

- Request a copy of the attendance sheet from the municipality.

- Note order to start date and advise Municipality to send a notice to proceed letter to the Contractor.

- Obtain the Contractor’s emergency phone numbers from the Municipality and the Municipality/Consultant day and after hour phone numbers.

- Municipalities/Consultants are to conduct the meeting, the Team member is there for assistance only.

- Explain site record review, which must be done by the Municipal Inspector. Provide the contractor with a copy of review form that they will be requested to complete at a later date.

- Provide the Contractor with the Subcontractor packet.
- Inform the Contractor that no payments will be processed on items that do not meet the testing requirements.

- Remind the Municipalities that no payments will be processed for regular item overruns or new items unless an appropriate construction order has been approved by the District.

- Remind the Municipality that this is a reimbursable program and they must pay the Contractor (and Consultant, if applicable) first, then the State reimburses them.

1-2106 Municipal Testing Procedures

- Testing is equivalent to state projects.

- At the beginning of the project the Municipality/Consultant will be given all the documentation necessary to determine minimum testing requirements for contract items, in addition to what is mandated in their contract.

- Notify Municipality they must ensure they have proper testing equipment and it must be in proper working order. Also inform them that they must schedule assurance tests that are witnessed by the Department’s Laboratory.

- The MSAT Team is responsible for ensuring the testing is being uploaded into SiteManager and any problems corrected.

- The MSAT Team is responsible for printing and forwarding the testing results during the course of the project.

- When the project is completed and being closed out, provide the Municipality/Consultant a format to submit to the District to use as an apparent final quantity (AFQ) for the Lab.

- The District forwards the AFQ to the Lab for their use.

- Once back from the Lab, send a copy to the Municipality/Consultant for them to address any exceptions.

- Once the Municipality responds to all exceptions noted by the Lab, forward a memo requesting material certification from the Lab.

- Once material certification is received from the Lab, the District sends a copy to the municipality.

1-2107 Municipal Contract Status Report, CON 100M

- Once the CON 100M is received from the Municipality and distribute copies.

- Update the MSAT project status log

1-2108 CLA 3s for Projects performed by Contractor/Consultant

- The Municipality needs to supply one original package and one copy of package.

- The Reviewer needs to look at the previous invoice.

- The Team needs to check contract items to verify that there is a construction order to cover additional quantities and new items, if not, do not pay over original amount. ALWAYS CHECK THE COPY NOT THE ORIGINAL.
Verify materials testing compliance prior to reimbursement by checking testing in SiteManager.

Ensure there is a copy of the cancelled check to the Contractor/Consultant or a sign off sheet from Contractor/Consultant stating amount paid.

Review prior billing amounts on summary.

Review Municipal/State and Municipal/Consultant agreements and check if there are any supplemental agreements.

- Inspection costs must be signed by Municipal Administrator on wages and hours for Municipal charges.
- Time sheets or time card copies must be attached.
- Check to make sure time billed is correct.
- Check the math.
- Check previously approved Consultant wage rates to ensure no raises have been given without Town and State approval.
- If mileage reimbursement is requested, review the mileage sheet, which should contain backup to support mileage charged. Only on-site mileage is allowed. Ensure the rate used is what is allowed per the agreement.
- If postage, photography bills, telephone bills, or any other appropriate direct cost reimbursements are requested, receipts are required. On telephone charges, reimbursable charges must be highlighted to indicate which are applicable to the project.
- If there are items that are being withheld from reimbursement, notify the Municipality and indicate on a separate sheet for that invoice.
 - Know limiting amounts established for funding, review agreements for differences.
- Check to ensure that there are adequate balances in all accounts to pay for the billing and that limits are not being exceeded.
- For any adjustment sheets/corrected sheets make the following copies:
 - 1 for original package
 - 1 copy for our package
 - 1 for municipality.
 - 1 copy for the inspector/consultant
- Prepare a letter to the Municipality with correction.
 - 1 copy of letter for our invoice office copy.
 - Send copy to the inspector with corrected sheets.
- Once the invoice is thoroughly checked and acceptable to pay, prepare a Letter of Transmittal to Fiscal person.
 - White and Yellow copies attached to CLA3 original to Fiscal.
 - Blue copy stays with district copy.
- The CLA3 has to be signed by the Team Leader.
 - Forward the package to the fiscal person for coding and forwarding.
 - Update the Municipal payment log.
1-2109 CLA3s for Projects Performed by Municipal Force Account

- Town must submit 1 original and 1 copy of the CLA3 with appropriate backup

- If Town does not have audited equipment rates they are to use the following in the following order:
 - Town Audited Rates
 - State Rates (to be obtained through the MSAT Team)
 - Federal Rates (to be obtained through the MSAT Team)

- Monthly summary of material, labor and equipment should be provided

- Labor should be substantiated with daily time sheets or logs

- Equipment should be broken out as to what is used daily on a log

- Material should be broken out as to what is put in per day

- Material invoices and or receipted bills should be provided to back up prices

- Processing of invoice is the same as for above

1-2110 Change In Scope Approval Process

- If the Municipality desires a change in scope or to add major items to the contract, the following tasks must be performed:
 - The Municipality must determine if the work is necessary and contact the District, in writing, for concurrence.
 - The District will coordinate a determination with Design and forward the decision, in writing, to the Municipality. Review if there is available funding and schedule a meeting, if necessary. To expedite, utilize fax, email, telephone, etc.
 - The Municipality notifies the Contractor of the change and requests a price for the work. (If a price cannot be negotiated and time is of the essence, the Contractor can be directed to perform the work on a cost plus basis.)

- Under no circumstances should the District suspend the work. Explain to the Municipality that before the State will reimburse any changes, proper approval must be in place. However, the Municipality can authorize the work to be performed without State approval with the understanding that it may not be reimbursable and would be the sole responsibility of the municipality.

- If the change is incorporated into the project, a construction order must be prepared and approved by the Municipality, and subsequently the participating funding approved by the District prior to reimbursement.

- If cumulative scope changes or major item revisions are greater than ten percent (10%) of the construction costs as stipulated in the State/Municipal agreement, then a supplemental agreement is required. The District should assist design in coordinating the supplemental agreement.

1-2111 Municipality Construction Orders

- Municipality should submit a draft of the C.O. for review to the district.

- Check to make sure that if any new items are on the C.O., the appropriate procedure has been followed for the approval of new items.
 - If there are new items, ensure proper back up and price justification.
 - If increases/decreases are more than 10% and $5,000.00, a reason is required.
For routine quantity adjustments, make sure that the funding is available to cover the C.O. amount. However, if there is a shortfall for the entire C.O., consider breaking down C.O. to smaller amount. The Team Leader should contact the District Fiscal Administrative Officer regarding additional funds.

Once approved, the C.O. is returned to the Municipality for processing.

Once the Municipality has returned the C.O. with signatures (1 signed original and 1 copy), forward original to Supervising Engineer for Oversight stamp.
 o Copy is for the District’s file.
 o Once the Supervising Engineer returns original to the project engineer, make a copy of the page with the Oversight stamp for our file.
 o Then the original, with the stamp, goes to the Municipality for their files.

Use the form stamp for construction order approval.

District approved time extensions are to be incorporated into a C.O.

1-2112 Claim Procedures

The Municipalities should be informed that if there is a claim submitted or a lawsuit filed on the project, the Team Leader should be informed immediately.

The Team Leader is to inform the District Engineer and then contact the Office of Construction. Notification should be provided to the Principal Engineer or the Supervising Engineer of the Claims and Litigation Unit (OOC).

The Team Leader will advise the Municipality to prepare a summary of the events that preceded the claim or lawsuit for discussion with the DOT. See Figure 1-16.1, Construction Issue Form. This summary should include the facts only and no opinion on entitlement or exposure should be mentioned. Bear in mind that all written communication would be subject to the Freedom of Information Act and Discovery.

The Office of Construction will arrange a meeting with the Municipality, DOT Design and any other appropriate parties.

The Office of Construction will advise the Districts on how to proceed.

All claims and lawsuits will be handled on a project by project basis.

1-2113 Periodic Records Review

A minimum of one review per month per active project should be performed, more frequently if required. The standard records review form is to be used. See Figure 1-21.2 for a copy of the standard form.

Bring a copy of the last estimate (CLA3).

Need to review payment items and checklist.

Take the last CLA 3 items paid and select items that are paid by computations. Review between six to eight items, with a minimum of three entries per item. (If there have been no estimates submitted yet, review Volume II and see what items have been worked on and select those.)

Check to make sure that there are references to the computations.
- Review the DWR’s to see if all pertinent data is recorded.
- If paving or placing processed aggregate base, ensure CON-136 bituminous reports (or equivalent) are being used.

Figure 1-21.2 Project Administration Review

PROJECT ADMINISTRATION REVIEW

<table>
<thead>
<tr>
<th></th>
<th>Project No.</th>
<th>Month of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAP No.</td>
<td>Year of:</td>
<td></td>
</tr>
<tr>
<td>Date of Review:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Contract Value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised Contract Value</td>
<td>(*) explanation attached</td>
<td></td>
</tr>
<tr>
<td>Estimate to Date:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Calendar Days:</td>
<td>Revised Calendar Days</td>
<td></td>
</tr>
<tr>
<td>Days Used to Date:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>YES</th>
<th>NO</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are IR’s up-to-date and contain the pertinent information/documentation (as per manual)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Are you using CON-136 Base/Bituminous Reports for paving operations?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Is the Vol. II being maintained, as per manual, including posting of test results?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Is the Vol. III (comp. books) following format to provide acceptable audit trail?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Is the Vol. IV (misc. data) up-to-date?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Is the submission of payrolls (prime/subs) recorded and up-to-date?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Are there sufficient Labor Wage Checks (as per manual)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Is the submission/processing of Payment Estimates in order?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Is the reconciliation sheet on payment estimates broken down by Participating/Non-Participating?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Are the submission/processing of Change Orders in order?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Do the Change Orders follow acceptable format and contain appropriate backup information?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Are Change Orders being submitted to DOT for approval? Number approved to date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Is the testing of materials being complied with?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Is assurance testing being done?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Is the submission/processing of CLA-3’s in order?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>At this time, will the contract meet its minority D/SBE requirements? (Agreements on file at field office?)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Are the submission of DBE Quarterly Reports up to date?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Is the percentage of work completed (days used) on schedule?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Does the Municipality have a subcontractor’s approval process?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Is Municipality approving subcontractors?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Are all subcontractors working on projects approved?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Are the field inspection forces providing satisfactory overall inspection/administration of the project?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Is the Municipality providing satisfactory administration of the project?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Are all other activities/areas of contract administration proceeding in accordance with DOT standards?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECT ADMINISTRATION REVIEW

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>IR’s Reviewed</th>
<th>Reviewed through Estimate #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discrepancies and/or comments:

(Name of Reviewer)
Date

(Name)
Project Engineer
Date
If linear feet items are checked, ensure that there is a “field measured by” sign off by an inspector.

- In the Volume II, ensure that there is a recording of the construction order quantities for the items.
- Also in the Volume II, ensure that there is a recording of the testing, as well as a “Request for Test Index”. The “Request for Test Index” should verify that the material testing requirements are being performed adequately.
- Check that the Volume IV is being maintained and that all required sheets are included.
- Ensure that the appropriate numbers of labor wage checks are being performed.
- Ensure that the payrolls for the Prime and all Subcontractors are recorded.
- Ensure that the equipment actually used on the project for the Prime and each Subcontractor(s) is being recorded.
- Make sure that you have given the municipality the modification dollar value to use in the Volume IV.
- Sign the Volume IV that a records review was performed.
- If you observe in the Volume IV that Subcontractors have been working (submission of payrolls), and CLA 12’s are not in the Volume IV, ask where they are and whether an unapproved sub is working on the project.
- Once the review is complete and all checklist questions have been answered, sign the checklist.
- Prepare a letter for Municipality Representative transmitting the review to them. Allow the municipality 30 days to address comments and shortcomings. See Figure 1-21.3 for a sample letter.

All Periodic Records Reviews must be kept in the Volume IV Miscellaneous Contract Data book.

1-2113A Periodic Review by CTDOT Management

CTDOT management should periodically visit some of the projects administered by Municipalities to confirm that the work is staffed and that there are no apparent problems that need to be addressed, as part of independent assurance.

1-2114 Semifinal And Final Inspection

SEMIFINAL INSPECTION

- The Municipality should schedule and invite all necessary parties to the inspection. The Team Leader needs to attend.
- Make sure that the Municipality invites the Design Liaison Unit.
- The Municipality should create a punchlist of what deficiencies are found at the inspection and send a copy to the attendees.

FINAL INSPECTION BY TOWN

- Once the Municipality knows that all the semifinal punchlist items have been addressed in a satisfactory manner, they need to go out and check that the project is acceptable.
Once the Municipality is satisfied the project is acceptable, they need to notify the District in writing and request our final inspection.

Figure 1-21.3 Sample Letter Transmitting Project Administration Review

(____)____________

Date____________

__

__

Dear ______________:

Subject: Project No. ______________

Attached, for your review, is a project administration review check list for the above mentioned project, as outlined in the municipal manual. This review consisted of an analysis of the project records, project administration, and the construction inspection being provided by

Please review this check list and respond to all discrepancies noted. All discrepancies should be corrected within 30 days from receipt of this letter. Please notify this office as to the appropriate corrective actions.

If you should have any questions regarding this matter, please contact__________________, Project Engineer, at telephone number (____)_______.

Very truly yours,

(Name)
Assistant District Engineer (or District Engineer)
Bureau of Engineering and
Construction

cc:

Attachment

bcc: OOC Principal Engineer
Project Manager (Design)
OOC Finals Unit
DE-ADE-SE-PE
FINAL INSPECTION BY STATE

- Once the District is notified that the project is acceptable, the Team Leader needs to ensure all corrections were performed.

- Once the Team Leader is satisfied, the Team Leader notifies the Supervising Engineer so that they can arrange for final inspection.

- If all is acceptable, the CON502, A, C, D, M, T can be filled out and submitted.

- Once all CON 502 are submitted the State CON500M to be filled out and signed by District and Municipality.

1-2115 Closing Out Projects

- Package and forward, via memo, records to Office of Construction - Records Examining Supervisor, for review. The following data is required:
 - Volume I
 - Volume II, for non-CMR projects
 - Volume III
 - Volume IV
 - delivery tickets
 - a copy of the apparent final-quantity estimate
 - copies of the approved and pending Construction Orders, with backup
 - a copy of the contract
 - a half-size copy of the plans
 - copies of Daily Reports of Cost Plus, with backup
 - a copy of the District’s final review, with how the corrections were made

- When finals package is complete, forward to the Office of Construction, Fiscal Administrative Officer.

- Prepare memo for External Audits, currently Gerald Dobek, and include a copy of coded CLA 3 and associated spreadsheets for audit.

- The municipality prepares the CON 501M.

- The District will notify the municipality of the audit report, in writing, upon completion by External Audits.

1-2116 Submission of Finals Package to Office of Construction

FHWA Funded Projects – Municipal (contracts awarded by the Municipalities)
Required forms (if applicable)

- Letter of Transmittal
- CON-100M
- Construction Report
- Index of Construction Orders
- Final Construction Order
- Materials Certificate
- Final Estimate
- Credits Due State
- Headquarters Final Review Report of Project Records
- Form 88-1
- Time Extensions
- CON502’s (A, C, D, M & T)
- CON-500M
- CON-501M
- Project Cost Overrun Report
- Financial Summary Checklist

State Funded Projects – Municipal (contracts awarded by the Municipality)

Required Forms (if applicable)

- Letter of Transmittal
- CON-100M
- Construction Report
- Index of Construction Orders
- Materials Certificate
- Final Estimate
- Credits Due State
- Headquarters Final Review Report of Project Records
- Form 88-1
- Time Extensions
- CON502’s (A, C, D, M & T)
- CON-500M
- CON-501M
- Project Cost Overrun Report
- Financial Summary Checklist

Force Account Projects – Municipality (all)

Required Forms (if applicable)

- Letter of Transmittal
- CON-100M
- Construction Report
- CON 502A, M, T
- CON-501M
- Letter – accepting all materials incorporated into the project (from Municipality)
Chapter 22 – Facilities Construction

1-2201 Overview

The Department is responsible for the construction and rehabilitation of multiple transportation related facilities throughout the state. Facilities Construction is defined as the type of construction that requires the issuance of a Certificate of Compliance by the State Building Inspector or his authorized representative at the completion of a project, and includes site work considered ancillary to this type of construction. See Figure 1-22.7.

Some typical examples of facilities construction projects administered by the Department would be:
- Airport Facilities (Terminals, Hangers)
- Railroad Stations and Platforms
- Railroad Repair Shops and Administrative Buildings
- Parking Garages
- Bus Facilities
- Roadway Maintenance and Repair Garages
- Salt Sheds
- Piers and Docks
- Other facilities operated by the Department

1-2202 Unit Responsibilities

The successful completion of a facilities construction project requires close coordination and cooperation between several Departmental Units and outside agencies, each with their own unique responsibilities.

- Construction: District personnel are responsible to provide Contract Inspection and Administration. During construction, they coordinate with other DOT units, the Contractor and outside agencies. The District processes all correspondence, holds meetings and teleconferences, verifies compliance with Contract Specifications and Requirements, arranges code inspections and maintains project records in accordance with established Departmental standards.

- Facilities Design: Acts as the Designer of record (if in-house design) or liaison to Designer (if outside consultant.) They are responsible to respond to Requests for Information (RFI’s), resolve design related construction issues by providing clarification or interpretation of Contract Documents, issue Change Orders (CO’s) and Field Design Changes (FDC’s) as required and attend meetings to monitor and resolve concerns.

- Properties and Facilities Services: Provide required code inspections in accordance with governing State Building and Fire Codes (See Section 1-2211 Code Inspections Schedule). Issue a “Notice of Intent to Construct/Renovate/Repair/Retrofit a Non-Threshold Structure” to the Office of the State Building Official (See Figure 1-22.6). Provide clarifications and interpretations of codes as they relate to the Project. Ultimately responsible for the issuance of a Certificate of Substantial Compliance, allowing occupancy of the facility, as well as acceptance of the Project by the Department as being code compliant.
• Bureau of Public Transportation: Both the Office of Rails and the Office of Transit and Ridership are responsible for the financial oversight of rail and transit projects. Representatives of both offices are the liaison between the end-user, Facilities Design, and Construction Units. Review and authorize all non-design related issues, as well as requests for changes from the end-user.

• Bureau of Aviation and Ports: Both the Office of Aviation and the Office of Ports are responsible for the financial oversight of aviation and port projects. Representatives of both offices are the liaison between the end-user, Facilities Design, and Construction Units. Review and authorize all non-design related issues, as well as requests for changes from the end-user.

• Owner: The facilities constructed are generally owned by the State of Connecticut; however, the end-user may be a different entity. The State, or its designee, is responsible for maintaining these facilities.

• Outside Agencies:
 • Department of Public Safety: Building and Fire Officials from the Department of Public Safety (DPS), in conjunction with the Office of Properties and Facilities Services, are responsible to perform code inspections on threshold buildings (see below). DPS Officials also perform code inspections of conveying devices (elevators, escalators, etc.) and boilers, and provide certifications. Upon request of Department’s Building Official, provide interpretations of building codes.

 • Department of Environmental Protection: Fuel pumps require DEP inspections prior to being put into service.

 • Others: Department of Weight and Measures (to certify fuel pumps), Department of Public Health (water and septic) and OSHA (safety) may be encountered.

NOTE: Threshold Buildings: Pursuant to Connecticut General Statute (C.G.S.) 29.2591a, buildings exceeding any of the following five threshold limits are considered “threshold buildings” and must be inspected for code compliance by the Office of the State Building Official:

1. Four stories,
2. 60-feet high,
3. A clear span of 150-feet wide,
4. 150,000 square feet of floor space,
5. Occupancy by 1,000 or more people.

These inspections would still be coordinated through the Office of Properties and Facilities Services.

1-2203 Obtaining a Certificate of Substantial Compliance

The steps needed to obtain a Certificate of Substantial Compliance (COC) are outlined in the following flowchart:
Figure 1-22.1 Certificate of Substantial Compliance Flowchart

1. **Start Construction**
 - Schedule Code Inspection

2. **Code Inspection**
 - **PASS**
 - Resume Work
 - Work Substantially Complete
 - **FAIL**
 - REINSPECTION

3. **REINSPECTION**
 - Corrective Work
 - Code Inspection

4. **Final Air and Water Balancing Reports**
 - Semi Final Punch List

5. **Semi Final Punch List**
 - Semi Final Punch List Work
 - Contract Closeout – As Built, O&M’s, Spare Parts, Warranties
 - Final Inspection

6. **Final Inspection**
 - **COC Issued?**
 - **YES**
 - Project Accepted
 - **NO**
 - COC Issue
 - **COC Inspection**
 - **COC Punch List**
 - **COC Corrective Work**
 - **COC Issued**
 - Building May Be Occupied
 - Training (If Applicable)

7. **Project Accepted**

8. **Project Accepted?**
 - **YES**
 - Contract Closeout – As Built, O&M’s, Spare Parts, Warranties
 - **NO**
 - Final Inspection Performed?
1-2204 Construction Specification Institute (CSI) Items

Facilities construction projects consist of standard and special provision items, including as a special provision, a “Major Lump Sum Item” (MLSI). The MLSI is typically assigned a name such as “Rail Facility” or “Bus Facility Upgrade” and includes all the Construction Specification Institute (CSI) items in the Contract. CSI categorizes the individual components of building trades into distinct divisions, with specific sections in each division. Although more divisions exist, generally you will encounter the following:

- Division 01 – General Requirements
- Division 02 – Existing Conditions
- Division 03 – Concrete
- Division 04 – Masonry
- Division 05 – Metals
- Division 06 – Wood, Plastics and Composites
- Division 07 – Thermal and Moisture Protection
- Division 08 – Openings
- Division 09 – Finishes
- Division 10 – Specialties
- Division 11 – Equipment
- Division 12 – Furnishings
- Division 13 – Special Construction
- Division 14 – Conveying Equipment
- Division 21 – Fire Suppression
- Division 22 – Plumbing
- Division 23 – Heating, Ventilating and Air Conditioning
- Division 26 – Electrical
- Division 27 – Communications
- Division 28 – Electronic Safety and Security
- Division 31 – Earthwork
- Division 32 – Exterior Improvements
- Division 33 – Utilities

NOTE: Section 1.20 of the Form 816 is used in lieu of Division 1 – General Requirements. Additionally, there are several specialized CSI divisions not listed as well as several reserved for future use. For more information on CSI MasterFormat 2004, see www.csinet.org.

1-2205 Project Start Up

Once the Contract is awarded, the Contractor must submit a “Schedule of Values” (See Figure 1-22.2). This schedule associates a dollar amount for each CSI section of the Contract. The values submitted are to be an approximate representation of the value of the work, but are not to be used as the basis for a credit if work is eliminated. The schedule of values total must equal the amount of MLSI. The schedule of values is reviewed and approved by the District. Once approved, the schedule of values will become the template for the monthly AIA payment requisitions submitted by the Contractor (See Section 1-2206 Payment Estimates). Please note that there should be no monetary allowances for any Division 1 items in the schedule of values as is typically indicated in the Contract.
On large complex facilities projects, an internal information only change order may be created, at the discretion of
the District, within the SiteManager change order process. This document will facilitate the tracking of the
applicable CSI divisions and testing within the project records. This change order is NOT to be issued to the
contractor and is optional for each Project. The items are created using item descriptions already existing in
SiteManager with the prefix “F”, as appropriate. At a minimum, the first generic item for each applicable CSI
Division (ex. F330000 – Utilities) is entered. Additional “F” items may be entered if the project staff necessitates.
The items are assigned a quantity of 1 (one) and a unit price of $0.00 (zero dollars), as payments will still be made
under the original MLSI.

Please note that the creation of the CSI oriented item numbers are intended to provide the inspection staff a means to
identify and track contractor activity and the various materials for testing that are associated with the various CSI
Divisions. The requests by the Prime Contractor to Subcontract (CLA-12) should reference the original bid item
(ex. 0101050A – Maintenance Facility) that the subcontractor will be performing work under.

1-2206 Payment Estimates

At the conclusion of each payment estimate period, the Contractor is required to submit an American Institute of
Architects (AIA) Form G702, “Application and Certificate for Payment” (See Figure 1-22.3), and AIA Form G703,
“Continuation Sheet” (See Figure 1-22.4). The Chief Inspector reviews the draft requisition prepared by the
Contractor, makes any corrections or alterations, and once satisfied, returns a copy to the Contractor. The
Contractor then submits a final, notarized version, based on the approved draft. The Project Engineer then signs the
front sheet of the (AIA) Form G702 in the Architect’s Certificate for Payment block lower right corner. The final
Forms G702 and G703 become the basis of payment for the MLSI. The final AIA Forms G702 and G703, along
with the “AIA Certification Statement” (See Figure 1-22.5) and a copy of the annotated draft requisition are to be
kept in the Volume 3 with a Payment Summary Sheet for the MLSI.

If payment is requested for any Stored Materials, or any materials not yet incorporated into the Project, the
Contractor must supply a receipted bill or Certification of Title, as specified under Article 1.09.06B of the Standard
Specifications, Form 816. Additionally, the requested materials must have been submitted to the Designer for
review and have a status of ‘Conforms’ or ‘Conforms as Noted’ to be eligible for payment. For lump sum items or
other instances when the unit of material being paid under Material Stored on Site does not note the pay unit, a
correlation between the two must be determined prior to any payments being made. See Chapter 9, Section 1-909,
of the Construction Manual for the requirements prior to paying for Stored Materials. (This applies to materials
stored on site, off site, and raw or partially fabricated materials).

Payment for all non MLSI work is to be done in accordance with typical Departmental Procedures and is not to be
included in the AIA documents.

1-2207 Testing

Submittals (shop drawings, product data, product samples, catalog cuts and quality assurance submittals) for items
that are not part of the Standard Specifications are submitted by the Contractor to the Designer/Architect for review
and will be returned as either ‘Conforms’, ‘Conforms as Noted’, ‘Revise and Resubmit’, ‘Rejected’, or ‘No Action
Required’. All remaining items are tested in accordance with established policies (i.e., concrete, HMA, subbase,
etc.) in accordance with the Minimum Schedule for Sampling Materials for Test. The field inspector is then
required to verify that the material installed matches the acceptable submittal. A submittal log will be kept as part of
the project records.
A Final Material Certification provided by the Division Chief of Research and Materials will be required for any projects with FHWA funding or any roadway projects. A request for a Material Certificate will be sent to the DMT from the District which will include information on all the items accepted by the Designer/Architect with a statement indicating the applicable materials conformed to the Contract so that the materials can be excluded from the testing deficiency list. To assist the field inspector the following statement will be incorporated into Site Manager for materials covered by an approved submittal: “No Request for Test Required.” A Final Material Certification will not be provided by the DMT for facilities (vertical)/non-roadway projects, this information will be retained by the DMT “for information only purposes.”

1-2208 Field Design Changes (FDC’s)

A Field Design Change memorandum is used to initiate a Change Order for minor changes or revisions to the Contract. FDC’s provide direction in the form of a narrative, including sketches if necessary, so that issues can be addressed quickly. Provided it does not affect life, safety or structural items, a Field Design Change can be issued by the District for amounts not exceeding $10,000.00 at the level of a Supervising Engineer or above, with the concurrence of Facilities Design. There is no dollar amount limitation on FDC’s from Facilities Design. However, if in the opinion of the District the changes are extensive, then a Change Order, rather than FDC, shall be issued by Facilities Design.

1-2209 Contract Closeout

The following items are required to be submitted and/or performed prior to the acceptance of a Facilities Construction Project. Detailed requirements will be found in the Special Provisions, including the “Notice to Contractor” section.

- Warranties: Projects include a one year general warranty furnished by the Contractor for all materials and workmanship performed under the Contract. Additionally, special warranties may be required for items such as roofs, where a 20-year or longer warranty is typical. All warranties begin on the date of issuance of the Certificate of Substantial Compliance. Contractors are required to maintain all contractually required insurance coverages through the one year general warranty period. Warranties are submitted to the Designer for review and approval.

- Operation and Maintenance Manuals (O&M’s): O&M’s are required per Special Provisions for certain mechanical, electrical and other equipment installed. O&M’s are to be formatted in accordance with Section 1.20-1.08.14 of the Form 816. These manuals are submitted to the Designer for review and approval. Once approved, one copy is retained in the Project Records and all remaining copies are transmitted to the unit responsible for the operation and maintenance of the facility.

- Spare Parts: Many items include a spare parts schedule in the Special Provisions. Once received from the Contractor, spare parts (sometimes called extra materials, owner’s stock or attic stock) are transmitted to the unit responsible for the facility. Care should be taken when storing spare parts, especially any volatile or fragile materials. For instance, paint should not be stored in an unheated room where it may freeze. Also, electrical rooms or closets cannot be used for storage.
Training: Several items may require training for the end-user to ensure the proper operation and maintenance of the equipment installed. Training must be arranged in advance, but not before the relevant O&M’s have been approved. Training sessions are required to be videotaped for future employees and those unable to attend.

As-Builts: The Contractor is responsible for maintaining as-built record drawings and record specifications during construction and supplying a complete, “red-lined” set at the conclusion of the Project to the Engineer. The Designer may be responsible to produce as-built mylars based on the Contractor’s red lines. If not, the chief inspector is responsible for updating the mylars.

1-2210 Reports and Records

The Chief Inspector is required to keep all reports and records as outlined in Volume 1 Chapter 3 “Project Documentation”, Volume I Chapter 10 “Contract Completion” and Volume 1 Chapter 12, “Civil Rights”. In addition a daily sign-in sheet is required, signed by the Contractor’s employees and any subcontractors working on the site that day. This sign-in sheet will be attached to that day’s DWR in the Volume I.

Figure 1-22.2 Schedule of Values

<table>
<thead>
<tr>
<th>CSI SECTION</th>
<th>DESCRIPTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>033000</td>
<td>CAST-IN-PLACE CONCRETE</td>
<td>$2,300,000.00</td>
</tr>
<tr>
<td>055000</td>
<td>METAL FABRICATIONS</td>
<td>$74,000.00</td>
</tr>
<tr>
<td>055213</td>
<td>PIPE AND TUBE RAILING</td>
<td>$65,000.00</td>
</tr>
<tr>
<td>061053</td>
<td>MISCELLANEOUS ROUGH CARPENTRY</td>
<td>$14,000.00</td>
</tr>
<tr>
<td>072700</td>
<td>AIR BARRIERS</td>
<td>$20,000.00</td>
</tr>
<tr>
<td>079200</td>
<td>JOINT SEALANTS</td>
<td>$20,000.00</td>
</tr>
<tr>
<td>085700</td>
<td>DOOR HARDWARE</td>
<td>$17,200.00</td>
</tr>
<tr>
<td>092613</td>
<td>GYPSUM VENEER PLASTERING</td>
<td>$22,000.00</td>
</tr>
<tr>
<td>092900</td>
<td>GYPSUM BOARD</td>
<td>$35,000.00</td>
</tr>
<tr>
<td>095113</td>
<td>ACOUSTICAL PANEL CEILING</td>
<td>$4,000.00</td>
</tr>
<tr>
<td>099100</td>
<td>PAINTING</td>
<td>$109,000.00</td>
</tr>
<tr>
<td>102113</td>
<td>TOILET COMPARTMENTS</td>
<td>$4,000.00</td>
</tr>
<tr>
<td>102800</td>
<td>TOILET, BATH, AND LAUNDRY ACCESSORIES</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>104400</td>
<td>FIRE PROTECTION SPECIALTIES</td>
<td>$2,500.00</td>
</tr>
<tr>
<td>105113</td>
<td>METAL LOCKERS</td>
<td>$51,000.00</td>
</tr>
<tr>
<td>133419</td>
<td>METAL BUILDING SYSTEMS</td>
<td>$1,800,000.00</td>
</tr>
<tr>
<td>211313</td>
<td>WET-PIPE SPRINKLER SYSTEM</td>
<td>$160,000.00</td>
</tr>
<tr>
<td>213113</td>
<td>ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS</td>
<td>$60,000.00</td>
</tr>
<tr>
<td>220500</td>
<td>COMMON WORK RESULTS FOR PLUMBING</td>
<td>$95,000.00</td>
</tr>
<tr>
<td>230500</td>
<td>COMMON WORK RESULTS FOR HVAC</td>
<td>$680,000.00</td>
</tr>
<tr>
<td>260500</td>
<td>COMMON WORK RESULTS FOR ELECTRICAL</td>
<td>$3,200,000.00</td>
</tr>
<tr>
<td>283111</td>
<td>DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM</td>
<td>$45,000.00</td>
</tr>
</tbody>
</table>

TOTAL $8,782,700.00
APPLICATION AND CERTIFICATION FOR PAYMENT

APPLICATION NO: 15
APPLICATION DATE: 13-Sep-06
PERIOD TO: 31-Aug-06

TO OWNER: State of CT Department of Transportation
FROM CONTRACTOR: ABC CONSTRUCTION
CONTACT FOR: Interior Shop Maintenance Facility

APPLICATION AND CERTIFICATION FOR PAYMENT
Application is made for payment, as shown below, in connection with the Contract. The undersigned Contractor certifies that to the best of the Contractor's Knowledge, information and belief the Work has progressed as indicated, and the quality of the Work is in accordance with the Contract Documents, and the Contractor is entitled to payment of the AMOUNT CERTIFIED.

CONTRACTOR ABC CONSTRUCTION
APPLICATION DATE 15-Jul-05

APPLICATION STORED AND STORED (C - G) (NOT IN TO DATE

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION OF WORK</th>
<th>SCHEDULED VALUE</th>
<th>WORK COMPLETED</th>
<th>MATERIALS PRESENTLY</th>
<th>MATERIALS ORDERED TO DATE</th>
<th>MATERIALS ORDERED TO DATE</th>
<th>% COMPLETED TO FINISH</th>
<th>RETAINAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>030000</td>
<td>Cast-In-Place Concrete</td>
<td>2,300,000.00</td>
<td>1,550,000.00</td>
<td>150,000.00</td>
<td>$1,700,000.00</td>
<td>73.91%</td>
<td>$600,000.00</td>
<td>$42,500.00</td>
</tr>
<tr>
<td>050000</td>
<td>Metal Lockers</td>
<td>74,000.00</td>
<td>71,000.00</td>
<td>0.00</td>
<td>$71,000.00</td>
<td>95.95%</td>
<td>$3,000.00</td>
<td>$1,775.00</td>
</tr>
<tr>
<td>05213</td>
<td>Pipe and Tube Railing</td>
<td>65,000.00</td>
<td>48,000.00</td>
<td>0.00</td>
<td>$48,000.00</td>
<td>73.86%</td>
<td>$17,000.00</td>
<td>$1,200.00</td>
</tr>
<tr>
<td>061053</td>
<td>Miscellaneous Rough Carpentry</td>
<td>14,000.00</td>
<td>6,000.00</td>
<td>0.00</td>
<td>$6,000.00</td>
<td>42.86%</td>
<td>$8,000.00</td>
<td>$150.00</td>
</tr>
<tr>
<td>072000</td>
<td>Air Barriers</td>
<td>20,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
<td>0.00%</td>
<td>$20,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>079200</td>
<td>Joint Sealants</td>
<td>20,000.00</td>
<td>1,000.00</td>
<td>7,100.00</td>
<td>$6,100.00</td>
<td>36.07%</td>
<td>$11,860.00</td>
<td>$203.00</td>
</tr>
<tr>
<td>081100</td>
<td>Door Hardware</td>
<td>17,200.00</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
<td>0.00%</td>
<td>$17,200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>06013</td>
<td>Gymnasium Veneer Plastering</td>
<td>22,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
<td>0.00%</td>
<td>$22,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>050000</td>
<td>Door Hardware</td>
<td>35,000.00</td>
<td>35,000.00</td>
<td>0.00</td>
<td>$35,000.00</td>
<td>100.26%</td>
<td>$90.00</td>
<td>$877.25</td>
</tr>
<tr>
<td>065113</td>
<td>Acoustical Panel Ceiling</td>
<td>4,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
<td>0.00%</td>
<td>$4,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>050100</td>
<td>Painting</td>
<td>100,000.00</td>
<td>33,000.00</td>
<td>20,500.00</td>
<td>$35,000.00</td>
<td>49.08%</td>
<td>$55,000.00</td>
<td>$1,337.50</td>
</tr>
<tr>
<td>102113</td>
<td>Toilet Compartments</td>
<td>4,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
<td>0.00%</td>
<td>$4,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>102800</td>
<td>Toilet, Bath, and Laundry Accessories</td>
<td>5,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
<td>0.00%</td>
<td>$5,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>104000</td>
<td>Fire Protection Specialties</td>
<td>2,500.00</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
<td>0.00%</td>
<td>$2,500.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>105113</td>
<td>Metal Lockers</td>
<td>51,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
<td>0.00%</td>
<td>$51,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>133419</td>
<td>Metal Building Systems</td>
<td>1,800,000.00</td>
<td>800,000.00</td>
<td>0.00</td>
<td>$800,000.00</td>
<td>44.44%</td>
<td>$1,000,000.00</td>
<td>$20,000.00</td>
</tr>
</tbody>
</table>

GRAND TOTALS
$8,782,700.00 | $4,129,000.00 | $349,730.00 | $0.00 | $4,478,730.00 | 50.99% | $4,303,970.00 | $111,968.25

This Certificate is not negotiable. The AMOUNT CERTIFIED is payable only to the Contractor named herein. Issuance, payment and acceptance of payment are without prejudice to any rights of the Owner or Contractor under this Contract.

By:
Date:
State of: Connecticut
County of: Hartford
Notary Public:
My Commission expires:

ARCHITECT'S CERTIFICATE FOR PAYMENT
In accordance with the contract Documents, brand of on the data comprising the application, the Architect certifies to the Owner that to the best of the Architect's knowledge, information and belief the Work has progressed as indicated, and the Contractor is entitled to payment of the AMOUNT CERTIFIED.

ARCHITECT
APPLICATION STORED AND STORED (C - G) (NOT IN TO DATE

AMOUNT CERTIFIED $

(Attached explanation if amount certifies differs from the amount applied. Initial all figures on this Application and on the Continuation Sheet that are changed to conform with the amount certified.)

By: NOT APPLICABLE
Date:

This Certificate is not negotiable. The AMOUNT CERTIFIED is payable only to the Contractor named herein. Issuance, payment and acceptance of payment are without prejudice to any rights of the Owner or Contractor under this Contract.

By: NOT APPLICABLE
Date:

This Certificate is not negotiable. The AMOUNT CERTIFIED is payable only to the Contractor named herein. Issuance, payment and acceptance of payment are without prejudice to any rights of the Owner or Contractor under this Contract.

Figure 1-22.3 Sample AIA Form G702 Application and Certification for Payment

Figure 1-22.4 Sample AIA G703 Continuation Sheet
THE UNDERSIGNED CHIEF INSPECTOR/RESIDENT ENGINEER CERTIFIES THAT TO THE BEST OF HIS/HER KNOWLEDGE, INFORMATION, AND BELIEF AND BASED ON ON-SITE OBSERVATIONS THE WORK HAS PROGRESSED AS INDICATED, THE QUALITY OF WORK IS IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, AND THE CONTRACTOR IS ENTITLED TO PAYMENT OF THE AMOUNT REQUESTED.

John Doe

John Doe, Chief Inspector

FOR PAYMENT REQUESITION PERIOD: 04-01-2006 TO 04-30-2006
[Today’s Date]

Mr. Christopher Laoux
State Building Inspector
Department of Public Safety
Division of State Building Inspector
1111 Country Club Road
Middletown, CT 06457-9294

Dear Mr. Laoux:

RE: Notice of Intent to (Construct / Renovate / Repair / Retrofit a Non-Threshold Structure

Please be advised that the Department of Transportation, Bureau of Finance and Administration, Division of Property and Facilities Services, intends to construct a state-owned structure or building as described below:

Agency: Department of Transportation
Agency Representative: Philip E. Parcak – Tel. (860) 594-2233, Fax (860) 594-2255
Project Location:
Address:

DOT Project Number:
Permit Number:
Type of Work: Construct – Renovation – Repair - Retrofit
Building Information: Construction Type ______ Height ______
Use Group ______ Number of Stories ______

Description of Work:

The tentative project completion date is estimated as __________________________

Construction inspection will be performed under the direct supervision of Property and Facilities personnel, as they are licensed by your office to insure compliance with the State Building Code.

An application for a Certificate of Compliance will be forwarded to you when the actual project completion date is determined.

If you have any questions, please contact me at telephone number (860) 594-2233.

Sincerely,

Philip E. Parcak (B.O. 017-90)
Principal Engineer
Bureau of Finance and Administration
1-2211 Code Inspections Schedule

This information applies only to building structures that do not exceed the statutory threshold limit as described in C.G.S. 29-276b.

This document is based upon the 2005 Connecticut State Building Code only and does not include other governing documents such as the ConnDOT Form 816, FM Global standards and Department of Environmental Protection requirements for example. Where other governing requirements are applicable, the most stringent shall apply and shall supersede that of the 2005 Connecticut State Building Code.

This list was created for the convenience of the user and identifies most inspection situations requiring the Code Official. It is a general list and may vary based upon the nature of the building project.

The contractor shall provide the Code Official at least 48 hours notice to schedule the required code inspection and witness of testing.

Description of Inspections

- **Footing inspection Prior to Concrete Placement (Sections 1704.4, 109.3.1)**
 - Prepare fill / controlled structural fill, is site prepared per approved report and is placement of fill material compliant. (Section 1803.5)
 - Approved set of footing and foundation plans plus soil boring and sampling records shall be available at all times. (Section 106.3.1)
 - Compaction testing reported. (Section 1803.5)
 - Testing of concrete scheduled by an approved testing agency. (Sections 1704.4, 1905.6)

- **Foundation Inspection Prior to Concrete Placement (Section 1704.4)**
 - Reinforcing steel. (Sections 1704.4, 1907.0)
 - Inserts, penetrations, appurtenances and anchoring. (Sections 1604.8, 1704.4)
 - Forms placed and oiled. (Section 1905.7)
 - Testing of concrete scheduled by an approved testing agency. (Sections 1704.4, 1905.6)
 - Temporary Heat (inspected by Code Official) and Cold Weather Protection. (Sections 1905.12, 1905.13, 1905.11.1)
 - Damp proofing, Waterproofing and Subsoil Drainage System. (Section 1807.0)

- **Floor Inspection Prior to Concrete Placement**
 - Compaction Testing reported. (Section 1803.5)
 - Approved set of building plans to be available at the site. (Section 106.3.1)
 - Perimeter insulation, vapor barrier and isolation of columns. (Section 1911.0)
 - Reinforcing steel, mesh and haunch placement. (Sections 1905.7, 1907.0)
 - Slab thickness, construction joints and expansion joints. (Sections 1909.3, 1911.0)
 - Testing of concrete scheduled by an approved testing agency. (Sections 1704.4, 1905.6)

- **Underground Inspection of Mechanical, Plumbing, Electrical & Fire Protection (IMC 107.1, IPC 107.1)**
 - **Mechanical and Plumbing (IMC 107, IPC 107)**
 - Trench pitch and bedding. (IPC 306.0)
 - Piping installation and pressure test(s). (IPC 305, 312, 702, 704, IMC 1304, 1209.2)
 - Backfill material and placement. (IPC 306.3)
 - **Electrical (Sections 2701, 2702, NEC 2005)**
 - Trenching and bedding. (NEC 300.5)
 - Conduit installation. (NEC 300.5)
 - Backfill material and placement. (NEC 300.5(D))
Code Inspection Schedule (continued)

- **Electrical Service Entrance and Temporary Construction Electrical Service (NEC 590.4(A), 230.0)**
 - These services shall be inspected by the Code Official and released to the respective electrical utility company for activation. Sign-off by Code Official is required by the Utility Companies.

- **Fire Protection - Underground work including fire service and thrust blocking. (NFPA 13 - 2002, Chapter 10, 10.8.2 (thrust blocks))**
 - Trenching and bedding. (NFPA 13 - 2002, 10.4 – 10.9)
 - Piping installation and pressure test(s). (NFPA 13 – 2002, 10.10.1 – 10.10.2.24)
 - Backfill material and placement. (NFPA 13 – 2002, 10.9)

 - Witness of all manufacturers’ required procedures.
 - Hold down structures
 - Backfill material and placement.
 - Piping and appurtenances and testing.

- **Structural Steel & Metal Framing Inspection Prior to Concealment**
 - Inspection shall be performed by Special Inspector or Code Official if Special Inspector is not required.
 - Protection of steel by approved methods prior to masonry. (Section 2203.2)
 - Floor, roof and wall members, panels, columns, bracing, bolts, washers and welds. (Sections 1704.3, 1704.3.1.2, 1704.3.3)
 - Spray applied fire resistive material. (Section 1704.11)
 - Third party reports: prefab steel, assemblies, markings, certified test reports, ASTM, weld filler. Fabricator Certification / Quality Control Procedures. (Sections 1704.2, 1704.2.1, 1704.2.2)

- **Masonry & Stone Inspection Prior to Concealment (Sections 1704.5, 2104.1)**
 - Anchor ties. (Sections 1704.5, 2104.1.3, 2109.7)
 - Lintel and bond courses. (Sections 1704.5, 2104.1.5, 2109.6)
 - Horizontal and vertical reinforcement. (Sections 1704.5, 2109.6)
 - Certification of block, brick and accessories. (Section 1704.5)
 - Mortar type material, temperature and method of application. (Sections 1704.5, 2104.3)
 - Flashing, damproofing, weeping, wicking, insulation and penetrations. (Section 1704.5)
 - Third party reports, prefab masonry units, assemblies, markings, certified test reports and ACI Standards. (Section 1704.5)
 - Temporary Heat and Cold Weather Protection (Sections 1704.5, 2104.3.3)

- **Wood Construction Roughing Inspection**
 - Fabricator Certification / Quality Control Procedures. (Sections 1704.6, 2303.0)
 - Material Grading. (Section 2303.1.1
 - Connections. (Section 2304.9)
 - Framing and Details. (Sections 2304.3, 2304.4)
 - Roof and Floor Diaphragms, Interior and Exterior Shear Walls. (Sections 2305.2, 2305.3)
Code Inspection Schedule (continued)

- **Cast-In-Place Concrete, Pre-Cast Concrete, Exterior Insulation & Finish Systems (EIFS), Structural Insulated Panel Systems, Curtain Wall Systems and all Special Cases (Sections 1903, 1704.4, 3101.1), Mechanical, Plumbing, Electrical & Fire Protection (including Sprinkler Standpipe, Hood Extinguishing, Detection and Fire Alarm) Above Slab / Rough-In Inspection Prior to Concealment**
 - Rough-in inspections shall be made after the roof, framing, fireblocking, firestopping, draftstopping and bracing is in place and all ducting and other components to be concealed are complete, all sanitary, storm, fire protection and water distribution piping is roughed-in & prior to the installation of wall and ceiling coverings.
 - Inspections of MEP & FP work shall also include inspection of fire safing, sleeving, sealants, penetrations & thru-penetration firestop systems as well as seismic bracing and attachment (which may be a part of Special Inspection duties)

- **Mechanical and Plumbing (Sections 2801.1, 2901.1, IMC 107(2))**
 - Piping and duct system installations. (IMC 304, 603, 1107, 1208.1, 1304, 1305, IPC Ch. 6 & 704)
 - Duct and piping support, hanger systems and seismic bracing. (IMC 304, 305, 603, IPC 308, 1621)
 - Fire and smoke dampers. (IMC 716.1, 716.3, 716.5, UL 555, NFPA 90A – 2002)
 - Pipe / duct insulation, identification, valve tags and vibration isolation. (IMC 301.10, 604, 1204, IPC 303, 505, Ch. 6, 719.7)
 - Witness piping system (domestic water, drain-waste-vent, storm, fuel) testing. (IMC 107.2, 1208, 1209.2, 1304.1, IPC 312)
 - Witness refrigerant system test and certification provided. (IMC 1108)

- **Electrical (NEC 2701.0)**
 - Rough-in inspection shall include but not be limited to:
 - General requirements for electrical installations, conduit and feeder installation. (NEC Art. 110)
 - Bonding and grounding of devices, boxes, conduit, equipment and structure. (NEC Art. 250)
 - Service entrance and switchgear installation. (NEC 110.34F, 230, 338, 490 III)

- **Fire Protection**
 - Rough-in inspection shall include but not be limited to:
 - Piping system installation. (Section 903.0, NFPA 13)
 - Hanger systems and seismic bracing. (Section 903.0, NFPA 13)
 - Witness hydrostatic pressure system test. (Section 903.0, NFPA 13)

- **General Inspection (Sections 109.3, 705.0, 706.0, 708.0, 709.0)**
 - This section shall also be done on fire walls, fire and smoke barriers constructed in accordance with referenced test assemblies.

- **Inspections & Testing Prior to Certificate of Compliance and Occupancy (Sections 109.0, 110.0)**
 - Outstanding inspection report violation findings and code discrepancies resolved. (Sections 109.3.10, 113.0)
 - Outstanding Plan Review report comments and code discrepancies resolved. (Sections 109.3.10, 113.0)
 - Testing of the emergency power and standby power systems - witnessed by CA & Engineer of Record. (Sections 2702, NEC 700.4, NFPA 110 – 2002)
 - Testing of fire protection systems. (sprinkler, standpipe, hood and special extinguishing, fire pump, detection & fire alarm systems), special locking area of refuge communication system, emergency lighting and exit signage witnessed by Code Official. (Sections Ch. 9, 1011, 1024, NEC 700, 760, 1021.4)
 - State of Conn. Dept. of Public Safety - Boiler Bureau inspection, testing & operating certificate (860) 685-8320 where applicable. (CT General Statute Chapter 540)
Code Inspection Schedule (continued)

- State of Conn. Dept. of Public Safety - Elevator Bureau inspection, testing & operating certificate. (860) 685-8340. (Section 3001.1.1)
- State of Conn. Dept. of Public Health (DPH) approval of sewer, septic and water supply (potability test per IPC 610) Kitchen / food service per Local or Regional Health Department.
- State of Conn. Dept. of Environmental Protection registration of fuel oil, motor and aviation fuel and hazardous materials, Engineer of Record to complete required form for CTDOT to sign.
- Backflow prevention acceptance by water supplier. (IPC 608)
- Certification of HVAC operation and balancing. (IMC 107.2)
- Testing of smoke control system - witnessed by Code Official & Engineer of Record. (Section 909.3)
- Electrical Ground Fault Protection system performance test, witnessed by Code Official. (NEC 230.95C)
- Kitchen Hood exhaust system, laboratory hood and special exhaust system inspection and testing by certified installer / tester, and witnessed by the Code Official. (IMC 507, 510, NFPA 45)
- Explosion Hazard Protection Inspection by Engineer of Record. (Section 414)
- Inspection of accessible components by Code Official and Engineer of Record. (Chapter 11)
CERTIFICATE OF COMPLIANCE

| Location : |
| Description: |
| Town : |
| Permit Number : |
| Project Number : |

THIS IS TO CERTIFY THAT to the best of my knowledge and belief, the above described project has been designed in substantial compliance with the requirements of the State of Connecticut Basic Building Code and other applicable codes as required by Section 29 – 252(a) of CGS as amended. Minor deficiencies and approved variances are indicated below:

__

Engineer of Record Date

__

THIS IS TO CERTIFY THAT to the best of my knowledge and belief, the above mentioned project was built in accordance with the plans and specifications and approved change orders, and is in substantial compliance with the Connecticut Building Code and all other applicable codes. Special stipulations are noted below:

__

General Contractor Date

__

D.O.T District Engineer Date

__

D.O.T Trans. Principal Engineer Date
Philip E. Parcak – B.O. 017 – 90

Received by State Building Official:

By : Date :
Appendix A1 – SiteManager: Project Manager/Inspector

TABLE of CONTENTS

Section One – Logging On

1-A100 Introduction .. 1-A1.4
1-A101 Getting Started .. 1-A1.4
1-A101A Server Logon ... 1-A1.4
1-A101B Logon .. 1-A1.6
1-A101C Enter SiteManager ... 1-A1.7

Section Two – Daily Work Reports

1-A102 Daily Work Reports (DWR’s) .. 1-A1.8
1-A102A Add Contractor Personnel for DWR’s .. 1-A1.8
1-A102B Add Contractor equipment for DWR’s .. 1-A1.9
1-A102C Daily Work Reports ... 1-A1.9
1-A102D Create A DWR .. 1-A1.10
1-A102D-1 Active Tab = DWR Information ... 1-A1.10
1-A102D-2 Active Tab = Contractors .. 1-A1.12
1-A102D-3 Active Tab = Contractors’ Equipment .. 1-A1.13
1-A102D-4 Active Tab = Daily Staff ... 1-A1.13
1-A102D-5 Active Tab = Work Items .. 1-A1.13
1-A102D-6 Active Tab = Force Accounts .. 1-A1.14
1-A102E Open an Existing DWR ... 1-A1.15
1-A102F Copy an Existing DWR .. 1-A1.15
1-A102G Review a DWR ... 1-A1.15
Section Three – Daily Diaries

1-A103 Diary ... 1-A1.16
1-A103A Diary .. 1-A1.16
1-A103B Create a Diary .. 1-A1.16
1-A103C Enter Information on a Diary .. 1-A1.17
1-A103C-1 Active Tab = Authorize ... 1-A1.17
1-A103C-2 Active Tab = Charge .. 1-A1.18
1-A103D Review and Authorize a DWR In the Diary .. 1-A1.18
1-A103E Print a Diary ... 1-A1.19

Section Four – Contract Estimates

1-A104 Contractor Payments .. 1-A1.20
1-A104A Estimates .. 1-A1.20
1-A104B Generate an Estimate .. 1-A1.20
1-A104C Print Summary by Project .. 1-A1.20
1-A104D Approve Estimates .. 1-A1.21

Section Five – Sampling and Testing

1-A105 Materials Testing (MAT-100’s) .. 1-A1.21
1-A105A Materials Testing ... 1-A1.21
1-A105B Contract Item Materials Report .. 1-A1.21
1-A105C Create a MAT-100 ... 1-A1.22
1-A105C-1 Active Tab = Basic Sample Data .. 1-A1.22
1-A105C-2 Active Tab = Additional Sample Data ... 1-A1.25
1-A105C-3 Active Tab = Contract .. 1-A1.25
1-A105C-4 Active Tab = Tests .. 1-A1.26
1-A105D Print a MAT-100 ... 1-A1.26

Section Six – Construction Change Orders

1-A106 Change Orders ... 1-A1.27
1-A106A Create a Change Order ... 1-A1.27
1-A106B Change Order Items ... 1-A1.28
1-A106B-1 Adjust an Existing Contract Item ... 1-A1.28
1-A106B-2 Create A New Contract Item ... 1-A1.28
1-A106C General Change Order Explanations 1-A1.29
1-A106D Specific Change Order Explanations 1-A1.29
1-A106D-1 Standard Explanation (Specific Items) 1-A1.30
1-A106D-2 Standard Explanation (All Line Items) 1-A1.30
1-A106D-3 Specific Explanation (Specific Items and All Line Items) 1-A1.31
1-A106E “No Item” Change Order ... 1-A1.33
1-A106E-1 Header .. 1-A1.33
1-A106E-2 Change Order Explanation .. 1-A1.33
1-A106F Change Order Approval ... 1-A1.34
1-A106G Change Order Report ... 1-A1.35

Section Seven – Labor Wage Checks

1-A107 Labor Wage Checks ... 1-A1.35
1-A107A Enter New Labor Wage Checks ... 1-A1.36
1-A107B Modify or Review Existing Labor Wage Checks 1-A1-36

Section Eight – Contractor Payrolls

1-A108 Certified Payrolls ... 1-A1.37
1-A108A Enter Certified Payrolls for the Same Contractor 1-A1.37
1-A108B Enter Certified Payrolls for a Different Contractor 1-A1.38
Section One – Logging On

1-A100 Introduction

This manual has been written to standardize methods for entering information into the State’s construction monitoring software, SiteManager™. It provides step-by-step navigation through the menus, data entry requirements for project staff, and various tips. State policy has been incorporated into applicable areas.

Basic computer operating skills are assumed. The Learning Lab provides training in basic computer use. Anyone interested in improving their computer skills may contact their supervisor for more information.

Further help is available through the SiteManager Help File.

The Office of Quality Assurance, in conjunction with the Office of Information Systems, is charged with the administration, support and oversight of the SiteManager application and its associated functions.

The Office of Construction is charged with establishing and overseeing the business uses of the application in the administration of the Department’s contracts. In addition, there are staff members within each District and the Lab, who are assigned to support the SiteManager System. These personnel are available to assist unit staff with SiteManager questions or problems.

1-A101 Getting Started

In order to start using Site Manager, there are two different areas necessary for logging onto the system. The first area procedure outlines logging onto the Remote Desktop, and the second outlines logging onto Site Manager itself.

1-A101A – Server Logon

At the desktop, double click on Remote Desktop Connection Icon. This icon is sometimes labeled as SiteManager. (If you do not have this icon on your desk top go to the Start button, to Programs, to Accessories, to Remote Desktop Connection.)

The Remote Desktop Connection window will open. Due to various Windows Updates, you may have screens that differ from the following screen shots. The procedure is basically the same however, if you need assistance you can contact the Site Manager System Administrator.

(Note: when you sign in for the first time, you may have to enter ‘sdcooc01’ or ‘sdcooc02’ in the Computer: field. Typically users in Districts 3 and 4 use sdcooc01, and users in Districts 1 and 2 use sdcooc02).

You may find it useful to allow sharing between your local computer and the Terminal Server so that you can easily save data from Terminal Server to your local hard drive or removable media. This is especially important because files should not be stored on the Terminal Server, as this has an adverse effect on the performance of the server. Excess files will be removed by PC Support and no recovery options will be offered. This is also true of the T:\ drive that may be accessible from your local PC.

To enable sharing between the local computer and the Terminal Server: (The following screen shots may be different, depending on the server you are on but the method is similar. If you have questions, contact your Site Manager Administrator):
• Choose the Options button:

• Select the Local Resources Tab:

• Ensure that Printers and Clipboard are checked and click the “More” button:
Ensure that the “Drives” box is checked and click OK:

Click on the **Connect** button.

A server desktop will open with the computer name (sdcoec01 or sdcoec02) listed within a tab on the top of the screen.

The **Log onto Windows** window will open.

- Enter your **User Name** and **Password**. (Note: these will be the same as your log-in information for the network computer.
- In the **Log on to**: dropdown field, choose or enter ‘CONNDOT_01’.
- Click on the **OK** button (or press **Enter**).

You will now find yourself on the Remote Server Desktop. This desktop will look similar to your local desktop and has all of the same functionality. The difference is that you will actually be working on a computer in a different location, and not on your local PC.

1-A101B – Logon

Look for the **SiteManager PRODUCTION 3.5a** and **SiteManager Reporting** Icons. These will likely be the most frequently used applications during your session.

- Double Click on the **SiteManager PRODUCTION 3.5a** bulldozer icon. This will take you to the SiteManager Application logon screen. The **SiteManager Logon** window will open.
- Enter your **User ID** that was provided to you by your SiteManager District Administrator.
- Generally, your **User ID** will be the first six characters of your last name followed by the first initial of your first name. All characters will be in lower case.

1. Upon your initial logon to SiteManager (or whenever your password is reset), your password will be ‘**PASSWORD**’ (enter as all capitals – SiteManager is case sensitive).

- Enter ‘**PASSWORD**’ in the Password field.
- Click the Change Password button.
The **Change Password for User ID** window will open.

- Enter ‘PASSWORD’ as your Old Password.
- Enter and confirm your New Password (the new password must be 4 to 8 characters or digits). (Note: no form of the word ‘password’ is allowed.)
- Click the OK button.

2. Subsequent logons require you to use your New Password (Type your password exactly as entered. Remember that SiteManager is case sensitive.)

- Enter your password.
- Press the Logon button (or press Enter).

TIPS

- SiteManager Security will lock the system after three consecutive logon failures. Always close and restart the logon screen after two failed attempts. If logon continues to fail, contact your SiteManager District Administrator.
- You may change your password as often as you desire.
- If you forget your password, contact your SiteManager District Administrator, who will have it reset to ‘PASSWORD’.
- If your User ID is not found, make sure it was input in lowercase – SiteManager is case sensitive; otherwise, check with your SiteManager District Administrator.

I-A101C – Enter SiteManager

The **Available Groups for User ID** window will open.

- Select how you wish to enter SiteManager by highlighting the appropriate **Group Name** and pressing OK. The **SiteManager Panel** window will open.

(Note: Each group has specific rights. Choose the one that applies to the tasks you wish to perform. **In order to avoid possible errors, always choose the group with the lowest level of rights available**)

It is advisable to select your contract upon entering SiteManager:

- Double click the **Contract Administration (+) icon.**
- Double click the **Contract Records (+) icon.**
- Double click the **Contracts** (or **Projects**) icon. The **Select Contract** window will open.

- Double click your appropriate **Contract ID**. At this point your contract is open. All tasks will apply only to the selected contract.

- Click the **SiteManager Panel** icon (or click the **File** pull-down menu, then click **Main Panel**) to reopen the **SiteManager Panel.**

The following icons are available on the SiteManager Main Panel (For detailed usage, see appropriate section) Icons with a (+) next to them will open a new panel when selected:
Section Two – Daily Work Reports

1-A102 – Daily Work Reports (DWR’s)

A Daily Work Report is required only when there is (contract work being performed) construction activity.

A Daily Work Report may be created for a ‘No Activity’ day to make item payments. For example, to pay for a project field office during a winter shut-down period.

In accordance with Section 1-305 “Daily Work Report and Dairy”, Inspectors compile their daily DWRs at the work site and enter a comprehensive description of the work that took place that day into the SiteManager DWR. If there is a significant amount of information contained in the DWR, it is generally acceptable to provide a comprehensive description in the space that is available and then refer to the hard copy DWR for the additional information and description. In this scenario, the user must include a reference to the additional information (Ex. “Refer to DWR (Date and User ID) Hard Copy for details of work performed (replace date and user ID with the proper information). It should also be noted that users may attach a document to their DWR within SiteManager. As in the above example, proper reference should be made.

1-A102A - Add Contractor Personnel for DWR’s

At the start of the project, the Project Manager is responsible to add and maintain the labor classes that each contractor will be using on the Project to the ‘Personnel Type’ pull down menu. Navigation to add personnel is:

- Starting at the Main Panel, Double-click on the Daily Work Reports (+) icon,
- Double-click on the Reference Tables (DWR+) icon,
- Double-click on the Contract Master List icon. The Select Contract Vendor window will open.
- Double-click the desired contract.

A list of contractors (vendors) will appear.

- Double-click on the contractor that you would like to add personnel to. The Contract Master List
window will open and the Equipment bullet will be active.

- Click the Personnel bullet.
- Highlight a title under the Personnel Name column.
- Click Add to transfer the personnel type from the Vendor Master List to the Contract Vendor List.
- Repeat the steps until all personnel are added.
- Click the Save icon.
- Click the Open Folder icon to open the Select Contract Vendor window.
- Select a new contractor, and add personnel by following the steps above.
- When all personnel has been added to the project, Press the Save icon and close the window.

You will now be back at the Contractor tab within the DWR.

- Click the New icon. A pull down menu will appear.
- Select a personnel type by pressing the down arrow and highlighting a classification.
- Enter the number of each personnel type, and their hours worked.

SiteManager will compute the total hours and transfer them to other fields on this screen.

After all information has been added relating to the Contractors tab, click the Save icon.

1-A102B - Add Contractor Equipment for DWR’s

At the start of the project, the Project Manager is responsible to add and maintain the equipment that each contractor will be using on the Project to the ‘Equipment ID – Description’ pull down menu: Navigation to add equipment is:

- Starting at the Main Panel, Double-click on the Daily Work Reports (+) icon,
- Double-click on the Reference Tables (DWR+) icon,
- Double-click on the Contract Master List icon. The Select Contract Vendor window will open.
- Double-click the desired contract. A list of contractors (vendors) will appear.
- Double-click on the contractor that you would like to add equipment to.

The Contract Master List window will open and the Equipment bullet will be active.

- Highlight a title under the Equipment Description column.
- Click Add to transfer the equipment type from the Vendor Master List to the Contract Vendor List.
- Repeat the steps until all equipment is added.
- Click the Save icon.
- Click the Open Folder icon to open the Select Contract Vendor window.
- Select a new contractor, and add equipment by following the steps above.
- When all equipment has been added to the project, Press the Save icon and close the window.

You will now be back at the Contractor Equip. tab within the DWR.

- Click the New icon. A pull down menu will appear.
- Select an equipment type by pressing the down arrow and highlighting a classification.
- Enter the number of each equipment type, number used, and hours used.
- After all information has been added relating to the Contractors Equip. tab, click the Save icon.

Note: If a particular personnel or equipment type is unavailable from the master list, please contact your District SM Administrator.
1-A102C – Daily Work Reports

It is advisable to select your contract upon entering SiteManager:

- Double click the Contract Administration (+) icon.
- Double click the Contract Records (+) icon.
- Double click the Contracts (or Projects) icon. The Select Contract window will open.
- Double click your appropriate Contract ID. All Daily Work Reports that you enter from this point will be related to your Contract.
- Click the Main Panel icon.
- Click the Main Panel tab.
- Double click the Daily Work Reports (+) icon to open the Daily Work Reports (+) menu.
- Double click the Daily Work Reports icon to open the Daily Work Reports window.

The DWR Info. tab will be active, and the current date will be shown.

1-A102D - Create a DWR:

- Double click on the ‘DWR Date:’ field. A calendar will open with the current date highlighted.
- Single click the desired DWR date, and press OK. You may also put the cursor in the date field and manually input the six-digit date.

There are six sections that comprise a Daily Work Report (DWR): DWR Info., Contractors, Contractor Equip., Daily Staff, Work Items, and Force Accounts. Please note that not all of these sections are required. The only mandatory sections are DWR INFO, Contractors and Work Items. The other sections are available if additional information is desired, and may be used at the users’ discretion.

1-A102D-1 - Active Tab = DWR Info.

- Input the high and low temperatures.
- Select the morning and afternoon weather conditions using the pull down menus.

SiteManager will automatically check the following boxes: No Work Items Installed, No Contractors On Site, and No Daily Staff On Site. SiteManager will automatically update the status of the checks for these fields based on information that is entered in the balance of the DWR.

- If applicable, check the Work Suspended box, then enter the appropriate times.

The following examples are recommendations for entering information within the Remarks: fields; (Note that when information is saved in any of the categories mentioned below, a “check” symbol will appear next to that category description.)

There are three scenarios for entering information within the General category:

1. Project Manager, with or without sub-inspectors, no activity and with payments:

 General
 No Contractor Activity: Prime Contractor to Project 123-123
 Schilling, C.: Review Cost Plus
 Smith, R.: Testing
 McGraw, T.: Volume III Computations
 Phone call to DOT Design, RE: plantings.
 Make monthly payment for project field office.
2. Project Manager with no sub-inspectors, with contractor activity:
 General Waters Construction – East St. – drainage
 CCA – East St. – construction staking
 Santoro – East St. – sawcutting
 Conn. Traffic Control – East St. – traffic control
 Phone call to DOT Design, RE: plantings
 Issue speed memo to prime, RE: turf est. req’d for slope stabilization.

3. Project Manager with sub-inspectors and contractor activity:
 General See DWR MMDDYY schille for end-of-month payments.
 See DWR MMDDYY smithr for sawcutting and utilities
 See DWR MMDDYY mcgrawt for drainage, traffic control and staking.
 Phone call to DOT Design, RE: plantings.
 Issue speed memo to prime, RE: turf est. req’d for slope stabilization.

The following examples are recommendations for entering information within the remainder of the **Remarks** fields:

(Note: Categories can be left blank if there are no relevant comments. Information is only required if it pertains to significant events that occurred on the project)

Accident West Street, NB lane 1030 +/-, car vs. truck, Town police on scene.

EEO Issues 30% EEO site meeting rescheduled for next week

Environmental Sed. fence adjacent to field office undermined by runoff from noon thunderstorm.
 Contractor repaired before the end of work.

Meetings Utility Meeting with T.R. James Construction, Yankee Gas, and Conn DOT. See minutes.

PE Record Review Project Engineer on site: Review volume 1.

Personnel Remarks Only note staff present. Do **not** include staff on leave or leave type.

Possible Cost Plus During sawcutting of roadway for drainage installation, found concrete roadway (cutting of concrete roadway item to be added). Refer to hard copy DWR for labor and equipment.

Possible Dispute or Claim Discussion with contractor – item #0406013 (qty increase over 125%).

Safety Violations Prime Contractor instructed to protect drop-off along edge of sidewalk.

Lane Closures South Street closed, detour in effect. East Street alternate one-way, station 0+120 to 0+200, 0700-0930.

Utility CON-40 Info T. R. James Construction for Yankee Gas relocating gas line 0900-1400 South Street, station 1+040 to 1+080, right. Refer to hard copy DWR for men, equipment and CON-40 #.

Visitor Mr. Smithers, Public Works Dept.
 Mr. Jones, Project Engineer

Weather Heavy winds and thunderstorm from 1200-1230

Work Hours Waters Construction Co.: 0630-1430
 CCA: 0900-1600
TIPS

- All DWR’s must be referenced by the applicable User ID. For example, a DWR for July 8, 2004, by an inspector named Raymond Smith, would be “DWR 070804 smithr”.
- DWR attachments must also be fully labeled. For example, an attachment to the above would be labeled “DWR 070804 smithr-1”. Back-up for that page would be “DWR 070804 smithr-1a”. If there were another attachment (a speed memo or a wholly separate computation), it would be “DWR 070804 smithr-2”.

1-A102D-2 -Active Tab = Contractors

When the Contractors tab is active, there are three areas to input information: Contractor, Supervisor/Foreman Name, and Personnel Type. The only area that is required to be filled is the Contractor field. SiteManager will not allow items to be entered in the Work Item tab unless there is a contractor associated with the DWR. Be sure to select the correct contractor that is associated with the work. This helps with tracking items that are specifically assigned to contractors, such as DBE contractors. Items that are assigned to other contractors should NOT be paid under the prime contractor.

No personnel will be available for DWR’s until they are added to the dropdown menu. The Project Manager is responsible to add personnel to the personnel type dropdown menu. See Section 1-A102A above, for navigation.

- Click anywhere in the Contractor area to highlight it. You will see a shadow line on the right side and bottom of the active area.
- Press the New icon. A dropdown menu will appear. Select a contractor by pressing the down arrow and highlighting the contractor. Do not enter information in the columns on the right. SiteManager will update these fields as you input information.

Supervisor/Foreman Name area. Call the District SiteManager Administrator to have the Supervisor/Foreman Name entered for your particular project.

- Click anywhere on the Personnel Type area to highlight it.
- Press the New icon. A dropdown menu will appear. Select a personnel type by pressing the down arrow and highlighting the title.
- Enter information in the Nbr of Persons field.
- Enter information in the Hours Worked field.
- Press the New icon to add more personnel types.
- Press the Save icon.

Note: Each particular personnel type (i.e. laborer) can only be entered once per DWR. Therefore, if you have more than one particular personnel type and they work a different number of hours that day, you would need to enter a remark to record their separate work hours.
1-A102D-3 - Active Tab = Contractors Equip.:

When the Contractor Equip. tab is active, there are two areas to input information: Contractor and Equipment ID – Description.

No equipment will be available for DWR’s until they are added to the pull down menu. The Project Manager is responsible to add equipment to the equipment type pull down menu. See Section 1-A102B above, for navigation.

- Click anywhere in the Contractor area to highlight it. You will see a shadow line on the right side and bottom of the active area.
- Press the New icon. A dropdown menu will appear.
- Select a contractor by pressing the down arrow and highlighting the contractor. Do not enter information in the columns on the right. SiteManager will update these fields as you input information.
- Click anywhere on the Equipment ID - Description area to highlight it.
- Press the New icon. A dropdown menu will appear. Select a piece of equipment by pressing the down arrow and highlighting the description.
- Enter information in the Nbr of Pieces field.
- Enter information in the Nbr Used field.
- Enter information in the Hours Used field.
- The Hours Used field is used for cost plus operations or specialized equipment.
- Press the New icon to add more equipment.
- Press the Save icon.

Note: Each particular equipment type (i.e. backhoe) can only be entered once per DWR. Therefore, if you have more than one particular equipment type and this equipment is used for cost plus operations, you would need to enter a remark to record the separate work hours.

The Remarks balloon shown on the tool bar above can be used to add specific details regarding the equipment such as whether it is rented / borrowed. Another advantage to the use of the Remarks Balloon is to comment on the quality, type of use or status of the equipment (idle or not) or any additional optional equipment to support or enhance its performance. However, if this piece of equipment will be used repeatedly on the project, if there is a potential for claim or it is significant enough to warrant record of use such as for specialty operations like a crane, then the equipment must be added to the Contractor’s master list of equipment including make, model, year and size.

1-A102D-4 - Active Tab = Daily Staff

Navigation to enter inspection force personnel is:

- Click the New icon. A dropdown screen will appear.
- Choose the project personnel and enter their regular and overtime hours. Repeat for each staff member.

After all information has been added relating to the Daily Staff tab, click the Save icon.
When the **Work Items** tab is active, the project item list is visible.

- Scroll through the list to find the pay item.
- Double click the item to see the item screen.
- Press the **new** icon to activate the pay fields.
- Enter information in **Placed Qty** and **Location** fields.
- Click the **Contractor**: pull down to select a contractor. Be sure to enter the appropriate contractor for the assigned item. Do NOT simply pay an item to the prime contractor if it is assigned to a sub contractor.

TIPS

- If a contractor was not selected in the Contractors tab, the pay fields will not be active (white). To make payments on a DWR that does not track contractor activity (monthly items), you must select a contractor under the Contractor tab, but it is not necessary to select any personnel or equipment.
- Be advised that if you choose to enter information in one of the Station, Offset, or Distance fields, you will have to make a notation in every one of the Station and Offset fields.

- Press the Remarks icon.
- Enter the DWR and/or Volume III reference for that pay item. Also, enter specific comments for the daily activity for the item.

When entering information for the **Trafficperson** item, be sure to include the trafficperson’s name, affiliation, badge number, hours worked, and lunch/no lunch in the **Remarks** field.

- Close the Remarks window by pressing the icon again.

If there is a second payment for that same pay item, press the **New** icon. You will see a second line appear and the **Loc Seq Nbr** field will read “2”. Enter information as stated above.

- Press the **Select Work Item** icon to return to the list of pay items.

Repeat the steps until all payments are entered.

- Press the **Save** icon.

1-A102D-6 - Active Tab = Force Accounts

No information can be entered in the **Force Accounts** tab. It is not being used at this time.
1-A102E - Open an Existing DWR

- Press the Open Folder icon, or, click the File pull down menu, and select Open.

A Daily Work Reports sub-window opens asking if you would like to “Save changes?” Be careful that you do not accidentally save the DWR! If there is no activity for the date shown, no DWR is required. DWR’s created accidentally cannot be deleted.

The Contract ID window will open.

- Double click the User ID for the DWR you are opening. Scroll through the list, and double click the date of the DWR you are opening.

If the DWR has been authorized by the Project Manager (Chief Inspector), an AASHTO SiteManager window will appear informing you that the DWR will be opened as “Read Only”. This means that no information can be modified. Simply press OK to continue.

If the Project Manager has not authorized the DWR yet, the DWR will open with the DWR Info. tab active.

1-A102F - Copy an Existing DWR

On days where men and equipment do not change much, it is possible to copy a DWR. The data from the Contractors, Contractor Equip., and Daily Staff tabs will be copied from an existing DWR to a new DWR.

- Open the DWR that you want to copy.
- Double click anywhere in the DWR Date field. The Select Date window opens.
- Select the date of the new DWR.
- Click OK. The Copy? Window opens questioning if you would like to “Copy Contractor Information?”
- Click Yes or No.

- When Yes is pressed, a new DWR will appear with the new date. Information on the Contractors, Contractors Equip., and Daily Staff tabs will be copied. This information needs to be reviewed and modified as required.

- When No is pressed, no information will be copied, and a new DWR will appear with the new date.

- After all information has been added relating to the DWR Info. tab, click the Save icon.

This feature is of significant benefit for the user. It allows repetitive information to be carried from one day to the next, which will result in a savings of time and effort. Minimal changes can be made to each section if necessary, resulting in faster processing of Daily Work Reports.

1-A102G - Review a DWR

Navigation to review a DWR is:

- Press the Services dropdown menu.
- Select Preview DWR. The Print Preview window opens. Scroll through the DWR to ensure the information is correct.
Section Three – Daily Diaries

1-A103 - Diary

The Diary is entered by the Project Manager to track time (days), and to authorize (approve) DWR’s entered by inspection forces. A diary needs to be entered for every calendar day from the actual “Start Date” to the “Completion Date”.

For work performed after the “Completion Date” (i.e.: punch list), a Diary is required when a DWR is entered.

For days of active construction, or days with contractor payments (monthly pay items, etc.), DWR’s must be entered.

The Project Manager provides a summary of the day’s activities in the Diary if it is not already provided in their DWR. In accordance with Section 1-305 “Daily Work Report and Diary”, Inspectors compile their daily DWRs at the work site and enter a comprehensive description of the work that took place that day into the SiteManager DWR. If there is a significant amount of information contained in the Diary, it is generally acceptable to provide the summary in the space that is available and then refer to the hard copy Diary or particular DWRs for the additional information and description. In this scenario, the user must include a reference to the additional information (Ex. “Refer to DWR (Date and User ID) Hard Copy for details of work performed (replace date and user ID with the proper information). It should also be noted that users may attach a document to their Diary or DWR within SiteManager. As in the above example, proper reference should be made.

TIP

- A DWR needs to be entered before you use the Diary to authorize the DWR. If the DWR is not in the system, it will not appear in the Diary, and the Project Manager cannot authorize it.

1-A103A – Diary:

It is advisable to select your contract upon entering SiteManager:
- Double click the Contract Administration (+) icon.
- Double click the Contract Records (+) icon.
- Double click the Contracts (or Projects) icon. The Select Contract window will open.
- Double click your appropriate Contract ID.

All Diaries that you enter from this point will be related to your Contract.
1-A103B – Create a Diary:

- Click the Main Panel icon.
- Click the Main Panel tab.
- Double click the Daily Work Reports (+) icon to open the Daily Work Reports (+) menu.
- Double click the Diary icon to open the Diary window.

The Authorize tab will be active, and the current date will be shown.

- Double click on the ‘Diary Date:’ field. A calendar will open with the current date highlighted.
- Single click the desired Diary date, and press OK. You may also put the cursor in the date field and manually input the six-digit date.

1-A103C – Enter Information on a Diary

TIP

- If there are DWR’s created for the selected date, they will be listed by the inspector’s name in the Inspector field. Prior to authorizing the DWR, the Project Manager must review it. To review an existing DWR, see Section 1-A103D below.

1-A103C-1 - Active Tab = Authorize

The following examples are recommendations for entering information within the Remarks fields:

There are four scenarios for entering information within the General category:

1. Project Manager, with no sub-inspectors, and no activity or payments:
 - General: No Contractor Activity: Saturday.
 - South Street closed, detour in effect.

2. Project Manager, with no sub-inspectors, with contractor activity or payments:
 - General: Waters Construction – East St. - drainage
 - CCA – East St. – construction staking
 - Santoro – East St. – sawcutting
 - Conn. Traffic Control – East St. – traffic control
 - Phone call to DOT Design, RE: plantings.
 - Issue speed memo to prime, RE: turf est. req’d for slope stabilization.

3. Project Manager, with sub-inspectors and no activity or payments:
 - General: No Contractor Activity: Prime Contractor to Project 123-123
 - Schilling, C.: Review Cost Plus
 - Smith, R.: Testing
 - McGraw, T.: Volume III Computations
 - Phone call to DOT Design, RE: plantings.
 - Issue speed memo to prime, RE: turf est. req’d for slope stabilization.

4. Project Manager, with sub-inspectors, with contractor activity or payments:
 - General: See DWR MMDDYY schillc for end-of-month payments.
 - See DWR MMDDYY smithr for sawcutting and utilities.
Categories can be left blank if there are no relevant comments. Information is only required if it pertains to significant events that occurred on the project. Other Categories contained in the Diary are:

- Accident
- EEO Issues
- Environmental Meetings
- PE Record Review
- Personnel Remarks
- Possible Cost Plus
- Possible Dispute or Claim Safety
- Violations Lane Closures
- Utility CON-40
- Info Visitor
- Weather Work Hours

TIP

- You can cut and paste from a DWR to the Diary.

1-A103C-2 – Active Tab = Charge

Press the **Charge** tab to view the contract time related fields. SiteManager tracks contract days based on the information entered in these fields.

When a diary is created, SiteManager will default the **Charge Type** to **Full Day**.

This needs to be changed if the project is completed, or if the Contract runs throughout the winter (and you do not count winter days).

Navigation to change the **Charge Type** is:

- Press the field next to **No Charge**

The **Credit Reason** field will become active.

- Select the appropriate reason from the dropdown menu.
- Press the **Save** icon
- Press the **Authorize** tab

1-A103D – Review and Authorize a DWR (in the Diary)

With the **Authorize** tab active, the Project Manager can review DWR’s. Navigation to review a DWR is:

- Highlight the desired **inspector** name
- Press the **Services** dropdown menu
Select **Preview DWR**. The **Print Preview** window will open.
- Scroll through the DWR to ensure information has been entered correctly. The only person who can change DWR information is the DWR creator (inspector).
- Close the window to return to the Diary. If the DWR information is accurate, the Project Manager can authorize the DWR.
- Check the box in the **Authorized** column of the acceptable DWR.
- Press the **Save** icon. The authorized date will appear in the **Authorized Date** column.
- Repeat these steps for each DWR listed.
- If a mistake is found on a DWR at some later date (but before an estimate is run), the DWR can be unauthorized and corrections can be made.

To unauthorize the Diary (before the estimate has been run), click in the **Authorized** Box to remove the check mark. Save the Diary. Then, make the necessary corrections on the DWR and save the DWR. Go back to the Diary and authorize again. Save the Diary.

1-A103E – Print a Diary

With the **Authorize** tab active, press the **Services** dropdown menu, then select **Preview Diary**. The **Print Preview** window will open. Review the Diary, and then press the **Print** button.

The Diary printout shows the **Charge** and **No Charge** calendar days.

To correctly track the calendar days, each Diary must be entered and printed before the next Diary is created. If Diaries are not printed out as they are entered, the calendar days will be incorrect. In this case, the Project Manager is responsible to draw a line through the incorrect number, and write in the correct number. For example: A contract starts on Saturday (Day 1). The contractor will not be working for a week or so. On Tuesday (Day 4), the Project Manager enters Diaries for Saturday, Sunday, and Monday. When the Project Manager prints the Diaries, they will incorrectly read “3” in the **Total Number of Diaries** field. If they were printed out as they were completed, the **Total Number of Diaries** fields would correctly read “1”, “2”, and “3”, respectively.

TIP

- The Diary precedes any DWRs for that day in the Volume I.
- The Project Manager signs the Diary as shown here:

 Robert Smith (signed)
 Robert Smith (printed)
 04/09/2007 (date of DWR)
Section Four – Contract Estimates

1-A104 – Contractor Payments

1-A104A – Estimates

It is advisable to select your contract upon entering SiteManager:

- Double click the Contract Administration (+) icon.
- Double click the Contract Records (+) icon.
- Double click the Contracts (or Projects) icon. The Select Contract window will open.
- Double click your appropriate Contract ID.

All Estimates that you enter from this point will be related to your Contract.

1-A104B – Generate an Estimate

TIP

Before generating an estimate, you can view the work installed since the last estimate. From the Main Panel, click on Contractor Payments (+) icon. Then click on Reports (CP+) icon. Next, click on Installed Work icon. Choose your contract from the Report Criteria and click OK.

- Click the Main Panel icon.
- Click the Main Panel tab.
- Click the Contractor Payments (+) icon.
- Double click the Estimate (+) icon.
- Double click the Generate Estimate icon.
- The Contracts window will open.
- Double click the contract.
- The Generate Estimate window will open.
- SiteManager will assign an estimate begin date. Enter the required End: date manually in the field, or by choosing the date from the calendar.

SiteManager will default Type to Progress. Leave it that way.

- Click the Generate Estimate icon.
- A window opens stating, “Job Submitted to BACKGND”. Click OK.
- A window opens stating, “Process OCPINTESA Submitted.”. Click OK.
- After a short wait, a window opens stating, "Profile OCPINTES for process OCPINTESA has completed". Click OK.

All fields within the Generate Estimate window will become gray.

- Close the window by clicking the X in the upper-right hand corner.

1-A104C – Print an Estimate

- Click on the SiteManager Panel icon (the Estimate (+) tab will be active).
- Click on the Contractor Payments (+) tab.
- Click on the Process List icon.
Click on Pay Estimate\Federal Aid Sheet.
Click Subset.
Select your contract number and the estimate number you want to print. Click OK.
Click Submit.
Click OK when message appears that “Process FEDAID-3A was submitted.”
Click OK when message appears that “Profile FEDAID-3A for process FEDAID-3 has completed.” Note:
If you do not get the “completed” message after 30 Seconds, continue to the next step
Go to Services and select Process Status.
Click on FedAIDA.
Click on Output.html. Your estimate will appear.
Go to File, Page Setup and select Landscape. Click OK. You can now print the estimate.
Note: If you request the estimate to be printed again, it will now be FEDAIDB, and then C, etc.

1-A104D – Approve an Estimate:
The Contracts window will be open.
Click on the SiteManager Panel icon (the Estimate (+) tab will be active).
Double click the Estimate Approval icon. The Select Contract/Estimate window will open.
Double click the contract. The Estimate Approve window will open. Check to ensure that the appropriate estimate number is correct.
Within the Approval Levels field, check the box next to your name. – If a window opens that mentions discrepancies, simply click No.
Click on the Save icon.
After a short wait a window opens stating, “Mail Sent to PE.”. Click OK.

Section Five – Sampling and Testing
1-A105 - Materials Testing (MAT-100’s)

1-A105A – Material Testing

It is advisable to select your contract upon entering SiteManager:
Collate the Contract Administration (+) icon.
Double click the Contract Records (+) icon.
Double click the Contracts (or Projects) icon. The Select Contract window will open.
Double click your appropriate Contract ID.
All Mat-100’s that you enter from this point will be related to your Contract.

1-A105B – Print a Contract-Item-Materials Report

Prior to the testing of any materials on a contract, the inspectors MUST have the correct item codes (and unit types) to assign proper testing to specific materials. The item codes (and unit types) are available to the inspector on the CONTRACT-ITEM-MATERIALS report. In addition to supplying the item codes (and unit types), this report also supplies each and every material that needs to be tested for each contract item. The following navigation will allow the inspector to obtain this report:
Click the Main Panel icon.
Click the Main Panel tab.
Click the Materials Management (+) icon.
Double click the Process List icon. The Process List window will open.
Double click the “CITM_GEN” under the Process ID heading (or “Contract Item Material Assignments with Revisions” under the Process Description heading). The Confirm Process Submission window will open.
Click on the Subset button. The Select Subset window will open.
Click the contract.
Press the OK button. The Confirm Process Submission window will re-open.
Click the Services on the upper Toolbar.
Choose Process Status. The Process Status window will open (the Regular tab will be active).
Double click the “CITM_GENA” choice under the Process Name heading. The Files for Process CITM_GENA window will open.

Double click the “Output.html” choice under the Name heading. The CONTRACT-ITEM-MATERIALS window will open. Choose the Print icon to print the report.

Place this report within your testing file. You will need to refer to this report when you enter a new MAT-100 into SiteManager.

1-A105C – Create a MAT-100

From the Main Panel, double click the Materials Management (+) icon.
Double click the Sampling and Testing (+) icon.
Double click the Sample Information icon.

The Maintain Sample Information window will open (the Basic Sample Data tab will be active).

1-A105C-1 – Active Tab = Basic Sample Data

Enter information in the listed fields as follows:

- **Smpl ID**: All general MAT-100’s will be a minimum of fifteen (15) characters long. Enter according to the following format:

 The capital letter “C”, the 4-digit town number, a hyphen, the 4-digit **contract number**, the capital letter “C”, the 4-digit sample number (example: C0051-0251C0001).

TIPS

- If a MAT-100 is for bituminous material, the second capital “C” will be substituted with a capital “B” (example: C0051-0251B0001, with the 4-digit sample number resetting to 0001).
- Use Sample Type Dropdown List.
If a MAT-100 is to be used for a Concrete Cylinder Test, use C6001. (Example: C0051-0251C6001). For the next Concrete Cylinder Test, use C6002, etc.

If a MAT-100 is being used as an ‘A’ version to an existing MAT-100, a capital “A” will follow the 4-digit sample number (example: C0051-0251C0001A).

- **Smpl Unit:** Choose the correct unit for the material you are testing from the dropdown screen. (Note: The sample unit for a Concrete Cylinder Test is not cylinder; it is either cubic yards or cubic meters.)

- **Status:** This field is left as the default “Spaces”. When you have completed the MAT-100, change the status to Pending. (Note: The LAB will not be able to retrieve the MAT-100 unless the sample status is Pending.)

- **Revised By:** This will automatically be filled in on an original MAT-100 that was revised. Otherwise, it will be a grayed area.

- **Revising:** This is automatically filled in on the MAT-100 if you selected “Revise” from Services.

- **Smpl Dt:** Manually input the six-digit date.

- **Link To:** Leave this field blank.

- **Link From:** As with other aspects of SiteManager, grayed areas are non-enterable.

- **Log Dt:** Leave this field blank. (Note: The LAB will enter the Log Date as the date that the sample is received by the LAB)

- **Smpl Type:** Select the appropriate sample type from the dropdown list. (Note: Bid Sample is not for Construction use)

- **Acpt Meth:** Select the appropriate acceptance method from the dropdown list. (Note: Past Performance is for LAB use only)

- **Smpld By:** Place the cursor over the white field and right-click the mouse to perform a “search”. The Search Window will open. Scroll down and single-click your name. Press OK. Your full name will be entered in the field adjacent to the Smpld By field.

- **Material:** Place the cursor over the white field and right-click the mouse to perform a “search”. The Search Window will open. Scroll down and single-click the correct Material Code you are testing. Press OK. The material name will be entered in the field adjacent to the Material field. (Note: If the Material Code is not available, contact Rick Bassett at the LAB at 860-258-0366.)

TIP

The Material Code that you are searching for in this field is the code that was supplied to you in the CONTRACT-ITEM-MATERIALS report as mentioned in the beginning of this section.

- **P/S:** Place the cursor over the white field and right-click the mouse to perform a “search”. The Search Window will open. Scroll down and single-click the correct Producer Supplier Code (or Producer Supplier Name). Press OK. The producer or supplier of the material will be entered in the field adjacent to the P/S: field.
Note: If the Material Code you are testing is not associated in SiteManager with the Producer/Supplier that used the material, select 0951, TEMPORARY VENDOR as the Producer/Supplier. If you select 0951 as the Producer/Supplier, you must enter the appropriate information in the remarks. This information should include the vendor’s name, address, phone number, etc. You should also contract the appropriate section at the LAB.

- **Type:** As with other aspects of SiteManager, grayed areas are non-enterable. If information is available, SiteManager will automatically populate this information directly into this field.

- **City:** As with other aspects of SiteManager, grayed areas are non-enterable. If information is available, SiteManager will automatically populate this information directly into this field.

- **Mnfctr:** Leave this field blank.

- **Town:** Enter the town or city that the material is being utilized within.

- **Geog Area:** Choose the correct District from the dropdown screen that the material is being utilized within.

- **Prod Nm:** Leave this field blank.

- **Intd Use:** Input a brief description of the intended use for the material. (Note: The intended use should not be “jobsite”, “project limits”, “throughout project”, etc.)

- **Represented Quantity:** Enter the material quantity of the material that is being tested. (Note: This quantity cannot exceed the maximum quantity indicated in the “Frequency for Acceptance” column of the “Minimum Requirements for Sampling Materials for Test” for that particular material. Testing coverage for that material with the sample will only be recorded up to the maximum quantity allowed. Testing deficiencies will result if inspectors do not submit enough samples for the quantity of material used on the project.

- **Auth By:** As with other aspects of SiteManager, grayed areas are non-enterable. This information will automatically be populated when the MAT-100 is authorized.

- **Auth Date:** As with other aspects of SiteManager, grayed areas are non-enterable. This information will automatically be populated when the authorized date is entered by the LAB.

- After all of the above listed fields have been addressed, press the Save icon.

- Click the Contract tab (all fields should be grayed out and empty.)

Use COPY SAMPLE Only if the Material Code is to remain the same:

Note: If there are additional samples to be entered that contain the same material number, it is possible to copy the sample information, in a similar fashion as the DWR. Simply choose Services from the menu and then Copy Sample. You will need to enter a new sample ID and make any other necessary changes to this tab but most of the information from the previous sample will have been carried over to the new MAT-100.

Only for Catch Basins & Manholes:

In an effort to aid in streamlining the amount of time it takes to create MAT-100’s for certain types of material, the Central Lab has issued a memorandum stating that MAT-100’s pertaining to Pre-Cast Catch Basins and Manholes, which are to be completed structures only (1440A Catch Basin – Precast (complete) and 1441A Manhole – Precast (complete)) may be entered on a single MAT-100. It must be emphasized that project staff are required to attach all PC-1’s that represent components used in the complete catch basin(s) or manhole(s) to the MAT-100. Should unrelated components also be listed on the PC-1, photocopies of the PC-1 may be made and attached to the other MAT-100’s provided that the original was
previously submitted to the DMT or are submitted at the same time. Photocopies of PC-1’s will NOT be accepted unless the sample ID under which the original was (is) submitted is clearly noted and available for verification by DMT personnel.

1-A105C-2 – Active Tab = Additional Sample Data

- Smpld From: Input a description of where the sample is from, such as truck, stockpile, bin, etc.
- Plant ID: The Plant ID should be entered if the material comes from a bituminous or concrete plant. Place the cursor over the white field and right-click the mouse to perform a “search”. Only the Plant ID’s associated with the Producer/Supplier listed on the Basic Sample Data tab will appear. Single-click the correct Plant ID. The plant name will appear in the field adjacent to the Plant ID field. The Plant Type will also appear after the Plant ID is selected.
- Seal Number: Input the seal number or batch number listed on the material certificate for materials such as glass spheres or epoxy paint.

1-A105C-3 – Active Tab = Contract

- Click on the New icon. The Select Contract/Material Information window will open.
- Double-click the appropriate Contract ID. A new window will open listing all items that relate to the Material Code that was input previously.
- Click the correct item that you want the material to be tested for.
- Click OK. The AASHTO SiteManager window will open asking the question “Do you want to add all Project/Line Items for Contract XXXX-XXXX to this Sample?”
 - Click the Yes button if you want them all to be tested on this MAT-100. (Do not click Yes if there are more than 40 items.)
 - Click the No button if you want to pick and choose which items are to be added to this MAT-100. If you click the No button and additional items are to be added to this MAT-100, you must repeat the above steps starting with Section 1-A105C-3-Active Tab = Contract. This must be repeated until all items are entered.

After choosing the required items for this MAT-100, all fields except Represented Qty within the Contract tab will be filled-in.

- The Represented Qty should be the material quantity for each line item. The total of all of the Represented Qty’s on this Tab should equal the Represented Qty on the Basic Sample Data tab. Note: This is no longer “Item Quantity”.
- Press the Save icon.

If you want to submit additional information with this MAT-100, click on the Remarks icon. The Remarks (General Remarks): window will open.
Enter any additional information within this window. Some examples are: “PC-1 attached, cast dates are:”, “Material Certificate is attached”, “Sample accompanies MAT-100, Request Proctor”, etc.

Click the Remarks icon again.

Press the Save icon.

1-A105C-4 – Active Tab = Tests

Use the Tests tab when the material is concrete. (Currently, “Concrete Cylinder Test”, soon to be Concrete Class A, Class C, etc.

Click on the New icon.

Place the cursor over the white field in Test Method and right-click the mouse to perform a “search”.

Single-click on T22, Compressive Strength of Cylindrical Concrete Specimens. Press OK.

Enter the number 1 for Sample Test Number.

Click on the Save icon. The information for Sample Test Number 1 will now appear.

Click on Services and then Enter/View Test Data to enter the field test data.

Enter the Slump, Air Content Measure and the Concrete Temperature measurements in the appropriate fields. Use the dropdown list for the Units for the Slump and Concrete Temperature measurements.

If you did not perform one of these tests, leave the field blank and enter the reason under Remarks.

Click on the Save icon.

Click on the Specimens tab.

Enter 1 for the Specimen ID and then the Age of Cylinder.

Click on the New icon to enter the next Specimen ID and Age of Cylinder.

Repeat for Specimen ID 3 and 4.

Note: 4 Specimens or cylinders need to be submitted to the LAB for each set. The Specimen ID should be 1, 2, 3 and 4. The Age of Cylinder will usually be 7, 14, 28 and 28 (test according to contract specifications).

Also, only enter information for the Specimen ID and the Age of Cylinder.

Press the Save icon.

Click on the Close button to go back to the Tests tab.

Note: You will only have to submit one MAT-100 for each set of cylinders. (Ex. C0001-0100C6001, the next set of cylinders will be C6002, etc.)

The final step in creating a MAT-100 is changing the Status: field to Pending from Spaces. This is accomplished by clicking the dropdown screen within the Status: field and choosing Pending.

Press the Save icon.

1-A105D – Print a MAT-100

From the Main Panel, double click the Materials Management (+) icon.

Double click the Process List icon. The Process List window will open.
Volume 1 NOTE: REVISIONS FORTHCOMING Contract Administration

- Double click the “MAT1RPTA” under the Process ID heading (or “Generates MAT-100 for the selected samples” under the Process Description heading). The Confirm Process Submission window will open.
- Click on the Subset button. The Select Subset window will open.
- Select the MAT-100 that you want to print.

Note: You can print several at once if you select the MAT-100’s by holding the Control key and choosing several different ones. However, you MUST choose the highest number MAT-100 first, and then select the MAT-100’s in descending order. (Example: Select C0051-0251C0005 before selecting C0051-0251C0004)

- Press the OK button. The Confirm Process Submission window will re-open.
- Press the Submit button.
- A window opens stating, “Process MAT1RPTAA Submitted.” Click OK.
- A window opens stating, “Profile MAT1RPTAA for process MAT1RPTA has completed.” Click OK.

The Process List window will open. Click Services on the upper Toolbar. Choose Process Status. The Process Status window will open (the Regular tab will be active).
- Double click the “MAT1RPTAA” choice under the Process Name heading. The Files for Process MAT1RPTAA window will open. Double click the “Output.html” choice under the Name heading. The Mat100 Hard Copy window will open. Choose the Print icon to print the report.

An external application called QuickPeek has been developed for use by the Department. MAT-100’s may be printed in far less time by using this application. In order to print a MAT-100 using QuickPeek, these steps should be followed:

- Open QuickPeek and enter the contract number to get to the main interface.
- From the Tools menu, choose View MAT-100.
- Enter the Sample ID, not including the project number. For example, Sample C0001-0001C0001 would simply be C0001.
- A web browser will open displaying the MAT-100. Simply print this from the web browser.

This entire process should only take a few minutes. It should be noted that QuickPeek is presently unsupported and it is possible that it may not work with future versions of SiteManager.

Section Six – Construction Change Orders

1-A106 – Change Orders

It is advisable to select your contract upon entering SiteManager:

- Double click the Contract Administration (+) icon.
- Double click the Contract Records (+) icon.
- Double click the Contracts (or Projects) icon. The Select Contract window will open.
- Double click your appropriate Contract ID.

All Change Orders that you enter from this point will be related to your contract.
1-A106A – Create a Change Order

Note: For “No Item” Change Orders (Time Extension, Specification Change, etc.), refer to Section 1-A106E – “No Item” Change Order – “No Item”.

- Click the Main Panel icon.
- Click the Main Panel tab.
- Click the Change Orders (+) icon.
- Double click the Change Order Maintenance (+) icon.
- Double click the Header icon. The Header window will open.

SiteManager will assign a CO Number.

- Enter information in the Description: field. For example: “Finalize item quantity.”, “Routine qty adjustment based on field measurements.”
- In the Reason Code: field, press the pull down and select an option.
- In the CO Type: field, press the pull down, and select “Supplemental Change Order”.
- Click the box to add a check in the Override Approval Rules box.
- Click a box in the Functions: area based on the purpose of the Change Order.
- Press the Save icon.

The Status: field will be highlighted and in “Draft” mode.

- Close the window by clicking the X in the upper-right hand corner.

1-A106B – Change Order Items

- Click on the SiteManager Panel icon (the Change Order Maintenance (+) tab will be active).
- Double Click on the Change Order Items icon. The Change Order Items window will open. The Change Order Item tab will be active, and the Change Order Item Description: field will be highlighted.

1-A106B-1 – Adjust an Existing Contract Item

- Press the Services pull down menu.
- Select New CO Item. The Select Contract Items window will open.
- Double click the existing contract item to be adjusted. The Change Order Items window will re-open, and SiteManager will have filled in various fields associated with the contract item that is being adjusted.
- Enter a description. For example: “Routine qty adjustment.”, or “Final quantity adjustment.”
- Enter the quantity of the adjustment in the This Change Order: field under the Quantity column.
- Press the Save icon.

1-A106B-2 – Create a New Contract Item

Note: There are two Line Item Series utilized for creating a New Contract Item via a CO:

- 9000-Series Line Items correspond to Item Codes that begin with “CO”. These are used when adding a brand new item to the contract that was not included in the project item bid list.
- 6000-Series Line Items correspond to items in the Department’s Item Master List (Ex. 06010070, “Class S Concrete”). This series may ONLY be used to reallocate the same Item Code that was included at bid from one category to another. It is not intended add items from the Item Master List that were not included in the original bid.
Note: SiteManager will not allow a new CO item to be created unless “Extra Work” is selected in the Functions area in the Header window. Refer to 1-A106A – Create a Change Order above for navigation.

With the Change Order Items window open, and the Change Order Item tab active, click the New Contract Item tab. The New Contract Item tab will be active, and several fields will need to be filled in.

- In the Line Item Nbr: field, enter the new item number. The first new item of a contract will be numbered “9001”. The next new item is “9002”, then “9003”, etc.
- Use the drop down arrow to select a project in the Project Nbr: field.
- Use the drop down arrow to select a category number in the Category Nbr: field.
- Right click the Item Code: field, and click “Search”. A Search Window will open. The available item codes are in order of the specification year. Scroll through until the correct Spec Year and correct Unit are viewable.

Be advised that the critical elements are the Item Code, Spec Year, and the Unit. The Short Description will be entered later.

Also, the Project Manager must record the Item Code. Typically, Project Managers will list all new contract items somewhere in their files. The Item Code needs to be on this list next to the new item number. The reason is that the Project Manager must ensure that the same Item Code is not used for different items.

For example: under the “2000” Spec Year, and the “c.p.” Unit, there are 30 available Item Codes. The first is “CO01100” and the next is “CO01099”. The Project Manager may select the first code for the first cost-plus item created on a contract. When another cost-plus item is need, “CO01100” will still be available, but the Project Manager must not assign the same code for the second cost-plus item.

- Highlight the desired Item Code.
- Press OK. The Change Order Items window will reopen, with the New Contract Item tab active, SiteManager will have filled in several fields.
- Enter the Unit Price:
- Enter the Proposal Line Nbr: which is the same number as entered in the Line Item Number: field (9001, etc.).
- In the Related Item: field, used the dropdown menu for a selection.
- Enter the Item Description in Supplemental Descriptions:
- The Critical: and Pay Plan Qty: boxes remain unchecked.

The Save icon is inactive, so select the Change Order Item tab.

- Enter the Change Order Item Description: in UPPERCASE LETTERS. Only sixty (60) characters are allowed.
- Enter the item quantity in the This Change Order: field.
- Press Save.

To continue to create new items, press the New icon, and follow the same navigation.

- Close the window by clicking the X in the upper-right hand corner.

1-A106C – General Change Order Explanations

- Click on the SiteManager Panel icon (the Change Order Maintenance (+) tab will be active).
- Double Click on the Change Order Explanations icon. The Change Order Explanations window will open. The first pull down menu will default to General Change Order Explanations.
Click the New icon. SiteManager will assign a Seq. Nbr. (sequence number), a Type, and the Date Applied. A new field will be added next to the words: Pick Std Exp. ID or Enter Text Below. Enter the name of the contract specifications in the large field. For example: “Standard Specifications Form 81X and Supplemental Specifications dated July, 200X.”

Press the Save icon.

1-A106D – Specific Change Order Explanations

Every Change Order item, whether new or existing, needs to be associated, or classified, under two explanations. First, all items are to be associated with a Standard Explanation. They are: “Unforeseen Conditions”, “Change in Scope”, “Contract Revisions”, “Quantity Adjustments”, “Other Adjustments”, and “Time Extension”. Second, each item needs to be associated with an Entered Text. The text will explain why the adjustment is required, and list back-up correspondence.

Note: For additional information regarding Standard Explanations please refer to Memorandum Standard Paragraph Explanations (Formerly Paragraph Explanations) from Mark D. Rolfe dated April 13, 2007.

1-A106D-1 – Standard Explanations (Specific Items)

Press the arrow for the pull down menu in the field that says “General Change Order Explanations.”

Select Explanations Applied to Specific Items.

A new field will appear to the right of the existing ones. It will list all of the items that were entered in the Change Order Items window.

Click the New icon. SiteManager will assign another Seq. Nbr. (sequence number), a Type, and the Date Applied.

Right click the new field next to the words: Pick Std Exp. ID or Enter Text Below.

Click Search. The Search Window opens.

Highlight the desired Explanation ID.

Click OK.

The Search Window will close, and the Change Order Explanations window will be open. The Explanation ID that was selected will be in the field, and the Explanation Text will be in the large field (which will now be gray).

Double click (to the left of the Project column) all of the items that fall under that explanation.

Press the Save icon.

If another Standard Explanation ID is required, it needs to be added next:

Click the New icon. SiteManager will assign another Seq. Nbr. (sequence number), a Type, and the Date Applied.

Right click the new field next to the words: Pick Std Exp. ID or Enter Text Below.

Click Search. The Search Window opens.

Highlight the next desired Explanation ID.

Click OK.

The Search Window will close, and the Change Order Explanations window will be open. The Explanation ID that was selected will be in the field, and the Explanation Text will be in the large field.

Double click all of the items that fall under that explanation.
• Press the Save icon.

Note: Every CO item must have at least one explanation. Repeat this navigation until all items have explanations applied.

1-A106D-2 – Standard Explanations (All Line Items)

• Press the arrow for the pull down menu in the field that says “General Change Order Explanations.”
• Select Explanations Applied to All Line Items.
• Click the New icon. SiteManager will assign another Seq. Nbr. (sequence number), a Type, and the Date Applied.
• Right click the new field next to the words: Pick Std Exp. ID or Enter Text Below.
• Click Search. The Search Window opens.
• Highlight the desired Explanation ID.
• Click OK. The Search Window will close, and the Change Order Explanations window will be open. The Explanation ID that was selected will be in the field, and the Explanation Text will be in the large field (which will now be gray).
• Press the Save icon.

1-A106D-3 – Specific Text Explanations (Specific Items and All Line Items)

Explanations associated with specific item adjustments are entered next. These explanations will be in the Addendum section on the change order printout. As an alternative to creating the addendum in this fashion, it is preferred that users create an attachment in Microsoft Word. Using MS Word allows greater flexibility when creating documents and includes the benefit of customized formatting and a spell check application. The instructions for creating an attachment follow the instructions on creating the addendum within SiteManager. It is highly recommended that users attach their addendum using an external word processing application rather than the internal explanations module. Future versions of Site Manager may include better formatting options and spell check applications, however at this time, the best option is to create an addendum outside of Site Manager.

To create an addendum using the Site Manager Module:
• Click the New icon.
• SiteManager will assign another Seq. Nbr. (sequence number), a Type, and the Date Applied.
• With a particular item (or items) in mind, enter information in the large white field explaining the required adjustment. Refer to the following example for the proper format:
 Line Item 0010 – Increase item quantity. Additional sawcutting is required to construct the roadway according to the staging plans.

 See attached correspondence:

 3a 05-14-04 Letter from Mr. Construction Co. Supervisor to Mr. Project Engineer

 3b 06-21-04 Meeting minutes

NOTES / TIPS
• Always begin with the words “Line Item”, and then list the line item number or numbers.
• The “
” stands for “break return”, which is required for a return between printed lines.
• The “

” gives two returns if an additional space is desired.
• FYI: “<bp>” stands for “break page”, and can be used if a page break is needed.
• The “
” will not be printed out on the actual Change Order Report (Portrait), but does print out on the Change Order Report (see Section 1-A106G below).
When assigning a label to an attachment, the number corresponds to the Seq. Nbr. that was assigned by SiteManager.

The oldest attachment is listed first.

Attachment descriptions should be concise. Names are to be used if applicable.

- Double click all of the items that correspond to that explanation. If you select Standard Explanations applied to All Line Items, the list of the items will not appear.
- Press the Save icon.

To continue adding explanations that are to appear in the Addendum, repeat the navigation:

- Click the New icon. SiteManager will assign another Seq. Nbr. (sequence number), a Type, and the Date Applied. With another particular item (or items) in mind, enter information in the large white field explaining the required adjustment.
- Double click all of the items that correspond to that explanation (explanations for All Line Items will NOT have items listed).
- Press the Save icon.
- Close the window by clicking the X in the upper-right hand corner.

To create an addendum in an external application and attach it so SiteManager

- Navigate to the Change Order Header
- Choose the attachment Icon and then the OLE icon, or select Service – Attachments – New – OLE from the menu

The Insert Object window will then appear. Scroll down the list of choices and select Microsoft Word Document, then click OK

The OLE attachment window will open. Here is where the document name will be entered as well as other information.

- In the Name field, choose an appropriate name, such as CO 001 Addendum
- Enter a description in the text area if desired, although it is not necessary
- In the section labeled Attachment Security, select the group levels that are allowed to open and review the attachment. If Add All is selected, then all users in SiteManager can view the document. At least one level must be selected.
- Click on the Add button.

The OLE attachment will now be added and selectable in the window. To access the attachment, simply double click on it. This will open Microsoft Word and allow the Addendum to be created. When finished creating the addendum, hit the Save icon or choose Save from the file menu. Do not change the file name as SiteManager has already assigned the name and uses that for its reference.

The Addendum must be printed from MS Word. It will not be printed when the actual CO is printed from SiteManager.

The option to create an addendum locally, without creating the attachment in SiteManager is also available; however please remember to include that file with your Change Order when you submit it to your Project Engineer.

1-A106E – “No Item” Change Order

Some Change Orders do not require item quantity adjustments; for example: Time Extension, or Specification Change. These types of Change Orders have no items, so all descriptions and back-up information needs to be
recorded in the General Change Order Explanations section of the Change Order.

It is advisable to select your contract upon entering SiteManager:
- Double click the Contract Administration (+) icon.
- Double click the Contract Records (+) icon.
- Double click the Contracts (or Projects) icon. The Select Contract window will open.
- Double click your appropriate Contract ID.

All Change Orders that you enter from this point will be related to your contract.

1-A106E-1 – Header
- Click the Main Panel icon.
- Click the Main Panel tab.
- Click the Change Orders (+) icon.
- Double click the Change Order Maintenance (+) icon.
- Double click the Header icon.
- The Header window will open.

SiteManager will assign a CO Number.
- Enter information in the Description: field. For example: “Time Extension”, or “Change of method of measurement for…”
- In the Reason Code: field, press the pull down and select and option.
- In the CO Type: field, press the pull down, and select “Supplemental Change Order”.
- Click the box to add a check in the Override Approval Rules box.
- In the Functions: area, click the applicable box(es).
- Press the Save icon.

The Status: field will be highlighted and in “Draft” mode.

Close the window by clicking the X in the upper-right hand corner.

1-A106E-2 – Change Order Explanations
- Click on the SiteManager Panel icon (the Change Order Maintenance (+) tab will be active).
- Double click on the Change Order Explanations icon. The Change Order Explanations window will open. The first pull down menu will default to General Change Order Explanations.

Note: The three required explanations for a “No Item” Change Order will be included in the General Change Order Explanations category.
- Click the New icon.

SiteManager will assign a Seq. Nbr. (sequence number), a Type, and the Date Applied. A new field will be added next to the words Pick Std Exp. ID or Enter Text Below.
- Right click the new field next to the words: Pick Std Exp. ID or Enter Text Below.
- Click Search. The Search Window opens.
- Highlight the desired Explanation ID (Time Extension, Quantity Adjustments, etc.).
- Click OK.
- Press the Save icon.
Click the New icon.

SiteManager will assign the second Seq. Nbr., a Type, and the Date Applied.

Describe the purpose of the Change Order. Refer to the following examples for the proper format:

In accordance with Article 1.08.08 of the Standard Specifications Form 814A, the Contractor is granted a time extension of 62 days for various incidental extra work. The completion date is revised from July 29, 2003 to September 29, 2003.

Change Method of Measurement (from Metric Tonnes to calculated in place) for the item “Processed Aggregate Base” in accordance with Form 815, Section 1.09.

Press the Save icon.
Click the New icon.

SiteManager will assign the third Seq. Nbr., a Type, and the Date Applied.

Required back-up will be listed in this section along with a reiteration of the description from the second sequence. Refer to the following examples for the proper format:

In accordance with Article 1.08.08 of the Standard Specifications Form 814A, the Contractor is granted a time extension of 62 days for various incidental extra work. The completion date is revised from July 15, 2003 to September 15, 2003.

See attached correspondence:
1a January 14, 2004 Time Extension Report

See attached correspondence:
1a March 17, 2004. Memorandum from District Engineer to Construction Administrator
1b March 22, 2004. Memorandum from Construction Administrator to District Engineer

1-A106F – Change Order Approval

Note: Before you approve the change order, print the draft copy to review.

Click on the SiteManager Panel icon (the Change Order Maintenance (+) tab will be active).
Double Click on the Header icon.

The Header window will re-open.
Press the pull-down menu in the Status: field, and select “Pending”.
Press the Save icon.
The AASHTO SiteManager window will open, confirming the change in status. Click Yes. The Change Order #000 Approval window will open.
Click the New button. SiteManager will assign a Seq. No., and the line will be highlighted.
Click the pull down menu under the Groups for Approval column.
Scroll down, and select “Project Engineer”.
Click the pull down menu under the User ID column.
Scroll down, and select your Project Engineer’s name.
Click the New button.
SiteManager will assign another Seq. No., and the line will be highlighted.

- Click the pull down menu under the Groups for Approval column.
- Scroll down, and select “District Finals”.
- Click the pull down menu under the User ID column.
- Scroll down, and select the name of the office staff who reviews COs.
- Click the New button.

SiteManager will assign another Seq. No., and the line will be highlighted.

- Click the pull down menu under the Groups for Approval column.
- Scroll down, and select “Supervising Engineer”.
- Click the pull down menu under the User ID column.
- Scroll down, and select the name of your Supervising Engineer.
- Click the OK button.
- The AASHTO SiteManager window will open, informing you that mail has been sent. Click OK.

Your Project Engineer will be notified of the pending CO through the SiteManager Mail Box.

1-A106G – Change Order Reports

- Click on the SiteManager Panel icon (the Change Order Maintenance (+) tab will be active).
- Double Click on the Change Orders (+) tab.
- Double Click on the Process List icon. The Process List window will open.
- Double click “COKADK”. The Confirm Process Submission window will open.
- Click the Subset button. The Select Subset window will open.
- Highlight the Change Order to be printed.
- Press OK. The Confirm Process Submission window will re-open.
- Click the Parameters button. The Process Submission Parameters window will open.
- Press OK. The Confirm Process Submission window will re-open.
- Press the Submit button.
- A window opens stating, “Process COKADKA submitted.”. Click OK.
- A window opens stating, “Profile COKADKA for process COKADK has completed”. Click OK. The Process List window will re-open.
- Click Services on the upper Toolbar.
- Choose Process Status. The Process Status window will open (the Regular tab will be active).
- Double click the “COKADKA” choice under the Process Name heading. The Files for Process COKADKA window will open.
- Double click the “Output.html” choice under the Name heading. The Change Order Report window will open.
- Press the Print icon to print the report.
- Attach this report to your CO Routing Slip.

Section Seven – Labor Wage Checks

1-A107 – Labor Wage Checks

Please note: The information contained in this section is considered optional. We presently do not require this information to be entered into SiteManager. If the user would rather keep an electronic record in the Volume IV then please use the following guide, however a handwritten record in the Volume IV is acceptable.
It is advisable to select your contract upon entering SiteManager:

- Double click the Contract Administration (+) icon.
- Double click the Contract Records (+) icon.
- Double click the Contracts (or Projects) icon. The Select Contract window will open.
- Double click your appropriate Contract ID.

All Labor Wage Checks that you enter from this point will be related to your contract.

1-A107A – Enter New Labor Wage Checks

- Click the Main Panel icon.
- Click the Main Panel tab.
- Double click the Contract Administration (+) icon.
- Double click the Contractor Management (+) icon.
- Double click the Document Submission icon. The Document Submission window will open.

If you began this section by selecting the contract as listed above, the contract number will be listed within the Contract ID: field. Also, the next Document will be listed in sequential order within the Document Serial No: field.

Enter information in the listed fields as follows:

- **Contract ID:** As with other aspects of SiteManager, grayed areas are non-enterable.
- **Document Serial No.:** As with other aspects of SiteManager, grayed areas are non-enterable.
- **Submitted By:** Enter the name of the inspector/consultant by using your SiteManager user ID that took the Labor Wage Check.
- **On:** Manually input the six-digit date.
- **Document Type:** Choose the following document type from the dropdown screen: “CON-131 Labor Wage Check Form”.
- **Document Category:** Choose the following document category from the dropdown screen: “EEO/DBE/OJT/SBE”.
- **Description:** Enter the Labor Wage Check information according to the following format: “Employee Name”, “Contractor’s Name”, “Complies to wage requirements” – if the Contractor complies. “Does NOT comply to wage requirements, ConnDOT District EEO officer notified” – if the Contractor does not comply.
- Press the Save icon.

To enter additional Labor Wage Checks, Press the New icon and repeat the above navigation.

1-A107B – Modify or Check an Existing Labor Wage Check

- From the Main Panel, double click the Change Orders (+) icon.
- Double click the Contract Administration (+) icon.
- Double click the Document Submission icon. The Document Submission window will open.

If you began this section by selecting the project as listed above, the contract number will be listed within the Contract ID: field. Also, the next Document will be listed in sequential order within the Document Serial No: field.

- Press the Open icon. The Document Submitted Select window will open.
Dubie-click the selected Document S. No: The Document Submission window will open with the requested Document active.

After any modifications are made to the Document, press the Save icon.

Section Eight – Contractor Payrolls

I-A108 – Certified Payrolls

Please note: The information contained in this section is considered optional. We presently do not require this information to be entered into SiteManager. If the user would rather keep an electronic record in the Volume IV then please use the following guide, however a handwritten record in the Volume IV is acceptable.

It is advisable to select your contract upon entering SiteManager:

- Double click the Contract Administration (+) icon.
- Double click the Contract Records (+) icon.
- Double click the Contracts (or Projects) icon. The Select Contract window will open.
- Double click your appropriate Contract ID.

All Certified Payrolls that you enter from this point will be related to your contract.

- Click the Main Panel icon.
- Click the Main Panel tab.
- Double click the Contract Administration (+) icon.
- Double click the Contractor Management (+) icon.
- Double click the Contractor Payrolls icon. The Contractor Payrolls window will open.

If you began this section by selecting the contract as listed above, the contract number will be listed within the Contract ID: field. Otherwise, enter your contract number.

- Press the Services dropdown menu.
- Select Choose Keys. The Select Payroll for Vendor window opens.
- Double click the Vendor Full Name. The Contractor Payrolls window will reopen with the selected Vendor ID: field filled in.
- Enter the correct date in the Payroll Received: field.
- Enter the correct date in the For Period Ending: field.
- Press the Save icon. The AASHTO SiteManager window reopens stating “Payroll Date reset according to the Payroll frequency of the Prime”
- Press OK.

I-A108.A – Enter Certified Payrolls for the Same Contractor

- Press the New icon.
- Enter the correct date in the Payroll Received: field.
- Enter the correct date in the For Period Ending: field.
- Press the Save icon. The AASHTO SiteManager window reopens stating “Payroll Date reset according to the Payroll frequency of the Prime”
- Press OK.
1-A108B – Enter Certified Payrolls for a Different Contractor

- Press the Services dropdown menu.
- Select Choose Keys. The Select Payroll for Vendor window opens.
- Double click the Vendor Full Name. The Contractor Payrolls window will reopen with the selected Vendor ID: field filled in.
- Enter the correct date in the Payroll Received: field.
- Enter the correct date in the For Period Ending: field.
- Press the Save icon. The AASHTO SiteManager window reopens stating “Payroll Date reset according to the Payroll frequency of the Prime”
- Press OK.

It should be noted that there are several tabs on the Payroll entry section of the Civil Rights area in SiteManager. Should the user wish to enter additional information, they have the option of choosing the Employee Information tab or the Employee Daily Information tab. Care should be used when entering this information.

For example: The Employee Information tab allows for individual employee information to be entered. All fields are required in order for the record to be saved. UNDER NO CIRCUMSTANCES SHOULD THE EMPLOYEES ACTUAL SOCIAL SECURITY NUMBER BE ENTERED ON THIS SCREEN. Please use a “dummy” or fictional nine digit number in this space. Social Security Numbers are required to accompany certified payrolls on Federal participating contracts. SSN are to be kept confidential at all times and not made immediately available for public viewing. (Refer to Volume I, Chapter 12 concerning certified payrolls and SSN). It is possible to enter the same number in the SSN field for multiple employees so there should not be a conflict with entering something as simple as 123-45-6789, for example.
Appendix B - Update Procedures

B-100 General

This appendix discusses the update procedures established for revisions to the Construction Manual. Also, contained in this appendix is the form required to suggest a revision to the Standard Specifications for Roads, Bridges and Incidental Construction.

The Construction Manual was developed to guide and assist Department personnel in the practices, policies, and procedures for inspecting, staking and documenting construction projects. Because inspection, staking and documentation practices and procedures undergo changes through time, this manual must likewise undergo changes to retain its usefulness as a comprehensive, up-to-date technical reference. Manual updates may be required by changes in:

- construction techniques and procedures,
- operating practices, and
- organizational structure, responsibilities, and relationships.

To ensure orderly, logical, and timely updating of the manual, certain responsibilities must be designated and specific procedures must be followed. These responsibilities and procedures are set forth in this appendix.

B-101 Responsibilities

The Transportation Construction Administrator will have basic responsibility to make sure the content of the Construction Manual is kept current. To help achieve this, the Transportation Construction Administrator will appoint a Construction Manual Panel and a Construction Manual Coordinator.

B-102 Construction Manual Panel

The Construction Manual Panel will consist of six to eight selected Department personnel with responsibilities for and demonstrated expertise in construction. Panel members will meet periodically to (1) review the adequacy of the manual in light of developments in the state of the art, (2) deliberate the merits of proposed revisions or additions, (3) determine the exact form of proposed changes, and (4) submit recommended changes to the Construction Administrator for review and approval.

The panel will consist of a representative from the Office of Construction, representatives of each of the construction districts, and other key Department employees who have specialized background and knowledge in particular fields related to construction, maintenance, design, traffic, and materials.

B-103 Construction Manual Coordinator

The Construction Division Chief will designate an individual to serve as the Construction Manual Coordinator, charged with managing the updating of the manual. The Coordinator coordinates the activities and chairs the meetings of the Construction Manual Panel.

Between panel meetings, the Coordinator receives all suggested changes to the manual and simplifies the panel’s
work in advance by grouping and consolidating the suggestions. Suggested revisions should be submitted to the Construction Manual Coordinator in the format shown in Figure B-1.

Figure B-1 Suggested Revision to Construction Manual Form

<table>
<thead>
<tr>
<th>State of Connecticut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Transportation</td>
</tr>
<tr>
<td>Construction Manual Update Request</td>
</tr>
</tbody>
</table>

Memo to: Construction Manual Coordinator

Subject: Suggested Revision to the Construction Manual

Date:

Suggested by:

Suggested Change:

Reason for the Change:

Backup Source Data:

Recommendation concurred with by:

Signature
District Engineer/Assistant District Engineer
The Coordinator notifies the panel members of the regularly scheduled meetings and prepares the agenda for the deliberations. He/she leads the discussion of the collected suggestions as well as of any proposed by the panel members. The Coordinator ensures that the meeting produces consensus decisions about which changes will be made and how they will appear in the manual.

The Coordinator sees that the adopted changes are prepared in final format after obtaining necessary approvals, checked for correctness, and posted on the Department’s network for access via computer. The Coordinator also maintains a current List of Revisions, Figure B-2. Revision changes will consist of the version number, month and year. For example, Ver. 2.1 (Apr 2009).

Figure B-2 List of Revisions

<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Date</th>
<th>Page</th>
<th>Brief Description</th>
</tr>
</thead>
</table>

B-104 Types of Changes

Over time, several different types of changes to the manual can be expected. These include:

- **Revisions**—changing the existing information or the way it is presented through modifications of procedures, techniques, quantities policies, organizational structure, responsibilities, and so forth.

- **Additions**—providing new information about an existing topic or addressing an altogether new subject not currently treated. This includes the insertion of tables, graphs, and other illustrations to clarify or expand on the information presented in the text.

- **Deletions**—removing information that is no longer correct or useful.

Regardless of the type of change, it is important that other chapters and sections of the manual be carefully reviewed to ensure that a change at one location does not conflict with other sections, charts, or tables in the manual.
B-105 Sources of Changes

Changes to the manual come from several sources. One generalized source can be called the state of the art, which encompasses the broad range of developments in construction practice and procedures, including changes in materials and work methods. Most of these changes will be instigated through reports documenting research and development done by AASHTO, FHWA, TRB, and other recognized agencies. The Construction Manual Panel should regularly review these publications and discuss the merits of adopting the new or revised criteria.

Another source is that of special provisions, memorandums, and even oral instructions. These often evolve into normal but unofficial practices and procedures. By incorporating them, the Construction Manual assembles, consolidates, and standardizes them; makes them official; and puts them at the disposal of all inspection personnel and other manual users.

Changes in organization and management often trigger the need for changes in the manual. When the organizational structure and/or operating policies are changed, the responsibilities and relationships of organizational units usually need redefinition. Such changes must be clearly documented in the manual.

Finally, those individuals who regularly use the manual can provide valuable assistance in identifying needed updating and improvements. They do this individually by submitting their personal suggestions, and they do it collectively by demonstrating which parts of the manual are most used, which need expansion or simplification, and which parts are seldom used.

Changes in the manual may be described as urgent or normal. Urgent changes include all those of a critical nature that call for immediate implementation of a new criteria or procedure by issuance of a Construction Memorandum that will be in effect until the next manual update. Normal changes are those that can be accumulated for publication at regularly scheduled intervals.

Frequent changes can result in confusion and error; therefore normal changes will be made twice a year in the months of January and July. Even urgent changes implemented by memorandum until the next update should not be made too often.

The regular meeting of the Construction Manual Panel should be scheduled at lease twice a year and far enough in advance of the update publishing date to provide time to review, request approval and incorporate approved revisions. Individuals who have proposed a change may be asked by the Manual Coordinator to attend a meeting so that they can discuss their proposed change.

When an urgent change is implemented by Construction Memorandum, the Coordinator should call a special panel meeting to discuss the change and begin the process of developing a final published form of the revision necessary to update the Construction Manual.

Drafts of proposed new or revised material are submitted to the Transportation Construction Administrator for review and approval. Once changes are in final form, they should be submitted to FHWA for approval to be applied to Federal~Aid Projects.

Changes to the manual should be written (and illustrated) in the same style as the original text. Updated material should be clear and concise. The Coordinator should take the lead in ensuring these qualities.
When significant changes have occurred in a Volume an intermediate version of that Volume will be issued. The various iterations of the Volume will have a label placed in the footer next to the chapter name along with a date for the version (i.e. ver. 1.1 Oct. 2005, ver. 1.2 April 2006, ver. 1.3 Oct. 2006, etc.). Edit marks will be used in the intermediate versions to identify revisions.

As changes are made to the Construction Manual, the Table of Contents will be revised to show revision dates for figures, Sections or Chapters in the right hand column.

Individual pages are not dated in the Table of Contents of the initial publication. However, when revisions are made to a page, or a new page is added, the revision date should be clearly shown after the page number in the Table of Contents. For example, “Rev July 2005.” This will provide for easy distinction between unrevised and revised Construction Manual sections.

When revised materials are distributed, the specific changes in the text and illustrations should be summarized in the letter of transmittal so that users will not have to search to identify them.

Periodically the Construction Manual will be reprinted with no edit marks. These major reprints will be labeled ver. 2.0, ver. 3.0, ver.4.0, etc. in the footer.

A memorandum is issued by the Manager of Construction Operations to persons submitting suggestions commending them for their effort.

B-107 Suggesting Revision to the Standard Specifications

All requests for the review of specification changes should be submitted to the Construction Administrator by the District Engineer or Assistant District Engineer in format shown in Figure B-3. An electronic copy of both the recommendation memorandum and the recommended changes should be attached to the memorandum.

The Office of Construction will review the proposed changes and if in agreement, will submit the recommendation to the Department's Specification Committee. A copy of the submittal will also be sent to the District Engineers, the Director of Research & Materials, each of the Specification Committee representatives from Construction and Research & Materials, and to the person who recommended the specification change. If any of the Specification Committee representatives has any question or concern with the submittal, they should contact the Construction Division Chief prior to the Specification Committee meeting so that the issue may be reviewed and, if necessary, adjusted.

If the Office of Construction does not agree with the proposed specification change, a memorandum will be sent back to the person who recommended the specification change and his/her respective District Engineer or Director.
Figure B-3 Recommended Revision to Standard Specifications Memorandum

STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION
OFFICE OF CONSTRUCTION

memorandum

subject: Standard Specification (Special Provision) Proposal -

date:

to: Lewis S. Cannon
Construction Administrator
Bureau of Engineering and
Highway Operations

from:

Attached is a proposed change to the department’s Standard Specifications that was recommended by ___________________. The rationale for the proposed revision is:

Please check all applicable items.

__ Previously used as a special provision
 If yes, how many years? _____

Specification coordinated with the following:
__ Construction
__ Maintenance
__ Materials Testing & Research
__ Design
__ Attorney General’s Office
__ Others (List)

The following must accompany each proposal:
__ English and Metric Versions attached
__ Electronic Copy (English and Metric) in MS Word template for owned special provisions

cc: Lewis S. Cannon - James Connery
Appendix C – List of Standard Correspondence

<table>
<thead>
<tr>
<th>CM Chapter</th>
<th>REFERENCE</th>
<th>DESCRIPTION OF SUBJECT ADDRESS</th>
<th>ADDRESSEE</th>
<th>PREPARER</th>
<th>REVIEWER</th>
<th>SIGNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Work Schedule</td>
<td>Work Schedule Change</td>
<td>Proj. Inspector</td>
<td>TE3</td>
<td>TSE</td>
<td>ADE</td>
</tr>
<tr>
<td>1-1</td>
<td>Hazardous Duty</td>
<td>Hazardous Duty Request Form</td>
<td>DE</td>
<td>TE3</td>
<td>TSE</td>
<td>ADE</td>
</tr>
<tr>
<td>1-1 & 2</td>
<td>Contract Start</td>
<td>Installation of Const. Field Office</td>
<td>Contractor</td>
<td>Chief</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-1 & 7</td>
<td>Design Review</td>
<td>Design Review Comments</td>
<td>Prin. Des Eng</td>
<td>PE</td>
<td>TSE</td>
<td>ADE</td>
</tr>
<tr>
<td>1-1 & 2-3</td>
<td>Safety & Blasting Meeting</td>
<td>Safety & Blasting Meeting Notice</td>
<td>Contractor/ Utility</td>
<td>Chief</td>
<td>N/A</td>
<td>TE3</td>
</tr>
<tr>
<td>1-2</td>
<td>Pre-Con Notice</td>
<td>Pre-Construction Meeting Notice</td>
<td>Contractor</td>
<td>Chief</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-2 & 22</td>
<td>Contract Start</td>
<td>Notice to Proceed</td>
<td>Contractor</td>
<td>Chief</td>
<td>TE3</td>
<td>DE</td>
</tr>
<tr>
<td>1-3</td>
<td>Transmittal Memo</td>
<td>Working Drawings</td>
<td>Design</td>
<td>TE3</td>
<td>N/A</td>
<td>TE3</td>
</tr>
<tr>
<td>1-3</td>
<td>Transmittal Letter</td>
<td>Working Drawings Comments</td>
<td>Contractor</td>
<td>TE3</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-3</td>
<td>RFI</td>
<td>Design Question (No Contract Changes)</td>
<td>Design</td>
<td>Chief</td>
<td>N/A</td>
<td>Chief</td>
</tr>
<tr>
<td>1-3</td>
<td>RFI Answer</td>
<td>Answer to Design Question (No Contract Changes)</td>
<td>Contractor</td>
<td>Chief</td>
<td>TE3</td>
<td>TE3</td>
</tr>
</tbody>
</table>
Appendix C List of Standard Correspondence

<table>
<thead>
<tr>
<th>CM Chapter</th>
<th>REFERENCE</th>
<th>DESCRIPTION OF SUBJECT ADDRESS</th>
<th>PREPARER</th>
<th>REVIEWER</th>
<th>SIGNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Field Directive</td>
<td>Direction to Contractor</td>
<td>Contractor</td>
<td>Chief</td>
<td>N/A</td>
</tr>
<tr>
<td>1-3 & 6</td>
<td>Request for Price</td>
<td>Extra Work Price Request</td>
<td>Contractor</td>
<td>Chief</td>
<td>TE3</td>
</tr>
<tr>
<td>1-3 & 16</td>
<td>Interoffice Memo</td>
<td>Design Issue (Routine)</td>
<td>Design</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-3 & 2-1</td>
<td>Env. Monthly Reports Env. Start/Stop</td>
<td>Letter for all other Interdepartmental Form STO-201 (DEP)</td>
<td>Regulatory Agency</td>
<td>Env. Coord.</td>
<td>N/A</td>
</tr>
<tr>
<td>1-4</td>
<td>Testing (Memo)</td>
<td>Insufficient Test Coverage or Rejected Material</td>
<td>Rocky Hill Lab</td>
<td>Chief</td>
<td>TSE/TE3</td>
</tr>
<tr>
<td>1-5</td>
<td>Price Adjustment</td>
<td>Minor Item Adjustment</td>
<td>Contractor</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-6</td>
<td>Price</td>
<td>Agreed Price Approval</td>
<td>Contractor</td>
<td>Chief/PE*</td>
<td>TE3/TSE</td>
</tr>
<tr>
<td>1-7</td>
<td>Time Extension</td>
<td>Time Extension Analysis</td>
<td>ADE</td>
<td>Chief & TE3*</td>
<td>TE3</td>
</tr>
<tr>
<td>1-7</td>
<td>Time Extension</td>
<td>Letter to Contractor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-8</td>
<td>Construction Orders Processed Unsigned</td>
<td>Construction Orders Processed Unsigned</td>
<td>Contractor</td>
<td>Office</td>
<td>N/A</td>
</tr>
<tr>
<td>CM Chapter</td>
<td>REFERENCE</td>
<td>DESCRIPTION OF SUBJECT ADDRESS</td>
<td>PREPARER</td>
<td>REVIEWER</td>
<td>SIGNER</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1-10</td>
<td>Evaluations – Contractor</td>
<td>Contractor Performance Evaluation Rating</td>
<td>OOC</td>
<td>Inspector</td>
<td>TE3</td>
</tr>
<tr>
<td>1-10</td>
<td>Inspection Notice (Semifinal)</td>
<td>Semifinal Inspection Notice (inc. Partial)</td>
<td>Contr./Town/ Utility</td>
<td>TE3</td>
<td>N/A</td>
</tr>
<tr>
<td>1-10</td>
<td>Inspection Results (Semifinal)</td>
<td>Semifinal Inspection Results</td>
<td>Contractor</td>
<td>TE3</td>
<td>N/A</td>
</tr>
<tr>
<td>1-10</td>
<td>Inspection Results (Final)</td>
<td>Final Inspection Results Memo</td>
<td>DE</td>
<td>TSE/Princ.*</td>
<td>N/A</td>
</tr>
<tr>
<td>1-10</td>
<td>Project Closeout (1st)</td>
<td>Final Project Closeout – (enclosures)</td>
<td>Contractor</td>
<td>Chief</td>
<td>N/A</td>
</tr>
<tr>
<td>1-10</td>
<td>Project Closeout (2nd)</td>
<td>Final Project Closeout – (2nd Request)</td>
<td>Contractor</td>
<td>TE3</td>
<td>N/A</td>
</tr>
<tr>
<td>1-10</td>
<td>Project Closeout (3rd)</td>
<td>Final Project Closeout (3rd Request)</td>
<td>Contractor</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-10</td>
<td>CON-100</td>
<td>Notice of Completion of Construction Work</td>
<td>Various</td>
<td>Chief</td>
<td>TE3</td>
</tr>
<tr>
<td>1-10</td>
<td>Return of Maint. to Municipality</td>
<td></td>
<td>Municipality</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-10</td>
<td>Final (Partial Relief of Responsibility)</td>
<td>Partial Relief of Responsibility - (with exceptions)</td>
<td>Contractor</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-10</td>
<td>Final (Relief of Responsibility)</td>
<td>Relief of Responsibility (agree with CON-500)</td>
<td>Contractor</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-10</td>
<td>Final – Construction Report</td>
<td>Construction Report</td>
<td>Chief</td>
<td>TE3</td>
<td>ADE</td>
</tr>
<tr>
<td>1-10</td>
<td>Final – Req. for Form FHWA-47</td>
<td>Request for Form FHWA-47</td>
<td>Contractor</td>
<td>Chief</td>
<td>N/A</td>
</tr>
<tr>
<td>CM Chapter</td>
<td>REFERENCE</td>
<td>DESCRIPTION OF SUBJECT</td>
<td>ADDRESSEE</td>
<td>PREPARER</td>
<td>REVIEWER</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1-10</td>
<td>Final – Acceptance w/Docs. Pending</td>
<td>Acceptance of Project with Documents Pending</td>
<td>Const. Admin.</td>
<td>Chief</td>
<td>ADE</td>
</tr>
<tr>
<td>1-10</td>
<td>Final Acceptance</td>
<td>Final Acceptance</td>
<td>Contractor/Town</td>
<td>Chief</td>
<td>TSE</td>
</tr>
<tr>
<td>1-10 & 11</td>
<td>Final Audit Request for…(List Item)</td>
<td>Final Audit Request for “…”(List Item)</td>
<td>AUDITS</td>
<td>FINALS</td>
<td>N/A</td>
</tr>
<tr>
<td>1-10 & 11</td>
<td>Final Audit Request</td>
<td>Final Audit Request</td>
<td>AUDITS</td>
<td>FINALS</td>
<td>TSE</td>
</tr>
<tr>
<td>1-11</td>
<td>District’s Response to Headquarters’ Final Review</td>
<td></td>
<td></td>
<td>Chief</td>
<td>TE3</td>
</tr>
<tr>
<td>1-12</td>
<td>Prompt Payment 1, 2</td>
<td></td>
<td>Contractor</td>
<td>Admin. Asst.</td>
<td>N/A</td>
</tr>
<tr>
<td>1-12</td>
<td>Prompt Payment 3</td>
<td></td>
<td>Contractor</td>
<td>Admin. Asst.</td>
<td>N/A</td>
</tr>
<tr>
<td>1-12</td>
<td>Prevailing Wage Referral Form</td>
<td>Prevailing Wage Discrepancy</td>
<td>Department of Labor</td>
<td>EEO Coordinator</td>
<td>TE3</td>
</tr>
<tr>
<td>CM Chapter</td>
<td>REFERENCE</td>
<td>DESCRIPTION OF SUBJECT ADDRESS</td>
<td>ADDRESSEE</td>
<td>PREPARER</td>
<td>REVIEWER</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1-13</td>
<td>Utility – Final Audit Request</td>
<td>Final Audit Request – Utility</td>
<td>Audits</td>
<td>Finals</td>
<td>N/A</td>
</tr>
<tr>
<td>1-13</td>
<td>Utility – Final</td>
<td>Final Audit Payment – State Reimbursement</td>
<td>Town</td>
<td>Util. Coord.</td>
<td>TSE</td>
</tr>
<tr>
<td>1-13</td>
<td>Utility – Final</td>
<td>Final Audit Payment – Final Invoice</td>
<td>Town</td>
<td>Util. Coord.</td>
<td>N/A</td>
</tr>
<tr>
<td>1-13</td>
<td>Utility – Final Audit Payment</td>
<td>Final Audit Payment – Final Invoice</td>
<td>Audits</td>
<td>Util. Coord.</td>
<td>N/A</td>
</tr>
<tr>
<td>1-15</td>
<td>Insurance Claim</td>
<td>Insurance Claim</td>
<td>Contractor</td>
<td>Office</td>
<td>N/A</td>
</tr>
<tr>
<td>1-15</td>
<td>Insurance Claim</td>
<td>Insurance Claim</td>
<td>Claimant</td>
<td>Office</td>
<td>N/A</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Certification</td>
<td>Subconsultant Scope and DBE Approval</td>
<td>Negotiations</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Contract Start</td>
<td>Notice to Proceed (Newington Letterhead)</td>
<td>Consultant</td>
<td>TE3</td>
<td>DE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Fee Proposal</td>
<td>Fee Proposal</td>
<td>Negotiations</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant Personnel Assignment</td>
<td>Personnel Assignment</td>
<td>Consultant</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>CM Chapter</td>
<td>REFERENCE</td>
<td>DESCRIPTION OF SUBJECT</td>
<td>ADDRESSEE</td>
<td>PREPARER</td>
<td>REVIEWER</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant Personnel – Pay Increase</td>
<td>Pay Increases</td>
<td>Consultant</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Invoice Adjustment</td>
<td>Invoice Adjustments</td>
<td>Consultant</td>
<td>TE3</td>
<td>N/A</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Extra Work Claim</td>
<td>Extra Work Claim</td>
<td>DE</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Evaluations</td>
<td>Consultant Evaluations</td>
<td>Const. Div. Chief</td>
<td>TE3</td>
<td>N/A</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Semi-annual Evaluation</td>
<td>Semi-annual Evaluation</td>
<td>Consultant</td>
<td>TE3</td>
<td>N/A</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Insurance – Expiration</td>
<td>Certificate of Insurance</td>
<td>Consultant</td>
<td>Office</td>
<td>N/A</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Final</td>
<td>Final Audit Request</td>
<td>Audits</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Final</td>
<td>Final Audit Payment – State Reimbursement</td>
<td>Consultant</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Final</td>
<td>Final Audit Payment - Final Payment Invoice</td>
<td>Consultant</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Completion Date</td>
<td>Revision to Supplemental Agreement</td>
<td>DE</td>
<td>TE3</td>
<td>TSE</td>
</tr>
<tr>
<td>1-17</td>
<td>Consultant – Semi-Final Invoice</td>
<td>Request for Semi-Final Invoice</td>
<td>Consultant</td>
<td>TE3</td>
<td>TSE</td>
</tr>
</tbody>
</table>

Appendix C List of Standard Correspondence

Construction Manual

List of Standard Correspondence

ver. 2.2 (Jan 2011)
Appendix C List of Standard Correspondence

<table>
<thead>
<tr>
<th>CM Chapter</th>
<th>REFERENCE</th>
<th>DESCRIPTION OF SUBJECT</th>
<th>ADDRESSEE</th>
<th>PREPARER</th>
<th>REVIEWER</th>
<th>SIGNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-19</td>
<td>Insurance Expiration (Contractor)</td>
<td>Notice of Insurance Expiration</td>
<td>Contractor</td>
<td>Office Staff</td>
<td>N/A</td>
<td>Office Staff</td>
</tr>
<tr>
<td>1-19</td>
<td>Contract Revision/ Performance Bond</td>
<td>Bond No. xxx (Revision, rider enclosed)</td>
<td>Contractor</td>
<td>Office</td>
<td>TSE/TE3</td>
<td>TSE (Office)</td>
</tr>
<tr>
<td>2-7 & 2-8</td>
<td>Concrete Cold Weather</td>
<td>Cold Weather Concrete Work</td>
<td>Contractor</td>
<td>Chief</td>
<td>N/A</td>
<td>TE3</td>
</tr>
<tr>
<td>N/A</td>
<td>Test – 30 day (Begin) – Signals</td>
<td>Commencement of 30-Day Test Period</td>
<td>Contractor/ Town</td>
<td>Chief</td>
<td>N/A</td>
<td>TE3</td>
</tr>
<tr>
<td>N/A</td>
<td>Test – 30 Day (End) – Signals</td>
<td>Completion of 30-Day Test Period</td>
<td>Contractor/ Town</td>
<td>TE3</td>
<td>TSE</td>
<td>ADE</td>
</tr>
</tbody>
</table>
Standard List of Project Correspondence to be Maintained in Folders at the Field Office

Correspondence and other project information that is not part of the Volume Record-keeping system must be kept in an organized manner at the field office. Correspondence is sent through the District before it is forwarded to the field office. However, it is unacceptable for field type “speedy memorandums” from the Inspector to the Contractor to only be maintained at the field office.

The degree of the complexity of the system to keep the folders varies on the size of the project. Smaller projects in nature are usually kept by category of the contents of the folder. Larger projects that are required to use Primavera Contract Management formerly known as Primavera Expeditions use a more complex numerical sequential system. Usually the system is on an Excel spreadsheet and can be carried from project to project with minor alterations. The following are some examples of folders to be maintained on both smaller and larger projects. Files to be maintained in a Field Office (Smaller projects use the major files in bold and larger projects may want to use all of the files).

Table 2 of 2

<table>
<thead>
<tr>
<th>FILE NO.</th>
<th>PROJECT DESCRIPTION - LOCATION - CITY</th>
<th>PROJECT</th>
<th>FAP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-99</td>
<td>GENERAL INFORMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>CONTRACTOR EVALUATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>CONSTRUCTION CONTRACT (SPECS, REQUIREMENTS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>PERMIT CORRESPONDENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009.1</td>
<td>DEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009.2</td>
<td>ACOE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009.3</td>
<td>USCG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>UTILITY AGREEMENT CORRESPONDENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.1</td>
<td>UI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.2</td>
<td>RWA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.3</td>
<td>P&WRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.4</td>
<td>CITY OF NEW HAVEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.5</td>
<td>CITY OF NEW HAVEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C List of Standard Correspondence

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>011</td>
<td>RIGHT OF WAY/DETOUR AGREEMENTS</td>
</tr>
<tr>
<td>013</td>
<td>SURVEY CORRESPONDENCE</td>
</tr>
<tr>
<td>015</td>
<td>AGREEMENTS W/CLIENT/CONSULTANT</td>
</tr>
<tr>
<td>015.1</td>
<td>HEADQUARTERS EXAMINERS REPORT</td>
</tr>
<tr>
<td>100</td>
<td>BID & AWARD DOCUMENTS</td>
</tr>
<tr>
<td>108</td>
<td>NOTICE TO PROCEED</td>
</tr>
<tr>
<td>200-299</td>
<td>CONSTRUCTION STARTUP</td>
</tr>
<tr>
<td>201</td>
<td>PRECONSTRUCTION MEETING MINUTES</td>
</tr>
<tr>
<td>202</td>
<td>ESSENTIAL PERSONNEL INFO/PHONE NUMBERS</td>
</tr>
<tr>
<td>203</td>
<td>FIELD OFFICE (CHAPEL ST.)</td>
</tr>
<tr>
<td>204</td>
<td>SUBCONTRACTOR CORRESPONDENCE</td>
</tr>
<tr>
<td>204.1</td>
<td></td>
</tr>
<tr>
<td>204.2</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>LOCAL BUSINESSES, LANDOWNERS CORRESPONDENCE</td>
</tr>
<tr>
<td>300-399</td>
<td>COMMUNICATIONS CONTROL</td>
</tr>
<tr>
<td>301</td>
<td>CDOT CORRESPONDENCE</td>
</tr>
<tr>
<td>301.1</td>
<td>FROM OTHERS TO CDOT</td>
</tr>
<tr>
<td>301.2</td>
<td>FROM CDOT TO CONTRACTOR/OTHERS</td>
</tr>
<tr>
<td>301.3</td>
<td>CDOT INTERNAL CORRESPONDENCE</td>
</tr>
<tr>
<td>301.4</td>
<td>FROM CONSULTANT TO DOT</td>
</tr>
<tr>
<td>301.5</td>
<td>FROM DOT TO CONSULTANTTT</td>
</tr>
<tr>
<td>301.6</td>
<td>FROM CONSULTANT TO CONTRACTOR</td>
</tr>
<tr>
<td>302</td>
<td>DESIGNER CORRESPONDENCE</td>
</tr>
<tr>
<td>302.1</td>
<td>TO DESIGNER</td>
</tr>
<tr>
<td>302.2</td>
<td>FROM DESIGNER</td>
</tr>
<tr>
<td>303</td>
<td>CONTRACTOR CORRESPONDENCE</td>
</tr>
<tr>
<td>303.1</td>
<td>FROM OTHERS TO CONTRACTOR</td>
</tr>
<tr>
<td>303.2</td>
<td>FROM CONTRACTOR TO CDOT AND CONSULTANT</td>
</tr>
<tr>
<td>303.3</td>
<td>FROM CONTRACTOR TO OTHERS</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>304</td>
<td>UTILITY CORRESPONDENCE</td>
</tr>
<tr>
<td>305</td>
<td>STATUTORY AUTHORITY CORRESPONDENCE</td>
</tr>
<tr>
<td>305.1</td>
<td>DEP</td>
</tr>
<tr>
<td>305.2</td>
<td>ACOE</td>
</tr>
<tr>
<td>305.3</td>
<td>FHWA</td>
</tr>
<tr>
<td>307</td>
<td>SUBCONSULTANT CORRESPONDENCE</td>
</tr>
<tr>
<td>307.1</td>
<td>PB AMERICAS</td>
</tr>
<tr>
<td>307.2</td>
<td>SUB-CONSULTANT</td>
</tr>
<tr>
<td>307.3</td>
<td>TRC</td>
</tr>
<tr>
<td>308</td>
<td>TELEPHONE CALL REPORTS</td>
</tr>
<tr>
<td>309</td>
<td>EMAILS</td>
</tr>
<tr>
<td>310</td>
<td>FIELD MEMORANDUMS</td>
</tr>
<tr>
<td>310.1</td>
<td>TO CONTRACTOR</td>
</tr>
<tr>
<td>310.2</td>
<td>FROM CONTRACTOR</td>
</tr>
<tr>
<td>310.3</td>
<td>OUTGOING FAXES</td>
</tr>
<tr>
<td>310.4</td>
<td>Incoming Faxes</td>
</tr>
<tr>
<td>320-327</td>
<td>MEETING MINUTES</td>
</tr>
<tr>
<td>323</td>
<td>SCHEDULE MEETINGS</td>
</tr>
<tr>
<td>324</td>
<td>MISC. MEETING MINUTES</td>
</tr>
<tr>
<td>325</td>
<td>PROGRESS MEETING MINUTES</td>
</tr>
<tr>
<td>326</td>
<td>UTILITY MEETING MINUTES</td>
</tr>
<tr>
<td>327</td>
<td>DESIGN MEETING MINUTES</td>
</tr>
<tr>
<td>328</td>
<td>CONTRACTOR/SUBCONTRACTOR EQUIPMENT</td>
</tr>
<tr>
<td>329</td>
<td>CDOT PROCEDURES/ADVISORIES</td>
</tr>
<tr>
<td>330</td>
<td>INSURANCE RECORDS</td>
</tr>
<tr>
<td>330.1</td>
<td>CONTRACTOR</td>
</tr>
<tr>
<td>330.2</td>
<td>SUBCONTRACTOR</td>
</tr>
<tr>
<td>403</td>
<td>REQUEST FOR INFORMATION</td>
</tr>
<tr>
<td>403.1</td>
<td>RFI #1</td>
</tr>
</tbody>
</table>
Appendix C List of Standard Correspondence

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>403.2</td>
<td>RFI #2</td>
</tr>
<tr>
<td>404</td>
<td>AS-BUILT DRAWINGS</td>
</tr>
<tr>
<td>406</td>
<td>CONTRACT DWG CHANGES</td>
</tr>
<tr>
<td>407</td>
<td>SUBMITTALS</td>
</tr>
<tr>
<td>408</td>
<td>DESIGN INQUIRIES (5000 SERIES - RFI'S FROM US ONLY NOT CONTRACTOR)</td>
</tr>
<tr>
<td>500-599</td>
<td>SCHEDULE CORRESPONDENCE</td>
</tr>
<tr>
<td>501</td>
<td>INITIAL BASELINE SCHEDULE</td>
</tr>
<tr>
<td>502</td>
<td>PROJECT SCHEDULE UPDATES</td>
</tr>
<tr>
<td>503</td>
<td>TWO WEEK SCHEDULES</td>
</tr>
<tr>
<td>504</td>
<td>NIGHT/WEEKLY SCHEDULES</td>
</tr>
<tr>
<td>505</td>
<td>SCHEDULE CHANGES/TIME EXTENSIONS</td>
</tr>
<tr>
<td>600-699</td>
<td>COST CONTROL</td>
</tr>
<tr>
<td>600</td>
<td>RETAINAGE</td>
</tr>
<tr>
<td>601</td>
<td>PAYMENT ESTIMATES</td>
</tr>
<tr>
<td>602</td>
<td>PAYMENT ESTIMATE CORRESPONDENCE</td>
</tr>
<tr>
<td>603</td>
<td>UNIT PRICES</td>
</tr>
<tr>
<td>603.1</td>
<td>PAYMENT ISSUES</td>
</tr>
<tr>
<td>604</td>
<td>QUANTITY CORRESPONDENCE</td>
</tr>
<tr>
<td>605</td>
<td>MATERIAL STORED ON SITE</td>
</tr>
<tr>
<td>606</td>
<td>CONSTRUCTION COMMUNICATION EQUIPMENT</td>
</tr>
<tr>
<td>607</td>
<td>COST PLUS RECORDS</td>
</tr>
<tr>
<td>607.1</td>
<td>FINAL COST PLUS</td>
</tr>
<tr>
<td>608</td>
<td>MATERIAL RECEIPTS</td>
</tr>
<tr>
<td>609</td>
<td>TRAFFICMEN</td>
</tr>
<tr>
<td>609.1</td>
<td>TRAFFICMEN INVOICES</td>
</tr>
<tr>
<td>610</td>
<td>EXTRA WORK</td>
</tr>
<tr>
<td>610.1</td>
<td>REQUEST FOR PRICE</td>
</tr>
<tr>
<td>610.2</td>
<td>PRICE SUBMITTALS/PROPOSALS</td>
</tr>
<tr>
<td>610.3</td>
<td>PRICE ACCEPTANCE/DENIAL</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>611</td>
<td>CONSTRUCTION ORDER CORRESPONDENCE</td>
</tr>
<tr>
<td>612</td>
<td>VALUE ENGINEERING CHANGE PROPOSALS</td>
</tr>
<tr>
<td>613</td>
<td>ISSUES / DISPUTES</td>
</tr>
<tr>
<td>800</td>
<td>QUALITY CONTROL</td>
</tr>
<tr>
<td>807</td>
<td>REQUEST FOR CHANGE</td>
</tr>
<tr>
<td>807.1</td>
<td>RFC #1</td>
</tr>
<tr>
<td>820</td>
<td>TESTING CORRESPONDENCE/PROCEDURES</td>
</tr>
<tr>
<td>821</td>
<td>EARTHWORK TESTING</td>
</tr>
<tr>
<td>822</td>
<td>CONCRETE INFO</td>
</tr>
<tr>
<td>822.1</td>
<td>CONCRETE TESTING</td>
</tr>
<tr>
<td>822.2</td>
<td>CONCRETE TICKETS</td>
</tr>
<tr>
<td>823</td>
<td>HAZARDOUS MATERIALS</td>
</tr>
<tr>
<td>824</td>
<td>MISC. TESTING</td>
</tr>
<tr>
<td>825</td>
<td>SEDIMENTATION HANDLING</td>
</tr>
<tr>
<td>826</td>
<td>MATERIAL DISPOSAL</td>
</tr>
<tr>
<td>826.1</td>
<td>VS&G TICKETS</td>
</tr>
<tr>
<td>827</td>
<td>EXCAVATED MATERIAL TRANSFER TICKETS</td>
</tr>
<tr>
<td>828</td>
<td>STONE TICKETS</td>
</tr>
<tr>
<td>829</td>
<td>MATERIAL CERTIFICATES</td>
</tr>
<tr>
<td>830</td>
<td>CDOT TEST REPORTS</td>
</tr>
<tr>
<td>831</td>
<td>SUPERPAVE/ASPHALT INFO</td>
</tr>
<tr>
<td>832</td>
<td>ULTRASONIC TESTING INFO</td>
</tr>
<tr>
<td>843</td>
<td>ENVIRONMENTAL COMPLIANCE</td>
</tr>
<tr>
<td>844</td>
<td>WATER POLLUTION CONTROL</td>
</tr>
<tr>
<td>850</td>
<td>REUSE MATERIAL</td>
</tr>
<tr>
<td>860</td>
<td>NON-CONFORMANCE NOTICES</td>
</tr>
<tr>
<td>900-999</td>
<td>SAFETY & LOSS CONTROL</td>
</tr>
<tr>
<td>901</td>
<td>OWNERS SAFETY PLAN/CORRESPONDENCE</td>
</tr>
<tr>
<td>902</td>
<td>CONTRACTORS SAFETY PLAN/CORRESPONDENCE</td>
</tr>
<tr>
<td>903</td>
<td>HASP</td>
</tr>
</tbody>
</table>
Appendix C List of Standard Correspondence

904 SIGNAGE
905 TRAFFIC CONTROL/SIGNALIZATION
906 SITE SECURITY
913 ACCIDENT/INCIDENT REPORTS
930 STOP WORK NOTICES

1000 PUBLIC RELATIONS/NOTIFICATIONS
1001 PARTNERING INFO
1002 CONTACTS W/PUBLIC, RIDEWORKS
1003 NEWS MEDIA
1004 COMPLAINTS

1100 CONTRACT CLOSEOUT & COMPLETION
1101 WARRANTIES/GUARANTEES
1105 RELIEF OF RESPONSIBILITIES
1106 PUNCHLISTS
1107 SEMIFINAL INSPECTIONS
1120 MISC. CLOSEOUT DOCUMENTATION

1200 PAYROLL INFORMATION
1205 CONTRACTOR PAYROLLS
1206
1207 SUBCONTRACTOR PAYROLLS
1207.1 SUBCONTRACTOR
1207.2 SUBCONTRACTOR
1207.3 SUBCONTRACTOR
1208 EEO / AA INFO
1209 LABOR WAGE CHECK INFO
1210 DBE INFO
1211 SUBCONTRACTOR APPROVALS
1215 APPRENTICE/TRAINEE DOCUMENTS

1300 ISSUE FILE
Table of Contents

Chapter 1 - Environmental Protection

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-100</td>
<td>General</td>
<td>2-1.1</td>
</tr>
<tr>
<td>2-101</td>
<td>Permits</td>
<td>2-1.1</td>
</tr>
<tr>
<td>2-101A</td>
<td>Department of Environmental Protection</td>
<td>2-1.1</td>
</tr>
<tr>
<td>2-101B</td>
<td>Army Corps of Engineers</td>
<td>2-1.2</td>
</tr>
<tr>
<td>2-102</td>
<td>Pollution Control Regulations</td>
<td>2-1.2</td>
</tr>
<tr>
<td>2-102A</td>
<td>Air Pollution</td>
<td>2-1.2</td>
</tr>
<tr>
<td>2-102B</td>
<td>Noise Pollution</td>
<td>2-1.2</td>
</tr>
<tr>
<td>2-102C</td>
<td>Water Pollution</td>
<td>2-1.2</td>
</tr>
<tr>
<td>2-103</td>
<td>Specifications</td>
<td>2-1.2</td>
</tr>
<tr>
<td>2-103A</td>
<td>Response to Environmental Deficiencies</td>
<td>2-1.2</td>
</tr>
<tr>
<td>2-104</td>
<td>Duties and Responsibilities</td>
<td>2-1.3</td>
</tr>
<tr>
<td>2-104A</td>
<td>Inspection Personnel</td>
<td>2-1.3</td>
</tr>
<tr>
<td>2-104B</td>
<td>Environmental Inspector</td>
<td>2-1.6</td>
</tr>
<tr>
<td>2-104C</td>
<td>District Environmental Coordinator</td>
<td>2-1.6</td>
</tr>
<tr>
<td>2-104D</td>
<td>District Office</td>
<td>2-1.7</td>
</tr>
<tr>
<td>2-104E</td>
<td>Office of Environmental Planning</td>
<td>2-1.7</td>
</tr>
<tr>
<td>2-104F</td>
<td>Contractor</td>
<td>2-1.7</td>
</tr>
<tr>
<td>2-105</td>
<td>Permit Process</td>
<td>2-1.7</td>
</tr>
<tr>
<td>2-105A</td>
<td>Department of Environmental Protection</td>
<td>2-1.7</td>
</tr>
<tr>
<td>2-105B</td>
<td>Army Corps of Engineers</td>
<td>2-1.8</td>
</tr>
<tr>
<td>2-106</td>
<td>Review of Contract Documents</td>
<td>2-1.8</td>
</tr>
<tr>
<td>2-106A</td>
<td>Preconstruction Meeting</td>
<td>2-1.8</td>
</tr>
<tr>
<td>2-106B</td>
<td>Site Preparation</td>
<td>2-1.9</td>
</tr>
<tr>
<td>2-107</td>
<td>Permit Modifications</td>
<td>2-1.9</td>
</tr>
<tr>
<td>2-108</td>
<td>Procedure for Requesting Technical Revisions to DEP Permits</td>
<td>2-1.9</td>
</tr>
<tr>
<td>2-108A</td>
<td>Regulated Areas</td>
<td>2-1.10</td>
</tr>
<tr>
<td>2-108B</td>
<td>Non Regulated Areas</td>
<td>2-1.10</td>
</tr>
<tr>
<td>2-109</td>
<td>Contaminated or Hazardous Materials</td>
<td>2-1.10</td>
</tr>
</tbody>
</table>
Table of Contents

2-109A Known Waste on Site ... 2-1.10
2-109B Unknown Materials Found on Site ... 2-1.10
2-109C Emergency Response Procedure for Suspected Contaminated Materials ... 2-1.11
2-109D Contractor Spills .. 2-1.12
2-109E Emergency Response procedure to Contractor Spill 2-1.12
2-110 Structure Painting Debris ... 2-1.13
2-110A Containment and Collection of Surface Preparation Debris 2-1.13
2-110B Disposal of Hazardous or Contaminated Debris 2-1.13
2-110C Contaminated Debris ... 2-1.13
2-110D Hazardous Debris .. 2-1.13
2-110E Miscellaneous Construction Details (Clean Waste) 2-1.14
2-111 Sedimentation and Erosion Controls ... 2-1.14
2-111A Handling Water .. 2-1.14
2-111B Dewatering ... 2-1.15
2-111C Slope Stabilization .. 2-1.15
2-112 Water Pollution Control ... 2-1.15
2-112A Off-Site Locations ... 2-1.15
2-112B Storage of Materials and Equipment .. 2-1.15
2-112C Response to Deficiencies .. 2-1.16
2-113 Contractor Noncompliance ... 2-1.16
2-113A Department Authority ... 2-1.16
2-113B 24-Hour Rule ... 2-1.17
2-113C 24-Hour Rule Form ... 2-1.17
2-113D Procedure ... 2-1.18
2-114 Reports and Recordkeeping ... 2-1.19
2-114A Environmental Checklist/Project Site Environmental Inspection Report ... 2-1.19
2-114B Recycling Report for Construction Projects 2-1.20
2-114C Recordkeeping ... 2-1.20
Chapter 2 - Construction Surveys

2-201 Survey Parties ...2-2.1
2-201A Responsibilities and Duties of Survey Parties
 on Construction Projects ...2-2.1
2-201B Responsibilities and Duties of Chief of Party2-2.1
2-201C Assignment of Survey Parties2-2.2
2-202 Survey Equipment ..2-2.3
2-202A Assignment of Field Party Equipment2-2.3
2-202B Use of Equipment ..2-2.3
2-202C Transporting Equipment ...2-2.3
2-202D Damage to Equipment ..2-2.3
2-203 Safety and Traffic Control ..2-2.4
2-204 Note Keeping ...2-2.4
2-204A Standard Note Keeping ...2-2.4
2-204B Care of Notebooks ...2-2.4
2-204C Survey Notes ...2-2.5
2-204D Notes for Bench Levels ...2-2.5
2-204E Cross Section Note Guidelines2-2.6
2-204F Cross Section Notes (Levels and Rods)2-2.6
2-204G Notes on Bridge Staking ..2-2.7
2-204H Notes for Construction Stakes2-2.7
2-205 Computations ..2-2.7
2-205A Completeness of Computations2-2.7
2-205B Revisions to Computations ...2-2.7
2-206 Staking ...2-2.8
2-206A Staking Centerline ..2-2.8
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-207</td>
<td>Cross Sections</td>
<td>2-2.11</td>
</tr>
<tr>
<td>2-207A</td>
<td>Earthwork</td>
<td>2-2.11</td>
</tr>
<tr>
<td>2-207B</td>
<td>Rock Excavation</td>
<td>2-2.11</td>
</tr>
<tr>
<td>2-207C</td>
<td>Unsuitable Material</td>
<td>2-2.11</td>
</tr>
<tr>
<td>2-207D</td>
<td>Borrow Banks</td>
<td>2-2.11</td>
</tr>
<tr>
<td>2-207E</td>
<td>Stakes for Concrete and Other High Type Pavements</td>
<td>2-2.12</td>
</tr>
<tr>
<td>2-207F</td>
<td>Staking Bridge Structures</td>
<td>2-2.12</td>
</tr>
<tr>
<td>2-207G</td>
<td>Staking Special Structures</td>
<td>2-2.13</td>
</tr>
<tr>
<td>2-208</td>
<td>Replacing Stakes</td>
<td>2-2.13</td>
</tr>
<tr>
<td>2-209</td>
<td>Measurements for Monthly Estimates</td>
<td>2-2.13</td>
</tr>
<tr>
<td>2-210</td>
<td>Final Survey</td>
<td>2-2.13</td>
</tr>
</tbody>
</table>

Chapter 3 - Excavation and Embankment

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-300</td>
<td>General</td>
<td>2-3.1</td>
</tr>
<tr>
<td>2-300A</td>
<td>Introduction</td>
<td>2-3.1</td>
</tr>
<tr>
<td>2-300B</td>
<td>Definitions</td>
<td>2-3.1</td>
</tr>
<tr>
<td>2-301</td>
<td>Setting Slope Stakes</td>
<td>2-3.1</td>
</tr>
<tr>
<td>2-302</td>
<td>Clearing and Grubbing</td>
<td>2-3.2</td>
</tr>
<tr>
<td>2-302A</td>
<td>Description</td>
<td>2-3.2</td>
</tr>
<tr>
<td>2-302B</td>
<td>Preliminary Activities</td>
<td>2-3.2</td>
</tr>
<tr>
<td>2-302C</td>
<td>Tree Removal and Protection</td>
<td>2-3.3</td>
</tr>
<tr>
<td>2-302D</td>
<td>Disposing of Materials</td>
<td>2-3.4</td>
</tr>
<tr>
<td>2-302E</td>
<td>Disposal Outside the Highway Limits</td>
<td>2-3.4</td>
</tr>
<tr>
<td>2-302F</td>
<td>Disposal Inside the Highway Limits</td>
<td>2-3.4</td>
</tr>
<tr>
<td>2-302G</td>
<td>Areas Outside Roadway Limits But Within Highway Taking Lines</td>
<td>2-3.4</td>
</tr>
<tr>
<td></td>
<td>Highways Taking Lines</td>
<td>2-3.4</td>
</tr>
<tr>
<td>2-303</td>
<td>Survey Markers and Monuments</td>
<td>2-3.5</td>
</tr>
<tr>
<td>2-304</td>
<td>Excavation and Embankment</td>
<td>2-3.5</td>
</tr>
<tr>
<td>2-304A</td>
<td>Definitions</td>
<td>2-3.5</td>
</tr>
<tr>
<td>2-304B</td>
<td>Earth Excavation</td>
<td>2-3.5</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2-304C</td>
<td>Excavation Procedure</td>
<td>2-3.6</td>
</tr>
<tr>
<td>2-305</td>
<td>Rock Excavation</td>
<td>2-3.6</td>
</tr>
<tr>
<td>2-305A</td>
<td>Determining the Quantity To Be Removed</td>
<td>2-3.6</td>
</tr>
<tr>
<td>2-305B</td>
<td>Blasting Safety Meeting</td>
<td>2-3.7</td>
</tr>
<tr>
<td>2-305C</td>
<td>Presplitting Rock Slopes</td>
<td>2-3.7</td>
</tr>
<tr>
<td>2-306A</td>
<td>Regulations</td>
<td>2-3.7</td>
</tr>
<tr>
<td>2-306B</td>
<td>Transport and Storage</td>
<td>2-3.8</td>
</tr>
<tr>
<td>2-306C</td>
<td>Warnings</td>
<td>2-3.8</td>
</tr>
<tr>
<td>2-306D</td>
<td>Special Precautions</td>
<td>2-3.9</td>
</tr>
<tr>
<td>2-306E</td>
<td>Normal Operations</td>
<td>2-3.10</td>
</tr>
<tr>
<td>2-306F</td>
<td>Record Keeping</td>
<td>2-3.10</td>
</tr>
<tr>
<td>2-306G</td>
<td>Operations</td>
<td>2-3.10</td>
</tr>
<tr>
<td>2-306H</td>
<td>Payment</td>
<td>2-3.11</td>
</tr>
<tr>
<td>2-307</td>
<td>Surplus and Unsuitable Material</td>
<td>2-3.11</td>
</tr>
<tr>
<td>2-308</td>
<td>Surplus Material</td>
<td>2-3.11</td>
</tr>
<tr>
<td>2-309</td>
<td>Unsuitable Material</td>
<td>2-3.11</td>
</tr>
<tr>
<td>2-309A</td>
<td>General</td>
<td>2-3.11</td>
</tr>
<tr>
<td>2-309B</td>
<td>Top Soil</td>
<td>2-3.12</td>
</tr>
<tr>
<td>2-309C</td>
<td>Use or Disposal of Material</td>
<td>2-3.12</td>
</tr>
<tr>
<td>2-310</td>
<td>Salvageable Material</td>
<td>2-3.13</td>
</tr>
<tr>
<td>2-311</td>
<td>State's Property</td>
<td>2-3.14</td>
</tr>
<tr>
<td>2-312</td>
<td>Contractor's Property</td>
<td>2-3.14</td>
</tr>
<tr>
<td>2-313</td>
<td>Use of Reclaimed Waste Materials on Construction Projects</td>
<td>2-3.14</td>
</tr>
<tr>
<td>2-314</td>
<td>Conditions Requiring Corrective Work</td>
<td>2-3.14</td>
</tr>
<tr>
<td>2-315</td>
<td>Embankment Building</td>
<td>2-3.15</td>
</tr>
<tr>
<td>2-315A</td>
<td>General</td>
<td>2-3.15</td>
</tr>
<tr>
<td>2-315B</td>
<td>Borrow</td>
<td>2-3.15</td>
</tr>
<tr>
<td>2-315C</td>
<td>Corrections</td>
<td>2-3.15</td>
</tr>
<tr>
<td>2-316</td>
<td>Monthly Pay Quantities</td>
<td>2-3.16</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>2-317</td>
<td>Final Pay Quantities</td>
<td>2-3.16</td>
</tr>
<tr>
<td>2-318</td>
<td>Winter Embankment Operations</td>
<td>2-3.17</td>
</tr>
<tr>
<td>2-319</td>
<td>Embankment Density</td>
<td>2-3.17</td>
</tr>
<tr>
<td>2-319A</td>
<td>Field Sampling for Proctor Determinations</td>
<td>2-3.17</td>
</tr>
<tr>
<td>2-319B</td>
<td>Field Density Test Equipment</td>
<td>2-3.18</td>
</tr>
<tr>
<td>2-319C</td>
<td>Field Density Test Procedures and Steps</td>
<td>2-3.18</td>
</tr>
<tr>
<td>2-320</td>
<td>Water Pollution</td>
<td>2-3.19</td>
</tr>
<tr>
<td>2-320A</td>
<td>Sedimentation Control Plan</td>
<td>2-3.19</td>
</tr>
<tr>
<td>2-320B</td>
<td>Responsibilities</td>
<td>2-3.19</td>
</tr>
<tr>
<td>2-320C</td>
<td>Operations</td>
<td>2-3.19</td>
</tr>
<tr>
<td>2-321</td>
<td>Call Before You Dig</td>
<td>2-3.21</td>
</tr>
<tr>
<td>2-321A</td>
<td>Utility Warning Tapes</td>
<td>2-3.21</td>
</tr>
<tr>
<td>2-321B</td>
<td>Reporting</td>
<td>2-3.22</td>
</tr>
</tbody>
</table>

Chapter 4 - Drainage

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-400</td>
<td>General</td>
</tr>
<tr>
<td>2-401</td>
<td>Purpose</td>
</tr>
<tr>
<td>2-402</td>
<td>Outlets</td>
</tr>
<tr>
<td>2-403</td>
<td>Natural Water Course</td>
</tr>
<tr>
<td>2-404</td>
<td>Drainage Right-of-Way</td>
</tr>
<tr>
<td>2-405</td>
<td>Right-to-Drain</td>
</tr>
<tr>
<td>2-406</td>
<td>Adverse Rights</td>
</tr>
<tr>
<td>2-407</td>
<td>Agreements</td>
</tr>
<tr>
<td>2-408</td>
<td>Runoff Design</td>
</tr>
<tr>
<td>2-409</td>
<td>Trench Excavation</td>
</tr>
<tr>
<td>2-409A</td>
<td>General</td>
</tr>
<tr>
<td>2-409B</td>
<td>Rock Excavation</td>
</tr>
<tr>
<td>2-409C</td>
<td>Backfilling</td>
</tr>
<tr>
<td>2-410</td>
<td>Foundations</td>
</tr>
<tr>
<td>2-411</td>
<td>Culverts</td>
</tr>
</tbody>
</table>
2-412 Types of Culverts ... 2-4.4
2-412A Corrugated Metal Pipe .. 2-4.4
2-412B Plate Pipes and Arches .. 2-4.4
2-412C Concrete Pipe ... 2-4.5
2-413 Pipe Selection ... 2-4.6
2-413A General Guidelines .. 2-4.6
2-413B Available Metal Pipe .. 2-4.6
2-413C Concrete Pipe Strength ... 2-4.6
2-413D Loading ... 2-4.7
2-414 Materials Inspection .. 2-4.7
2-414A Corrugated Metal Pipe .. 2-4.7
2-414B Concrete Pipe ... 2-4.8
2-415 Culvert and Endwall Layout .. 2-4.10
2-415A General Method .. 2-4.10
2-415B Field Method ... 2-4.10
2-416 Trench Excavation .. 2-4.12
2-417 Foundations .. 2-4.12
2-418 Culvert Installation .. 2-4.12
2-418A Corrugated Metal Pipe .. 2-4.13
2-418B Plate Pipe and Arches .. 2-4.14
2-418C Concrete Pipe ... 2-4.15
2-419 Backfilling .. 2-4.15
2-420 Drainage Structures ... 2-4.15
2-420A Materials Inspection of Precast Units 2-4.15
2-420B Culvert End Treatment ... 2-4.16
2-420B.1 Endwalls .. 2-4.16
2-420B.2 End Sections .. 2-4.16
2-420B.3 Endwall Improvements .. 2-4.16
2-420C Box Culverts ... 2-4.17
2-420D Catch Basins and Drop Inlets 2-4.17
Volume 2 Construction

2-420D.1 New Construction ... 2-4.17
2-420D.2 Resetting Catch Basins ... 2-4.17
2-420E Manholes .. 2-4.19
2-421 Underdrains .. 2-4.19
2-421A Subsurface Drainage Systems ... 2-4.19
2-421B Excavation and Installation ... 2-4.21
2-421C Backfilling .. 2-4.21
2-422 Ditches and Channels ... 2-4.21

Chapter 5 - Base Courses

2-501 Subgrade ... 2-5.1
2-501A General ... 2-5.1
2-501B Construction Method .. 2-5.1
2-501C Payment ... 2-5.1
2-502 Subbase ... 2-5.2
2-502A General ... 2-5.2
2-502B Construction Method .. 2-5.2
2-502C Payment ... 2-5.6
2-503 Base Courses .. 2-5.6
2-504 Rolled Granular Base ... 2-5.6
2-504A General ... 2-5.6
2-504B Construction Method .. 2-5.6
2-504C Payment ... 2-5.7
2-505 Processed Aggregate Base .. 2-5.7
2-505A General ... 2-5.7
2-505B Construction Method .. 2-5.7
2-505C Payment ... 2-5.8
2-506 Bituminous Concrete Class 4 ... 2-5.8
2-507 Concrete Base .. 2-5.8
Chapter 6 - Bituminous Pavements

- **2-601** Bituminous Concrete (HMA) Pavement ... 2-6.1 Apr 2009
- **2-601A** General ... 2-6.1 Apr 2009
- **2-602** HMA Mixes and Applications ... 2-6.1 Apr 2009
- **2-603** Contract Specifications .. 2-6.2 Apr 2009
- **2-604** Contract Plans .. 2-6.2 Apr 2009
- **2-605** Production Responsibility ... 2-6.2 Apr 2009
- **2-606** Inspection Responsibilities .. 2-6.3 Apr 2009
- **2-606A** Materials Testing Laboratory .. 2-6.3 Apr 2009
- **2-606B** District Responsibilities ... 2-6.3
- **2-606C** Preliminary Inspection and Approval of Plant 2-6.3 Apr 2009
- **2-607** Inspection Prior to Paving ... 2-6.3
- **2-607A** Paving Equipment .. 2-6.3
- **2-607B** Paving Machines .. 2-6.3 Apr 2009
- **2-607C** Rollers .. 2-6.6 Apr 2009
- **2-607D** Material Transfer Vehicle (MTV) ... 2-6.7 Apr 2009
- **2-607E** Lighting .. 2-6.8
- **2-608** Base Preparation .. 2-6.8
- **2-609** Utilities ... 2-6.9 Apr 2009
- **2-610** Prepaving Meeting ... 2-6.9 Apr 2009
- **2-611** Test Section .. 2-6.10 Apr 2009
- **2-612** Traffic Control .. 2-6.10 Apr 2009
- **2-613** Inspection During Paving ... 2-6.10 Apr 2009
- **2-613A** The Day Before .. 2-4.10 Apr 2009
- **2-613B** Transportation of Mixture ... 2-6.10 Apr 2009
- **2-613C** Paving Inspection .. 2-6.11 Apr 2009
- **2-614** Tack Coat ... 2-6.12 Apr 2009
- **2-615** Mechanical Spreading ... 2-6.14
- **2-615A** Screed Unit .. 2-6.14
- **2-615B** Angle of Attack ... 2-6.15 Aug 2010
2-615C Head of Material ... 2-6.16
2-615D Paving Speed ... 2-6.17
2-615E Other Factors ... 2-6.17
2-616 Hand Spreading ... 2-6.18 Apr 2009
2-617 Delays or Shutdowns ... 2-6.18
2-618 Thickness and Tonnage Control .. 2-6.19 Apr 2009
2-619 Determining Planned Rate of Spread 2-6.20
2-620 Depth and Yield Checks ... 2-6.20 Apr 2009
2-620A Depth Checks ... 2-6.20 Apr 2009
2-620B Yield Checks ... 2-6.20
2-620C Inspector Responsibility .. 2-6.21
2-620D Stationing ... 2-6.21 Apr 2009
2-620E Computing Actual Rates of Spread 2-6.21 Apr 2009
2-621 Compaction ... 2-6.27
2-621A Rolling ... 2-6.27 Apr 2009
2-621B Initial or Breakdown Rolling .. 2-6.27 Apr 2009
2-621C Intermediate Rolling .. 2-6.28 Apr 2009
2-621D Finish Rolling .. 2-6.29 Apr 2009
2-622 Compaction Testing ... 2-6.29 Apr 2009
2-623 Transverse Joints ... 2-6.29 Apr 2009
2-624 Permanent Transitions .. 2-6.29 Apr 2009
2-625 Permanent Transitions at Structures 2-6.30
2-626 Temporary Transitions .. 2-6.30 Apr 2009
2-627 Longitudinal Joints .. 2-6.33 Apr 2009
2-627A Notched Wedge Joint ... 2-6.33 Apr 2009
2-628 Paving Adjacent Lanes ... 2-6.34
2-629 Surface Tolerance ... 2-6.34 Apr 2009
2-630 Pavement Smoothness (Rideability) 2-6.35 Aug 2010
2-631 Semi-final and Final Pavement Inspections 2-6.36
2-631A Opening to Traffic ... 2-6.36 Apr 2009
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-632</td>
<td>Records</td>
<td>2-6.36</td>
</tr>
<tr>
<td>2-362A</td>
<td>Form MAT-100</td>
<td>2-6.36 Apr 2009</td>
</tr>
<tr>
<td>2-632B</td>
<td>Weekly HMA Production Report</td>
<td>2-6.36 Apr 2009</td>
</tr>
<tr>
<td>2-632C</td>
<td>Inspectors’ Reports</td>
<td>2-6.36</td>
</tr>
<tr>
<td>2-632D</td>
<td>Weigh Tickets</td>
<td>2-6.37 Apr 2009</td>
</tr>
<tr>
<td>2-632E</td>
<td>HMA Density Reporting Procedure</td>
<td>2-6.38 Aug 2010</td>
</tr>
<tr>
<td>2-633</td>
<td>Test Frequencies</td>
<td>2-6.39</td>
</tr>
<tr>
<td>2-634</td>
<td>District Monitoring</td>
<td>2-6.39</td>
</tr>
<tr>
<td>2-635</td>
<td>Legal Load Limits and Oversize/Overweight Permit Regulations</td>
<td>2-6.39</td>
</tr>
<tr>
<td>2-636</td>
<td>Asphalt (HMA) Adjustment Procedures</td>
<td>2-6.39 Apr 2009</td>
</tr>
<tr>
<td>2-636A.1</td>
<td>HMA Overweight Adjustment (tons)</td>
<td>2-6.40 Apr 2009</td>
</tr>
<tr>
<td>2-636A.2</td>
<td>Material Deficiency Adjustment (dollars)</td>
<td>2-6.40 Apr 2009</td>
</tr>
<tr>
<td>2-636A.3</td>
<td>HMA Density Adjustment (dollars)</td>
<td>2-6.40 Apr 2009</td>
</tr>
<tr>
<td>2-636A.4</td>
<td>Measured Weight Adjustment (tons)</td>
<td>2-6.40 Apr 2009</td>
</tr>
<tr>
<td>2-636A.5</td>
<td>Liquid Asphalt Adjustment (dollars)</td>
<td>2-6.40 Apr 2009</td>
</tr>
<tr>
<td>2-636B</td>
<td>HMA Adjustment Procedures for Special Provisions Dated 1/13/09 or Later</td>
<td>2-6.41 Apr 2009</td>
</tr>
<tr>
<td>2-636B.1</td>
<td>HMA Overweight Adjustment (tons)</td>
<td>2-6.41 Apr 2009</td>
</tr>
<tr>
<td>2-636B.2</td>
<td>Material Deficiency Adjustment (dollars)</td>
<td>2-6.41 Apr 2009</td>
</tr>
<tr>
<td>2-636B.3</td>
<td>HMA Density Adjustment (dollars)</td>
<td>2-6.41 Apr 2009</td>
</tr>
<tr>
<td>2-636B.4</td>
<td>Measured Area and Thickness Adjustment (tons)</td>
<td>2-6.42 Apr 2009</td>
</tr>
<tr>
<td>2-636B.5</td>
<td>Asphalt Adjustment Cost (dollars)</td>
<td>2-6.42 Apr 2009</td>
</tr>
<tr>
<td>2-636C</td>
<td>Rideability Adjustment (dollars)</td>
<td>2-6.42 Aug 2010</td>
</tr>
<tr>
<td>2-637</td>
<td>Pavement Rehabilitation</td>
<td>2-6.42</td>
</tr>
<tr>
<td>2-637A</td>
<td>General</td>
<td>2-6.42</td>
</tr>
<tr>
<td>2-637B</td>
<td>Inspection of Work Site Before Work Commences</td>
<td>2-6.42</td>
</tr>
<tr>
<td>2-637C</td>
<td>Inspection of Existing Pavement Repairs Prior to Overlay</td>
<td>2-6.44</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>2-637D</td>
<td>Repairs to Existing Bituminous Pavement</td>
<td>2-6.44</td>
</tr>
<tr>
<td>2-637D.1</td>
<td>Crack Sealing</td>
<td>2-6.44</td>
</tr>
<tr>
<td>2-637D.2</td>
<td>Alligatored Pavement Repair</td>
<td>2-6.44</td>
</tr>
<tr>
<td>2-637D.3</td>
<td>Pothole Repair</td>
<td>2-6.44</td>
</tr>
<tr>
<td>2-637D.4</td>
<td>Leveling</td>
<td>2-6.44</td>
</tr>
<tr>
<td>2-637D.5</td>
<td>Milling (Cold Plane Pavement Removal)</td>
<td>2-6.47</td>
</tr>
<tr>
<td>2-637E</td>
<td>Repairs to Existing Concrete Pavements</td>
<td>2-6.48</td>
</tr>
<tr>
<td>2-637E.1</td>
<td>Partial Depth Patch Repair</td>
<td>2-6.48</td>
</tr>
<tr>
<td>2-637E.1a</td>
<td>Preparations</td>
<td>2-6.48</td>
</tr>
<tr>
<td>2-637E.1b</td>
<td>Tacking</td>
<td>2-6.48</td>
</tr>
<tr>
<td>2-637E.1c</td>
<td>Repairs</td>
<td>2-6.49</td>
</tr>
<tr>
<td>2-637E.2</td>
<td>Full-Depth Concrete Pavement Replacement</td>
<td>2-6.49</td>
</tr>
<tr>
<td>2-637E.2a</td>
<td>Subbase and Subgrade Preparation</td>
<td>2-6.49</td>
</tr>
<tr>
<td>2-637F</td>
<td>HMA Overlay</td>
<td>2-6.49</td>
</tr>
<tr>
<td>2-638</td>
<td>Bituminous Lip Curbing</td>
<td>2-6.49</td>
</tr>
<tr>
<td>2-638A</td>
<td>General</td>
<td>2-6.49</td>
</tr>
<tr>
<td>2-638B</td>
<td>Machine Construction</td>
<td>2-6.50</td>
</tr>
<tr>
<td>2-638C</td>
<td>Hand Construction</td>
<td>2-6.50</td>
</tr>
<tr>
<td>2-638D</td>
<td>Bituminous Concrete Driveway Aprons</td>
<td>2-6.51</td>
</tr>
<tr>
<td>2-638E</td>
<td>Precautions</td>
<td>2-6.51</td>
</tr>
</tbody>
</table>

Chapter 7 - Concrete Pavements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-701</td>
<td>New Pavement</td>
<td>2-7.1</td>
</tr>
<tr>
<td>2-702</td>
<td>Specifications and Plans</td>
<td>2-7.1</td>
</tr>
<tr>
<td>2-702A</td>
<td>Specifications</td>
<td>2-7.1</td>
</tr>
<tr>
<td>2-702B</td>
<td>Plans</td>
<td>2-7.1</td>
</tr>
<tr>
<td>2-703</td>
<td>Inspection Team</td>
<td>2-7.2</td>
</tr>
<tr>
<td>2-704</td>
<td>Mix Request</td>
<td>2-7.2</td>
</tr>
<tr>
<td>2-705</td>
<td>Materials Control</td>
<td>2-7.2</td>
</tr>
<tr>
<td>2-706</td>
<td>Batching and Mixing Equipment</td>
<td>2-7.4</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2-707</td>
<td>Plant Personnel</td>
<td>2-7.4</td>
</tr>
<tr>
<td>2-708</td>
<td>Truck Mixers</td>
<td>2-7.4</td>
</tr>
<tr>
<td>2-709</td>
<td>Preliminary Checks</td>
<td>2-7.4</td>
</tr>
<tr>
<td>2-710</td>
<td>Finishing Labor</td>
<td>2-7.5</td>
</tr>
<tr>
<td>2-711</td>
<td>Placing and Finishing Tools</td>
<td>2-7.5</td>
</tr>
<tr>
<td>2-712</td>
<td>Testing Equipment</td>
<td>2-7.6</td>
</tr>
<tr>
<td>2-713</td>
<td>Cold Weather Provisions</td>
<td>2-7.6</td>
</tr>
<tr>
<td>2-714</td>
<td>Subgrade</td>
<td>2-7.6</td>
</tr>
<tr>
<td>2-715</td>
<td>Subbase</td>
<td>2-7.6</td>
</tr>
<tr>
<td>2-716</td>
<td>Side Forms</td>
<td>2-7.7</td>
</tr>
<tr>
<td>2-716A</td>
<td>Reference Line</td>
<td>2-7.7</td>
</tr>
<tr>
<td>2-716B</td>
<td>Form Condition</td>
<td>2-7.7</td>
</tr>
<tr>
<td>2-716C</td>
<td>Bracing Pins</td>
<td>2-7.7</td>
</tr>
<tr>
<td>2-716D</td>
<td>Wooden Forms</td>
<td>2-7.8</td>
</tr>
<tr>
<td>2-716E</td>
<td>Sharp Curves</td>
<td>2-7.8</td>
</tr>
<tr>
<td>2-716F</td>
<td>Line and Grade</td>
<td>2-7.8</td>
</tr>
<tr>
<td>2-716G</td>
<td>Form Placement</td>
<td>2-7.8</td>
</tr>
<tr>
<td>2-716H</td>
<td>Longitudinal Joint Key</td>
<td>2-7.9</td>
</tr>
<tr>
<td>2-717</td>
<td>String Lines</td>
<td>2-7.10</td>
</tr>
<tr>
<td>2-717A</td>
<td>Slip-Form String Lines</td>
<td>2-7.10</td>
</tr>
<tr>
<td>2-717B</td>
<td>Normal String-Line Setting</td>
<td>2-7.10</td>
</tr>
<tr>
<td>2-717C</td>
<td>String-Line Repairs</td>
<td>2-7.11</td>
</tr>
<tr>
<td>2-718</td>
<td>Fine Grade</td>
<td>2-7.12</td>
</tr>
<tr>
<td>2-719</td>
<td>Joints</td>
<td>2-7.12</td>
</tr>
<tr>
<td>2-719A</td>
<td>Transverse</td>
<td>2-7.12</td>
</tr>
<tr>
<td>2-719B</td>
<td>Longitudinal</td>
<td>2-7.13</td>
</tr>
<tr>
<td>2-719C</td>
<td>Locating Transverse Joints</td>
<td>2-7.13</td>
</tr>
<tr>
<td>2-719D</td>
<td>Transverse Joint Construction</td>
<td>2-7.14</td>
</tr>
<tr>
<td>2-719E</td>
<td>Load Transfer Assemblies</td>
<td>2-7.16</td>
</tr>
<tr>
<td>2-719F</td>
<td>Dummy Joints</td>
<td>2-7.16</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2-719G</td>
<td>Bulkheads</td>
<td></td>
</tr>
<tr>
<td>2-719H</td>
<td>Construction Joints</td>
<td></td>
</tr>
<tr>
<td>2-719I</td>
<td>Longitudinal Joint Construction</td>
<td></td>
</tr>
<tr>
<td>2-720</td>
<td>Paving Trains</td>
<td></td>
</tr>
<tr>
<td>2-720A</td>
<td>Side-Form Paving</td>
<td></td>
</tr>
<tr>
<td>2-720A.1</td>
<td>Initial Strike-off Spreader</td>
<td></td>
</tr>
<tr>
<td>2-720A.2</td>
<td>Transverse Finishing Machine</td>
<td></td>
</tr>
<tr>
<td>2-720B</td>
<td>Slip-Form Paving</td>
<td></td>
</tr>
<tr>
<td>2-720B.1</td>
<td>Spreader</td>
<td></td>
</tr>
<tr>
<td>2-720B.2</td>
<td>Paver</td>
<td></td>
</tr>
<tr>
<td>2-720C</td>
<td>Finishing Machines</td>
<td></td>
</tr>
<tr>
<td>2-720C.1</td>
<td>Longitudinal Float</td>
<td></td>
</tr>
<tr>
<td>2-720C.2</td>
<td>The Flexplane Float</td>
<td></td>
</tr>
<tr>
<td>2-720C.3</td>
<td>The Chevron Float</td>
<td></td>
</tr>
<tr>
<td>2-720C.4</td>
<td>The Tube Float</td>
<td></td>
</tr>
<tr>
<td>2-720D</td>
<td>Tining Machine</td>
<td></td>
</tr>
<tr>
<td>2-721</td>
<td>Final Preparations for Placement of Concrete</td>
<td></td>
</tr>
<tr>
<td>2-722</td>
<td>Inspection Team</td>
<td></td>
</tr>
<tr>
<td>2-722A</td>
<td>Concrete Inspector</td>
<td></td>
</tr>
<tr>
<td>2-722B</td>
<td>Paving Inspector</td>
<td></td>
</tr>
<tr>
<td>2-722C</td>
<td>Finishing Inspector</td>
<td></td>
</tr>
<tr>
<td>2-723</td>
<td>Concrete Mix</td>
<td></td>
</tr>
<tr>
<td>2-723A</td>
<td>Mix Adjustments</td>
<td></td>
</tr>
<tr>
<td>2-723B</td>
<td>Consistency</td>
<td></td>
</tr>
<tr>
<td>2-723C</td>
<td>Slump Test</td>
<td></td>
</tr>
<tr>
<td>2-723D</td>
<td>Test Cylinders</td>
<td></td>
</tr>
<tr>
<td>2-724</td>
<td>Concrete Placement—Side-Form Paving</td>
<td></td>
</tr>
<tr>
<td>2-724A</td>
<td>Side-Form Placement of Lower Course</td>
<td></td>
</tr>
<tr>
<td>2-724B</td>
<td>Spreading</td>
<td></td>
</tr>
<tr>
<td>2-724C</td>
<td>Consolidation</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2-724D</td>
<td>Placing Concrete Adjacent to Transverse Joints</td>
<td></td>
</tr>
<tr>
<td>2-724E</td>
<td>Reinforcement</td>
<td></td>
</tr>
<tr>
<td>2-724F</td>
<td>Side-Form Placement of Top Course</td>
<td></td>
</tr>
<tr>
<td>2-724G</td>
<td>Paving Adjacent Lanes</td>
<td></td>
</tr>
<tr>
<td>2-724G.1</td>
<td>Equipment Operation</td>
<td></td>
</tr>
<tr>
<td>2-724G.2</td>
<td>Longitudinal Joint</td>
<td></td>
</tr>
<tr>
<td>2-724H</td>
<td>Construction Joint</td>
<td></td>
</tr>
<tr>
<td>2-724I</td>
<td>Clean up</td>
<td></td>
</tr>
<tr>
<td>2-724J</td>
<td>Cold Weather</td>
<td></td>
</tr>
<tr>
<td>2-725</td>
<td>Concrete Placement—Slip-Form Paving</td>
<td></td>
</tr>
<tr>
<td>2-725A</td>
<td>Slip-Form Spreader Operation</td>
<td></td>
</tr>
<tr>
<td>2-725B</td>
<td>Slip-Form Paver Operations</td>
<td></td>
</tr>
<tr>
<td>2-725C</td>
<td>General Inspection</td>
<td></td>
</tr>
<tr>
<td>2-725D</td>
<td>Paver Speed</td>
<td></td>
</tr>
<tr>
<td>2-725E</td>
<td>Paver Movement</td>
<td></td>
</tr>
<tr>
<td>2-725F</td>
<td>Base Irregularities</td>
<td></td>
</tr>
<tr>
<td>2-725G</td>
<td>Mix Consistency and Quality</td>
<td></td>
</tr>
<tr>
<td>2-725H</td>
<td>Edge Slumping</td>
<td></td>
</tr>
<tr>
<td>2-725I</td>
<td>Consolidation</td>
<td></td>
</tr>
<tr>
<td>2-726</td>
<td>Finishing Pavement</td>
<td></td>
</tr>
<tr>
<td>2-726A</td>
<td>Hand Finishing</td>
<td></td>
</tr>
<tr>
<td>2-726B</td>
<td>Finishing Machine</td>
<td></td>
</tr>
<tr>
<td>2-726C</td>
<td>Longitudinal Floats</td>
<td></td>
</tr>
<tr>
<td>2-726C.1</td>
<td>The Longitudinal Float</td>
<td></td>
</tr>
<tr>
<td>2-726C.2</td>
<td>The Flexplane Float</td>
<td></td>
</tr>
<tr>
<td>2-726C.3</td>
<td>The Chevron Float</td>
<td></td>
</tr>
<tr>
<td>2-726C.4</td>
<td>The Tube Float</td>
<td></td>
</tr>
<tr>
<td>2-726D</td>
<td>Luting</td>
<td></td>
</tr>
<tr>
<td>2-726E</td>
<td>Joints</td>
<td></td>
</tr>
<tr>
<td>2-726E.1</td>
<td>Expansion Joints</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2-726E.2</td>
<td>Contraction Joints</td>
<td></td>
</tr>
<tr>
<td>2-726E.3</td>
<td>Transverse Joints</td>
<td></td>
</tr>
<tr>
<td>2-726F</td>
<td>Straightedging</td>
<td></td>
</tr>
<tr>
<td>2-726G</td>
<td>Tining</td>
<td></td>
</tr>
<tr>
<td>2-726H</td>
<td>Edging</td>
<td></td>
</tr>
<tr>
<td>2-727</td>
<td>Curing and Protection</td>
<td></td>
</tr>
<tr>
<td>2-727A</td>
<td>Moist Curing</td>
<td></td>
</tr>
<tr>
<td>2-727B</td>
<td>Curing Compound</td>
<td></td>
</tr>
<tr>
<td>2-727C</td>
<td>Polyethylene Cover Sheet Curing</td>
<td></td>
</tr>
<tr>
<td>2-728</td>
<td>Temporary Crossovers</td>
<td></td>
</tr>
<tr>
<td>2-729</td>
<td>Removing Forms</td>
<td></td>
</tr>
<tr>
<td>2-730</td>
<td>Sawing Longitudinal Joints</td>
<td></td>
</tr>
<tr>
<td>2-731</td>
<td>Sealing Joints</td>
<td></td>
</tr>
<tr>
<td>2-732</td>
<td>Daily Reports and Tests</td>
<td></td>
</tr>
<tr>
<td>2-733</td>
<td>Air Content</td>
<td></td>
</tr>
<tr>
<td>2-733A</td>
<td>Pressure Air Meter</td>
<td></td>
</tr>
<tr>
<td>2-733B</td>
<td>Chace Air Indicator</td>
<td></td>
</tr>
<tr>
<td>2-734</td>
<td>Pavement Cores</td>
<td></td>
</tr>
<tr>
<td>2-735</td>
<td>Opening the Pavement to Traffic</td>
<td></td>
</tr>
<tr>
<td>2-736</td>
<td>Full-Depth Concrete Pavement Replacement</td>
<td></td>
</tr>
<tr>
<td>2-736A</td>
<td>Concrete Removal</td>
<td></td>
</tr>
<tr>
<td>2-736B</td>
<td>Sawing</td>
<td></td>
</tr>
<tr>
<td>2-736C</td>
<td>Removal</td>
<td></td>
</tr>
<tr>
<td>2-736D</td>
<td>Existing Bituminous Patches</td>
<td></td>
</tr>
<tr>
<td>2-736E</td>
<td>Subbase</td>
<td></td>
</tr>
<tr>
<td>2-736F</td>
<td>Load Transfer</td>
<td></td>
</tr>
<tr>
<td>2-736G</td>
<td>Forms</td>
<td></td>
</tr>
<tr>
<td>2-736H</td>
<td>Reinforcement</td>
<td></td>
</tr>
<tr>
<td>2-736I</td>
<td>Placement and Finishing</td>
<td></td>
</tr>
<tr>
<td>2-736J</td>
<td>Consolidation</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2-736K</td>
<td>Strike Off and Finishing</td>
<td>2-7.46</td>
</tr>
<tr>
<td>2-736L</td>
<td>Surface Tolerances</td>
<td>2-7.47</td>
</tr>
<tr>
<td>2-736M</td>
<td>Joint Sealing</td>
<td>2-7.47</td>
</tr>
<tr>
<td>2-736N</td>
<td>Curing</td>
<td>2-7.47</td>
</tr>
<tr>
<td>2-736O</td>
<td>Testing</td>
<td>2-7.47</td>
</tr>
<tr>
<td>2-736P</td>
<td>Opening to Traffic</td>
<td>2-7.47</td>
</tr>
</tbody>
</table>

Chapter 8 - Structures

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-801</td>
<td>New Construction</td>
<td>2-8.1</td>
</tr>
<tr>
<td>2-801A</td>
<td>Storage/Staging of Materials and Equipment on Structures</td>
<td>2-8.1 Apr 2009</td>
</tr>
<tr>
<td>2-801B</td>
<td>Load Restrictions</td>
<td>2-8.2 Apr 2009</td>
</tr>
<tr>
<td>2-802</td>
<td>Chief Inspector's Duties</td>
<td>2-8.2</td>
</tr>
<tr>
<td>2-803</td>
<td>Changes</td>
<td>2-8.3</td>
</tr>
<tr>
<td>2-804</td>
<td>Shop Drawings</td>
<td>2-8.3 Apr 2009</td>
</tr>
<tr>
<td>2-805</td>
<td>Manufacturer's Supervision</td>
<td>2-8.4 Aug 2010</td>
</tr>
<tr>
<td>2-806</td>
<td>Cofferdams and Underwater Concrete</td>
<td>2-8.4</td>
</tr>
<tr>
<td>2-807</td>
<td>Foundation Seals</td>
<td>2-8.5</td>
</tr>
<tr>
<td>2-808</td>
<td>Pumping</td>
<td>2-8.6</td>
</tr>
<tr>
<td>2-809</td>
<td>Removal of Cofferdams or Cribs</td>
<td>2-8.6</td>
</tr>
<tr>
<td>2-810</td>
<td>Stability of Foundations</td>
<td>2-8.6</td>
</tr>
<tr>
<td>2-811</td>
<td>Excavation</td>
<td>2-8.6</td>
</tr>
<tr>
<td>2-812</td>
<td>Tying New Concrete to Existing Concrete</td>
<td>2-8.7</td>
</tr>
<tr>
<td>2-813</td>
<td>Foundations</td>
<td>2-8.7</td>
</tr>
<tr>
<td>2-813A</td>
<td>Spread Footings</td>
<td>2-8.7</td>
</tr>
<tr>
<td>2-813B</td>
<td>Foundations Seated in Rock</td>
<td>2-8.8</td>
</tr>
<tr>
<td>2-813C</td>
<td>Pile Supported Foundations</td>
<td>2-8.8</td>
</tr>
<tr>
<td>2-813C.1</td>
<td>Load Test</td>
<td>2-8.10</td>
</tr>
<tr>
<td>2-813C.2</td>
<td>Driving Plan</td>
<td>2-8.10</td>
</tr>
<tr>
<td>2-813C.3</td>
<td>Equipment</td>
<td>2-8.10</td>
</tr>
<tr>
<td>2-813C.4</td>
<td>Driving</td>
<td>2-8.11</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>------</td>
</tr>
<tr>
<td>2-813C.5</td>
<td>Tolerances</td>
<td>2-8.12</td>
</tr>
<tr>
<td>2-813C.6</td>
<td>Unacceptable Piles</td>
<td>2-8.12</td>
</tr>
<tr>
<td>2-813C.7</td>
<td>Reporting</td>
<td>2-8.12</td>
</tr>
<tr>
<td>2-814</td>
<td>Formwork</td>
<td>2-8.12</td>
</tr>
<tr>
<td>2-815</td>
<td>Reinforcement</td>
<td>2-8.13</td>
</tr>
<tr>
<td>2-815A</td>
<td>Plan Dimensions</td>
<td>2-8.13</td>
</tr>
<tr>
<td>2-815B</td>
<td>Cutting and Bending</td>
<td>2-8.13</td>
</tr>
<tr>
<td>2-815C</td>
<td>Storage</td>
<td>2-8.13</td>
</tr>
<tr>
<td>2-815D</td>
<td>Installation</td>
<td>2-8.13</td>
</tr>
<tr>
<td>2-815E</td>
<td>Splicing</td>
<td>2-8.14</td>
</tr>
<tr>
<td>2-815F</td>
<td>Epoxy Coating for Bars</td>
<td>2-8.15</td>
</tr>
<tr>
<td>2-816</td>
<td>Concrete</td>
<td>2-8.15</td>
</tr>
<tr>
<td>2-816A</td>
<td>Concrete Mix</td>
<td>2-8.15</td>
</tr>
<tr>
<td>2-816B</td>
<td>Sampling and Quality Control</td>
<td>2-8.15</td>
</tr>
<tr>
<td>2-816B.1</td>
<td>Sampling</td>
<td>2-8.15</td>
</tr>
<tr>
<td>2-816B.2</td>
<td>Testing</td>
<td>2-8.16</td>
</tr>
<tr>
<td>2-816C</td>
<td>Placement</td>
<td>2-8.16</td>
</tr>
<tr>
<td>2-816D</td>
<td>Construction Joints</td>
<td>2-8.17</td>
</tr>
<tr>
<td>2-816E</td>
<td>Placing Concrete in Cold Weather</td>
<td>2-8.18</td>
</tr>
<tr>
<td>2-816F</td>
<td>Curing</td>
<td>2-8.18</td>
</tr>
<tr>
<td>2-816G</td>
<td>Finishing Concrete Surfaces</td>
<td>2-8.19</td>
</tr>
<tr>
<td>2-816G.1</td>
<td>Horizontal surfaces</td>
<td>2-8.19</td>
</tr>
<tr>
<td>2-816G.2</td>
<td>Sidewalks and Safety Curb</td>
<td>2-8.20</td>
</tr>
<tr>
<td>2-816G.3</td>
<td>Culvert Slabs</td>
<td>2-8.20</td>
</tr>
<tr>
<td>2-817</td>
<td>Superstructures</td>
<td>2-8.20</td>
</tr>
<tr>
<td>2-817A</td>
<td>Steel Bridges</td>
<td>2-8.20</td>
</tr>
<tr>
<td>2-817B</td>
<td>Box Girders</td>
<td>2-8.21</td>
</tr>
<tr>
<td>2-817C</td>
<td>Temporary Bridges</td>
<td>2-8.21</td>
</tr>
<tr>
<td>2-817D</td>
<td>Prestressed Bridges</td>
<td>2-8.21</td>
</tr>
<tr>
<td>2-817D.1</td>
<td>Strength</td>
<td>2-8.21</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>2-817D.2</td>
<td>Camber</td>
<td>2-8.22</td>
</tr>
<tr>
<td>2-817D.3</td>
<td>Bearing Areas</td>
<td>2-8.22</td>
</tr>
<tr>
<td>2-817D.4</td>
<td>Unacceptable Units</td>
<td>2-8.22</td>
</tr>
<tr>
<td>2-817E</td>
<td>Anchor Bolts and Bearings</td>
<td>2-8.22</td>
</tr>
<tr>
<td>2-817F</td>
<td>Elastomeric Bearing Pads</td>
<td>2-8.23</td>
</tr>
<tr>
<td>2-817F.1</td>
<td>Materials</td>
<td>2-8.23</td>
</tr>
<tr>
<td>2-817F.2</td>
<td>Bearing Areas</td>
<td>2-8.24</td>
</tr>
<tr>
<td>2-817F.3</td>
<td>Installation</td>
<td>2-8.24</td>
</tr>
<tr>
<td>2-817F.4</td>
<td>Nonconforming Work</td>
<td>2-8.25</td>
</tr>
<tr>
<td>2-817G</td>
<td>Pot Bearings or Disc Bearings</td>
<td>2-8.25</td>
</tr>
<tr>
<td>2-817H</td>
<td>Expansion Dams</td>
<td>2-8.26</td>
</tr>
<tr>
<td>2-817I</td>
<td>Steel Erection</td>
<td>2-8.28</td>
</tr>
<tr>
<td>2-817J</td>
<td>Shear Connectors</td>
<td>2-8.28</td>
</tr>
<tr>
<td>2-817K</td>
<td>Welding</td>
<td>2-8.28</td>
</tr>
<tr>
<td>2-817K.1</td>
<td>Welder Qualifications</td>
<td>2-8.28</td>
</tr>
<tr>
<td>2-817K.2</td>
<td>Inspection</td>
<td>2-8.28</td>
</tr>
<tr>
<td>2-817K.3</td>
<td>Weld Quality</td>
<td>2-8.29</td>
</tr>
<tr>
<td>2-817K.4</td>
<td>Defective Welds</td>
<td>2-8.29</td>
</tr>
<tr>
<td>2-817L</td>
<td>Bolted Connections</td>
<td>2-8.30</td>
</tr>
<tr>
<td>2-817M</td>
<td>Utility or Conduit Installation</td>
<td>2-8.30</td>
</tr>
<tr>
<td>2-817N</td>
<td>Bridge Deck Procedures</td>
<td>2-8.30</td>
</tr>
<tr>
<td>2-817N.1</td>
<td>Grades, Formwork and Screed Rails</td>
<td>2-8.30</td>
</tr>
<tr>
<td>2-817N.2</td>
<td>Placing Concrete</td>
<td>2-8.31</td>
</tr>
<tr>
<td>2-817N.3</td>
<td>Finishing</td>
<td>2-8.32</td>
</tr>
<tr>
<td>2-817O</td>
<td>Joints</td>
<td>2-8.33</td>
</tr>
<tr>
<td>2-817O.1</td>
<td>Sealants</td>
<td>2-8.33</td>
</tr>
<tr>
<td>2-817O.2</td>
<td>Expansion Joint Material</td>
<td>2-8.34</td>
</tr>
<tr>
<td>2-817O.3</td>
<td>Systems and Devices</td>
<td>2-8.34</td>
</tr>
<tr>
<td>2-817P</td>
<td>Protective Surface Treatment Compounds</td>
<td>2-8.35</td>
</tr>
<tr>
<td>2-818</td>
<td>Rehabilitation</td>
<td>2-8.36</td>
</tr>
</tbody>
</table>

Note: Apr 2009 denotes the last update or review date for the sections.
2-818A General ... 2-8.36
2-818B Utilities ... 2-8.36
2-818C Bridge Deck Repair .. 2-8.37
2-818C.1 Removal of Bituminous Wearing Surface 2-8.38
2-818C.2 Location and Marking of Deteriorated Areas 2-8.38
2-818C.3 Removal of Deteriorated Concrete 2-8.39
2-818C.3a Protective shields .. 2-8.39
2-818C.3b Removal by Pneumatic Hammer 2-8.39
2-818C.3c Removal by Hydrodemolition 2-8.40
2-818C.4 Patching ... 2-8.41
2-818C.4a Preparations .. 2-8.41
2-818C.4b Spreading and Finishing 2-8.42
2-818C.4c Testing .. 2-8.42
2-818C.4d Unacceptable Work .. 2-8.42
2-818C.4e Opening To Traffic ... 2-8.42
2-818C.5 Waterproofing Membrane 2-8.42
2-818C.6 Placement of Bituminous Concrete Wearing Surface 2-8.43
2-818C.7 Bridge Deck Joints ... 2-8.43
2-818D Structural Steel Inspection 2-8.43
2-818E Jacking ... 2-8.44
2-818E.1 Jacks and Beams .. 2-8.44
2-818E.2 Welding and Repairs .. 2-8.44
2-818E.3 Operations .. 2-8.45
2-818F Repair to Cover Plate Welds 2-8.45
2-818G Inspection of Structural Steel Cross Section 2-8.46
2-818H Heat Straightening Structural Members 2-8.46
2-818I Removal of Existing Bridge Decks 2-8.46
2-818I.1 Protective Shields .. 2-8.46
2-818I.2 Operations .. 2-8.47
2-818J Substructure Repairs .. 2-8.47
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-818K</td>
<td>Deteriorated Concrete Removal</td>
<td>2-8.48</td>
</tr>
<tr>
<td>2-818L</td>
<td>Repair Materials</td>
<td>2-8.48</td>
</tr>
<tr>
<td>2-818M</td>
<td>General Repair Requirements</td>
<td>2-8.48</td>
</tr>
<tr>
<td>2-818N</td>
<td>Shotcrete</td>
<td>2-8.49</td>
</tr>
<tr>
<td>2-818N.1</td>
<td>Equipment</td>
<td>2-8.49</td>
</tr>
<tr>
<td>2-818N.2</td>
<td>Preparatory Work</td>
<td>2-8.49</td>
</tr>
<tr>
<td>2-818N.3</td>
<td>Application</td>
<td>2-8.50</td>
</tr>
<tr>
<td>2-818O</td>
<td>Copolymer Cementitious Mortar</td>
<td>2-8.50</td>
</tr>
<tr>
<td>2-818P</td>
<td>Crack Repair by Epoxy Injection</td>
<td>2-8.50</td>
</tr>
<tr>
<td>2-819</td>
<td>Painting</td>
<td>2-8.51</td>
</tr>
<tr>
<td>2-819A</td>
<td>Preconstruction Requirements</td>
<td>2-8.51</td>
</tr>
<tr>
<td>2-819A.1</td>
<td>Debris and Material Storage</td>
<td>2-8.51</td>
</tr>
<tr>
<td>2-819A.2</td>
<td>Containment System Plan</td>
<td>2-8.51</td>
</tr>
<tr>
<td>2-819A.3</td>
<td>Containment Meeting</td>
<td>2-8.52</td>
</tr>
<tr>
<td>2-819B</td>
<td>Equipment</td>
<td>2-8.52</td>
</tr>
<tr>
<td>2-819C</td>
<td>Containment Enclosures</td>
<td>2-8.53</td>
</tr>
<tr>
<td>2-819D</td>
<td>Air Pressure in Containment Enclosures</td>
<td>2-8.54</td>
</tr>
<tr>
<td>2-819E</td>
<td>Surface Preparation</td>
<td>2-8.54</td>
</tr>
<tr>
<td>2-819F</td>
<td>Waste Disposal</td>
<td>2-8.55</td>
</tr>
<tr>
<td>2-819G</td>
<td>Coatings Inspection</td>
<td>2-8.55</td>
</tr>
<tr>
<td>2-819H</td>
<td>Materials</td>
<td>2-8.55</td>
</tr>
<tr>
<td>2-819I</td>
<td>Weather</td>
<td>2-8.56</td>
</tr>
<tr>
<td>2-819J</td>
<td>General Requirements</td>
<td>2-8.56</td>
</tr>
<tr>
<td>2-819K</td>
<td>Coating New Steel</td>
<td>2-8.56</td>
</tr>
<tr>
<td>2-819L</td>
<td>Coating Existing Steel</td>
<td>2-8.56</td>
</tr>
<tr>
<td>2-819M</td>
<td>Defective Work</td>
<td>2-8.57</td>
</tr>
<tr>
<td>2-819N</td>
<td>Stenciling</td>
<td>2-8.57</td>
</tr>
<tr>
<td>2-819O</td>
<td>Paint Storage</td>
<td>2-8.57</td>
</tr>
<tr>
<td>2-819P</td>
<td>Health and Safety</td>
<td>2-8.58</td>
</tr>
<tr>
<td>2-819Q</td>
<td>Reporting</td>
<td>2-8.58</td>
</tr>
</tbody>
</table>
Chapter 9 - Construction Traffic

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-900</td>
<td>General</td>
<td>2-9.1</td>
</tr>
<tr>
<td>2-901</td>
<td>Public Relations</td>
<td>2-9.1</td>
</tr>
<tr>
<td>2-902</td>
<td>Press Releases</td>
<td>2-9.1</td>
</tr>
<tr>
<td>2-903</td>
<td>Daily Traffic Reports</td>
<td>2-9.1</td>
</tr>
<tr>
<td>2-904</td>
<td>Weekly Traffic Reports</td>
<td>2-9.2</td>
</tr>
<tr>
<td>2-905</td>
<td>Specifications</td>
<td>2-9.2</td>
</tr>
<tr>
<td>2-906</td>
<td>Maintenance and Protection of Traffic</td>
<td>2-9.2</td>
</tr>
<tr>
<td>2-906A</td>
<td>General</td>
<td>2-9.2</td>
</tr>
<tr>
<td>2-906B</td>
<td>Payment</td>
<td>2-9.2</td>
</tr>
<tr>
<td>2-906C</td>
<td>Contractor Nonperformance</td>
<td>2-9.3</td>
</tr>
<tr>
<td>2-907</td>
<td>Public Safety</td>
<td>2-9.3</td>
</tr>
<tr>
<td>2-908</td>
<td>Potholes</td>
<td>2-9.3</td>
</tr>
<tr>
<td>2-909</td>
<td>Roadway Trenches</td>
<td>2-9.4</td>
</tr>
<tr>
<td>2-910</td>
<td>Low Bridge Clearance</td>
<td>2-9.4</td>
</tr>
<tr>
<td>2-911</td>
<td>Storage of Equipment and Material</td>
<td>2-9.4</td>
</tr>
<tr>
<td>2-912</td>
<td>Removal and Reinstallation of Rail Systems</td>
<td>2-9.4</td>
</tr>
<tr>
<td>2-913</td>
<td>Limitation of Operations</td>
<td>2-9.4</td>
</tr>
<tr>
<td>2-913A</td>
<td>Requests for Changes</td>
<td>2-9.5</td>
</tr>
<tr>
<td>2-913B</td>
<td>Expressway Projects</td>
<td>2-9.5</td>
</tr>
<tr>
<td>2-913C</td>
<td>Inspection</td>
<td>2-9.5</td>
</tr>
<tr>
<td>2-913D</td>
<td>Liquidated Damages</td>
<td>2-9.6</td>
</tr>
<tr>
<td>2-914</td>
<td>Speed Limits</td>
<td>2-9.6</td>
</tr>
<tr>
<td>2-915</td>
<td>Business Access</td>
<td>2-9.7</td>
</tr>
<tr>
<td>2-916</td>
<td>Traffic Control Patterns</td>
<td>2-9.7</td>
</tr>
<tr>
<td>2-916A</td>
<td>Temporary Patterns</td>
<td>2-9.8</td>
</tr>
<tr>
<td>2-916B</td>
<td>Permanent Patterns</td>
<td>2-9.8</td>
</tr>
<tr>
<td>2-916C</td>
<td>Detours</td>
<td>2-9.9</td>
</tr>
<tr>
<td>2-916D</td>
<td>Night Patterns</td>
<td>2-9.9</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>2-916E Adjustments</td>
<td>2-9.9</td>
<td></td>
</tr>
<tr>
<td>2-917 Tapers</td>
<td>2-9.10</td>
<td></td>
</tr>
<tr>
<td>2-918 Buffer Space</td>
<td>2-9.10</td>
<td></td>
</tr>
<tr>
<td>2-919 Sign Placement</td>
<td>2-9.10</td>
<td></td>
</tr>
<tr>
<td>2-920 Inspection Responsibilities</td>
<td>2-9.10</td>
<td></td>
</tr>
<tr>
<td>2-920A General Inspection</td>
<td>2-9.11</td>
<td></td>
</tr>
<tr>
<td>2-920B Traffic Flow</td>
<td>2-9.11</td>
<td></td>
</tr>
<tr>
<td>2-920C Lane Closures</td>
<td>2-9.12</td>
<td></td>
</tr>
<tr>
<td>2-921 Detours</td>
<td>2-9.12</td>
<td></td>
</tr>
<tr>
<td>2-921A Detour of a State Highway to a Town Road</td>
<td>2-9.12</td>
<td></td>
</tr>
<tr>
<td>2-921B Detour of a State Highway to Another State Highway</td>
<td>2-9.13</td>
<td></td>
</tr>
<tr>
<td>2-921C Detour of a Town Road to Another Town Road</td>
<td>2-9.13</td>
<td></td>
</tr>
<tr>
<td>2-921D Temporary Detours</td>
<td>2-9.13</td>
<td></td>
</tr>
<tr>
<td>2-921E Detour Operations</td>
<td>2-9.14</td>
<td></td>
</tr>
<tr>
<td>2-922 Construction Signs</td>
<td>2-9.14</td>
<td></td>
</tr>
<tr>
<td>2-922A Signs</td>
<td>2-9.14</td>
<td></td>
</tr>
<tr>
<td>2-922B Ordering</td>
<td>2-9.14</td>
<td></td>
</tr>
<tr>
<td>2-922C Placement</td>
<td>2-9.14</td>
<td></td>
</tr>
<tr>
<td>2-922D 16-Series Signs</td>
<td>2-9.15</td>
<td></td>
</tr>
<tr>
<td>2-922E Inspection</td>
<td>2-9.15</td>
<td></td>
</tr>
<tr>
<td>2-923 Barricade Warning Lights</td>
<td>2-9.16</td>
<td></td>
</tr>
<tr>
<td>2-924 Extended Shutdowns</td>
<td>2-9.16</td>
<td></td>
</tr>
<tr>
<td>2-925 Changeable Message Signs</td>
<td>2-9.16</td>
<td></td>
</tr>
<tr>
<td>2-925A Portable Signs</td>
<td>2-9.16</td>
<td></td>
</tr>
<tr>
<td>2-925B Permanent Signs</td>
<td>2-9.17</td>
<td></td>
</tr>
<tr>
<td>2-926 Arrow Boards</td>
<td>2-9.17</td>
<td></td>
</tr>
<tr>
<td>2-927 Channelizing Devices</td>
<td>2-9.18</td>
<td></td>
</tr>
<tr>
<td>2-927A Barricades</td>
<td>2-9.18</td>
<td></td>
</tr>
<tr>
<td>2-927B Temporary Precast Concrete Barrier Curb</td>
<td>2-9.18</td>
<td></td>
</tr>
<tr>
<td>2-927C Installation</td>
<td>2-9.19</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>2-927D</td>
<td>Taper Lengths</td>
<td>2-9.19</td>
</tr>
<tr>
<td>2-927E</td>
<td>Delineation</td>
<td>2-9.20</td>
</tr>
<tr>
<td>2-927F</td>
<td>Attachment</td>
<td>2-9.21</td>
</tr>
<tr>
<td>2-927G</td>
<td>End Treatments</td>
<td>2-9.21</td>
</tr>
<tr>
<td>2-927H</td>
<td>Component Inspection</td>
<td>2-9.21</td>
</tr>
<tr>
<td>2-927I</td>
<td>Payment for TPCBC</td>
<td>2-9.21</td>
</tr>
<tr>
<td>2-928</td>
<td>Impact Attenuation Modules (Sand Barrels)</td>
<td>2-9.22</td>
</tr>
<tr>
<td>2-929</td>
<td>42 Inch Traffic Cones</td>
<td>2-9.23</td>
</tr>
<tr>
<td>2-930</td>
<td>Traffic Drums</td>
<td>2-9.23</td>
</tr>
<tr>
<td>2-931</td>
<td>Pavement Markings</td>
<td>2-9.24</td>
</tr>
<tr>
<td>2-931A</td>
<td>Painted Markings</td>
<td>2-9.24</td>
</tr>
<tr>
<td>2-931B</td>
<td>Temporary Plastic Markings</td>
<td>2-9.24</td>
</tr>
<tr>
<td>2-931C</td>
<td>Marking Removal</td>
<td>2-9.24</td>
</tr>
<tr>
<td>2-932</td>
<td>Portable Impact Attenuator Systems (Crash Trucks)</td>
<td>2-9.24</td>
</tr>
<tr>
<td>2-932A</td>
<td>Use</td>
<td>2-9.24</td>
</tr>
<tr>
<td>2-932B</td>
<td>Inspection</td>
<td>2-9.25</td>
</tr>
<tr>
<td>2-933</td>
<td>Trafficperson</td>
<td>2-9.25</td>
</tr>
<tr>
<td>2-933A</td>
<td>General</td>
<td>2-9.25</td>
</tr>
<tr>
<td>2-933B</td>
<td>State Police Officers</td>
<td>2-9.26</td>
</tr>
<tr>
<td>2-933C</td>
<td>Town or City Police Officers or Uniformed Trafficpersons</td>
<td>2-9.26</td>
</tr>
<tr>
<td>2-933D</td>
<td>Prior Approval</td>
<td>2-9.26</td>
</tr>
<tr>
<td>2-933E</td>
<td>Work Control</td>
<td>2-9.26</td>
</tr>
<tr>
<td>2-933F</td>
<td>Operations</td>
<td>2-9.27</td>
</tr>
<tr>
<td>2-933G</td>
<td>Documentation</td>
<td>2-9.27</td>
</tr>
<tr>
<td>2-933H</td>
<td>Payment</td>
<td>2-9.28</td>
</tr>
<tr>
<td>2-934</td>
<td>Traffic Control During Construction Operations</td>
<td>2-9.31</td>
</tr>
<tr>
<td>2-934A</td>
<td>General</td>
<td>2-9.31</td>
</tr>
<tr>
<td>2-934B</td>
<td>Traffic Control Patterns</td>
<td>2-9.31</td>
</tr>
<tr>
<td>2-934C</td>
<td>Placement of Signs</td>
<td>2-9.31</td>
</tr>
<tr>
<td>2-934D</td>
<td>Allowable Adjustment of Signs and Devices</td>
<td>2-9.32</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2-934E</td>
<td>Work Zone Safety Meetings</td>
<td></td>
</tr>
<tr>
<td>2-934F</td>
<td>Installing and Removing Traffic Control Patterns</td>
<td></td>
</tr>
<tr>
<td>2-934G</td>
<td>Use of High Mounted Internally Illuminated Flashing Arrow</td>
<td></td>
</tr>
<tr>
<td>2-934H</td>
<td>Use of Truck Mounted Impact Attenuation Vehicles (TMAs)</td>
<td></td>
</tr>
<tr>
<td>2-934I</td>
<td>Use of State Police Officers</td>
<td></td>
</tr>
<tr>
<td>2-934J</td>
<td>Use of (Remote Controlled) Changeable Message Signs</td>
<td></td>
</tr>
<tr>
<td>2-934K</td>
<td>Use of (Remote Control) Changeable Message Signs With Radar</td>
<td></td>
</tr>
<tr>
<td>2-934L</td>
<td>Use of Traffic Drums and Traffic Cones</td>
<td></td>
</tr>
<tr>
<td>2-934M</td>
<td>General Requirements for Traffic Control</td>
<td></td>
</tr>
<tr>
<td>2-934N</td>
<td>Work Zone Safety Meeting Agenda</td>
<td></td>
</tr>
<tr>
<td>2-934O</td>
<td>Work Zone Safety Procedures – Allowable Messages for Signs</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 10 - Miscellaneous Construction

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1001</td>
<td>Riprap</td>
</tr>
<tr>
<td>2-1002</td>
<td>Gabions</td>
</tr>
<tr>
<td>2-1003</td>
<td>Wire Fence</td>
</tr>
<tr>
<td>2-1003A</td>
<td>Wood Posts</td>
</tr>
<tr>
<td>2-1003B</td>
<td>Metal Posts</td>
</tr>
<tr>
<td>2-1003C</td>
<td>End, Corner and Pull Posts</td>
</tr>
<tr>
<td>2-1004</td>
<td>Metal Beam Rail</td>
</tr>
<tr>
<td>2-1004A</td>
<td>Material Inspection</td>
</tr>
<tr>
<td>2-1004B</td>
<td>Posts</td>
</tr>
<tr>
<td>2-1004C</td>
<td>Rail</td>
</tr>
<tr>
<td>2-1004D</td>
<td>Welding</td>
</tr>
<tr>
<td>2-1004E</td>
<td>Anchorages</td>
</tr>
<tr>
<td>2-1005</td>
<td>Turf Establishment</td>
</tr>
<tr>
<td>2-1005A</td>
<td>Seedbed Preparation</td>
</tr>
<tr>
<td>2-1005B</td>
<td>Seeding and Fertilizing</td>
</tr>
<tr>
<td>2-1005C</td>
<td>Establishment and Cleanup</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2-1006</td>
<td>Erosion Control Matting</td>
</tr>
<tr>
<td>2-1007</td>
<td>Sodding</td>
</tr>
<tr>
<td>2-1007A</td>
<td>Ground Preparation</td>
</tr>
<tr>
<td>2-1007B</td>
<td>Planting</td>
</tr>
<tr>
<td>2-1007C</td>
<td>Pegging</td>
</tr>
<tr>
<td>2-1007D</td>
<td>Finishing and Maintenance</td>
</tr>
</tbody>
</table>
List of Figures

2-1.1 Administrative Memorandum No. 97—Environmental Compliance .. 2-1.4 – 2-1.6
2-1.2 24-Hour Rule Form .. 2-1.17
2-1.3 Environmental Checklist—New Project Startup ... 2-1.21
2-1.4 Project Site Environmental Inspection Report .. 2-1.22 & 2-1.23
2-2.1 Typical Offset Stake Markings .. 2-2.9
2-2.2 Recommended Stake Standards ... 2-2.10
2-3.1 Illustration of Lines and Limits .. 2-3.2
2-3.2 Setting Slope Stakes ... 2-3.3
2-3.3 Signs for Blasting .. 2-3.9
2-3.4 Disposal of Unsuitable Material .. 2-3.13
2-3.5 Data and Computation Sheet for Nuclear Field Density Tests (Form CON-125) 2-3.20
2-3.6 Department of Public Utility Control—Incident Report Form ... 2-3.23
2-4.1 Paved Invert ... 2-4.5
2-4.2 Certification of Precast Concrete Products (Form PC-1) ... 2-4.9
2-4.3 Endwall Layout .. 2-4.11
2-4.4 Pipe Installation with Gravel Fill .. 2-4.13
2-4.5 Pipe Installation without Gravel Fill .. 2-4.14
2-4.6 Catch Basin (Type CL) ... 2-4.18
2-4.7 Underdrain .. 2-4.20
2-5.1 Base & Bituminous Concrete Inspection Report (Form CON-136) .. 2-5.3 & 2-5.4
2-5.2 Avoiding Water Entrapment ... 2-5.5
2-6.1 Typical Bituminous Paver—Side View .. 2-6.4
2-6.2 Typical Bituminous Paver—Top View ... 2-6.4
2-6.3 Screed Details ... 2-6.5
2-6.4 Paver Leveling Action ... 2-6.6
2-6.5 Tire Arrangement—Pneumatic-Tire Rollers ... 2-6.7
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6.6</td>
<td>Typical Material Transfer Device (MTD)</td>
<td>2-6.8</td>
</tr>
<tr>
<td>2-6.7</td>
<td>Vacant</td>
<td></td>
</tr>
<tr>
<td>2-6.8</td>
<td>Preferred Truck Loading Sequence</td>
<td>2-6.12</td>
</tr>
<tr>
<td>2-6.9</td>
<td>Spray Bar Overlaps</td>
<td>2-6.14</td>
</tr>
<tr>
<td>2-6.10</td>
<td>Incorrect Spray Bar Overlaps</td>
<td>2-6.14</td>
</tr>
<tr>
<td>2-6.11</td>
<td>Factors That Influence the Vertical Position of the Screed</td>
<td>2-6.16</td>
</tr>
<tr>
<td>2-6.12</td>
<td>Angle of Attack—Manual or Automatic Control of Tow Points</td>
<td>2-6.16</td>
</tr>
<tr>
<td>2-6.13</td>
<td>Correct Head of Material Volume</td>
<td>2-6.17</td>
</tr>
<tr>
<td>2-6.14</td>
<td>Head of Material—Volume Too High</td>
<td>2-6.17</td>
</tr>
<tr>
<td>2-6.15</td>
<td>Head of Material—Volume Too Low</td>
<td>2-6.17</td>
</tr>
<tr>
<td>2-6.16</td>
<td>HMA Course and Lift Diagram</td>
<td>2-6.20</td>
</tr>
<tr>
<td>2-6.17a</td>
<td>Example Paving Layout (English)</td>
<td>2-6.23</td>
</tr>
<tr>
<td>2-6.17b</td>
<td>Example Paving Layout (Metric)</td>
<td>2-6.23</td>
</tr>
<tr>
<td>2-6.18</td>
<td>Rolling Patterns</td>
<td>2-6.29</td>
</tr>
<tr>
<td>2-6.19</td>
<td>(Form) Nuclear Density Tests (Sample)</td>
<td>2-6.67-68</td>
</tr>
<tr>
<td>2-6.20</td>
<td>Permanent Transition Keyway</td>
<td>2-6.31</td>
</tr>
<tr>
<td>2-6.21</td>
<td>Construction of a Day Joint</td>
<td>2-6.32</td>
</tr>
<tr>
<td>2-6.22</td>
<td>Starting Blocks</td>
<td>2-6.33</td>
</tr>
<tr>
<td>2-6.23</td>
<td>Notched Wedge Joint</td>
<td>2-6.35</td>
</tr>
<tr>
<td>2-6.25</td>
<td>(Form) Final Pavement Evaluation Report</td>
<td>2-6.69-70</td>
</tr>
<tr>
<td>2-6.26</td>
<td>(Form) Weekly HMA Production Report</td>
<td>2-6.71</td>
</tr>
<tr>
<td>2-6.27</td>
<td>(Form) Base & Bituminous Concrete Inspection Report (CON-136)</td>
<td>2-6.72-73</td>
</tr>
<tr>
<td>2-6.28</td>
<td>(Form) Adjustment Schedule for Bituminous Concrete Form</td>
<td>2-6.74-76</td>
</tr>
<tr>
<td>2-6.29</td>
<td>Leveling and Wedging Examples</td>
<td>2-6.46</td>
</tr>
<tr>
<td>2-6.30</td>
<td>(Form) Liquid Asphalt Adjustment Form</td>
<td>2-6.77</td>
</tr>
<tr>
<td>2-6.31</td>
<td>(Form) Sample Letter Requesting Load Factor Rating Analysis</td>
<td>2-6.78-80</td>
</tr>
<tr>
<td>F2-6.1</td>
<td>(Form) Prepaving Meeting Agenda</td>
<td>2-6.52-53</td>
</tr>
<tr>
<td>T2-6.1</td>
<td>(Table) Mat Troubleshooting Guide Table</td>
<td>2-6.54-61</td>
</tr>
<tr>
<td>E2-6.1</td>
<td>(Example) Example HMA Adjustments</td>
<td>2-6.62-64</td>
</tr>
<tr>
<td>T2-6.2</td>
<td>(Table) Thickness Tolerances</td>
<td>2-6.65</td>
</tr>
</tbody>
</table>

Table of Contents
Table of Contents

Volume 2

2-6.3 (Table) Tolerances for Consecutive Tests (Marshall) 2-6.65 Apr 2009
2-6.3A (Table) Adjustment Values for Air Voids (Superpave) 2-6.65 Apr 2009
2-6.3B (Table) Adjustment Values for Liquid Binder (Superpave) 2-6.65 Apr 2009
T2-6.(M.04.03-5) (Table) Superpave Minimum Binder Content by
Mix Type and Level ... 2-6.66 Apr 2009
2-6.4 (Table) Adjustment Values for Pavement Density 2-6.66 Apr 2009
2-7.1 Mix Design .. 2-7.3
2-7.2 Layout to Avoid a Featheredge ... 2-7.9
2-7.3 String-Line Stakes .. 2-7.11
2-7.4 Transverse Joint Layout ... 2-7.13
2-7.5 Pressure Relief Joint .. 2-7.14
2-7.6 Expansion Joint .. 2-7.15
2-7.7 Contraction Joint .. 2-7.15
2-7.8 Longitudinal Joint ... 2-7.17
2-7.9 Concrete Base & Pavement Inspection Report
(Form CON-135 M) .. 2-7.40 & 2-7.41
2-7.10 Mortar Content Conversion Factors ... 2-7.43
2-8.1 Foundation Seal .. 2-8.5
2-8.2 Piles .. 2-8.9
2-8.3 Mortar Block .. 2-8.14
2-8.4 Construction Joint ... 2-8.17
2-8.5 Shear Connectors ... 2-8.20
2-8.6 Elastomeric Bearing Pad Assembly ... 2-8.24
2-8.7 Pot Bearing .. 2-8.25
2-8.8 Rocker Setting ... 2-8.27
2-8.9 Weld Quality Factors ... 2-8.29
2-8.10 Poured Joint Seal .. 2-8.33
2-8.11 Box Seal Expansion Joint System .. 2-8.35
2-8.12 Strip Seal Joint Device .. 2-8.35
2-8.13 Bridge Deck Repair ... 2-8.37
2-8.14 Structural Deficiency Report .. 2-8.59
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-8.15a</td>
<td>Daily Containment Inspection Report</td>
<td>2-8.60</td>
</tr>
<tr>
<td>2-8.15b</td>
<td>Daily Containment Inspection Report (continued)</td>
<td>2-8.61</td>
</tr>
<tr>
<td>2-8.16</td>
<td>Daily Bridge Painting Quality Control Inspection Report</td>
<td>2-8.62</td>
</tr>
<tr>
<td>2-8.17a</td>
<td>Bridge Paint Inspection Checklist</td>
<td>2-8.63</td>
</tr>
<tr>
<td>2-8.17b</td>
<td>Bridge Paint Inspection Checklist (continued)</td>
<td>2-8.64</td>
</tr>
<tr>
<td>2-9.1</td>
<td>Terms for Work Zone Traffic Control Patterns</td>
<td>2-9.8</td>
</tr>
<tr>
<td>2-9.2</td>
<td>Temporary Precast Concrete Barrier Curb</td>
<td>2-9.19</td>
</tr>
<tr>
<td>2-9.3</td>
<td>Typical Temporary Precast Concrete Barrier Curb Installation</td>
<td>2-9.20</td>
</tr>
<tr>
<td>2-9.4</td>
<td>Connection Assembly for Temporary Precast Concrete Barrier Curb</td>
<td>2-9.22</td>
</tr>
<tr>
<td>2-9.5</td>
<td>Traffic Cone</td>
<td>2-9.24</td>
</tr>
<tr>
<td>2-9.6</td>
<td>Traffic Drum</td>
<td>2-9.24</td>
</tr>
<tr>
<td>2-9.7</td>
<td>Characteristics of Operating Guide Rail</td>
<td>2-9.30</td>
</tr>
<tr>
<td>2-9.8</td>
<td>Characteristics of Median Barriers</td>
<td>2-9.30</td>
</tr>
<tr>
<td>2-9.9</td>
<td>Request for Change to Contract Traffic Specifications</td>
<td>2-9.31</td>
</tr>
<tr>
<td>2-9.10</td>
<td>Traffic Control Plan — Series 16 Signs</td>
<td>2-9.41</td>
</tr>
<tr>
<td>2-9.11</td>
<td>Traffic Control Plan Notes (Construction)</td>
<td>2-9.42</td>
</tr>
<tr>
<td>2-9.12</td>
<td>Traffic Control Plan 1—Work in Right Lane—Multilane Highway</td>
<td>2-9.43</td>
</tr>
<tr>
<td>2-9.14</td>
<td>Traffic Control Plan 3—Work in Left Lane—Multilane Highway</td>
<td>2-9.45</td>
</tr>
<tr>
<td>2-9.15</td>
<td>Traffic Control Plan 4—Work in Left Two Lanes—Multilane Highway</td>
<td>2-9.46</td>
</tr>
<tr>
<td>2-9.16</td>
<td>Traffic Control Plan 5—Work in Left and Center Lane—</td>
<td>2-9.47</td>
</tr>
<tr>
<td></td>
<td>Multilane Highway (Utilizing Shoulder)</td>
<td></td>
</tr>
<tr>
<td>2-9.18</td>
<td>Traffic Control Plan 7—Work in Ramp Gore Area</td>
<td>2-9.49</td>
</tr>
<tr>
<td>2-9.19</td>
<td>Traffic Control Plan 8—Typical Ramp Treatments for Mainline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lane Closure—Multilane Highway</td>
<td>2-9.50</td>
</tr>
<tr>
<td>2-9.20</td>
<td>Traffic Control Plan 9—Work on Turning Roadways/Ramps</td>
<td>2-9.51</td>
</tr>
<tr>
<td>2-9.21</td>
<td>Traffic Control Plan 10—Work in Right Lane—Four-Lane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Undivided Highway</td>
<td>2-9.52</td>
</tr>
<tr>
<td>2-9.22</td>
<td>Traffic Control Plan 11—Work in Left Lane—Four-Lane</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2-9.23</td>
<td>Traffic Control Plan 12—Work in Both Lanes—Four-Lane</td>
<td></td>
</tr>
<tr>
<td>2-9.24</td>
<td>Traffic Control Plan 13—Work in Travel Lane and Shoulder—Two-Lane</td>
<td></td>
</tr>
<tr>
<td>2-9.25</td>
<td>Traffic Control Plan 14—Work in Shoulder—Two-Lane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.26</td>
<td>Traffic Control Plan 15—Work in Travel Lane and Shoulder—Two-Lane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.27</td>
<td>Traffic Control Plan 16—Work in Middle of Roadway—Two-Lane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.28</td>
<td>Traffic Control Plan 17—Work in Middle of Roadway at Intersection</td>
<td></td>
</tr>
<tr>
<td>2-9.29</td>
<td>Traffic Control Plan 18—Work in Travel Lane and Shoulder—Two Lane Highway—Alternating One-Way Traffic Operation—Stop Sign Control</td>
<td></td>
</tr>
<tr>
<td>2-9.30</td>
<td>Traffic Control Plan 19—Moving Operation on Right Shoulder—Multilane Highway and Secondary Roadways</td>
<td></td>
</tr>
<tr>
<td>2-9.31</td>
<td>Traffic Control Plan 20—Moving Operation in Right Lane and Outside Shoulder at the Same Time—Multilane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.32</td>
<td>Traffic Control Plan 21—Moving Operation in Left Lane and Inside Shoulder at the Same Time—Multilane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.33</td>
<td>Traffic Control Plan 22—Moving Operation in Center Lane—Multilane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.34</td>
<td>Traffic Control Plan 23—Moving Operation in Center Lane—Multilane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.35</td>
<td>Traffic Control Plan 24—Moving Operation—Two-Lane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.36</td>
<td>Traffic Control Plan 25—Mowing Operation—Multilane Highway</td>
<td></td>
</tr>
<tr>
<td>2-9.37</td>
<td>Traffic Control Plan—H.O.V. Plan 1—Work in Restricted Lane (Stationary Closure)</td>
<td></td>
</tr>
<tr>
<td>2-9.38</td>
<td>Traffic Control Plan—H.O.V. Plan 2—Work in Separator of Restricted Lane (Stationary Closure)</td>
<td></td>
</tr>
</tbody>
</table>

Undivided Highway

Volume 2
Table of Contents ver. 2.2 (Jan 2011) xxxi
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-9.39</td>
<td>Traffic Control Plan–H.O.V. Plan 3—Work in Left Shoulder of Restricted Lane (Stationary Closure)</td>
<td>2-9.71</td>
</tr>
<tr>
<td>2-9.40</td>
<td>Traffic Control Plan–H.O.V. Plan 4—Moving Operation in Restricted Lane</td>
<td>2-9.72</td>
</tr>
<tr>
<td>2-10.1</td>
<td>Gabion Field Assembly</td>
<td>2-10.2</td>
</tr>
<tr>
<td>2-10.2</td>
<td>Gabion Placement</td>
<td>2-10.2</td>
</tr>
<tr>
<td>2-10.3</td>
<td>Gabion Connecting Wires</td>
<td>2-10.3</td>
</tr>
<tr>
<td>2-10.4</td>
<td>Wire Fence Pull Post</td>
<td>2-10.4</td>
</tr>
<tr>
<td>2-10.5</td>
<td>Metal Beam Guiderail Anchorage</td>
<td>2-10.6</td>
</tr>
</tbody>
</table>
Chapter 1 – Environmental Protection

2-100 General

Protecting and improving the quality of the environment is a primary concern of the Department. During all phases of project development, through actual construction and project completion, the Department endeavors to provide for the implementation of practices and procedures that satisfy statutory and regulatory requirements to protect the quality of the environment.

2-101 Permits

Federal and State environmental regulations for water resources apply to any activity within the boundaries of wetlands, watercourses, stream channel encroachment lines, flood plains and or water quality concerns. Wetlands, watercourses, and water quality concerns are described below.

- **Wetlands.** Wetlands are defined in the State of Connecticut as poorly drained or very poorly drained soils, alluvial soils, or flood plain soils. The Army Corps of Engineers (ACOE) defines wetlands by using soils, hydrology and plants. Tidal wetlands are defined as those areas that border on or lie beneath tidal waters, including those areas affected by tidal actions.

- **Watercourses.** Watercourses are delineated from the top of one bank to the top of the opposite bank. Stream channel encroachment lines also apply to various flood prone rivers in the state.

- **Water Quality Concerns.** These include general storm water permit areas, Coastal Area Management Zones, water quality concerns also arise in regulated wellhead protection areas, public water supply watershed and aquifer protection areas.

To paraphrase General Statutes 22a-38 #13: Any construction activity within any of the boundaries described above, including but not limited to placement or removal of fill, building of any structure or roadway (permanent or temporary), is a regulated activity, and will require a permit. Construction projects may require a combination of any of the permits mentioned below.

2-101A Department of Environmental Protection

Some of the different types of permits issued by the Department of Environmental Protection (DEP) are as follows:

- Inland Wetlands and Watercourse Permit
- Tidal Wetlands Permit
- Structures and Dredging Permit
- Storm water discharge Permit, (National Pollution Discharge Elimination System)
- Stream Channel Encroachment Line Permit
- Flood Management Certification
- Coastal Zone Management Consistency Approval
- General Permit for Water resource construction activities
- 401 Water Quality Certification
2-101B Army Corps of Engineers

An Army Corps of Engineers permit is required for activities in or affecting wetlands and navigable waters of the United States, the discharge of dredged or fill material into waters of the United States, and the transportation of dredged material for the purpose of dumping it into ocean waters.

2-102 Pollution Control Regulations

2-102A Air Pollution

Air pollution standards set by Federal and State regulations apply to all contractor and subcontractor activities regarding dust, fumes, mist, smoke, vapor, gas, aerosol, other particulate matter, odorous substances, or any combination of these arising from construction operations or hauling, storing or manufacturing materials. Containment plans may be required for certain procedures (for example, surface preparation for painting structures).

2-102B Noise Pollution

The maximum allowable noise level on construction projects is 90 decibels on the “A” weighted scale at the nearest occupied building or residence. All methods and devices employed to minimize noise are subject to the continuing approval of the Engineer.

2-102C Water Pollution

Water pollution standards set by Federal and State regulations are all applicable to construction activities. The Standard Specifications, Article 1.10, provide guidelines for both on-site and off-site activities. DEP and ACOE permits may have site-specific regulations as well.

2-103 Specifications

Article 1.10 of the Standard Specifications, “Environmental Compliance,” is the primary specification for the Department's environmental protection efforts. Among other information, the article includes the “Best Management Practices” for water pollution control. Other specifications that relate directly to environmental protection cover water pollution control related to soil erosion, sedimentation control, dust control, and slope stabilization.

In case of conflicts between the plans and applicable permits, the environmental permits and environmental permit applications override the plans, supplemental specifications, and standard specifications.

2-103A Response to Environmental Deficiencies

It is the policy of the Department and the Office of Construction that immediate action is to be taken to respond to and correct any environmental deficiency which is noted (verbally or in writing) by District Environmental Coordinators, Environmental Planning staff, DEP or other regulatory agency staffs. Project and District staff must take corrective action whenever verbal or written deficiencies are brought to their attention. Project and District staff are not to wait for written confirmation of verbal directions from Department or regulatory environmental staff.

Administrative Memorandum No. 97, issued May 2, 1994, addresses the responsibility of the Department as it relates to the control of erosion and sedimentation control. This memorandum, shown in Figure 2-1.1, defines the
roles and clarifies the duties of personnel from the District, office of Environmental Planning and Office of Maintenance. This memorandum should be read and understood by all District personnel.

Upon receipt of verbal or written notification of any deficiencies, the project inspector must immediately notify the contractor of the deficiency, required corrective action and response time required of the contractor.

Project staff do not have the authority to decide which environmental deficiencies should be responded to. They are required to take immediate action and respond to all deficiencies brought to their attention by Department or regulatory agency environmental staff. If project personnel have any concerns that the actions required by environmental or regulatory staff are unnecessary, they are to implement the corrective actions as directed by the environmental or regulatory staff and then bring their concerns to the attention of District supervisory personnel.

In the event concerns are raised regarding the necessity for correcting environmental deficiencies, the concerns shall be brought to the supervising engineer (or higher) level. If the District supervisory staff feels that the corrective action is not appropriate, they will contact the Department's environmental planning office and discuss the district's concerns. If necessary, a meeting will be arranged between Environmental Planning, District personnel and the regulatory agency to discuss the issues raised by the District.

In no case shall any District personnel countermand the directions issued by environmental planning or regulatory personnel without the concurrence of the CDOT Office of Environmental Planning, the regulatory agency involved or the Office of Construction (Construction Administrator or Manager of Construction Operations). Any such concurrence shall be fully documented in writing and faxed to the appropriate involved parties.

It is imperative that all personnel respond in an immediate and positive manner whenever environmental deficiencies are noted by Department or regulatory personnel. These deficiencies must also be recorded in the “Project Site Environmental Inspection Report.”

2-104 Duties and Responsibilities

The Office of Construction has the primary responsibility of ensuring that construction activities are conducted in compliance with applicable environmental regulation requirements. Each construction project is required to have an inspector for environmental compliance, usually the Chief Inspector. On larger projects or if special requirements prevail, a full-time Environmental Inspector may be required. In addition, each District has a full-time Environmental Coordinator.

2-104A Inspection Personnel

During construction the inspection personnel—both CDOT and consultant engineer—are responsible for compliance with the procedures of the Department and the Standard Specifications, as well as compliance enforcement of the rules and regulations set forth by the regulatory agencies. Permits issued by the DEP and ACOE are to be complied with unconditionally. If any questions arise, contact Environmental Planning or design.

Inspection personnel must maintain communications with the contractor to alleviate problems with the interpretation of permit conditions and contract specifications concerning environmental conditions. Recordkeeping need not be lengthy but must be complete and precise. Any problems or questions may be referred to the Project Engineer and/or District Environmental Coordinator.
Text of Administrative Memorandum No. 97
Environmental Compliance
Issued May 2, 1994

This is to provide direction concerning procedures and responsibilities of the Department of Transportation (DOT) relating to the control of erosion and sedimentation (E&S) within construction projects and maintenance activities.

The Department of Transportation is committed to meet its legal responsibilities in accordance with environmental permits and to ensure the protection of natural resources during and following completion of construction of projects and maintenance activities. Any action that is necessary to avoid and/or alleviate impact upon the natural resources from construction and maintenance activities must be accomplished promptly. When environmental degradation resulting from either contractor error or aggravated by nature is identified, arresting and correcting the damage is of utmost concern.

Immediate action shall be taken to respond to and correct any environmental deficiency noted (verbally or in writing) by District Environmental Coordinators, Environmental Planning staff, Department of Environmental Protection (DEP) staff or any other regulatory agency. Project and District staff must take corrective action whenever verbal or written deficiencies are brought to their attention. Project and District staff are not to wait for written confirmation of verbal direction from Department or regulatory environmental staff.

Each construction project will continue to have an inspector assigned to be responsible for environmental compliance. The Inspector's responsibilities shall include the monitoring of project compliance with all permit requirements, Section 1.10 (Environmental Compliance) of the DOT Standard Specifications Form 814, or latest revisions, and any other regulatory agency requirements. He/she will also maintain the project's "Environmental Inspection Log" which will be done at least weekly and/or after each major storm event and will review the E&S plans for the project at least bi-weekly to see that the contractor has provided updates as required.

An Environmental Coordinator(s) will continue to be permanently assigned to each of the DOT District offices. The Coordinators shall supplement the Inspectors assigned to construction projects and the DOT Environmental Planning Division (EPD) staff and shall ensure strict regulatory permit compliance.

The Office of Maintenance will continue to have a Coordinator(s) to oversee permit and Section 1.10 compliance within that Office. The District construction Coordinators and EPD staff shall advise the Office of Maintenance on these matters as required.

Upon receipt of verbal or written notification of any deficiencies, the project inspector must immediately notify the contractor of the deficiency, required corrective action and response time required of the contractor.

Project staff do not have the authority to decide which environmental deficiencies should be responded to. They are required to take immediate action and respond to all deficiencies brought to their attention by Department or State/federal regulatory agency environmental staff.

In no case shall District personnel countermand the directions issued by environmental planning or regulatory personnel without the concurrence of the DOT Environmental Planning Division, the regulatory agency involved or the Office of Construction (Transportation Construction Administrator
Figure 2-1.1 (continued)
Administrative Memorandum No. 97
Environmental Compliance

Text of Administrative Memorandum No. 97
Environmental Compliance
Issued May 2, 1994
Page 2

or Manager of Construction Operations. Any such concurrence shall be fully documented in writing
and faxed to the appropriate involved parties.

The Coordinators shall keep the District Engineer and/or Assistant District Engineer informed
of environmental regulatory requirements and immediately notify them of their findings from outside
reviews, and any actions required to avoid or correct environmental impact due to construction
activity.

The District will continue to have the responsibility of ordering a contractor on a project to take
the necessary action to avoid environmental damage, or when environmental damage is occurring,
or has occurred, to stop and/or repair the damage. If the project contractor does not take the
corrective or restorative action within 24 hours from notification, the District Engineer or Assistant
District Engineer shall utilize an on-call contractor with staff, equipment and materials to do what is
necessary, and backcharge the project contractor accordingly. Therefore, issuance of the “24 Hour
Rule Form” must be issued to the contractor at the time the damage is observed.

Personnel from EPD will periodically, as needed, field review construction projects for
environmental and permit compliance, and make recommendations for remedial action through the
District. A directive to invoke the 24 hour time frame may be made by the Director of Environmental
Planning to the District Engineer if prompt action is not initiated by the District.

E&S controls are to be incorporated in all project design plans recognizing various stages of
construction.

Materials incorporated in a project shall be reviewed, as required, by the District Engineer to
ensure full specification compatibility with environmental requirements.

The Inspector shall ensure that controls will be in place prior to the initiation of construction
activity in or adjacent to regulated areas.

Products for E&S controls shall be available at strategic locations statewide for emergency use.
Adequate funding shall be included in all construction contracts to satisfy expenses incurred for E&S
controls.

The specifications shall continue to stipulate that no activity will be allowed in, or adjacent to,
regulated areas (including clearing) prior to the issuance of a permit. Such permitted activity shall
be conducted in strict conformance with Section 1.10 and authorized permit conditions.

The Director of Environmental Planning will continue to be notified in writing by the initiating
Office (Design or Construction) of change orders that will affect work in or adjacent to regulated
areas. Notification must be made at a reasonable time prior to changes being implemented or
submitted to the regulatory agencies for approval Plan revisions, permit modifications and/or permit
extensions shall be coordinated with the appropriate regulatory agency (DEP and/or the Army corps
of Engineers) by the District Office of Construction or the Office of Engineering as appropriate. All
submittals to the regulatory agencies shall be through the original permit application signatory.
Copies of requests for such activities and any regulatory determinations shall be provided to the
2-104B Environmental Inspector

The inspector responsible for environmental compliance performs the following work.

- Monitors project compliance with permit requirements, Article 1.10 of the Standard Specifications, and any other regulatory agency requirements and best management practices.

- Ensures controls are in place prior to the initiation of construction activity in or adjacent to regulated areas.

- Maintains the project's Environmental Log.

- Reviews erosion and sedimentation plans at least weekly and after any rainstorm of 0.1 in (2.5 mm) and as stated in DEP permit.

- After receiving oral or written notification of a deficiency, immediately notifies the contractor of the deficiency, the required corrective action, and the required response time.

2-104C District Environmental Coordinator

The District Environmental Coordinator has the following duties:

- To perform site reviews on construction projects for compliance with regulatory permits, plans and specifications.

- To keep the DE and ADE informed of environmental regulatory requirements,
To immediately notify the DE and ADE of their findings from outside reviews,

- To notify the DE and ADE of actions required to avoid or correct environmental impact due to construction activity, and

- To review future projects for environmental compliance.

2-104D District Office

The District is responsible for ordering the contractor to take the actions needed to avoid environmental damage or to repair damage that has occurred or is occurring. In addition, the DE reviews materials incorporated into a project as required to ensure full compatibility with environmental requirements.

2-104E Office of Environmental Planning

The Office of Environmental Planning will periodically perform field-review of construction projects for environmental and permit compliance and recommend remedial action through the District. The Director of Environmental Planning may issue a directive to the DE if the District does not act promptly. The Office of Environmental Planning also is responsible for reviewing plans and permits for completeness.

2-104F Contractor

The contractor must comply with the conditions set forth by DEP and ACOE permits and is responsible for the compliance of all subcontractors that may be involved on a project. In addition, Federal and State regulations must be followed on site and off site. Areas such as borrow banks, waste disposal sites and staging areas must conform to Federal and State regulations regarding erosion and sedimentation controls; noise, air quality, and water pollution control; and toxic or hazardous wastes. Failure to comply may leave the contractor liable for fines or other punitive measures.

2-105 Permit Process

The permit process begins during the planning process. The Office of Environmental Planning coordinates the evaluation, review and comments necessary for environmental decision-making with the designers and other interested parties.

Processing permit applications or determining that a permit is required usually takes a significant time. Office of Environmental Planning has instituted standard procedures and individual environmental guidelines to improve interagency working relationships and expedite permit application processing.

2-105A Department of Environmental Protection

When a permit application is received by the DEP, a field review is conducted, and the application is reviewed for accuracy. A public notice is issued in the locality of the project site to allow the public an opportunity to respond or request more information. If a request is made, a public hearing is scheduled to allow discussion among the CDOT, DEP and those requesting more information. If there is no response, the Commissioner of DEP may choose to waive the public hearing.

The time needed for approval of a DEP permit varies. A project with extensive environmental effects requires a greater
review period. In extreme cases, the DEP may request a change in design to lessen the environmental effects of a project.

During the construction phase of the project any changes within the regulated areas may require a technical revision if the permit needs to be amended.

DEP may inspect the project for compliance with Best Management Practices even if no permits are held on the job.

2-105B Army Corps of Engineers

For a standard permit, the ACOE follows an approval process similar to that of the DEP. In Connecticut all projects are processed under Connecticut Programmatic General Permit. ACOE Connecticut Programmatic General Permit’s are Category 1, Category 2, or Category 3 (Individual Permit). All projects are screened by the Office Environmental Planning to determine which category a project falls under. Projects with less than 5000 square feet of impact may qualify for Category 1, which is approved in house by Office of Environmental Planning. It is important to note that all Category 1 approvals carry with them a time of year restriction on unconfined in stream work. Any unconfined in-stream work for these projects must be limited to July 1st to September 30th and as stated on DEP permit. Please note that the ACOE restriction differs from the time of year guidelines typical for the DEP. Category 2 and Category 3 (individual Permit) require coordination with, and written authorization from the ACOE.

2-106 Review of Contract Documents

District personnel should review all contract documents prior to the advertisement of the project. If the construction includes a permitted activity, the permit and application must be checked against the project plans for accuracy. A field review, with the complete permit package and a set of plans, should be made. If any discrepancies are found, the designer and Environmental Planning must be notified.

The contract will contain items for sedimentation and erosion controls, slope stabilization and dust control, even if no permit is required. Quantities may require adjustment because of site conditions and factors such as weather. Clearing limits should be noted. Accessibility of the site, property agreements and utility involvement should all be verified prior to construction.

2-106A Preconstruction Meeting

At the time of the pre construction meeting, all contract documents should be in place. A review of the permits must be made and any special conditions noted. The contractor receives a complete permit package and must supply the Project Engineer with a signed and dated receipt for it. (Unless it is part of the signed contract)

Submittals are requested, as needed, from the contractor for items such as a dewatering plan, sedimentation and erosion controls, demolition methods, waste disposal sites, and storage area and field office locations. Plan submittals that do not conform to those specified in the permit application, such as those for dewatering or cofferdam systems, will require a written modification from the regulatory agencies. For waste disposal sites, a map of the areas is required, along with any approvals from State or local agencies.

The contractor must be supplied with emergency telephone numbers for the DEP Oil and Chemical Spill Unit. Permit conditions may require an on-site supply of absorbent materials for use during construction. All projects in or over water within public water supply watersheds, wellhead protection areas and aquifer protection areas must have on-site absorbent materials as required by the contract documents and permit. The Chief Inspector should receive a copy of the permit package, emergency telephone numbers and other related documents.
2-106B Site Preparation

When an item for clearing and grubbing exists, the contractor must mark the clearing limits, wetland limits and the toe of slope of the site. The Engineer must verify the limits prior to any clearing activities, as per Article 2.01 of the Standard Specifications.

A tree clearing meeting and walk through with the contractor, town official and District personnel is to be held prior to any clearing.

2-107 Permit Modifications

A permit is issued based on the information supplied in the permit application. Any deviation from the information in the application will require a permit modification. Example deviations are a change in size or location of a haul road, structure, or drainage system; a change in a construction method; or a change in scheduling.

If the contractor requests the change, it must be reviewed by the District to determine its feasibility. If the change is approved by the District, it is forwarded to the designer and the Office of Environmental Planning. It is reviewed and, if approved, sent to the appropriate permitting agency for review and approval. No work is to be done until written approval is received.

Actual site conditions may not be the same as shown on the project plans. If a field review shows discrepancies between the permit application and the permit plates and site conditions, construction may be delayed pending permit modification. The permit application must take precedence over the plans for regulated activities.

The procedure for requesting a Technical Revisions to DEP permits is outlined in the memorandum dated September 11, 2000 by the Office of Environmental Planning.

2-108 Procedure for Requesting Technical Revisions to DEP Permits

The Office of Environmental Planning issued the above noted memo to clarify the requirements for technical plan revisions. Coordination is mandatory between the Office of Environmental Planning (OEP), Design, and the District for any alterations relating to both regulated and non-regulated areas on projects with Department of Environmental Protection (DEP) Permits. DEP permits which can be amended with a technical revision include Inland Wetland Permits, Stream Channel Encroachment Line Permits, Diversion Permits, Flood Management Certification and all General Permits. Structures and Dredging Permits and Certificates of Permission issued by DEP Office of Long Sound Program cannot be amended with a technical revision and must be coordinated through OEP.

The construction plans and permit plates must match in regard to both regulated and non-regulated areas. In cases where there is a discrepancy, the permit plates and permit application supersede the plan. (Any discrepancy should be reported to the District, and no work shall proceed until the issue is resolved.)

DEP has the right to inspect all DOT projects. Jobs in non-regulated areas may be inspected for compliance with Article 1.10 of the DOT Standard Specifications for Roads, Bridges and Incidental Construction, Form 814A or 815, 816 and the 2002 Guidelines for Soil Erosion and Sedimentation Control.
2-108A Regulated Areas

Any alteration to work within regulated areas, (wetlands, stream channel encroachment lines and floodplains) will require a technical plan revision request to DEP. Alterations may include clarifications or changes to water handling plans, including placement and usage of cofferdams and de-watering activities. Furthermore, changes which may not necessarily be located within a regulated area, but may have secondary impacts to a regulated area, must also be approved by DEP. A technical revision is required for any additional drainage (new catch basins), or alterations which would change velocities or sediment trapping capabilities, (such as pipe size changes, or changing a vegetated swale to a paved swale) when the drainage system outlets to a regulated area. All of these requests must first be forwarded to OEP for approval. DEP will not approve any technical plan revision unless it is clear that the plan has been reviewed and approved by OEP. This request should be sent to the Director of DEP Inland Water Resources Division (IWRD), from the Director of Environmental Planning. Under no circumstances should any change orders be issued nor should any work commence which differs from the original plan/permit plates without written approval from DEP for the technical plan revisions. The Screening Meeting Notes, which are sent weekly from DEP, do not constitute written approval.

If additional impact to a regulated area is anticipated, DEP will review the submittal, and if approved, will issue another 30 day public notice on the approved permit. This differs from past practice when a general permit was used to apply for the need for additional impact. Again, under no circumstances should any change orders be issued nor should any work commence which differs from the original plan without written approval from DEP;

2-108B Non-Regulated Areas

Changes or alterations to non-regulated areas which appear on a permit /permit application plate must be reported to both OEP and DEP as a “For your information” (FYI) memo. This will prevent confusion in the field during environmental compliance inspections, and will ensure that all necessary parties have the most recent and correct plates. Examples of non-regulated changes include relocation of catch basins, utility poles, and curbing changes. These memos may be sent directly to DEP with a cc to OEP.

2-109 Contaminated or Hazardous Materials

2-109A Known Waste on Site

Subsurface conditions are evaluated during design to determine if contaminated or hazardous waste materials might be present. If contamination is suspected, subsurface investigations, sampling and material analysis are performed by a specialty firm under a contract with the Department. Depending on the nature and the extent of the findings, the Department may arrange for disposal of the material prior to advertising the construction contract, or it may require the contractor to dispose of the material through special contract items.

Check each contract individually for the procedures to be followed. The regulations for handling and disposing of contaminated or hazardous materials are stringent and subject to change.

2-109B Unknown Materials Found on Site

Materials of unknown origin may be uncovered during construction. Any odorous, discolored or otherwise unusual material requires further investigation. Work in the area is stopped, and the District, Division of Environmental Compliance, and the DEP Oil and Chemical Spill Unit are notified in accordance with the notification procedures outlined in Section 2-109C.
Caution is needed to prevent personal injury or spread of contamination. No material that is suspected of contamination shall be removed from the site until cleared by the District and Division of Environmental Compliance. The Division of Environmental Compliance coordinates the required testing of the material and arranges for disposal.

- No one other than the Division of Environmental Compliance or its designated consultant is to explore or investigate the site. Construction personnel are prohibited from taking samples or testing potentially hazardous waste. This includes touching, smelling or tasting suspect materials, climbing into trenches or enclosed areas where hazardous wastes are suspected, or uncapping or probing tanks, containers or drums.

- Exploration and investigation (including sampling and testing) will be done by specialized consultants and workers who are fully trained and licensed for hazardous waste work in accordance with Federal and State regulations.

- After the site has been characterized, the Division of Environmental Compliance will direct the District as to the course of action that must be followed in areas of environmental concern.

The importance of the notification procedures outlined in Section 2-109C cannot be overemphasized. The costs associated with handling and disposing of contaminated materials are significant. Mishandling these materials, even with the best of intentions, exposes the Department to severe future liabilities that must be avoided.

2-109C Emergency Response Procedure to Suspected Contaminated Materials

When an environmental problem or concern arises, the following procedures must be followed:

Contaminated Material (Real or Suspected)

Normal Hours (8:00 AM to 4:00 PM)

- Stop work immediately at that location.
- If the contractor has a site specific health & safety plan, he should follow the procedure identified within.
- Protect the excavated area for safety.
- Notify the District Environmental Coordinator immediately.
- Notify the Division of Environmental Compliance at (860) 594-3337 stating the situation.
- Coordinate with Division of Environmental Compliance and District to identify who will call DEP.

After Hours (4:00 PM to 8:00 AM) DEP (860) 424-3338

- Stop working immediately at that location
- Protect the excavated area for safety.
- If material is contained and in no danger of moving, secure the site for the night. If the material is moving or has a threat of moving, call DEP immediately stating the situation and follow the emergency calling list established by the project.
• Call Division of Environmental Compliance/ District at 8:00 AM.

2-109D Contractor Spills

Equipment malfunction, an error in judgment during refueling, etc., can cause a spill. The same notifications must be made as outlined in Section 2-113, “Contractor Noncompliance.” A contractor may be held liable for all costs incurred in the event of an accidental spill, including containment, testing, cleanup and disposal of materials. Disposal of material must be in accordance with Federal and State regulations.

All projects in, over or adjacent to watercourses must have absorbent materials available in accordance with Contract requirements. In some instances, an absorbent boom may be required to be installed along the banks of a watercourse and be maintained throughout the project duration.

Each District has an emergency stockpile of absorbent materials and other environmental control supplies. They are for use by contractors and DOT Maintenance forces as needed in an emergency. The District Environmental Coordinator can provide a list of supplies available, the locations, and the people to contact during off hours.

2-109E Emergency Response Procedure to Contractor’s Spill

When an environmental problem or concern arises, the following procedures must be followed:

Contractor Spills (8:00 AM to 4:00 PM) DEP (860) 424-3338
• The contractor should take action to contain the spill without jeopardizing the safety of personnel.
• Call DEP stating the situation and DEP will dispatch its emergency response contractor.
• Notify the District Environmental Coordinator immediately.
• Notify the Division of Environmental Compliance at (860) 594-3337 stating the situation.

Contractor Spill (4:00 PM to 8:00 AM) DEP (860) 424-3338
• The contractor should take action to contain spill without jeopardizing the safety of personnel.
• Call DEP stating the situation and DEP will dispatch their emergency response contractor.
• Call the District Environmental Coordinator A.S.A.P.
• Call the Division of Environmental Compliance at 8:00 AM stating the chain of events and the mandatory information such as name of DEP agent, contractor and equipment used, etc.

Note: The “Contractor Spill” identified above is intended to apply to an incidental release caused by the contractor. If the spill is an uncontrolled release, the contractor must immediately call the DEP oil and chemical spill division at (860) 424-3338.
2-110 Structure Painting Debris

2-110A Containment and Collection of Surface Preparation Debris

Each contract dealing with painting of structures contains specifications pertinent to a particular site or sites. Because specifications are frequently revised, refer to the contract for complete information for a specific project.

The contractor is required to submit plans for the containment and collection of surface preparation debris to the District for approval. The plans must be certified by a Connecticut professional engineer. The plans must include complete details for all materials, support-system framing and dimensions. The enclosures must be wind-resistant and must be designed and erected to contain, as well as facilitate, the collection of debris resulting from the surface preparation. Abrasive blast-cleaning can proceed only within containment enclosures approved by the Engineer and must not proceed until approval has been obtained. See Volume 2, Chapter Ten, “Structures,” for additional information about containment and collection.

2-110B Disposal of Hazardous or Contaminated Debris

Each contract contains complete, revised specifications for disposing of debris. General guidelines are as follows:

- The CDOT is responsible for sampling and testing all debris resulting from surface preparation work, as directed by the Environmental Compliance Unit.
- The contractor must conform to the latest “Hazardous Waste Management Regulations” prepared by the DEP, subject to regulations adopted pursuant to chapter 445 Sections 22A-114 to 22A-13Z of the Connecticut General Statutes.
- Disposal of the debris after testing must be in strict conformance with the current regulations of the Environmental Protection Agency and Connecticut Department of Environmental Protection.
- Storage containers must conform to Federal and State Regulations. The container must not have any indentation or damage that allows seepage of the material contained in it.

2-110C Contaminated Debris

Material that is determined contaminated may be disposed of at a location listed on the Division of Environmental Compliance’s approved Treatment and Disposal Facilities List. Prior to the disposal, all necessary forms must be obtained, filled out and approved by the Division of Environmental Compliance. Contaminated debris may be stored at the site until completion of the steel-surface cleaning operations. Then the contaminated debris is disposed of in an approved manner at an authorized site.

2-110D Hazardous Debris

Debris that is determined hazardous must be placed in approved containers and sealed in an approved and secured staging area. A temporary EPA identification number must be obtained from the Division of Environmental Compliance. The Division can provide a current list of approved hazardous-waste transporters and approved hazardous-waste disposal facilities. Disposal of hazardous waste must be completed within 90 calendar days of the date on which it began to be accumulated in the approved container(s).
2-110E Miscellaneous Construction Details (Clean Waste)

The excess materials generated on the project cannot be hauled off the project site unless a disposal site has been proposed by the contractor and approved by the District.

Submittals required for approval of the disposal site by the District (in compliance with Article 1.10 of Environmental Compliance and Department of Environmental Protection Permit Conditions) are:

- Site Map
- Letter of permission from property owner
- Local inland wetland approval
- Approximate amount of material for disposal
- U.S.G.A quad map of site
- U.S.D.A soil map

If private property is to be used for disposal site, the contractor/property owner must provide the approvals from local inland wetland / zoning officials. The contractor must ensure that the material for disposal is not placed in an area of higher water quality than the area where the material was removed.

2-111 Sedimentation and Erosion Controls

The contractor is required to submit a sedimentation and erosion control plan to the Engineer for approval. The plan must contain the placement locations, the types of controls being used, and a maintenance schedule. Although placement of controls is depicted on plan sheets, adjustment may be needed for actual field conditions. Modifications made to the Sedimentation and Erosion Control system should be recorded on construction plans in accordance with the Connecticut Guidelines for Soil Erosion and Sediment Control.

After approval of the plan, the controls are installed prior to any construction activities that will cause a disturbance of the surface and possible erosion problems. Proper installation is crucial for the effectiveness of any sedimentation control. Silt fences must be firmly staked and buried to the depth specified by the manufacturer. If the ground is frozen, the fence may be backfilled using available material. Hay bales must be trenched and securely staked, and any spaces between the bales filled with loose hay.

Controls are inspected regularly for effectiveness, with special attention prior to, during and after storms. Any failures to the system must be repaired immediately. For additional methods of sedimentation and erosion control, refer to the Connecticut Guidelines for Soil Erosion and Sediment Control, prepared by the Connecticut Council on Soil and Water Conservation, and the CDOT On-Site Environmental Mitigation for Construction Activities.

If changes are made to the contractor’s scheduled activities, the sedimentation control plans must be revised to ensure compliance with the regulatory permit, plans and specifications.

2-111A Handling Water

On construction projects that require work in a watercourse, the contractor must submit their plans to manage the flow in a manner consistent with any DEP or local inland wetland permits associated with the project. This plan should include location and the size of discharge basin, pump size, method of installation and removal of the water handling. Other methods consistent with the permit conditions will be considered, a request for permit modification may be made in accordance to Standard Specifications, Article 1.10.

Any handling water plan must at a minimum pass the 2 year storm, for water handling plans which will be in place for more than 6 months and must be designed in accordance with the CDOT Drainage Manual.
The contractor is required to submit a flood contingency plan when working within a watercourse or flood prone areas.

2-111B Dewatering

A dewatering plan may be required for approval when ground water is encountered during excavation or installing a cofferdam. The plan should include method of installation and removal, location and the size of discharge basins and the pump size. All plans submitted by the contractor must be approved prior to installation of such plan.

2-111C Slope Stabilization

There are many effective methods of slope stabilization. They range from the simple method of seeding, mulching or tracking to more complex methods, such as erosion control matting or stone blanket. A specific method may be shown on the plans but prove unworkable due to field conditions. Changes to the slope treatments adjacent to the regulated areas must go through the Technical Revision process, even though the area is not within the regulated area. Refer to the sources listed in Section 2-111 “Sedimentation and Erosion Controls” for additional methods and installation procedures. If stone blanket is chosen, ensure that the toe of the slope does not change from the original permit area, or a modification will be needed. All exposed soil shall be stabilized in accordance with Article 1.10.03.

2-112 Water Pollution Control

Article 2.10 of the *Standard Specifications* is titled “Water Pollution Control (Soil Erosion).” The intent of the item is to establish a fund for pollution control work required but not a part of the original contract or to increase quantities of items related to pollution control.

Payment for work and materials for the construction, application and installation of water pollution control measures is made under the applicable contract item. If there is no applicable contract item, the work is paid as extra and cost-plus work and must be incorporated by Construction Orders on an item-by-item basis as new items. Volume 1, Chapter Three, “Project Documentation,” includes additional information about the administrative procedures for water pollution control items.

2-112A Off-Site Locations

The contractor is responsible for the proper environmental maintenance of all off-site locations used during construction. Off-site locations include borrow banks, staging areas, etc. The Inspector must be aware of all off-site locations and monitor them for compliance within the rules and regulations set forth by the CDOT, the DEP and any applicable local ordinances. The contractor is responsible for obtaining any permits required for the off-site locations.

2-112B Storage of Materials and Equipment

Materials and equipment must be stored in a manner that is secure and environmentally sound. Materials that can cause pollution of air, water or soils must be kept in a manner to prevent vandalism and contamination. No equipment or material shall be stored, fueled or repaired within 25 feet (7.5 m) of any wetland or watercourse. Use of a floodplain area for field office location or storage requires the approval of the regulatory agencies.

Spills must be reported as detailed in Section 2-109 “Contaminated or Hazardous Materials.”

Storage of materials which are buoyant, hazardous, flammable, explosive, soluble, expansive, radioactive, or...
which could be injurious to human or plant life in the event of a flood shall not be allowed below the 500 year flood elevation. No storage of material or staging areas shall be allowed below the 100 year flood elevation without a permit from DEP. Exceptions to the above restrictions may be granted by DEP.

2-112C Response to Deficiencies

Project and District staff must act immediately to respond to and correct any environmental deficiency noted—either orally or in writing—by District Environmental Coordinators, Environmental Planning staff, DEP staff, or any other regulatory agency. Project and District staff are not to wait for written confirmation of oral direction from Department or regulatory environmental staff. Project staff do not have the authority to decide which environmental deficiencies to respond to.

District personnel must never countermand the directions issued by Environmental Planning or regulatory staff without the concurrence of the CDOT Office of Environmental Planning, the regulatory agency involved, or the Office of Construction. The concurrence must be fully documented and faxed or emailed to the appropriate parties involved.

Any activity that requires approval by regulatory agencies must not be performed until written authorization is received from the regulatory agency.

For emergency response refer to procedures relating to Water Resources Authorization for Emergencies Declared by the CDOT Commissioner.

2-113 Contractor Noncompliance

2-113A Department Authority

The following quotes are from Article 1.10, “Environmental Compliance,” of the Standard Specifications. They apply to construction activities and the conformance of the contractor with environmental permit requirements.

“The Contractor shall at all times conduct his operations in conformity with all Federal and State permit requirements concerning water, air or noise pollution or the disposal of contaminated or hazardous material. Permit requirements include, but are not limited to those established by the Federal regulations administered by the United States Coast Guard and the U.S. Army Corps of Engineers.

“Appropriate permits shall be required for all activities associated with or incidental to the Contractor's operations including, but not limited to, those on the Project site and in all adjacent areas, waste and disposal areas, borrow and gravel banks, storage areas, haul roads, access roads, detours, field offices, and any other temporary staging areas.

“In case of failure on the part of the Contractor to perform pollution control work as determined by the Engineer, the Engineer may, upon 24 hour written notice, arrange for the performance of the work by approved forces and the cost thereof will be deducted from any monies due or which may become due the Contractor under the Contract or under any other State Contract.”

This authority provides the CDOT with a measure of control over an uncooperative contractor. It generally is used when all other methods of dealing with the contractor fail.
2-113B 24-Hour Rule

The District is responsible for ordering the contractor to take the action necessary to avoid environmental damage or to stop and repair damage that has occurred or is occurring. If the contractor does not act within 24 hours of the time notified, the DE or ADE must use approved forces to do what is necessary and then charge the project contractor for the work.

2-113C 24-Hour Rule Form

Figure 2-1.2 is a 24-Hour Rule Form. The 24-Hour Rule Form is issued to the contractor immediately when environmental damage is occurring or has occurred. The Inspector issues the form when the damage is first observed but after the Inspector gets oral approval from the District Environmental Coordinator, DE, or ADE.

Figure 2-1.2 24-Hour Rule Form
2-113D Procedure

The 24 hour rule must be issued if a contractor fails to address a problem or deficiency within time period ordered or approved. If it becomes necessary to engage a firm to resolve an environmental problem, the following procedure will be followed.

- The contractor must be issued the 24 Hour Rule Form. Fax a copy of the completed form to the Office of Construction and the Office of Environmental Planning.

- District notifies Construction Administrator or Manager of Construction Operations of need to obtain other forces to resolve environmental problem. District is to provide details on the extent of work required to resolve problem and estimated cost.

- Depending on severity of problem District will be advised on how to proceed.

- The District may be advised to coordinate with Maintenance and/or secure a private firm to complete the work. If the District is directed to contact private firms, they are to advise the firms that prevailing wages must be used.

- When possible DAS contracts shall be used to complete the work.

- For Work under $1,000 the District may obtain any firm to complete work.

- For work under $10,000 but greater than $1,000 the District will be required to obtain three telephone quotes unless work can be substantially completed by DAS contract(s). Time can be used as the award criteria.

- For work over $10,000 one of the following will happen.
 - The District will be directed to obtain a DAS vendor to complete the work if the work can be substantially completed with an existing DAS contract.
 - The District, with the approval of the Construction Administrator will assign the work to another contractor, which is adjacent to or in the area of the work to be performed.
 - The District will be directed to obtain three telephone quotes to complete the work and author a memorandum from the Bureau Chief to the Director of Purchasing and Materials Management requesting Standardization Committee Approval. In this case the District may be directed to start the firm prior to formal approval.
 - The Commissioner will enact an Emergency Declaration.

- When District is directed to obtain a firm(s) to complete the work they will prepare Purchase Requisitions and obtain Emergency Purchase Order Numbers when required.

- District will inform the firm of Purchase Order Number.

- District will mark the Purchase Order as confirming once they provide firm with Purchase Order Number.

- District will send all required paperwork to Purchasing.

- District will process all required invoices.
• District will deduct costs from payments due Prime Contractor.

2-114 Reports and Recordkeeping

2-114A Environmental Checklist/Project Site Environmental Inspection Report

Various permits issued by the DEP require that environmental controls on construction projects be monitored and maintained in working condition. Some DEP permits require the submission of reports to document that environmental controls are being monitored and maintained. In the past, DEP has complained about the accuracy of these reports and the lack of documentation to demonstrate that sedimentation and erosion control problems are being resolved in a timely manner.

Figure 2-1.3 “Environmental Check List” form and Figure 2-1.4 “Project Site Environmental Inspection Report” form are to be utilized on all projects to document the monitoring of environmental controls.

The following are guidelines to document that environmental controls are being monitored and maintained:

• The “Environmental Check List” form shall be filled out at the beginning of the project and maintained in the Project Environmental Log. It is to be updated as various items are achieved. This form provides a quick reference of the status of various items.

• On a weekly basis and within 24 hours of a storm event greater than 1/10 inch (and as required by permit(s)), District personnel shall inspect the project site and report on the condition and adequacy of environmental controls. The “Project Site Environmental Inspection Report” shall be used for this report and these reports shall be maintained in the Project Environmental Log. Problems and deficiencies found during environmental inspection must be clearly stated on the form. Use additional sheets if necessary. When no problems or deficiencies are found during an environmental inspection the inspector shall note on the form that environmental controls are functional and no corrective measures are required at this time or similar statement. Statements like “no problem” or “none” are unacceptable. The “Project Site Environmental Inspection Report” forms shall be updated as the problems and deficiencies are resolved by noting the date/time corrective work completed or action taken. Problems and deficiencies identified are not to be left unresolved.

• Environmental coordinators shall routinely perform field reviews of project sites. These reviews shall be performed on a monthly or weekly basis as the environmental sensitivity of the project dictates. It is suggested that occasionally in conjunction with the field review an environmental meeting be held with the Project Engineer and field inspector(s) to identify and discuss sedimentation and erosion control problems on the project.

• Each time an Environmental coordinator completes a field review they shall prepare a Project Site Environmental Inspection Report for the project environmental log unless the review is in conjunction with an environmental meeting in which case the Project Engineer or field inspector may prepare the report.

• Environmental coordinators are to review project environmental logs each time they perform a field review of a project. The coordinator shall check the log to see if problems are being corrected.

• On a monthly or biweekly basis depending on the environmental sensitivity of a project the “Project Site Environmental Inspection Reports” are to be reviewed by the Environmental Coordinator or Project Engineer. The reviewer shall sign the Reviewed By line on reports that have been completed. Complete reports are only those where all problems and deficiencies noted have been resolved and date/time of
correction or action taken indicated.

- On a monthly basis, the inspector shall forward to the environmental coordinator, a copy of the following Project Site Environmental Inspection Reports:

 o all reports prepared for that month

 o all remaining reports that have not been accepted. (The Reviewed By line is not signed)

- The environmental coordinator shall review these forms and resolve all issues that have not been completed in a timely manner. These problems shall be brought to the Project Engineer’s attention and if not addressed immediately, escalated to a higher level.

- For problems/deficiencies noted where environmental damage has occurred or is occurring, the Contractor shall be informed to rectify the problem/deficiency immediately. If the contractor fails to immediately take steps to rectify the problem/deficiency the field inspector with verbal approval from the Environmental Coordinator, Assistant District Engineer, or District Engineer, shall issue a 24 Hour Rule form to the contractor. A copy of the “24 Hour Rule” form is shown in Figure 2-1.2.

- For problems/deficiencies noted where environmental damage has not occurred, the field inspector shall issue a field memorandum with a due date for addressing noted problems/deficiencies. If there is any question regarding the appropriate response time, an immediate response can never be inappropriate. If the contractor fails to address the problem/deficiency within the time allowed, the field inspector shall issue a “24 Hour Rule” form.

- A contractor may request additional time to correct a problem or deficiency. Additional time may be granted only if the contractor can document that delays where encountered through no fault of their own. A copy of the additional time request and approval or disapproval is to be attached to the form.

2-114B Recycling Report for Construction Projects

Recycling reports should be filled out for projects generating wood, steel, glass and demolition debris. Reuse on or off the project must be reported every six months on the form by tons recycled. See Volume 1, Chapter Three, Section 1-326 which includes the form and instructions for completing it.

2-114C Recordkeeping

The Inspector should maintain a separate environmental folder on the construction site. The folder should contain the following documents and information:

- the Environmental Log (Project Site Environmental Inspection Reports);
- the Environmental Checklist—New Project Startup form;
- all environmental permits and revisions;
- all memorandums and directives that pertain to environmental aspects of the project;
- the National Pollution Discharge Elimination System permit, including a set of plans for recording changes;
- DEP numbers for spills and other numbers;
- any correspondence pertaining to the environmental aspects of the project; and
- complaints of an environmental nature.
Environmental Checklist—New Project Startup

ENVIRONMENTAL CHECK LIST – NEW PROJECT START UP

<table>
<thead>
<tr>
<th>Town</th>
<th>Project Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project No.</td>
<td>Chief Inspector</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td></td>
</tr>
</tbody>
</table>

List of Items to Check

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Date or N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are all necessary permits in place?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permit #s</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. Do the PLANS agree with the PERMIT?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Has the water handling plan been approved?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Has the S&E control plan been approved?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Have the off-site disposal areas been approved?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Does the contractor have oil absorbent pads/boom on site?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Has a rain gauge been installed on site?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Have the wetland limits been staked out?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Are S&E controls in place and approved prior to start of construction?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Has the environmental coordinator reviewed environmental inspection and reporting requirements with Chief Inspector?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Is the Project Environmental Log in place?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2-1.4
Project Site Environmental Inspection Report

<table>
<thead>
<tr>
<th>Location and Type of Problem</th>
<th>Method of Correction and Required Completion Date</th>
<th>Date Contractor Notified</th>
<th>Date of Correction</th>
<th>24 Hour Notice Given</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storm Event	Inches
1. Water Quality Attached | | Environmental Inspector/Coordinator |
2. Enclosure Report Attached | | Reviewed by |
3. Other | | Use Reverse Side for Comments |

(over)
Figure 2-1.4 (continued)
Project Site Environmental Inspection Report

Project # ______________________ Date __________________

Comments

2-115 Procedures Relating to Water Resources Authorizations for Emergencies Declared by the Connecticut Department of Transportation Commissioner – May 1, 2002

Section 13b-26(f) of the Connecticut General Statutes (CGS) authorizes the Commissioner of the Department of Transportation (DOT) to declare “…that an emergency condition exists on any highway in the state which demands immediate attention to insure the safety of the traveling public…” There are two distinct types of emergencies.

Case I – A natural disaster, structural failure, rock slice, etc., any of which require the DOT, either through its own resources or contractual services, to take action by mobilizing the necessary resources as quickly as physically practical – very often with hours of the event. Work must begin within 30 days.

Case II – An emergency condition which demands immediate attention to insure the safety of the traveling public. The time needed to complete construction could be governed by the need for survey and design; therefore, projects in this category generally take longer to complete than a Case I emergency. However, if compared to projects handled in the normal manner, the scheduled completion is greatly accelerated. Work must begin within 180 days.

Section 22a-6k of the CGS authorizes the Department of Environmental Protection (DEP) to issue emergency and temporary authorizations for activities regulated under Stream Channel Encroachments, Water Diversions, Dam Construction, Tidal, and Inland Wetlands. An emergency authorization may be granted when DEP finds that “…such authorization is necessary to prevent, abate, and mitigate an imminent threat to human health or the environment…” and that “such authorization is not inconsistent with the federal Water Pollution Control Act, the federal Rivers and Harbors Act, the federal Clean Air Act or the federal Resource Conservation and Recover Act.” Such emergency authorization shall be limited by any conditions the Commissioner of DEP deems necessary to adequately protect human health and the environment. Section 22a-363d authorizes DEP to issue emergency coastal permits in situations which may result in “…immediate, unforeseen and unacceptable hazards of life, health or welfare or significant loss of property if corrective action…is not undertaken…” It has been DEP’s practice to process authorizations quickly in such circumstances.

The DOT will coordinate any emergency actions with, as appropriate, DEP’s Inland Water Resources Division (IWRD) staff and/or the Office of Long Island Sound Program (OLISP) staff through the DOT’s Office of Environmental Planning (OEP). For emergency situations, the following policy will be adhered to.

As soon as any such emergency situations become known by a DOT operating section, that DOT operating section will coordinate with OEP. OEP will contact the appropriate regulatory unit within DEP in order to coordinate actions, identify DEP’s informational requirements, and to file a timely request for emergency authorization or expedited permit requirements. Interagency field reviews will be scheduled as appropriate. While final plans may not be available, the application for emergency authorization should contain sufficient information to initiate DEP review. An emergency declaration by the DOT Commissioner does not mean that the project does not require state and federal permits for impacts to regulated areas. Permits are required. Emergency work will be limited to alleviating any threat to the safety of the traveling public. Any additional work outside of “in-kind, in-place” replacement should be fully coordinated and permitted before work begins.

For Case I emergencies, as much information as possible should be provided to the appropriate DEP office. If time allows, an emergency authorization or permit should be in place. For Case II emergencies, a permit application will be submitted to DEP and a permit will be received before work begins. All permit applications and coordination with DEP must be handled through OEP.

If advised by the DEP that a permit is required for any portion of such an emergency action, the DOT will provide all of the following:

- A narrative identifying the emergency and the scope of anticipated corrective actions.
• A time frame for when the work will begin.

• A preliminary plan drawing for such actions including a depiction of the extent of work to take place in wetlands or watercourses. Any hydraulic assumptions or analyses conducted are to be included. Details of the area in square feet and material in cubic yards will be provided. The plan should be specific on the type of sedimentation controls to be used (for example, the type of riprap and geotextiles).

• Specific construction practices and mitigation measures to be implemented in carrying out the corrective actions will be identified through the DEP coordination process.

The DOT operating unit will submit the above items and a copy of the DOT emergency declaration to OEP using the Permit Application Transmittal Form (or, if applicable, a request for authorization under IWRD’s General Permits). An Army Corps of Engineers (ACOE) Permit may be required and, if so, OLISP will need to be provided with an ACOE category determination. The notice of the permit application must be published in accordance with CGS Section 22a-6g. No newspaper notice is required if the activity is covered under IWRD’s General Permit, but notification letters to the town agencies are necessary as outlined under the CGS section regarding the General Permit.

The application to DEP should be completed using the best information and plans available at the time of its preparation. The application will be expeditiously processed by DEP with the intent of issuing an appropriately conditioned permit authorizing the emergency work. If approved, the emergency authorization will contain specific terms and conditions including an expiration date. Within 30 days of the completion of the emergency authorized construction, a complete as-built plan must be submitted to DEP through OEP.
Chapter 2 - Construction Surveys

2-201 Survey Parties

The duties and responsibilities of survey crews and the types of construction surveying performed is covered in this chapter. The discussion applies to surveying performed by Department forces or consultant or contractor personnel.

2-201A Responsibilities and Duties of Survey Parties on Construction Projects

Survey parties are assigned to construction projects by and are under the direction of the Principal Engineer—Surveys or authorized representative. Responsibilities include the following activities.

- Setting stakes for lines and grades on all construction and reconstruction projects within the District, when required by the contract.
- Spot-checking layout and staking performed by contractor forces when construction staking is a part of the contract.
- Performing field work and office computations to quantify volumes for partial and final payments, when not performed by the Inspector.
- Staking for fencing or other purposes along property lines, highway lines, or non-access lines (Department forces only).
- Integrating activities with other sections of the unit, through the Principal Engineer—Surveys in the District Office.
- Field checking existing or resetting sufficient control points and bench marks so that contractors can provide their own staking, when called for in the contract.
- Tying in existing street, highway and private property line monumentation as required.

2-201B Responsibilities and Duties of Chief of Party

On construction projects to be staked by the Department, the assigned Chief of Party is responsible to the Chief Inspector while at the construction site. Duties include:

- staking out projects in accordance with the plans,
- establishing and maintaining all necessary controls,
- obtaining measurements and other information,
- submitting reports showing results of work performed, and
- ensuring that sufficient stakes are set to enable the contractor to proceed with regular work to complete the project as scheduled.

Prior to starting any field work, the Chief of Party must thoroughly examine the special provisions of the contract, which are available at all times in the District Office files, and the plans of the project to become thoroughly familiar with the proposed work.
The Chief of Party will, in addition to setting the original stakes, make special measurements, take cross sections, and give line and grade for special work as requested by the Inspector, either directly or through the Field Supervisor—Surveys. The Chief of Party is governed in this work by the plans, special provisions, specifications, original design computations, and any special instructions from the Field Supervisor—Surveys.

If contract documents require construction staking to be done by the contractor, sufficient checks must be made by the State or consultant survey party to determine that the work is done in conformance with the plans, specifications, and special provisions.

Should an error or variations from the contract documents in layout be observed, the Chief of Party must immediately notify the Project Engineer or designated representative. Under no circumstances is the Chief to coordinate the finding with the contractor or consultant without first notifying the Field Supervisor—Surveys.

The Chief of Party will cooperate with the Chief Inspector at all times and acquaint the Inspector with the locations of all points and the extent to which the work is covered by surveys. All dealings with the contractor or the contractor's representatives are through the Chief Inspector.

When the survey party arrives at a construction site and it is determined that insufficient field work is available to accommodate the entire workday, the Chief of Party will call the District Surveys Office for assignments for the remaining portion of that day.

2-201C Assignment of Survey Parties

When surveying is needed on a construction project, the Project Engineer requests a survey party through the Field Supervisor—Surveys. The Principal Engineer—Surveys must keep abreast of all construction survey requirements and meet such requests within the required advance notification period so that all surveying schedules can be met. Survey parties may be requested on shorter notice, if the nature of the work requires it. However, requests of this type should be kept to a minimum.

Construction surveys should be scheduled to provide a full day's work on the project, if practicable. The estimate for the extent of an assignment must consider travel time to and from the project, as well as additional work on the project or other projects nearby. If construction survey work requires only a portion of a day, the Survey Section will arrange for additional location or right-of-way survey work, as near to the construction site as possible, to make use of the remaining time for that day. The coordination of the work is accomplished through communication between sections. If a request is made for a survey party for construction staking, the request must contain the following information:

- the project number,
- the project location,
- the anticipated length of time the survey party will be needed,
- the nature of the work to be accomplished,
- the Chief Inspector's name,
- the telephone number at the project, if one is available, and
- any other applicable special instructions that affect the type and amount of equipment, material and personnel required to accomplish the assignment.

Immediately upon receipt of plans and a copy of the advertisement for letting of a contract, the Principal Engineer of Survey and Plans prepares a Work Order for construction surveys and incidentals. Upon receipt of the Work Order, assigned field parties perform the work necessary to reestablish the field controls from the plans and preliminary survey notes. The scope of work may vary among projects, depending on the special provisions. The assignments are made
well in advance of the start of construction, to allow the Chief of Party time to check all data shown on the plans and to establish controls in the field prior to the start of construction operations.

2-202 Survey Equipment

2-202A Assignment of Field Party Equipment

Field engineering equipment is assigned to the Chief of Party, who is responsible for its care and use. The Chief of Party is also responsible for having complete equipment and sufficient supplies on the project to perform all the work required.

2-202B Use of Equipment

- The Chief of Party is responsible for the maintenance and accuracy of all assigned equipment.
- If an instrument becomes damaged or is in need of repair, the Principal Engineer—Surveys will make arrangements for the necessary repairs.
- A total station must be checked at a calibration range approved by the Department's Office of Central Surveys prior to the start of survey activities.

All equipment is inspected periodically by the Principal Engineer—Surveys. The Chief of Party is responsible for any neglected or abused equipment. Each Chief of Party must submit a complete inventory of all assigned equipment to the Principal Engineer—Surveys, when required.

2-202C Transporting Equipment

Chiefs of Party ordinarily carry all necessary equipment in survey vehicles (vans), so it is available at all times in case it is needed. Extreme care must be exercised in packing equipment in the vehicle so that such articles as level rods, line rods, tripods, and similar items will not be damaged by scratching or rubbing. Instruments must never be transported by placing them on the floor or seat of a vehicle. They are placed in the special compartment in the survey vehicle. If it becomes necessary to transport instruments for long distances, they must be placed in their cases and in additional shipping cases, and further protected from damage by placing them so they will receive the least possible jar and vibration.

2-202D Damage to Equipment

If equipment is damaged or destroyed through carelessness, or through inexcusable or avoidable accident, the employee responsible will be charged with the cost of making the necessary repairs. Damage to equipment, whether caused by accident or carelessness, must be reported immediately through the immediate supervisor to the head of the Division. Damage to State equipment or property that does not involve outside parties or personal injuries is reported on Form PRO-57.
2-203 Safety and Traffic Control

- Safety vests, hard hats, and foot protection are worn by all employees working in the field.

- The Chief of Party is responsible for setting and maintaining work area signs and signing patterns required for surveying operations. Refer to the Manual on Uniform Traffic Control Devices (MUTCD) flagging and signing requirements.

- Flaggers must be used to control traffic and protect survey personnel.

- Flaggers should be stationed in advance of the work. They should face the oncoming traffic and perform their duty diligently while the work is being performed. They should move to the side of the road whenever the crew and equipment temporarily move off the roadway area.

- Members of the survey party serving as flaggers are required to use safety paddles to signal and control traffic. See Chapter Eleven, “Construction Traffic,” for signaling methods.

NOTE: The setting of complex or long traffic patterns is usually performed by the contractor or Maintenance Department.

2-204 Note Keeping

2-204A Standard Note Keeping

All survey notes are recorded in standard Department field notebooks or electronic data collector files. Inscribe the name of the town or towns, the route number, and the name of the project on the top half of the outside front cover of the field book. Assign a number to each field book. The number consists of three parts: the number of the town, the serial number of the project in that town, and a letter of the alphabet. The first book used will have the suffix “A,” the second will have the suffix “B,” etc. On extremely large projects if more than 26 field books are used, the 27th book is numbered “AA,” the 28th is numbered “AB,” etc. Place the number on the front cover in the space provided and on the bound edge, using drawing ink.

The book title reference describes the material in the book, such as general information, level notes, borrow bank cross sections, embankment cross sections, or final measurements. The project number, book number, book title and volume coding is also placed on the flyleaf with a brief description of the notes contained in the book, such as the “I-84 — Towns of Manchester and Vernon — Construction Survey, Final Measurements.” The first ruled half sheet of the book is used to index the contents of the book.

If more than two field books are required for a project, each book should be indexed. In addition, a separate index book should be kept covering all information contained in the various books, by book number and page. In each notebook the right-hand page of the first full sheet is designated “Number 1,” and the double pages that follow it are numbered sequentially in the upper right-hand corner of the right-hand page of the book. Numbers always refer to the double page. Show the starting date of the survey on page 1. Each day that work is performed, show the date and the names and duties of each member of the survey party. The duties of party members are shown by the use of standard symbols.

2-204B Care of Notebooks

Survey notebooks and electronic data collector files (hard copy download) are original records, and the greatest care should be exercised to prevent loss or damage to notebooks and files. If possible, they should be kept in a fireproof case or a vault. Each Chief of Party or other person using a notebook or computer file is charged with its safe custody and is responsible for returning it in good condition to the immediate supervisor. Do not leave field books in the field offices of the Inspector or contractor at any time. It is never permissible to remove pages from a notebook for any reason. If the
notes are obsolete or void, mark each page with crossed diagonal lines. Place the markings so that they do not obliterate any part of the notes. Add a reference for the correct book and page.

2-204C Survey Notes

For consistency and ease of use, all notes for construction surveys must follow the standard note keeping format. All data collection files will follow the format of its software. The data files accurately and completely record the work done and the information gained during the survey, so that any qualified Department instrument operator, draftsperson, or engineer can immediately interpret their meaning. Chiefs of Party and other note keepers should strive to become proficient in keeping data according to the established standards.

Incomplete and illegible notes will not be tolerated. Notes are kept with a sharp, hard pencil of a degree of hardness warranted by the hardness and smoothness of the notebook paper. Ordinarily a 3H or 4H pencil should be used. In some cases, when paper is lightly damp, it may be necessary to use an H or 2H pencil. Never erase in a notebook. If a figure is recorded incorrectly, or if an error in computation is made, the incorrect figure should be crossed out in such a manner that it is still clearly distinguishable, and the correct figure should be written above. All sketching should be done with a proper note-keeper's tool. Freehand sketching should seldom if ever be used. All notes should be lettered. Clear, legible lettering of the type accepted as engineering lettering should always be used. As stated above, the first page of notes in the notebook must show a brief title of the day's work, the date, and the names and duties of the members of the party. For each successive day's work, if it is a continuation of the past day's task, the page need not be titled again. The date and names and duties of the party members is sufficient. The end of each day's work must be noted.

Field data should always be originals. If, because of weather or other conditions, it is not possible to keep clean, legible notes, note keeping should be discontinued until conditions are favorable. Never keep notes on a loose piece of paper to be later copied into the notebook. If it should be necessary to make copies of field notes, the copy must be distinctly marked to indicate the fact. When it becomes necessary to continue notes from one book to another, the books should be cross referenced. Place the number of the previous book on the first page of the book where the notes are continued, and place the number of the book where the notes are continued on the last page of the previous book.

When field data is collected electronically, a field book shall also be used. The field book shall still report the daily activities, survey party numbers and their duties. When collecting survey data electronically, it is imperative for accurate sketches of work locations and controls to be available for future reference.

2-204D Notes for Bench Levels

Three-wire leveling is normally used for control or shots where a high degree of accuracy is warranted. The single-wire method is used for all other control or shots. Trigonometric leveling can be substituted for either of the above methods if proper procedures are used. (See Location Survey Manual)

The left-hand page is used to record rod readings and elevations, and the right-hand page is used for the identification of bench marks, turning points, and other elevations taken during the survey. The location of any bench marks established must be described with sufficient accuracy so that they may be readily found for later work or by other parties. The bench mark must be clearly described and referenced to prominent witnesses. When the witnesses have not been located in the survey, the bench marks shall be referenced to stationing on the preliminary traverse line so that they can be easily located.

The following guidelines apply where new bench marks must be established on construction surveys:

- The distance between permanent bench marks should not exceed 800 ft. (250 m).
- The maximum difference in elevation between bench marks is 50 ft. (15 m).
- The bench mark should be located outside of the construction area.
If suitable objects for bench marks do not exist, monuments or other rigid, permanent points must be set. These may consist of railroad spikes or other substantial objects driven into the root or base of a non-ornamental tree in excess of 12”. Objects driven into utility poles are not acceptable as bench marks. (See Location Survey Manual for further detail.)

The elevation of newly established bench marks must be determined by using the bench mark as a turning point between existing bench marks.

2-204E Cross Section Note Guidelines

Follow these guidelines when taking cross sections manually in a field book.

- Write legibly. Do not make extremely small figures.

- Do not crowd notes. Allow ample room for the reduction of rod readings.

- The right-hand page is used only for Quantity Cross Sections.

- Other shots or sections that are taken for information purposes, not for quantity documentation, are kept on the left-hand page. These include skew sections, culvert sections, and short odd sections such as for driveways or profiles.

- If a section or a portion of a section is used as a back section and a portion or entire section is used as an ahead section, record the required information as two separate sections with a station differential of at least 0.03 ft. (0.01 m). This condition may occur at a bridge abutment if one section is needed to show the roadway and another to show the ground at the base of the abutment.

- The computer is not programmed to accept more than one elevation at a given point, such as occurs at curbs, retaining walls, and banks. In such instances, change the second distance so that it is longer by 0.03 ft. (0.01 m.) from the first

- Bench levels used to establish the H.I. (height of instrument) are shown on the left-hand page each time an H.I. is changed.

- The entire H.I. is shown on the bottom of each right-hand page. If the H.I. changes on the page, draw a dividing line across the page between the sections dividing the H.I.s and write the new H.I. just above the dividing line.

In summary:

- Keep the notes clear, neat and understandable.

- Record all data to be used for earthwork computations on the right-hand pages and all other data on the left-hand pages.

- Place any special explanatory notes necessary on the right-hand page and label them for the computer operator’s attention by circling the item to make it conspicuous.

2-204F Cross Section Notes (Level and Rods)

Cross section notes, if levels and rods are used, are recorded using the guidelines below.

- The right-hand page is used only for cross sections to determine pay quantities.

- The bench levels used to establish the H.I. are shown on the left-hand page each time an H.I. is changed.
• Any rod readings or sections taken for informational purposes, rather than for quantity determination (skew sections, culvert sections, short odd sections for driveway profiles, etc.) are kept on the left-hand page.

2-204G Notes for Bridge Staking

All bridge staking notes are carefully recorded. Sufficient stakes are set and their exact position recorded so that any of the control lines can be replaced with a minimum of effort. If batter boards are set, stakes must also be placed so that the batter boards can be easily replaced or checked if they are destroyed or accidentally knocked out of position.

2-204H Notes for Construction Stakes

Notes for construction stakes are recorded as follows. On the left-hand page, record the stations and pluses, offsets, the elevations of the stakes, grades, stake markings, banks, and slope distance for the left side of the road. On the right-hand page, record the horizontal distance for the right side plus the offset, stake elevations, grades, stake marking, banks, and slope distance for the right side of the road.

2-205 Computations

All ordinary computations made for survey-type work, are made on standard 8½ in. × 11 in. (216 mm × 279 mm) or 11 in. × 17 in. (279 mm × 432 mm) computation sheets (Form DES-3A). Place the name of the project, the Work Order number, the signature of the computer, the organization unit number, the date and the purpose of the work in the designated position on the sheet before any work is done. The checker signs the sheet in the proper place after the computations are completed and correct. The sheets become part of the permanent records for the project and must be bound and kept in a fireproof place.

2-205A Completeness of Computations

Computations must be complete in every respect so that they can be checked readily by engineers not familiar with the project and so that their meaning will be clear at later dates when the details of the work have been forgotten. The steps in the computations must be explained, and all deviations from standard procedures must be carefully noted. Computations must be continued to a logical conclusion, and the results must be stated concisely.

2-205B Revisions to Computations

Preliminary computations that have been revised or recomputed shall be marked “obsolete” in red pencil but must remain a part of the file. No computations shall be destroyed without the express consent of the Principal Engineer—Surveys. Erasures are never permitted on computation sheets. If a change is required, the portion to be revised is struck out with a single line, and the new figure is placed above.
2-206 Staking

2-206A Staking Centerline

When construction staking is to be performed by the Department, the Project Engineer must notify the Field Supervisor—Surveys well in advance of the time the contractor wishes to commence construction operations. The contractor's starting date is a guide for scheduling the staking.

The Chief of Party stakes the centerline of the proposed road as indicated below.

- Stakes are set every 50 ft. (20 m) on the line.
- Centerline is indicated on the stakes by the use of tacks or marks to the nearest 0.01 ft. (3 mm) of true line and true distance. Other means of identifying the points may be used if the preservation of the points is not required.
- All stations are set using horizontal distances.
- On long tangents and curves, it is advisable to set tacked hubs every 50 ft. (20 m) or less, so that offset stakes may later be tacked to provide a means of resetting stakes accurately without excessively long runs to the control points. The tacked offset stakes should be tied to at least two durable references so that points can readily be replaced if destroyed during construction.
- Curves are staked from the data on the plans.
- Additional stakes are placed at curves if advisable to stake superelevation and widening.
- If construction staking is performed by the contractor, the Chief of Party reviews the staking to ensure that sufficient control points are established and referenced so that they will be readily available during the life of the project.
- Stakes are set at each station. The first substation after Station 10 + 00 is 10 + 50.
- Offset stakes with tacks are set on both sides of the proposed road, opposite each centerline point established during the staking of the line. Stakes 2 in. × 2 in. (45 mm x 45 mm), approximately 18 in. (450 mm) long, are driven about 12 in. (300 mm) into the ground at convenient points well outside the area that is likely to be disturbed during construction operations. Great care must be taken to place these stakes at right angles with the tangents and on radius lines for curves. Longer stakes are used in soft ground to ensure that they are firmly set.
- The horizontal distance from the tack to the centerline must be legibly marked in yards to the nearest inch on the back of the stake (the side away from the centerline). Mark the station number and plus on the side of the stake toward the beginning station. Mark the cut or fill on the front of the stake (the side toward the centerline), showing the vertical distance in yards and inches from the top of the stake to the finished pavement surface at the centerline. Stakes below these points are marked with an “F” to indicate fill, and those above the centerline elevation are marked with a “C” to indicate cut. The notes must show the exact position of each stake and the information recorded on it. Such information as superelevation and widening of curves is placed on the other side of the stake (opposite the station). Figure 2-2.1 shows the method for marking the four sides of an offset stake.
- All bench marks must be checked into when the levels are run to set the cuts and fills for the offset stakes. To avoid a blunder, close to a different bench than the one started from.

See Figure 2-2.2 for recommended stake standards.
Figure 2-2.1 Typical Offset Stake Markings

Front
(Toward Centerline)

C or F
7.88 ft.
(Vertical distance from top of the stake to the centerline of the profile grade)

Back

125.98 ft.
(Horizontal distance from the centerline to the stake)

Side Toward Beginning Station

1 + 20.00
(Stationing)

Side Away From Beginning Station

(Superelevation / Curve Widening Information)
Figure 2-2.2 Recommended Stake Standards

<table>
<thead>
<tr>
<th>Stake Type</th>
<th>Horiz. Tolerance</th>
<th>Vert. Tolerance</th>
<th>Max. Spacing</th>
<th>Stake Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearing Limits</td>
<td>1 ft.</td>
<td>n/a</td>
<td>100 ft.</td>
<td>Clearing limit</td>
</tr>
<tr>
<td>Rough Grade (2) (4)</td>
<td>0.1 ft.</td>
<td>0.1 ft.</td>
<td>100 ft.</td>
<td>c/f o/s station</td>
</tr>
<tr>
<td>Fine Grade (1) (2) (4)</td>
<td>0.1 ft.</td>
<td>0.01 ft.</td>
<td>50 ft.</td>
<td>c/f o/s station</td>
</tr>
<tr>
<td>Centerline</td>
<td>0.1 ft.</td>
<td>n/a</td>
<td>50 ft.</td>
<td>station</td>
</tr>
<tr>
<td>Slope (2) (3)</td>
<td>0.1 ft.</td>
<td>0.1 ft.</td>
<td>50 ft.</td>
<td>o/s to intercept c/f total horiz. slope distance rate of slope station</td>
</tr>
<tr>
<td>Blue Tops (1) (2)</td>
<td>0.1 ft.</td>
<td>0.01 ft.</td>
<td>50 ft.</td>
<td>c/f o/s < 5 ft. station</td>
</tr>
<tr>
<td>Curb & Gutter (1) (2) (5)</td>
<td>0.01 ft.</td>
<td>0.01 ft.</td>
<td>5 ft.</td>
<td>o/s, c/f</td>
</tr>
<tr>
<td>Pipe (6) (2)</td>
<td>0.01 ft.</td>
<td>0.01 ft.</td>
<td>100 ft.</td>
<td>c/f o/s station</td>
</tr>
<tr>
<td>Boundary</td>
<td>0.01 ft.</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Minor Structure (7) (2)</td>
<td>0.01 ft.</td>
<td>0.01 ft.</td>
<td>n/a</td>
<td>o/s c/f structure ID</td>
</tr>
</tbody>
</table>

Stake Types
1. 3/4” x 2” x 18”
2. 2” x 2” x 12” or nails or stakes
3. 3/4” x 2” x various
4. 2” x 2” x 18” with tack, or 6” – 8” spike

Notes
1. Stakes placed on grade shall have an “X” marked on top of the stake and the word “Grade” written instead of “C” or “F.”
2. Elevations are measured to the top of the stake.
3. Slope stakes should be set at a minimum of 10 ft. offset from the slope intercept.
4. If the grade is less than 1 percent, the minimum stake spacing should be reduced.
5. Grade is the top of curb; offset is the back of curb.
6. All pipelines require at least two reference lines of 2 hubs, spaced 15 ft. apart.
7. Reference lines are to center of junction box, drop inlet, CLCB, front face of headwall, or center gutterline CCB.

2-207 Cross Sections

2-207A Earthwork

It is essential that accurate cross sections of the proposed improvements be available for determination of final pay quantities. The preliminary survey elevations, as plotted on the project's section sheets or taken from the computerized location survey surface, should be checked against the ground elevations recorded just prior to construction.

If there has been any change in the contour of the ground surface, new cross sections must be taken before construction starts. One example of the need to check the original cross sections is when they were taken when deep snow covered the ground with possible ice formation or frost heaves. If the original cross sections taken during the preliminary survey still show the true conditions, they may be used without further work. The checks of the original ground elevation should be made after the centerline or base line of each roadway is established and the offset stakes are placed, so that the sections can be checked at the correct angles with the centerline. It is recommended that ground elevation checks also be made along the slope limits. Particular attention should be given to areas where ground elevations vary considerably. All ground elevation checks should be recorded in a field book or electronic data-collector file and retained as part of the project records.

Cross sections are taken every 66 ft. (20 m) and at points between them where there is a break of grade or a change in the shape of road or embankment. The elevations of all breaks in grade on the cross section lines shall be determined and recorded as specified in the instructions for note keeping. The last reading on each cross section line must be well outside the proposed roadway limits. Sufficient cross sections must be taken in the transition areas between cuts and fills so that quantities can be accurately computed. Cross sections are required where side roads, driveways, or approaches must be constructed or where special structures are to be built. Cross sections are needed at culvert locations. If these cross sections were not taken during the preliminary survey or are insufficient for computing pay quantities, additional cross sections should be taken before construction commences.

Electronic data collectors can be used to process TIN files and create computerized cross sections. Sufficient shots and break lines must be collected to accurately create cross sections at all of the required locations noted in the previous paragraph.

2-207B Rock Excavation

When rock surface has been exposed and before rock excavation has begun, the survey party is called to the project to take cross sections manually or through electronic data collection for the determination of quantities. Careful cross sections of the rock shall be made on the same cross-section lines as the original sections and such intermediate lines as are necessary to determine accurately the quantity of the rock to be excavated. Cross sections are taken at intervals of not more than 33 ft. (10 m), unless the facial contour of the rock shows that additional sections are needed. If the excavation is bid by the contractor at the same unit price for rock and earth, sufficient data shall be kept to permit a reasonable estimate of the quantity of each.

2-207C Unsuitable Material

If unsuitable material or loam is encountered in the roadway, the survey party will take cross sections, both before and after excavation work, to determine the pay quantity.

2-207D Borrow Banks

The Project Engineer must notify the Principal Engineer—Surveys at least five days prior to obtaining material from borrow pits. All pits shall be cleared by the contractor prior to calling a survey party to the project. The Chief Inspector
Construction Manual

Volume 2

Construction Surveys

will show the Chief of Party the limits of the proposed borrow pits. Base lines are laid out well beyond the limits of the pit, and control points are tied in. Bearings are taken on base lines and angles are turned to tie points, so that they can be reestablished at any time. At least two bench marks must be established at each borrow bank. Bench marks must be placed beyond the limits of the area to be excavated.

Cross sections are taken at 66 ft. (20 m) intervals, with sufficient intermediate sections taken to show the true contour of the ground. It is the District's duty to take its own borrow-bank cross sections and make its own computation of quantities removed from borrow banks, completely independent from the contractor's computations. However, contractors may request to check borrow-bank measurements. This can be accomplished by supplying them with the base-line data so that the cross sections will be related to the same base line. The data supplied to the contractor should be limited to base-line ties, stakes, and bench marks.

If the contractor has completed work, final sections are taken over the area excavated. The original base line must be reestablished so that cross sections can be taken in the same locations as those of the original sections, with intermediate sections taken as required to obtain accurate quantities.

The Chief of Party informs the Chief Inspector of the limits covered by the pit survey, and the Chief Inspector notifies the contractor that additional cross sections are required before the contractor excavates beyond existing surveyed limits.

Electronic data collectors can be used to process TIN files to create surfaces for surface-to-surface volume or cross sections. Sufficient shots and break lines must be collected to accurately create cross sections at all of the required locations mentioned above.

2-207E Stakes for Concrete and Other High Type Pavements

A second set of construction stakes is set if concrete and other high type pavements, curbs, or headers are to be constructed. One set of stakes is ordinarily sufficient for other work. These stakes are uniformly offset 2 to 4 ft. (600 to 1200 mm) outside of the edge of the pavement or the back of the curb or header. Stakes for curbs are marked to indicate the cut or fill to the top of the curb rather than the finished centerline elevation. Stakes for concrete pavement are marked with the amount of cut or fill from the highest point on the top of the stake to the elevation at the edge of the finished pavement surface. The position of the stake and the information recorded on it must be shown in the notes. The cut or fill is given in feet and hundreds (0.01 ft.)

2-207F Staking Bridge Structures

The centerline is determined for bridges by running the line between points of curvature and tangency of curves or between other established points so that the true centerline may be staked. The stationing must be carried from one known station and checked into at least one other station on the opposite side of the structure. The structure is located as shown on the plans, unless instructions to the contrary are received from the Project Engineer. The establishment of the centerline and the stationing of the structure must be checked in sufficient detail to make absolutely sure of its correct location.

The centerline of the roadway is carefully monumented by driving hubs at each side of the structure, well outside of the construction area, and parallel lines are run and monumented at even distances from the faces of the abutments. If possible, backsights are set on the lines so that the centerline and parallel lines can be reestablished, even if the foresights are blocked by material piles or embankments. The hubs are set and referenced to witnesses that are not likely to be disturbed during construction work. If this method is impractical, batter boards, with nails to mark the exact line, are placed at approximately equal distances from the centerline of the roadway on the lines of the faces of the abutments.

Batter boards are set at the elevation of the bridge seat if practical, and each batter board is marked to indicate the line and elevation represented. If the face of the abutment is battered, the line of the top of the abutment is staked. If the centerline stakes are likely to be disturbed, offset stakes on the line of the face of the abutments are placed and carefully
referenced. Separate lines are staked to establish the lines of the faces of wing walls, the lines of the parapets, faces of the haunches, and any special lines of control that are required. Considerable work and time may be saved by setting targets as well as hubs on the reference lines, the targets being set with sufficient stability to remain in place during the entire construction period. One or more bench marks are set at convenient points at the site. The locations of all stakes must be shown on a carefully drawn sketch in the notes. On large structures, two bench marks are established near the bridge site, one on each end of the bridge. When elevations are set for a structure, a check run must always be made back to a bench mark.

On large bridges where more accurate surveys are needed, additional care and measurements must be made to ensure the absolute integrity of the bridge layouts. To aid the Inspector in checking the details for construction of larger bridge structures, it is recommended that the more important control points, such as centerline of bearing and the base line station at centerline of bearing, be established on the structure as soon as the footing is completed. This will facilitate an accurate alignment and position check of the form panels as they are placed. Drill holes or concrete nails work well as point markers. If the elevations of these control points are accurately established, the inspectors will have a convenient datum to work from when checking form details.

Prior to starting a bridge in the field, the footing plan should be laid out to scale on paper, and the excavation payment line drawn on the plan. The Chief of Party uses this plan, which shows the location at each angle point and each change in width, to take the cross sections at the proper points. After the bridge is staked on the ground, the Chief of Party takes cross sections for bridge excavation. Sections are taken at each break in the payment line noted on the plan, as stated above, as well as at the breaks in the ground. The sections must cover any work required to widen or relocate the channel of a wet crossing.

2-207G Staking Special Structures

The staking of special structures is done well ahead of actual grading operations so that the contractor can do such work as building culverts, drains, sewers, and the line structures as early as possible to permit adequate settlement of the backfill. Ordinarily the inspector will be able to set construction stakes for culverts. The invert lines and grades for sewers, drains, large culverts, and other special structures are staked by the survey party on offset lines as agreed with the contractor. The stakes are set so that there is minimum of interference during the construction work.

2-208 Replacing Stakes

If stakes become lost, broken, or displaced, they are reset by the survey party that set them—the Department, consultant or contractor. If stakes that are set by Department forces are damaged, the Chief Inspector advises the Field Supervisor—Surveys or, if necessary, the Chief of Party in sufficient time so that the stakes can be replaced without delaying the construction work.

2-209 Measurements for Monthly Estimates

The survey party makes measurements of work, completed or in progress, needed by the Chief Inspector to prepare monthly estimates.

2-210 Final Survey

Checks on the contractor's ability to conform to the lines and grades given should be made during the course of the work by the appropriate inspector or survey party. Any deviations found should be brought to the contractor's attention,
through the Chief Inspector, so that corrections can be made as the work progresses. The more nearly the final project conforms to the original design the easier it will be to prepare the final quantities.

In general, any project or section of project that has been constructed in accordance with the designed plan will not require final cross sections. All ordered changes in line, grade or slope lines will have to be measured and the amount of the change added to or deducted from the original quantities. These changes should also be shown on the final plans and/or cross sections so that they are readily visible. Miscellaneous excavation for items such as driveways, drainage structures, and ramp approaches that are not covered by the original sections must be measured for payment. No cross sections will be required on pavements that have been constructed in conformance with “fine grades” established by the Engineer specifically to control pavement line and grade. The Inspector is responsible for ensuring that the pavement is built to these grades.

Rock sections are required at the time the rock is uncovered as well as when final measurements are taken.

On surplus excavation projects, it is not necessary to cross section the slopes of any fill. Slope stakes and occasional checks are sufficient to assure that the slopes are not appreciably less than designed.

On borrow projects, the amount of excess material placed outside the slope lines must be deducted from the borrow measurement. If the slopes are fairly uniform, taking a cross section to check the typical section is sufficient to determine whether the fill is constructed reasonably close to the design. If it is found that there are deviations that should be deducted from “Borrow,” additional sections should be taken to accurately measure the deduction. Areas where the additional fill was directed by the Engineer, and therefore should not be deducted, do not require additional cross sectioning.
Chapter 3 Excavation and Embankment

2-300 General

2-300A Introduction

The general term “earthwork” encompasses the initial construction operations on a highway project. These operations include staking slopes; clearing and grubbing the natural ground; excavating earth, rock, and other materials; building embankments; disposing of unsuitable and excess materials; compaction in-place materials to proper density; and installing temporary pollution controls.

This work is to be accomplished as indicated on the plans, in accordance with the current Standard Specifications or special provisions, and as designated by the Engineer.

2-300B Definitions

Various terms are used in the chapter to designate areas pertinent to a construction project. The terms are defined below.

- **Highway Limits.** The boundaries of the whole right-of-way that is reserved for or secured by the Department for use in constructing the roadway and its appurtenances.

- **Taking Lines.** The highway limits.

- **Roadway Limits.** The limits of construction. These limits may differ from the highway limits, if there are portions of the right-of-way on which construction is not to take place.

- **Clearing Limits.** The boundaries of the area to be cleared and grubbed for the road construction.

Figure 2-3.1 illustrates the terms.

2-301 Setting Slope Stakes

The Inspector must check the slope stakes set by the contractor to establish the grading extremities and to guide the grading work itself. Slope stakes must be set at the top of the slope in cuts and at the toe of slopes in fills, on both sides of the roadway opposite each offset stake. The stakes must be set in accordance with the cross-section template and the construction staking item. Slope stakes may also be used to guide the contractor during clearing and grubbing. Figure 2-3.2, contains additional information about setting slope stakes.

When the slope is designed with a roll at the top and toe, two stakes should be set on each side of the roadway, one to mark the intersection of the normal cut or fill with old ground and the other to determine the limit of the roll.

The Chief Inspector must check frequently as the work progresses to determine that slopes are constructed as designed. The Inspector may be assisted by a survey party in checking the development of the cut or fill if the assistance expedites the check and contributes to its accuracy. However, any assistance given the Inspector by a survey party does not relieve the contractor of responsibility for the proper grading of the entire project.
2-302 Clearing and Grubbing

2-302A Description

The clearing and grubbing of a project is usually the first construction operation performed on the job. It entails the removal of trees, stumps, roots, brush, rubbish and all other objectionable materials and objects from within the highway limits and from any adjoining areas designated by the contract. The removal of such objects and materials is necessary for the construction of highways and the installation of structures, drainage features, fences, ditches, and channels. While clearing and grubbing is usually considered one operation and is always considered a single pay item, it technically is two operations:

- **Clearing**, this is removal above natural ground (trees, brush, shrubs, and rubbish).
- **Grubbing**, which is removal below natural ground (roots, stumps, and similar objects).

Clearing and grubbing mainly suggests removing, but it also involves protecting from harm certain vegetation and objects designated to remain.

2-302B Preliminary Activities

A meeting must be held to discuss clearing operations before they begin. Those attending should include project personnel, the designer, local officials, and the District Environmental Coordinator. If clearing concerns are raised, a follow-up field meeting should be held to address the specific concerns before any trees are cut. Accurate minutes of the meetings should be kept.
All trees scheduled to be removed outside the proposed gutter or curb lines must be visibly marked or flagged by the contractor at least seven days prior to cutting the trees. The Engineer must inspect the identified trees within the seven days and check the limits of clearing and grubbing before the contractor starts the work. Slope limits are to be verified by measurements both in plan and in cross section. If the rights-to-slope have been acquired and the top or toe of slope is outside the highway line by right of a deed easement, the contractor must not clear beyond the slope line.

Figure 2-3.2 Setting Slope Stakes

1. The elevations and distances for the cross-section template are known, including: (A) the elevation of the top of the fill slope; (B) the distance to the top of the fill slope (AD); and (C) the slope of the fill slope (FBC). 2. A rod reading at AD gives the “grade rod,” GR, subtracting it from other rod readings gives the amount of fill to the top of the fill slope, or F = RR – GR. 3. When the distance of the rod reading, DR, equals the product of the amount of fill, F, and the slope of the backslope, BC, or when DR = F x BC, the point on the original ground line is a point on the slope line. It is the point at which the fill slope should intersect the original ground line.

2-302C Tree Removal and Protection

All large trees are to be saved if physically feasible by installing tree wells, modifying slopes, or using other means. Trees may also be designated for preservation because of historic value or other reasons.

If there are questions concerning the soundness or health of trees to remain, assistance should be sought from the District Environmental Coordinator or Office of Design landscape personnel. Obviously, the purpose of this action is to save trees wherever possible and prevent accidental removals. If there is any doubt about whether to remove or preserve trees, they should be preserved, even if there is an increase in cost for removal at a later date.

All tree removals must be reviewed before the work is done to ensure that only those trees that must be removed are removed.
2-302D Disposing of Materials

If the Engineer does not direct otherwise, the contractor should recycle wood, remove rubbish and refuse from within the highway limits, and bury rubble and stone either inside or outside the highway limits.

2-302E Disposal Outside the Highway Limits

If contractors elect to dispose of materials outside the limits of the highway, at one or more points of their choosing, they must first comply with the guidelines below.

- The contractor must ensure that no harm will be done to the project or the environment. Disposal locations must be outside of designated wetlands, watercourses and flood plains, unless otherwise approved by local, State, or Federal agencies.

- The contractor must submit the necessary documentation for review and approval by the Engineer, the Department of Environmental Protection (DEP), or the town's environmental agency. This includes:
 + Location Plan. USGS Quad Map, town assessor's map, or town map showing the detailed location(s) of the disposal site(s).
 + USDA Soils Map. Area of disposal site(s), obtainable from local town.
 + Local Permission. A copy of the local (town or city) approval of disposal site (“fill permit,” etc.), including all conditions and the required erosion and sedimentation controls (use of hay bales, silt fence, etc., to ring the site).

- The contractor must obtain permission from the Engineer and a permit from the DEP. To issue a permit, the DEP requires approval by the appropriate local, State, and Federal agencies.

2-302F Disposal Inside the Highway Limits

When contractors request permission for disposal within the highway limits, the work must be done according to the details and requirements shown on the plans, as well as the requirements below.

- Not less than fifteen days prior to disposing of cleared and grubbed materials within project limits, the contractor must submit to the Engineer for approval a written proposal delineating the locations and extent of the proposed disposal areas.

- The proposal must describe the nature of the materials and the methods to be used in placing and covering them.

- The proposal is reviewed for its effects on the completed construction and the environment of the highway.

- The proposal will be amended as required by the Engineer. No materials are to be disposed of within project limits until the proposal has been approved by the Engineer.

2-302G Areas Outside Roadway Limits but Within Highway Taking Lines

To conform to future Departmental roadside development and to minimize future expense, the Chief Inspector must pay particular attention to the area that is outside the roadway limits but within the highway taking lines. In the case of excess property taken during the acquisition of the right-of-way, a uniform distance from the centerline should be
established by the District, with the assistance of the Assistant Director of Rights-of-Way (Boundaries). Within the area, the Inspector must ensure that all stumps are cut flush with the ground, and all dead or uprooted trees, brush, or other objectionable materials are removed and disposed of properly. The Inspector must take special care that no valuable or historic trees are destroyed, unless necessary.

2-303 Survey Markers and Monuments

The contractor is responsible for the protection of all benchmarks or permanent markers or monuments of the State, Federal or local governments; public utilities; or local property owners, including historical markers or areas. The contractor must notify the interested agencies in advance, so that the markers or monuments may be adequately referenced, protected, or reset before being disturbed.

2-304 Excavation and Embankment

2-304A Definitions

Excavation is the removal of soil or rock from its natural location. Embankment is the placement and compaction of layers of earth or rock to form a roadbed of the planned shape, density, and profile grade.

Excavation can be thought of as either roadway excavation or structure excavation. Each of these categories is further divided into several different classifications. Roadway excavation includes:

- earth excavation,
- rock excavation,
- earth channel excavation,
- rock channel excavation,
- unclassified excavation, and
- unsuitable excavation.

The Standard Specifications clearly define the classifications and uses them as pay items. The Chief Inspector should be familiar with them. The pay items applicable to a particular project are shown in the proposal form. Inspectors should exercise particular care to see that excavation is classified correctly.

2-304B Earth Excavation

This pay item includes the removal of all materials other than water, ledge rock, large boulders, or loam (if loam excavation appears as a contract item). Included in earth excavation are the:

- Excavation of drainage ditches that are located within the normal cut slope limits. (See Standard Specifications 2.06.04-1(a).)
- Removal of stone walls, except stones having a volume large enough to classify them as rock excavation in accordance with the current Standard Specifications.
- Removal of other man-made structures, such as old foundations, concrete or masonry walls, crib walls, bin walls, etc.
The quantities of earth excavation for the roadway proper, large quantities at side-road locations, and quantities at most stream locations are computed from cross sections. The plans indicate the locations. The Inspector must measure and record the volumes of all stone walls removed and any other earth excavation not included in the original cross sections.

Excavation quantities shown on the estimate sheets are estimated quantities. Final quantity determinations are required and should be well documented in the project records. All notes related to final measurement, such as checks of the elevations of existing ground as noted on cross sections or of cross-section areas, should give the date that the work was performed, the name(s) of the personnel performing the work, and the exact limits of the work.

Occasionally, excavation and filling are performed together as an operation, as in the case of benching slopes and removing unsuitable material. The necessary measurements should be obtained as promptly as is practicable. Unnecessary delays to a contractor's operations should be avoided.

A grading plan will occasionally be required by special provision on projects involving borrow, waste, or a large volume of rock.

2-304C Excavation Procedure

Before starting the grading operations, it is common practice for the contractor to set a row of grade stakes to be used for grade lines. The stakes are set at a uniform distance from the centerline of roadway, outside the grading limits, and for a considerable distance along the project.

If the cross sections for a cut show rock slopes or rock-and-earth slopes, the Inspector should pay particular attention to the elevations at which rock is encountered. The Inspector should immediately advise the Project Engineer of any discrepancy that prevents completion of the cut according to the designed cross section or that calls for acquisition of additional property or right-of-way.

Very often earth and other fine material overlie ledge that is to be excavated. Building an embankment from material excavated from this configuration often results in finer material being placed in the bottom of the embankment, while insufficient fines remain to fill the voids in the successive layers of rock fragment placed in the embankment. In other cases, much of the finer material is incorporated in the deeper embankment sections, while the rest of the available excavated material is composed of rock fragments too large to be placed in the remaining shallow embankment section. If practicable, the contractor should arrange excavation schedules so that these situations do not occur, especially on closely balanced jobs. The Chief Inspector should have in mind an overall picture of the grading of the entire project.

As the *Standard Specifications* state, overhaul will not be allowed. Excavated material, including topsoil, must be transported where directed, provided the designated point of deposit is not more than 100 yards (90 meters) beyond the limits of the project contracted for, unless the special provisions or plans state otherwise.

2-305 Rock Excavation

This item includes the removal of rock in definite ledge formation and boulders or portions of boulders one cubic yard (one cubic meter) or more in volume.

2-305A Determining the Quantity To Be Removed

The contractor is required to strip or expose the rock to such an extent that the quantity to be removed can be measured. The Inspector must be satisfied that the ledge is exposed sufficiently to reveal the true conditions. It should not be necessary for State forces to bar, probe, or trench so that the survey party can take cross sections.

At the request of the Chief Inspector, the survey party must take careful cross sections of the rock. The work should be performed after the rock surface has been exposed but before rock excavation has begun. The cross sections should be
taken on the same cross-section lines as the original sections and on the intermediate lines necessary for accurately determining the amount of rock to be excavated.

2-305B **Blasting Safety Meeting**

When blasting is anticipated, a combined blasting and safety meeting must be held to assure full compliance with safe practices in blasting and all other operations, with emphasis on protection of workers and property. The meeting may be combined with the Preconstruction Conference and/or Utility Conference. The meeting will be chaired by the Project Engineer, and the following persons will be invited to attend:

- District Safety Advisor,
- State Fire Marshal,
- representatives from affected utilities,
- contractor's field superintendent,
- local fire marshal,
- blaster,
- representative of the contractor's insurer, and
- representative of the contractor's supplier of explosives.

Notification of the proposed meeting will be sent by the District.

At this meeting, safe practices in transporting, storing, and using explosives will be discussed. Attention will be given to the pertinent *Connecticut General Statutes*, regulations of the Division of State Police, local ordinances, and *Standard Specifications* of the DOT. The *Specifications* have been developed to protect DOT personnel, owners and residents of adjacent properties, and the motoring public, including school buses and emergency vehicles. The contractor must comply with the pertinent sections of the documents mentioned above. In addition, the contractor must take full advantage of all services available from the insurer and from the manufacturer and supplier of explosives.

The meeting participants must review each rock cut and recommend safety precautions to be taken by the contractor before blasting. The recommendations are made in writing to the contractor, with copies to the committee members and the local fire marshal.

2-305C **Presplitting Rock Slopes**

Improvements in blasting procedures and the development of the presplitting concept now make it possible to control rock breakage and provide for smooth, stable rock-cut faces conforming to specified slope ratios. The Inspector should review the subsection “Excavation of Rock” under Article 202 of the current *Standard Specifications* to become familiar with this rock-removal technique.

2-306 **Blasting Regulations and Good Practices**

2-306A **Regulations**

The contractor or blasting subcontractor will obtain a permit from the local fire marshal in the town where the blasting is to be done.

All dynamite and cap magazines will be of the approved type and be inspected by the State Fire Marshal's Office.
2-306B Transport and Storage

The transporting of blasting caps in a vehicle containing other explosives is prohibited.

Each vehicle carrying explosives will bear signs on the front, rear, and each side displaying the word “Explosives” in letters not less than 4 in. (100 mm) in height. The lettering will be white. The approved vehicles will be painted bright red.

No explosives or caps will be left overnight on any job unless stored in a magazine.

If no magazine is located on the job, leftover dynamite and caps will be returned to the supplier at the end of the day’s work.

All empty explosive cartons will be burned and will not be used for storing drills, tools, stemming, etc.

2-306C Warnings

Before each blast, the contractor will notify the local police department, fire department, fire marshal and, when necessary, any public utility company that may be involved.

The contractor will post signs on all adjacent highways—a minimum of 1000 feet (300 meters) from the blasting site to warn motorists to turn off two-way radios and cellular telephones. The signs will be placed on the road just prior to the loading of the holes and will be taken down immediately after a blast is detonated. The standard sign layout is shown in Figure 2-3.3, on the next page.

The contractor will send out individual workers prior to the detonation to warn occupants of all buildings in the area. This warning will be given prior to the whistle blasts (described below).

The contractor will install a whistle, so that, 15 minutes prior to each detonation, the public will be warned by six 10-second blasts of the whistle. Just prior to the detonation, the whistle will be blown ten short blasts.

The contractor will station flaggers on all highways adjacent to the blasting area to stop traffic before a blast is detonated.
2-306D Special Precautions

Special care will be exercised near broadcasting stations and towers by checking the frequency wave lengths with the stations in question. This is to prevent accidental detonation of wired caps and dynamite by radio transmitters.

In marine construction, proper precautions will be taken to prevent marine transmitting radios from setting off a blast.

In the event of an electrical storm, after loading has started, all operations will cease and the area will be cleared. Whenever possible, the load should be fired before the storm arrives.

Presplit holes should be checked visually along the face for missing patterns that may indicate misfired holes.
In the event of a misfire, all operations in the area will stop and the contractor will notify the Chief Inspector.

2-306E Normal Operations

- All trench or boulder blasts will be covered with a mat constructed to prevent fragments from being thrown.
- For electrically fired shots, the lead wires will be kept short-circuited until the time for firing.
- When testing circuits to charge holes, blasters will only use a blasting galvanometer designed for this purpose.
- No loading operation will be conducted within 25 feet (7.5 meters) of a drilling operation.
- A constant guard will be kept over loaded charges until the blast is fired.
- After each blast an attempt will be made to recover all wires.

2-306F Recordkeeping

The contractor's blasting supervisors will keep a permanent record of all blasting operations in a bound notebook (not loose leaf).

The records will include the following: date, location, time of blast, number of holes, diameter, depth and spacing of holes, pounds and type of explosive used, number of delay fuses, results of blast, and precautions taken.

2-306G Operations

None of the preceding regulations or practices relieves the contractor of responsibility for protecting the public and property, even though specific protective measures may not be mentioned in the report of the blasting meeting. The contractor should be advised of this responsibility.

DOT employees should not influence the contractor's method of drilling and loading, unless the drilling methods are specified in the contract, because it is the contractor's responsibility. However, it may be necessary, as stated above, to ask the contractor to obtain the advice of the explosives company. A representative of the Department of Transportation, usually the Chief Inspector, will see that the recommendations are followed.

Department personnel or representatives will cooperate with the State Police in regard to all blasting operations. All DOT personnel are responsible for seeing that the provisions of the specifications regarding the use of explosives are enforced.

During the progress of the work, any condition found by the contractor or DOT personnel that represent a change from the conditions anticipated at the original blasting meeting will be pointed out to the Chief Inspector.

To excavate to the bottom of a rock cut, it is necessary to extend the drill below the proposed excavation elevation. The extent of this additional depth is up to the contractor. The Inspector must ensure that no rock ledge protrudes above the required excavation elevation, and must have the contractor remove any overhanging ledge and loose or unstable rock fragments from the slopes, even if they are outside the pay lines.

If the contractor's operations appear to cause excessive “back-breakage”—fracturing the rock beyond the intended limits—the Inspector should alert the Assistant District Engineer. A conference may be needed to determine if other methods of blasting are warranted.
2-306H Payment

In accordance with the current Standard Specifications, all boulders must be measured and recorded separately by the Inspector as they are encountered, in cubic feet (meters) and decimals. The Inspector must also designate whether the boulders recorded are in section or out of section, the date of removal, and the location from which the boulders are removed. Boulders that are out of section are those lying on top of the ground or situated so that they are not included in the volume computed from the regular cross section. Out-of-section boulders are not deducted from the earth excavation.

Payment lines for rock excavation, where presplitting bedrock is required by the specifications, will extend to the slope and depth line shown on the plans or as directed, to include only the rock actually removed within this limit.

Where removal of rock is necessary for safety, or due to conditions clearly not attributable to the contractor's methods of operation, the payment lines for rock excavation where presplitting is required will be fixed to coincide with limits ordered by the Engineer.

2-307 Surplus and Unsuitable Material

Excavated material is used to build the project's embankments. If more material is excavated than needed for the embankments, the extra material is termed “surplus.” Material that is unfit for embankment construction is termed “unsuitable.” The disposal of surplus and unsuitable materials is governed by Standard Specifications 2.02.03-8 and 2.02.03-10, respectively.

2-308 Surplus Material

Earthwork that calls for more cutting than filling produces a surplus of excavated material. The excess material may consist of both suitable and unsuitable embankment material. The Project Engineer will indicate where the contractor is to place it. For example, surplus material may be used to widen embankments, to flatten slopes, to fill in low places in the right-of-way, or for other purposes. The only provision is that the area designated by the Engineer for depositing the surplus material does not conflict with the Standard Specifications governing placement of excavated material (2.02.03-5). Any surplus or unsuitable material that is not required or permitted to be used for such purposes must be disposed of in accordance with Article 2.02.03-10 of the Specifications.

2-309 Unsuitable Material

2-309A General

Some material encountered during excavation is not suitable for placement in embankments. It usually is located below the surface of the original ground and has not been disturbed. The material typically is high in clay or organic content and would not be stable if placed as fill. However, loam or topsoil usually is classified as unsuitable, even though it is found on the surface. There is no hard-and-fast rule that classifies a material as suitable or unsuitable. A useful guide is to ask the following questions about the material under consideration.

- Is it wet?
- Does it retain moisture?
- Does it have organic material in it?
• Is it compactable? When equipment drives over it, is it compacted rather than displaced?

For unsuitable material, the answers to the questions next to the first three bullets probably would be “yes,” and the answers to the questions by the last bullet probably would be “no.”

The disposition of unsuitable material is generally determined during the design stage of the project, and the manner of treatment is indicated in the plans or special provisions. If material of questionable quality has to be removed from locations not specified on the plans, samples should be submitted to the Division of Soils and Foundations for analysis and classification. A field meeting should be arranged with DOT Soil representatives to review unsuitable material. All recommendations should be documented.

2-309B Topsoil

The locations of topsoil areas should be determined well in advance of the work. Approximate locations are usually given in the computations, in the field review reports, and in the plans (primarily on the estimate sheets). The areas from which topsoil is removed can be either cut or fill areas. In-place samples of the material should be submitted to the Laboratory for approval as topsoil as far in advance of the work as is practical. Preliminary approval or rejection of the material will enable the Department to properly determine the disposition of the material.

When topsoil excavation is ordered from either cut or fill sections, the Inspector must see that it is stockpiled along the outside of the roadway limits, but within the highway limits, and placed where it will be readily accessible to the Division of Maintenance for use as required. The Inspector must contact the District Maintenance Manager to determine the most favorable location for these stockpiles with regard to future work.

A check of proposed fencing in the stockpile areas is important. Should it appear that there will not be sufficient area to stockpile the excavated topsoil; the Project Engineer should be notified so that other stockpile areas can be located.

All topsoil excavated and stockpiled must be free of boulders, roots, stumps, etc., but the contractor is not required to screen the material. Because topsoil depths vary, its removal should be closely watched to ensure that unsuitable material (unsuitable for topsoil) is not excavated and incorporated in the stockpiles.

Topsoil quantity is directly related to the cut and fill quantity columns on the estimate sheets in the plans. On borrow projects, changes in the quantity of excavated topsoil will affect the borrow volume. Regardless of the applicable item under which topsoil is stripped from the roadway area and stockpiled for future use, original and final cross sections of the excavation areas must be taken before any further grading operations are begun. The stockpiles will be available for measurement. However, a material shrinkage of 20 to 30 percent will probably occur, depending on the equipment used. The measurements of the piles will not give an accurate quantity unless a proper adjustment is made for shrinkage.

2-309C Use or Disposal of Material

“Unsuitable” does not mean “waste.” Every consideration should be given to using unsuitable material, especially on borrow projects. Generally, it can be used to advantage:

• In berms.

• On slopes, generally between specified lines. For example, between 2:1 and 1.5:1 or 1:1 slope lines.

• To widen embankments.

• To flatten slopes. Caution should be taken to avoid preventing water from bleeding through slopes. If water cannot bleed out it will create problems with embankment building.
- To fill low spots within the right-of-way.

Figure 2-3.4 indicates some of the places for disposing of unsuitable material within the clearing limits.

Figure 2-3.4 Disposal of Unsuitable Material

When the material is not required or permitted to be used for such purposes, the Project Engineer will order that it be removed and disposed of outside the limits of the highway, at locations determined by the contractor. The Engineer must approve of the disposal sites, which must in no way be detrimental to the project or the environment.

The Inspector must know where surplus or unsuitable material removed from the project is disposed of and verify that the disposal is not in an environmentally sensitive area or in a location that is detrimental to the project. The Inspector must be specific when instructing the contractor regarding removal of such unsuitable material and must record the location, depth, and quantity ordered wasted in their notebook. Should the contractor elect to waste any material that has not been judged unsuitable—including boulders or large fragments—the Inspector must inform the contractor by memorandum that such material is to be replaced at no expense to the State. An accurate record of all such removals must be made in the notebook.

2-310 Salvageable Material

Chief Inspectors must be responsible for the contractors' removal and preservation of all designated salvageable material on the project. They should carefully review Article 1.04.07 of the Standard Specifications, titled “Rights In and Use of Materials Found on the Work.” In addition, they should contact DOT Stores at the start of each project to review the items that are to be salvaged.
2-311 **State's Property**

The Inspector must see that the contractor removes and disposes of all highway structures and appurtenances that are not to remain in place. Until they can be delivered to DOT Stores, all drainage pipes and railing material that are not designated to remain in place, or that are not designated for use in the construction and are to remain the property of the State, have to be removed without damage and stored at a convenient location along the highway. The storage location must be a safe distance, a minimum of 30 feet (9 meters) from the traveled portion of the highway.

2-312 **Contractor's Property**

All structures that become the property of the contractor must be removed and disposed of before final acceptance, unless instructions to the contrary are contained in the plans or special provisions.

2-313 **Use of Reclaimed Waste Materials on Construction Projects**

The sources of “reclaimed waste” include debris from demolished buildings, structures, and pavements and residue from resource recovery plants. The materials themselves may include portland cement concrete, bituminous concrete, glass, ceramics, bricks, pavement subbase and base course, and incinerator clinkers. Metal is acceptable only when contained within large fragments of concrete.

Reclaimed waste brought onto the project must be accompanied by a Materials Certificate and Certified Test Report stating that the material is environmentally acceptable and structurally sound in accordance with Article 1.06.07 of the *Standard Specifications*, unless the material's source is a transportation project acceptable to the Engineer.

Follow these guidelines in regulated areas when the Department uses reclaimed waste material on construction projects:

- Avoid the use of reclaimed waste on all projects in the immediate vicinity of public water supply reservoirs or tributaries.

- Limit the use of reclaimed waste to areas outside—3 to 5 feet (1 to 1.5 meters) in both the horizontal and vertical directions—of any water resource-regulated area, including the stream channel encroachment line.

2-314 **Conditions Requiring Corrective Work**

Field observations during the excavation and embankment stage of construction often reveal troublesome soil or water conditions that were not apparent at the time of the soils survey. Corrective work is often needed to ensure the stability of the roadway. Subsurface drainage requirements are particularly difficult to assess accurately when a preliminary subsurface investigation is made.

During excavation operations, therefore, the Chief Inspector must notify the Project Engineer immediately upon encountering any wet condition that has not been provided for in design. The Project Engineer must arrange to have proper drainage features installed with as little delay as possible. One common wet condition is a natural water flow in underground strata. It can be corrected by the use of open ditches, open channels, or underdrains that effectively intercept and carry off the subsurface water. A high water table is another typical problem. It results in a subgrade that becomes saturated and softened by capillary action. Again, underdrains, open ditches, and open channels are means of removing the water and protecting the roadway.

Besides wet conditions, slip planes in earth and rock slopes are also common. These conditions can lead to severe slides if they are not corrected. To remedy the condition, slopes can be benched, high-level drainage ditches can be constructed to intercept surface water, or high-level underdrains can be installed to intercept subsurface water.
Problems that cannot be corrected as described above should be reported to the District Office immediately. Depending on their nature and seriousness, the Assistant District Engineer may prescribe the necessary corrective work, or the District may refer the problem to the Soils and Foundation Section for recommendations.

2-315 Embankment Building

2-315A General

During the formation of embankments, the Inspector must be vigilant in enforcing the provisions of the Standard Specifications regarding the placement and compaction of fill material. Observing the action of fill material under the weight of hauling equipment is the best indicator of relative embankment stability. Any material that continues to pump should be immediately brought to the attention of the Project Engineer.

The Inspector must see that the embankment is constructed to the required width from the bottom up, so that dumping material over the edge of the embankment to widen it will not be necessary later on. If it is necessary to widen existing slopes, the added material should be cut in and compacted, and not just end-dumped and spread. Improperly placed material is very susceptible to erosion and may develop into a minor slide.

The practice of compacting embankments chiefly with hauling, excavating, and grading equipment is not acceptable. The entire area of each layer must be uniformly compacted to at least 95 percent of the dry density for the soil, as determined by AASHTO T180, Method D. Compaction equipment, consisting of rollers, compactors, or a combination of the two, must be used. Earth-moving and other equipment that is not specifically manufactured for compaction purposes will not be considered compaction equipment. See Section 2-319, Embankment Density for more information.

Attempts should be made to alternate haul roads on fills whenever possible to promote uniform compaction.

2-315B Borrow

In general, borrow will be permitted only after all usable excavation has been placed. The contractor may request the Engineer's permission to place borrow before all of the available and suitable excavated material has been incorporated in the work. Such permission, when granted, will specify that the contractor will be held responsible for the proper placing of all suitable excavated materials and that no payment will be allowed for any borrow placed in lieu of suitable excavated material. All borrow banks will be preapproved so that “Proctors” may be determined and cross sections may be taken prior to any excavation.

In embankments being constructed from borrow material, the responsibility of obtaining the necessary consolidation and stability is entirely the contractor's. If consolidation and stability are not being achieved, the operations should be stopped until the contractor demonstrates that a thoroughly compacted and stable embankment can be made with the material being used.

2-315C Corrections

When embankments are formed from excavated material but are unstable after the contractor has complied with the density and other requirements of the specifications, the Assistant District Engineer must be alerted. After viewing the condition, the ADE will determine if corrective measures are necessary and, if so, may direct the contractor to improve the embankment's stability. The corrective work that is deemed necessary will be paid for as extra work, or at contract unit prices if such items appear in the contract. For Federal-aid contracts, the Federal Highway Administration must provide clearance for corrective procedures.
2-316 Monthly Pay Quantities

The practice of determining daily quantities of excavation and borrow by taking load counts is usually recognized as the most practical estimation method. However, the method of estimation used must be documented as outlined in Section 1-912. It is not acceptable to use the summation of these daily counts to determine final pay quantities. Methods must be used to check load-count totals to prevent overpayments.

Inspectors should verify load count accuracy as follows:

- The hauling units should be measured and their water-level capacity should be computed. This information will serve as a basis for determining the quantity to be allowed per vehicle load.

- The load-count data should be submitted, in writing, on a daily basis. For example, the contractor could provide a tally sheet listing each hauling vehicle, showing the number of loads per vehicle, and indicating the work location. The tally sheet should be signed by the contractor's superintendent to authenticate it.

- An inspector checks the contractor's load count tally daily by actual tally count.

- Periodic checks of the load-count quantities also should be made by independent methods of measurement (other than load-count data), and the progress quantities should be adjusted as required. The checks usually can be made against the estimate sheet on completion of a particular excavation area or borrow pit.

- The elevations of the cut areas and borrow banks will be determined just prior to the monthly estimate. This may be done by survey party profiles and cross sections. As an alternative, inspectors may take elevations or make visual determinations—nothing elaborate.

The data will be used independently or in conjunction with information available from grading quantity sheets, detailed estimate sheets, etc., to compute the approximate amount of material excavated. This quantity will be compared to the load-count quantity to determine the accuracy of the load counts. If large discrepancies exist between those quantities, more detailed checking must be performed and the load-count quantities must be adjusted accordingly.

- The results of the checks above and the methods used to determine and check the monthly pay quantities for the various excavation and borrow items must be documented in the project records.

It is the Inspector's responsibility to maintain an accurate load count. If load counts are not available, the Inspector should include a daily entry in the project records documenting the approximate:

- carrying capacity of each hauling vehicle,

- number of loads, and

- total cubic yards (meters) for the day.

These estimates will also be considered as load counts.

Intermediate final sections must be taken in borrow banks if borrow operations are suspended for about a week or more. The information must be included in the permanent project records.

2-317 Final Pay Quantities

To assure compliance with the Standard Specifications and to ensure proper documentation of this item, the following policy will apply to all projects:
All final quantities greater than 5000 cu. yd. (3800 m³) must be measured by cross-section measurements at the borrow pit or by cross-section measurements made in place. The appropriate shrinkage factor mentioned in Standard Specifications Article 2.07.04, paragraph (d), must be applied. Only in the case of extenuating circumstances may this method be waived in favor of alternatives mentioned in the Specifications. The Office of Construction must be informed of the specific reason or reasons why other methods were utilized.

Under Standard Specifications, Article 2.07.04, paragraph (b), payment by load count, less the shrinkage factor, may be considered an acceptable method of measurement for quantities less than 5000 cu. yd. (3800 m³).

2-318 Winter Embankment Operations

If a contractor requests permission to begin or continue the construction of embankments during the winter, the contractor will be required to remove all frozen material, within specified limits, at no cost to the State. The requirement applies to the removal of frozen existing ground or embankments constructed of earth excavation or borrow located within the following limits:

- As measured from the outside edges of the tops of slopes, the portion of the embankment area that falls within the 1.5:1 slope lines.
- As room permits, between the outside of the 1.5:1 slope and the designated 1:1 slope.

Fat slopes resulting from the placement of the frozen material should be graded to the prescribed slope limits after all material has thawed and become stabilized.

No additional payment will be made for any work involved.

2-319 Embankment Density

Proctor tests are used to determine the laboratory densities of the soils used for embankment construction. Nuclear density gauges typically are used to determine field densities for comparison with the laboratory densities.

2-319A Field Sampling for Proctor Determinations

To be able to compare each field density value with the laboratory density for the same soil, the Inspector must sample and send sufficient material to the District Laboratory so that enough Proctor determinations are made. Each laboratory density test requires approximately 80 pounds (36 kilograms) of material.

For each sample submitted to the Laboratory, the field forces must obtain a small representative sample and retain it on the project as a reference sample. These samples should be placed in glass jars labeled with the following information:

- soil type,
- source,
- Proctor density (at optimum moisture content),
- percent of material retained on the 2 in. (50 mm) sieve,
- percent of material passing the 2 in. (50 mm) sieve and retained on the ¾ in. (19 mm) sieve,
- sample number, and
- laboratory number.
At the time a source sample is taken for approval of a new borrow bank, the Inspector should request a Proctor density and optimum moisture of the material. The request expedites the moisture-density control process in the field, by providing the Inspector with the values that will be needed as soon as the contractor begins the embankment.

If embankment material is obtained from several sources, the importance of comparing the field test results to the laboratory results for the same soil cannot be over-stressed.

2-319B Field Density Test Equipment

Embankment densities can be determined by conventional methods based on a soil sample weight-volume relationship, or by using a nuclear testing device. The Department currently determines field densities by the nuclear method.

Because nuclear-density units contain radioactive material, they are subject to the control and regulation of the Nuclear Regulatory Commission (NRC). Only qualified, NRC-certified employees of the Department are authorized to operate the equipment. Usually, the District nuclear-density staff performs the tests. All applicable safety regulations must be observed.

Nuclear-density devices consist of adjustable moisture and density probes that are power-operated counters. The probes are sealed units containing radioactive material. Each probe has a safety lock-type trigger mechanism that effectively shields the radioactive charge if the mechanism is in the off position. Readings generated by the probes are displayed electronically on an illuminated panel. The readings are referred to as counts per minute, or CPM. For each test run, the panel readings are interpolated on calibration charts for a density and moisture determination.

Each probe has a sending unit. The moisture probe senses the hydrogen molecule content of the water in the soil and transmits the information to the unit. Low readings reflect low moisture content. The density probe senses the resistance of the soil to the radioactive transmissions, and the resultant readings reflect inverse soil densities. That is, low readings indicate high soil densities.

The effective depth of detection for each probe's units is between 6 and 12 in. (150 and 300 mm). For accurate test results, the lower surface of each probe must develop full surface contact with the material being tested. Minor surface irregularities and voids result in count differences of 400 to 500 CPMs. Soils with different densities, if placed in lifts of less than 12 in. (300 mm), require special consideration.

2-319C Field Density Test Procedures and Steps

Before field density tests are run, the inspector who will be responsible for them must be familiar with both the representative samples of material submitted to the laboratory for density determinations and the material currently being used. For a density test to have significance, the material being tested and the results obtained have to be compared to the proper laboratory sample.

Not all field density tests on a project are expected to pass, that is, have results that meet the required minimum percentage of laboratory density. If they all passed, it would indicate that:

- They were made only in hard spots.
- They were compared to a laboratory density for a different, poorer soil.
- The contractor did an outstanding job by thoroughly compacting every layer for its entire width.

The proper procedure is to run the field density test in a portion of the layer that seems representative of the layer as a whole. The test result is then compared to the laboratory (Proctor) density for that soil. If the field density does not pass, the contractor is immediately told to re-roll the area. After the area is rolled again, a new test is performed to determine whether the additional compaction was sufficient. If the new result also fails to pass, the rolling-and-testing process is repeated until a passing result is obtained.
Additional compaction passes and subsequent tests should be noted under “Remarks” on the Data and Computation Sheet for Nuclear Field Density Tests, Figure 2-3.5. As noted above, the dry density after compaction must not be less than 95 percent of the dry density for the soil when tested in accordance with AASHTO T 180, Method D. If density tests still fail after several re-rollings, it is possible that the wrong Proctor is being used. The Inspector should then resample the material to determine a new laboratory density.

If necessary, the Inspector should have density tests performed in cuts and borrow banks for comparison to densities in fills to determine the amounts of shrinkage and swelling of material incorporated in the work. The information should be given to Soils and Foundations to be used for estimating earthwork on similar projects in the future.

2-320 Water Pollution

2-320A Sedimentation Control Plan

The contractor is required, by the contract “Best Management Practices for Protection of the Environment,” to submit a sedimentation control plan for approval. The plan may be revised after approval when actual field conditions dictate that different controls or more controls are needed.

If possible, the project should be reviewed during a rainstorm to observe high runoff areas and check the sedimentation control plan. This can be critical in determining if the sedimentation control plan is practical and effective. The use of sedimentation silt fence, stone dikes, sedimentation pools, or other controls may be needed. Other options for protecting slopes include temporary bituminous curbing or temporary leakoffs or slope drains.

2-320B Responsibilities

The contractor is responsible for placing and maintaining sedimentation controls. The Chief Inspector is responsible for ensuring that controls are placed and maintained for the duration of the project.

The Inspector should be familiar with all DEP and Army Corps of Engineers permits associated with the project, ensure the contractor's compliance with their conditions, and be familiar with the required erosion and sedimentation controls and other special project requirements. The Inspector should arrange a site meeting with DOT Environmental personnel to review the erosion-control measures implemented.

2-320C Operations

All sedimentation controls must be in place before construction begins. The contractor's approved dump site for excess material should also be protected before actual dumping occurs.

On rehabilitation projects, curb removal may present a potential runoff and sedimentation problem. If possible, curbing should be left in place until the disturbed slopes have a good stand of grass.

Temporary pollution control measures, other than those shown on the plans or stipulated in the specifications, may be ordered by the Engineer to correct conditions that develop during construction. The field personnel must anticipate possible erosion and pollution during construction and provide or recommend timely installation of necessary temporary controls to prevent those problems from occurring.
Figure 2-3.5 Data and Computation Sheet for Nuclear Field Density Tests (Form CON-125)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Project Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location of Test Station</th>
<th>Depth Below F. Gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Hauled From (Cut Sta. or Borrow Bank)</th>
<th>Gage Number</th>
<th>Date Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DENSITY

<table>
<thead>
<tr>
<th>wet density</th>
<th>dry density</th>
<th>wet density</th>
<th>dry density</th>
<th>wet density</th>
<th>dry density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ave. | ave. | ave. | ave. |

MOISTURE

<table>
<thead>
<tr>
<th>lbs. water</th>
<th>% water</th>
<th>lbs. water</th>
<th>% water</th>
<th>lbs. water</th>
<th>% water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ave. | ave. | ave. |

CALCULATIONS

A. Wet Unit Wt. | LBS./C.F. | LBS./C.F. | LBS./C.F. |
B. Weight of Water | LBS./C.F. | LBS./C.F. | LBS./C.F. |
C. Dry Unit Wt. (A-B) | LBS./C.F. | LBS./C.F. | LBS./C.F. |
D. Water Content (B/C) | % | % | % |
E. Maximum Density (Proctor) | LBS./C.F. | LBS./C.F. | LBS./C.F. |
F. Percent of Proctor Density (C/E) | % | % | % |
G. Optimum Moisture (Proctor) | % | % | % |

REMARKS:
The Engineer has the authority to control the surface area of earth material exposed by construction operations and to direct the contractor to immediately provide permanent or temporary pollution control measures in accordance with Article 1.10 of the Standard Specifications. The Inspector may direct the work to be done by an on-call contractor if not performed by the project contractor within the period required by the specifications. Additional information can be found in Volume 2, Chapter One, “Environmental Protection,” in the section “24-Hour Rule.”

The contractor must operate all equipment and perform all construction operations so as to minimize pollution problems. In the event pollution-control measures are required due to the contractor's negligence, carelessness, or failure to install permanent controls as part of the contract or perform work ordered by the Engineer, the work needed for implementing the pollution-control measures must be performed by the contractor at no expense to the State.

2-321 Call Before You Dig

Companies that will excavate should be thoroughly briefed on Call Before You Dig (CBYD) requirements and procedures before project startup. The CBYD program is operated by the Department of Public Utility Control (DPUC). State regulations require that excavating contractors and subcontractors contact CBYD before starting digging, drilling, driving or other operations that might hit an underground utility. After this contact is made, the contractor or subcontractor must wait two days for the area to be completely marked out. Initially requesting a generously wide mark-out of the construction site can both avoid delays and prevent incidents.

Not all utilities are on the CBYD system. Most municipalities are not, and the State of Connecticut is not. Contractors should contact agencies directly that may have utilities that could be damaged but that are not on the CBYD system.

The DOT has an Incident Management System (IMS) along the major expressways in the State. The IMS uses fiber optic cables and conduits. As an exception to the State's exclusion from the CBYD system, contractors should contact CBYD to have the IMS conduits marked.

2-321A Utility Warning Tapes

DPUC regulations require that all underground utility facilities (including railroad facilities) installed after January 1, 1989, be identified with warning tapes above the facility. The warning tape must be located 12 in. (300 mm) above all conduits, wires, cables, utility pipes, drainage pipes, underdrains, etc. The tape must be durable, designed to withstand extended underground exposure, durably imprinted with an appropriate warning message, and of the color assigned to the type of facility for surface markings.

- **Green.** Storm and sanitary sewers and drainage systems, including force mains and other non-hazardous materials.
- **Blue.** Water.
- **Orange.** Communication lines or cables, including but not limited to telephone, telegraph, fire signals, cable television, civil defense, data systems, and electronic controls and other instrumentation.
- **Red.** Electric power lines, electric power conduits, and other electric power facilities.
- **Yellow.** Gas, oil petroleum products, steam, compressed air, compressed gases, and all other hazardous materials.
- **Purple.** Radioactive materials.
- **White.** Proposed excavations.
- **Brown.** Other.
2-321B Reporting

Digging incidents involving public utility facilities call for timely, accurate, and legible reporting of each occurrence. Incidents are to be reported on the Department of Public Utility Control's Incident Report Form, Figure 2-3.6 at the end of the chapter, and submitted to:

Call Before You Dig, Inc.
105 Sanford Street
Hamden, CT 06514

Regulations of Connecticut State Agencies require each public utility to notify CBYD monthly of any excavating activity that has resulted in contact or damage to its underground facilities for electricity, gas, telephone, other communications, sewage, water, traffic and fire signals, community television antennas, and steam and other products carried by pipelines. Contact includes—without limitation—the striking, scraping or denting, however slight, of any underground utility-line protective coating or housing, or other disturbance of the structural or lateral support of any underground utility facility. Additionally, public utilities must also file a report annually with CBYD if their underground facilities have not sustained damage. Failure of compliance by any public utility regarding the submission of the reports may result in a civil penalty.

The Incident Report Form may be used in evidence in actions imposing a civil penalty for any violation of any portion of the law. Detailed information in cases of alleged “excavator negligence” are particularly important and must be clearly stated. Consequently, accuracy, neatness, and timeliness are essential in its preparation and submission. When each report is completed, the preparer should be certain that the top two copies (white and yellow) are sent to CBYD, while the third copy (pink) remains with the preparer.
DEPARTMENT OF PUBLIC UTILITY CONTROL
INcIDENT REPORT FORM
Complete report within thirty working days of incident and mail to:
C.B.Y.D., Inc., 105 Sanford St., Hamden, CT 06514

1. Teletype or utility code: ___________________ Report prepared on: ______/_____/_____
 Utility filing report: ___
 Address: __
 (Street) (Town) (State) (Zip)
 Report prepared by (name, title): ___

2. Excavator causing incident: __
 Address: __
 Contact person: ___________________________ Telephone: ______________________

3. Date of incident: ______/_____/_______ CDYD ticket number: __________________
 Street address of incident: ________________________________ Town: _____________
 Circle utility and type of facility
 Utility affected:
 A. Communications
 B. Electric
 C. Gas
 Facility affected:
 D. Sewer
 E. Water
 F. Main
 G. Service
 Incident occurred in:
 H. Public R.O.W.
 I. Private R.O.W.
 Time of Incident:
 J. Mon–Fri between 7 A.M. & 5 P.M.
 K. Mon–Fri between 5 P.M. & 7 A.M.
 L. Saturday, Sunday or holiday
 Cause of incident. Enter letter code(s) SEE TABLE ON COVER: ______________________________
 Comments (explanation or additional remarks):

4. Did incident cause an interruption of service? Yes _____ No _____
 Time of outage: _____________ A.M. / P.M. Duration of outage: _____________
 How many customers affected by outage? _____________ How many evacuated? _____________
 Number of personal injuries: _____________ Number of fatalities: _____________

5. Will excavator be billed for incident? Yes _____ No _____
 Has excavator reimbursed utility for incident? Yes _____ No _____
 If "yes," amount reimbursed $_____________ Date _____/_____/_____
 Supervisor's approval: ___________________________ Date _____/_____/_____

Figure 2-3.6 Department of Public Utility Control—Incident Report Form
Chapter 4 - Drainage

2-400 General

This chapter covers the construction and reconstruction of culverts, catch basins and drop inlets, manholes, underdrains, and ditches and channels. The chapter includes more design material than most of the chapters in the Manual because of the responsibility of project personnel to identify where plans need to be modified to improve drainage.

Water causes or contributes to most highway failures. In addition, damage to private or public property can be caused by a drainage structure that is not the right size or is not installed at the right location or elevation. Ideally, potential problems with a project's drainage system should be resolved during design. Unfortunately, actual drainage conditions often are not discovered until after construction starts. The Department must rely on the Chief Inspector and other project personnel to recognize potential drainage problems and request reviews of the design when necessary.

After design problems are resolved, drainage systems should be installed carefully and accurately so that the intentions of the design are realized in the finished construction.

2-401 Purpose

Drainage installations can function in three ways:

- to convey the free flow of natural water courses through highway property,
- to collect surface runoff to prevent flooding and the erosion of the shoulders or slopes, and
- to control subsurface flow to maintain the stability of the roadway.

A highway drainage system accommodates surface runoff, free ground water, or both. Removing surface runoff is relatively simple if compared with removing free ground water that flows or percolates through the pores in soil, holes created by decayed matter, insects, worms, and frost action. The porosity of soil controls the rate of underground channeling, if the slope is sufficient and the flow is not hemmed in by rock or impervious soils.

The subbase is meant to carry away ground water, but it sometimes brings in unwanted water to the subgrade instead, usually in cuts. If the water is not controlled, it removes the fine-grain components of the subbase gravel and causes a loss of the bearing power of the pavement. “Pumping” occurs at the joints and cracks of concrete pavement, caused when the flexing of the pavement under heavy wheel loads results in the movement of the free water. If the lateral movement of the water is restricted by curb footings on impervious material, the flow carries the water and fine grains through the joints, creating voids under the pavement. The loss of support and continuing heavy loads combine to crack the pavement and further the cycle of deterioration.

Capillary flow occurs in fine-grained soils; the force of gravity is overcome, and water can move in any direction. This flow is normal, and the resulting moisture can act as a binder for the soil particles. However, the moisture can become a lubricant if it is in the form of free water. In silt or clay, water can rise about 9 ft. (3 m) and about 18 in. (450 mm) above free-water level in sand. The amount of capillary water held in the soil depends on the characteristics of the soil, the supply of free water that replenishes the capillary water, and the extent of evaporation.

Frost heaves and boils are the result of the formation of ice crystals from the water supplied by capillary action. When water freezes, it increases approximately 9 percent in volume. The resulting expansion force is about 30,000 lbs. (133 kN) or 15 tons/sq. in. (207 000 kPa). With the first frost, the ice crystals fill the voids near the surface. Capillary water continues to feed the ice crystals, layer on layer, building up pressure until the surface ruptures or the slab is heaved. In the spring, the upper layers of ice thaw during the first warm spell. The thawed areas, when surrounded by frozen ground, develop into water traps that promote softening of the roadbed.

The depth, gradation and proper compaction of the subbase all tend to reduce capillary movement, improve the supporting qualities, and decrease the depth of frost penetration, but the subbase must also be drained to hold capillary...
action to a minimum. Surface and subsurface drainage installations are used to control free water movement through the subbase.

2-402 Outlets

The status of drainage outlets, the right to discharge water into private property, and the Department's related obligations for maintenance are below.

2-403 Natural Water Course

A natural water course is a channel within highway limits that is available for the discharge of runoff within a definite drainage area, conforming to the original ground contours. A diversion of runoff from another area by the constructed drainage system requires additional rights from the downstream owner. The State is responsible for the free flow of all streams through highway property but does not assume any obligation for the maintenance or improvement of streams on private property. Construction activities are often the source of claims by adjoining owners due to erosion of the channels or sedimentation of ponds. The Inspector should remain aware of the possibility of a claim both prior to and during construction.

2-404 Drainage Right-of-Way

A drainage right-of-way is a deeded easement for the installation and future maintenance of a pipe or ditch through private property, to provide a more suitable outlet. It is preferably located adjacent to the boundary line as a lease encumbrance to the property and varies in width from 10 to 20 ft. (3 to 6 m), depending on the size of the installation. The landowner retains the limited use of the easement area; however, any improvements, such as piping the ditch or extending the outlet, are at the landowner's expense and subject to Department permit requirements.

2-405 Right-to-Drain

A right-to-drain is a deeded right to discharge runoff over land into adjoining property at a specific location. It generally is limited to open land. Future improvements are at the owner's expense.

2-406 Adverse Rights

This type of outlet is not considered in new construction; however, it is the most common cross-culvert installation in rural areas. By statute, the State acquires a right-to-drain after 15 years of continuous use. The problem to property owners has been recognized, and the Department normally cooperates to the extent of installing a maximum of 200 ft. (60 m) of pipe furnished by the owner. The Department installs the structure and maintains the system in exchange for a definite drainage right-of-way.

2-407 Agreements

Outlets into existing town systems are by agreement covering construction and maintenance.

On completion of a project, the Department receives requests for outlets into its systems by private owners, developers or towns. Connections for cellar drains, roof leaders, etc., are allowed subject to a drainage agreement and permit requirements. The discharge of contaminated water from septic tanks or commercial processing is not permitted. Outlets for town improvements or developments also are allowed, assuming that the highway drainage system is adequate and Department rights are not jeopardized. Because circumstances vary, all requests for connections should be referred to the District Drainage Engineer for investigation.

2-408 Runoff Design

State highway drainage systems are typically designed for a 25 year frequency storm, which is the magnitude of one storm expected or experienced every 25 years. Systems at underpasses, depressed roadways, and culverts enclosing natural watercourses are at a 50 year frequency.
Highway and urban land area runoff is computed by the rational formula:

\[Q = \frac{A I R}{360} \quad (Q = A I R) \]

- \(Q \) = quantity of water in cubic feet (cubic meters) per second
- \(A \) = drainage area in acres (hectares)
- \(I \) = percentage of imperviousness of the area, from 0.2 to 0.9
- \(R \) = maximum average rate of rainfall over the entire drainage area in inches (millimeters) per hour that may occur over the design frequency

Rural land area drainage is computed by the Izzard method. The factors of design are somewhat similar to the rational formula but are for larger areas and use charts adapted for Connecticut conditions.

2-409 Trench Excavation

2-409A General

Trench excavation is covered in Article 2.05 of the Standard Specifications. There are several pay items for trench excavation, differentiated by the depth of the excavation and whether rock is excavated. Regardless, pay items cover the removal and disposal of material and excavation and backfilling for the following:

- Constructing pipe culverts, endwalls, catch basins, drop inlets, manholes, underdrains and outlets, sewers and service pipes.
- Removing drainage structures and appurtenances beyond the limits of roadway and structure excavation.
- Removing miscellaneous items, such as abandoned underground tanks, pipelines, etc.

Trench excavation is paid for in accordance with the Standard Specifications or special provisions. The Inspector should become knowledgeable in the current OSHA standards regarding trenching and advise the contractor to meet the standards, with copies of the advisements sent to the District.

It is not always possible to judge subsurface drainage requirements accurately when a preliminary subsurface investigation is made. During excavation operations, the Chief Inspector must notify the Project Engineer immediately on encountering any wet condition that is not provided for in the design. The Project Engineer must arrange to have proper drainage features installed with as little delay as practicable.

2-409B Rock Excavation

If ledge rock is encountered in trench excavation, the Chief Inspector must measure and record the amount to be removed. Extreme care should be used in recording the quantity of rock in the trench to state whether or not the quantity is to be deducted from the quantity of trench excavation of the applicable depth. Failure to make such notation may result in either overpayment or underpayment of the items involved.
2-409C **Backfilling**

Material used to backfill a drainage structure must be suitable for the purpose intended. Varved clay, rock, clay-silts, loam or organic soils are not acceptable backfill materials. Any material used for backfill should be compactable, have minimum void contents, be free of large stones, and provide for uniform load distribution and adequate structural support.

The material should be placed in layers of not more than 6 in. (150 mm) after compaction. Mechanical rammers, mechanical vibrators or pneumatic tampers should be used. Hand tampers can be used only with written permission of the Engineer. Consolidation by puddling or jetting should not be allowed because it produces an unstable and unevenly compacted condition.

2-410 **Foundations**

In general, the life of a drainage unit can be cut short by water seepage, rock breakage, water traps, and damage from uneven settlement or foundation bearing. Paved ditches, paved channels, catch basins, drop inlets and manholes located in rock-cut areas require special consideration of the need for granular cushion material. Information about foundations for specific types of drainage structures is included in the remainder of the chapter.

2-411 **Culverts**

The most commonly used drainage structure is the culvert, which either passes water from one side of the highway to the other, or (in connection with catch basins) carries highway runoff to a satisfactory place of disposal. The water must be confined to the culverts to prevent erosion and instability of the roadbed.

Article 6.51 of the *Standard Specifications* covers the installation of new and the re-laying of existing culverts. Article 6.52 covers both reinforced concrete and metal culvert ends. Article 5.06 includes endwalls. Bedding material is a separate item under Article 6.51.

2-412 **Types of Culverts**

2-412A **Corrugated Metal Pipe**

Corrugated metal culverts are sometimes called “flexible” pipe structures. The strength of a metal pipe depends on its size, shape, gage, bedding and backfill. The steel sheets or plates used in the pipe are corrugated to provide high flexural strength. Most metal pipe used for highway purposes is coated with a tough, semi resilient, waterproof bituminous material. Invert areas are paved with durable bituminous material. A typical invert covers about 25 percent of the interior circumference of a pipe. It is paved to protect the flow line from abrasion and to improve the flow characteristics of the pipe. See Figure 2-4.1.

A corrugated metal pipe or pipe arch is manufactured from corrugated sections that are riveted together along the longitudinal and circumferential seams. Generally, the sections are riveted together in multiples of 24 in. (600 mm), but pipe is available in lengths that are not multiples of 24 in. (600 mm). Manufactured lengths seldom exceed 20 ft. (6 m) because of handling and transportation restrictions.

2-412B **Plate Pipes and Arches**

Structural plate pipe, plate-pipe arches and plate arches are usually field assembled from precurved, corrugated metal plates.
2-412C Concrete Pipe

Concrete pipes are commercially produced up to a diameter of 108 in. (2700 mm). Most of the concrete pipes used for highway purposes have diameters between 12 and 72 in. (300 and 1800 mm). Pipes of the same size may be made of concrete that has different strengths. Strength is indicated as “pipe class.” There are five classes, Class I through Class V. A higher pipe class indicates a higher strength.

Pipe in one pipe class may be manufactured with different wall thicknesses. Wall thickness is denoted as Wall A, Wall B, or Wall C. Wall A is the thinnest wall. The pipe-wall designation reflects the minimum wall thickness in inches (millimeters), the reinforcement requirement, and the minimum concrete strength (the same for each class of pipe). Circular pipe is reinforced with circular reinforcement, and elliptical pipe is reinforced with elliptical reinforcement.

Improvements and refinements in the manufacturing process and the development of high-strength, low-slump concrete

Figure 2-4.1 Paved Invert
mixes have enabled pipe manufacturers to produce pipe that conforms to rigid specifications.

2-413 Pipe Selection

Since 1959, design standards for drainage have been revised with a general increase in pipe sizing to provide for more extreme conditions. The design for each drainage area considers the slope, ground cover, soil, and future development that may affect runoff characteristics. Pipes are sized by the Manning formula, with special attention to outlet conditions and critical slopes.

2-413A General Guidelines

A designer is guided in the selection of the type of pipe (metal or concrete) and the cross section to use by the following considerations.

- **General.** Reinforced concrete pipe is used if water is not corrosive, cover is adequate, and the height of fill is limited. Asphalt-coated corrugated metal pipe (ACCMP) or pipe arches are used if clearances are limited, in high fills, for grades over 10 percent, and where uneven ground support is expected.

- **Depth of Fill.** For fills in excess of 25 to 30 ft. (7.5 to 9 m), ACCMP usually is used. Reinforced concrete pipe is used if the height of fill is not over 25 ft. (7.5 m) or not over 20 ft. (6 m) for pipe 36 in. (900 mm) or larger.

- **Flow-Line Gradient.** ACCMP usually is used if the flow-line grades are in excess of 10 percent. Corrugated metal pipe frequently is used as slope pipe to connect roadbed drainage units to drainage outlets. Corrugated-metal pipe elbows usually are installed in the run of slope pipe along the toe of a slope to provide for flow-line gradient adjustment, additional cover over the pipe, and an improved outlet or endwall connection to the end of the slope pipe.

- **Hydrology Criteria.** To satisfy flow requirements and installation restrictions, pipes having arch-shaped sections may need to be used instead of round pipe.

The gage or wall thickness of culverts varies with the size of the structure and the height of fill over the installation. Availability also plays a role in pipe selection.

2-413B Available Metal Pipe

Most of the metal pipe culverts used in Connecticut are of the following types and sizes.

- **Asphalt-Coated Corrugated Metal Pipe.** 12 in. to 72 in. (300 to 1800 mm) diameter, gage variable.

- **ACCMP Arch.** 17 × 13 in. (450 × 340 mm) to 71 × 47 in. (1 800 × 1 190 mm) size, gage variable.

- **Corrugated Structural Plate Pipe.** Size and gage are variable.

- **Corrugated Structural Plate Arch.** Size and gage are variable.

- **Corrugated Structural Plate-Pipe Arch.** Size and gage are variable.

2-413C Concrete Pipe Strength

The strength or class of concrete pipe required for a location depends on the pipe's size, height of the fill, foundation conditions, depth and width of trench, bedding, and backfill. Generally, reinforced concrete pipe must conform to
AASHTO M170. Class IV, Wall B meets strength requirements for pipe from 12 in. (300 mm) diameter through 72 in. (1800 mm) diameter. Class IV, Wall C meets strength requirements from 78 in. (1950 mm) through 84 in. (2100 mm) diameter. If the culvert is installed by jacking, extra strength pipe or pipe of a higher class usually is used.

2-413D Loading

General principles for the loads carried by pipes are below.

- For conditions that produce a maximum load on the pipe, the weight of the fill is carried partly by the pipe and partly by friction against the sides of the trench.
- The width of the trench at the top of the pipe has a definite effect on the load to be carried by the pipe. The load is greater for wide trenches than for narrow trenches if the width is kept constant. Sloping the side of the trench has little effect on the load on the pipe.
- The load on a pipe due to the weight of the fill increases with the depth, but at a diminishing rate. After the depth of the fill is approximately ten times the width of the trench at the top of the pipe, there is practically no increase in the load for greater depths of fill.
- The maximum load due to the fill on the pipe usually occurs at the first thorough flooding of the trench fill after construction. The general effect of a lapse of time after the backfill has been compacted is to decrease the load on the pipe.

2-414 Materials Inspection

Culvert materials are tested and inspected by personnel from the Department's Materials Testing Laboratory and are inspected by project personnel.

2-414A Corrugated Metal Pipe

Laboratory personnel perform a general field inspection of the pipe when it is delivered to the job site and collect samples for testing. For ACCM pipes and arches, the inspection and tests check that the following items meet specifications:

- the variation between actual inside dimensions and nominal dimensions,
- the variation between the dimensions of abutting pipe ends,
- the type and thickness of the metal,
- the types of seams,
- the spacing of rivets and the distances from the rivets to the edge of the metal,
- the thickness of the asphalt coating, and
- the width and thickness of the paved invert.

Coupling bands are checked for dimensions and the presence of asphalt coating (no minimum thickness is specified). Pipe elbows are checked for the same items as pipes and arches and for the width of the coupling bands. Culvert ends are checked for the presence of asphalt or tar-based coating and for the configuration of the attachment system.
Project inspection personnel should inspect the material for damage that affects the pipe shape or dimensions, for bent ends that affect coupling, and for damage to the asphalt coating. The inspections should be conducted when the material is delivered to the job site, when it is transported to the installation site, and after it has been installed.

2-414B Concrete Pipe

The Laboratory inspects and approves the materials and the construction methods employed when the pipe is manufactured. Samples of the cured pipe are inspected for surface defects and size variations and are tested by the three-edge bearing test for quality and strength and by the absorption test. Precast materials delivered to the site must be accompanied by a PC-1 Form that verifies Laboratory approval. An example form is shown in Figure 2-4.2.

All pipe used on a project must be inspected and approved by the Laboratory. Laboratory personnel place a stencil on all approved pipe. As with ACCMP, project personnel should inspect the pipe when it is delivered to the job site, when it is transported to the installation site, and after it has been installed. Some inspection guidelines are as follows.

- Each section of pipe should be clearly marked with the pipe class, date of manufacture, and name or trademark of the manufacturer. Note: The stenciled date should match the date given on the PC-1 Form.
- Pipe must have no fractures or cracks passing through the shell, except for a single end crack that does not exceed the width of the joint.
- Pipe must not have any defects that indicate imperfect proportioning, mixing or molding or that indicate honeycombed or open texture.
- Pipe must have no damaged or cracked ends that would prevent making a satisfactory joint.
Figure 2-4.2 Certification of Precast Concrete Products (Form PC-1)

<table>
<thead>
<tr>
<th>CERTIFICATION OF PRECAST CONCRETE PRODUCTS</th>
<th>DATE OF SHIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT-314 (PC-1)</td>
<td></td>
</tr>
<tr>
<td>REV. 11/03</td>
<td></td>
</tr>
</tbody>
</table>

STATE OF CONNECTICUT

Department of Transportation

Division of Materials Testing

280 West Street, Rocky Hill, CT 06067-3502

Project Personnel: Submit with Request for Test AFTER visual inspection on project site.

List one type of product per cast date per line

DISTRIBUTION: Original to Lab, Copy to Project Engineer, Copy to be kept by Manufacturer

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHIPPED TO: (Contractor's Name)</th>
<th>PROJECT NO. or PURCHASE ORDER NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of Products	Cast Date	Quantity

Remarks

This document certifies that all the products listed above conform to all applicable Department and project specifications

Authorized Agent of Manufacturer

Signed: DATE
Pipe must have no exposed circumferential reinforcement, which indicates misalignment of the reinforcement.

Pipe must not have any continuous crack having a surface width of 0.01 in. (0.25 mm) or more and extending for a length of 12 in. (300 mm) or more, regardless of the position in the wall of the pipe.

Pipe may be repaired, if necessary, because of accidental injury during handling. The pipe is acceptable if the repairs are sound and properly finished and cured, and the repaired pipe conforms to the requirements of the specifications. The exposure of the ends of the longitudinal steel, stirrups, or spacers that have been used to position cages during the manufacturing process are not cause for rejection.

2-415 Culvert and Endwall Layout

Except in specifically designated instances, the Inspector must have the endwalls constructed parallel to the highway tangent, or when on curves, perpendicular to the radius passing through the centerline or the culvert, with the top plane longitudinally parallel to the gradient of the road.

2-415A General Method

To attain statewide uniformity, the Inspector uses the following method to verify the layout of culverts and endwalls by the contractor:

- Determine the station and distance from the centerline to both ends of the pipe.
- Determine the elevation at the edge of the shoulder, by applying the crown or superelevation for the pavement to the pavement centerline elevation.
- Compute the elevation of the embankment 12 in. (300 mm) back from the end of the pipe, using the known rate of slope. The endwall should be a minimum of 7 in. (175 mm) higher for 1.5:1, 2:1, and 4:1 slopes and 3 in. (75 mm) higher if it is at or close to the edge of the shoulder.

The endwall is staked parallel to the edge of the shoulder and on the same grade, except that at the foot of deep fills the endwall may be staked with a level grade. The ideal location for the end of the pipe is such that the embankment slope coincides with the top of the end of the pipe.

2-415B Field Method

One method of verifying the layout in the field is depicted in Figure 2-4.3. Set stakes at the regular 20 m (66 ft.) station on both sides of the pipe, with the grade of the edge of the shoulder marked on the stakes. Stretch a string between the two stakes and measure the distance at right angles from the edge of the shoulder to the end of the pipe. Compute the vertical distance from the top of the slope to the top of the fill over the pipe and mark it on a stake at the end of the pipe. A string carried from the mark to the edge of the shoulder represents the finished slope line.
Check the height above the flow line of the pipe with the length of the endwall to be sure that material spilling around the ends of the endwall does not block the drainage way. The relationship between the height and length of a straight endwall is given by the equation:

\[L = 3S + D \quad (L = 3S + D) \]

\(L \) = Length of the endwall in feet (meters)

\(S \) = Height from the flow line of the pipe to the intersection of the slope line and the face of endwall (minimum = \(D + 2 \) in. (50 mm))

\(D \) = Nominal diameter of the pipe in inches (millimeters)

Fill material that spills around the ends of an L- or U-shaped endwall forms cones. The wall must be of sufficient length to prevent spillage from blocking the inlet or outlet channel or ditch.
After the length of the endwall is determined, place stakes beyond the ends of the endwall at the same horizontal distance from the edge of the shoulder as for the end of the pipe. Mark grades on the stakes at the same vertical distance below the edge of the shoulder as was determined for the top of the endwall at the center of the pipe. This procedure will result in the endwall being parallel to the roadway in both line and grade.

2-416 Trench Excavation

If a pipe is to be laid in a cut section, the bottom of the trench is graded to match the bottom of the bedding material or to afford a uniform, firm bearing for the length of the pipe. If rock is encountered, it must be excavated to at least 12 in. (300 mm) below the bottom of the pipe, and the excavation must be filled with bedding material and tamped.

If pipe is laid in a fill area, the embankment is placed and compacted to 12 in. (300 mm) above the elevation of the top of the pipe. Then the trench is excavated.

2-417 Foundations

All new or relaid pipe culverts are installed in pipe bedding. Pipes with an internal diameter of less than 48 in. (1200 mm) are installed in Type I installations, and larger pipes are installed in Type II installations.

A Type I installation consists of installing the pipe or pipe arch in bedding material with a thickness directly under the pipe of 4 in. (100 mm) and preshaped to a height of 10 percent of the total height of the pipe. After the pipe has been installed, the trench is backfilled with bedding material to a height of 25 percent of the total height of the pipe.

A Type II installation consists of installing the pipe or pipe arch in bedding material with a thickness directly under the pipe of 4 in. (100 mm) and preshaped to a height of 10 percent of the total height of the pipe. After the pipe has been installed, the trench is backfilled with bedding material to a height of 12 in. (300 mm) above the top of the pipe.

All poor foundation conditions must be corrected. If the supporting soil has nonuniform load bearing capacity (hard and soft spots), the excavation should be carried below the bedding line and granular fill used as the replacement material. Soft, unstable material in small pockets should be completely removed. Soft, unstable material encountered at the bedding level should be excavated below the designated grade, to the depth specified by the Engineer, and backfilled with granular fill. In unusually wet conditions, the Engineer may direct that crushed stone with a geotextile cover be substituted for the granular fill.

Figure 2-4.4 shows both Type I and II installations when gravel fill is used. Figure 2-4.5 shows the installations when gravel is not used.

2-418 Culvert Installation

When culverts are being installed, the following recommendations should be followed.

- Check the foundation, and if the underlying material is unsuitable, remove and replace it with granular fill.
- Install a minimum of 12 in. (300 mm) of bedding material or granular fill under cross culverts where ledge is encountered. The bed for the pipe should be formed true to line and grade and fully compacted so that it is unnecessary to place additional material under the pipe after laying it.
• Start laying the pipe from the outlet end of the culvert and place the pipe with the bell ends, if any, up grade.

• Place cold-applied bituminous sealer, preformed plastic gaskets or flexible watertight rubber gaskets in the invert of the bell of each concrete pipe before entering the spigot of the succeeding pipe.

• Wipe the joint on the inside of the pipe clean and smooth.

• Bring up the backfill equally on both sides of the pipe and tamp each successive 6 in. (150 mm) layer.

• Place at least 12 in. (300 mm) of cover over the pipe before allowing equipment to pass over it. The contractor is responsible for damage to culverts caused by equipment, regardless of cover.

In fills with depths of 15 ft. (4.5 m) or over, metal pipes of 48 in. (1200 mm) or greater diameter are shored up on the inside while the embankment is being formed to prevent the weight of the fill and the impact of equipment from deflecting the pipe.

2-418A Corrugated Metal Pipe

Pipe lengths are jointed on the job site with connecting bands that are made of the same steel as the pipe. All pipe should be installed with the inside laps downstream and the longitudinal laps toward a side of the trench. Bands are corrugated and should be lapped equally over adjoining ends of pipe sections. The diameter of the pipe determines the width of a band, the number of corrugations it will have, and whether it is a one-piece or two-piece unit. Satisfactory connections are easily made if the pipes are properly aligned, the band and pipe corrugations are carefully matched, the
band is tapped with a mallet after preliminary tightening of the bolts, and all bolts are tightened uniformly. One-piece bands should be placed around the diameter of the pipe with the bolts in a vertical position. Each band, in meshing with the corrugations of the pipe, separates the two sections of pipe by the width of one corrugation.

2-418B Plate Pipe and Arches

Erection should be in accordance with the manufacturer's assembly instruction. Multiplate structures should be assembled with as few bolts as possible until all the plates are in place. Three or four loose bolts installed near the center of each plate along the longitudinal and circumferential seams are usually sufficient. After several complete sections have been assembled, the remaining bolts can be loosely installed, always working from the center of a plate toward the corner of the plate. Corner bolts should not be installed until all others are in place and tightened.

All bolts must be well tightened. Final tightening should be carried from one end of the structure to the other after all the plates are assembled. The operation should be repeated to ensure that all nuts are tightened evenly. Any damage to the bituminous coating on the inside or outside of the assembled unit must be repaired before the placement of the backfill material. Inverts are to be paved in accordance with the requirements of the plans and specifications for the item.
2-418C Concrete Pipe

Elliptical and circular pipe should be installed such that the manufacturer's marks designating the top or bottom of the pipe are not more than 5 degrees from the vertical plane through the longitudinal axis of the pipe. Pickup holes should be sealed with mortar or precast plugs, grouted in place. Stones should not be used to plug the holes.

2-419 Backfilling

Special consideration must be given to the placement and compaction of material under the bottoms of pipe arches and under the haunches of pipes. The bedding material should be in intimate contact with the bottom or haunch of the structure and extend to the undisturbed wall of the trench or to the payment width used for trench excavation, whichever is less. If culverts under embankments are constructed prior to filling operations, the embankment fill should be placed and compacted in conjunction with the structure backfill.

Material placed around pipes should be placed evenly, at approximately the same elevation on both sides of the structure. In fill areas, the embankment is placed and compacted to an elevation 12 in. (300 mm) above the top of the proposed pipe. Then the trench excavation is made and the pipe is installed. The cover over the pipe should be increased if it is anticipated that heavy hauling will traverse the pipe.

During the backfilling operation, large-diameter metal pipes usually are strutted. Corrugated metal pipe usually is strutted along the horizontal diameter with wires or steel rods and turnbuckles or along the vertical diameter with timbers, so that the pipe section is changed from circular to elliptical during installation, backfilling and completion of the embankment. Corrugated metal pipe structures deflect under load. Changing the section during installation is necessary so that allowance can be made for deflections resulting from the overlying embankment, and the pipe can return to a full round shape. The resultant changes in diameter lengths enable the pipe to compress the backfill and build up increasing side support for the structure.

Corrugated metal pipe usually is strutted at the time of manufacture in accordance with standardized elongation requirements for various fill heights and pipe sizes. When the pipe is placed on the prepared grade, check the horizontal and vertical diameter at each strut. Excessive elongation differences are adjusted before any backfill is placed. All struts should be slowly and carefully released after embankment placement and consolidation have been completed. To minimize the danger of the pipe bending at the struts, the pipe must be permitted to deflect slowly as the load is applied.

2-420 Drainage Structures

2-420A Materials Inspection of Precast Units

Precast units are accepted on the basis of the manufacturer's certification. The Laboratory inspects the manufacturer's facilities, fabrication procedures and materials tests, similar to its inspection for concrete pipe. However, final approval of individual precast units is the responsibility of the District. All precast units received on the construction site must be inspected by District inspection personnel. Individual units may be rejected for any of the following conditions:

- Units that do not bear proper identification, such as manufacturer's name or trademark or date of manufacture.
- Catch-basin or drop-inlet tops and sumps that are cracked, show evidence of honeycomb, or have patched areas in excess of 30 sq. in. (19350 mm²) on exposed surfaces.
- Manhole riser sections, bases and appurtenances, catch basins, or drop inlets that exhibit the following:
 - Fractures or cracks passing through the wall, except for a single end crack that does not exceed the depth of the joint.
 - Defects that indicate imperfect proportioning, mixing and molding.
Surface defects indicating honeycomb or open texture.

- Damaged or cracked ends if the damage prevents making satisfactory joints.
- Any continuous crack having a surface width of 0.01 in. (0.25 mm) or more and extending for a length of 12 in. (300 mm) or more, regardless of the position in the section wall.

Damage to precast units resulting from accidents in handling may be repaired, if necessary, and will be accepted if the repairs are sound and properly finished and cured, and if the repaired unit conforms with the requirements of the specifications.

Each precast unit should be clearly marked by the manufacturer with the date of manufacture and the name or trademark of the manufacturer. This information, together with the DOT stencil number on the steel frames and grates for catch-basin or drop-inlet tops, is obtained by District personnel from each precast unit delivered to the project and is submitted to the Laboratory on the Request for Test form (Form MAT-100, see Figure 1-4.1), with one copy of the Certification of Precast Concrete Products (Form PC-1, see Figure 2-4.2) furnished with each shipment by the manufacturer. On receipt of the required information and Certification, the Laboratory issues a test report documenting acceptance of the precast units.

2-420B Culvert End Treatment

2-420B.1 Endwalls

Endwalls are constructed of Class A concrete at the entrance and outlet of culverts to retain the slopes adjacent to the entrance and outlet, to prevent water from undercutting or bypassing the culvert, to prevent erosion, and to direct the flow of water into the culvert. The Inspector should compare the designed structures with actual field conditions to ensure that the endwalls function as intended. The Inspector should refer any condition that is in need of correction to the Project Engineer.

2-420B.2 End Sections

Current design practice requires the use of culvert ends, instead of endwalls, if feasible. Culvert ends are placed on a prepared bed of the existing ground or a bed of compacted granular fill. After the attachment of the culvert end to the culvert, backfill is placed around both sides of the unit to the prescribed surface, exercising caution to avoid displacement or deformation of the unit.

2-420B.3 Endwall Improvements

Endwalls may have to be removed or splash pads built during rehabilitation projects. The work must be performed in accordance with the plans and specifications for the project.

When an endwall is removed, a section of the pipe, back to its next joint, must also be removed. An allowance for replacing this portion of pipe may not have been included in the estimated quantities for that pipe item. If this is the case, an overrun in quantity of that size pipe may be unavoidable.

During the replacement of an endwall with a flared end section and splash pad, the Inspector may observe that the elevations of the pipe invert and the splash pad are below existing ground level. The difference in elevation is usually caused by sedimentation from storm and snow runoff in the years since the original work was done. Only the amount of excavation necessary to remove the endwall and install the flared end section and splash pad should be made. Any further excavation violates the DEP permit requirements. The Inspector should make a note of the area and forward it to DOT Maintenance for its records and possible correction.
2-420C Box Culverts

Small stream crossings are frequently most economically achieved by using culverts of a special design instead of a bridge structure. Inspection procedures for reinforced-concrete box culverts are the same as for bridge structures. Volume 2, Chapter Eight, “Structures,” includes bridge inspection procedures. All work relating to excavation, foundation preparation, reinforcement and concrete placement, waterproofing and backfilling operations must be carefully and diligently performed in full compliance with the shop drawings and specifications. Special attention should be given to foundation preparation and settlement or camber allowance. Concrete culverts usually are constructed in sections, and it is required that all joints be clean, properly sealed, and watertight.

2-420D Catch Basins and Drop Inlets

2-420D.1 New Construction

Catch basins and drop inlets are roadway-level interceptor units constructed in shoulder or gutter areas to remove surface runoff. Basin depths vary according to the flow line elevation of the outlet pipe. The depth of sumps must be a minimum of 24 in. (600 mm). Excavation for the structures is payable as trench excavation. Catch basins and inlets are covered in Article 5.07 of the Standard Specifications. A typical catch basin (Type CL) is shown in Figure 2-4.6.

The base area must be carefully graded and provide for uniform foundation support. Yielding material must be removed and replaced with granular material. In rock, a tamped granular base cushion is recommended. Side walls can be built of brick, Class A concrete, cement-rubble masonry or precast concrete units. The upper 24 in. (600 mm) of all basin sidewalls are corbelled to provide a satisfactory fit for the top. Corbelling must be in accordance with the details shown on the standard drawings.

Pervious material is used as the backfill material for the upper portion of the excavation down to the invert of the outlet pipe, with a maximum depth limit of 3 ft. (1 m) below the top of the structure. Drainage openings are formed in all walls at or immediately above the bottom of the pervious backfill. The inverts of drop-inlet bases must be carefully shaped to the required cross section.

The Inspector should check the location and grade stakes of all basins before the base is constructed. Accurate stakeout is required for proper basin location. The corbelling can be altered slightly to ensure a good fit on the top. The maximum corbel allowed is 3 in. (75 mm) per course of masonry. All pipes are to be cut flush with the face of the inside wall. In sandy soils, the interior wall faces shall be damp-proofed from the floor to the elevation of the outlet flow line.

Top units may be precast or cast in place. Cast-in-place top units shall be given a 0.04 gal./sq. yd. (0.2 L/m²) application of protective compound after the curing period. Precast units have the protective compound applied at the fabrication plant.

Cast-in-place tops must conform to the dimension and material requirements of the specifications. All tops must be depressed in accordance with the gutter strip details noted on the applicable standard sheet. All frames and grates must be galvanized.

2-420D.2 Resetting Catch Basins

Catch basins may need to be reset during rehabilitation projects to match a new pavement. The work is done in accordance with the plan and contract specifications and with the Standard Specifications.
Figure 2-4.6 Catch Basin (Type CL)
Inspect all catch basin tops and structures for structural soundness. If new tops are needed, or the structure needs rebuilding or replacement, a new item price agreed to with the contractor must be obtained as soon as possible. A Construction Order is necessary for approval of the additional work. The catch basin must be repaired or replaced before final paving can be done.

The catch basin must be set such that the top of the grate is flush with the pavement at its inside edge and the slope of the grate closely matches the cross slope of the gutter, if one is present. The gravel exposed around the catch basin must be compacted in accordance with the specifications before the bituminous concrete patch is placed.

2-420E Manholes

Manholes are concrete brick, Class A concrete, or precast concrete units of variable depth, constructed over drainage lines to effect changes in pipe size, grade or alignment. Manhole foundations must provide for adequate structural support. Channels may be shaped in the concrete base of the manhole or formed of brick.

Manholes located in bituminous concrete pavement usually are set to grade after the binder course has been placed. Manholes located in concrete pavement should be set to grade after the forms are in place.

2-421 Underdrains

Underdrains are designed either to intercept subsurface water from outside sources before it reaches the roadbed, to remove and dispose of free subsurface water from within the roadbed, or both. They are covered in Article 7.51 of the Standard Specifications. A typical installation is shown in Figure 2-4.7. Planned locations of underdrain installations are based on the findings of the soils survey.

If questionable subsurface drainage conditions are encountered, the Inspector should notify the Project Engineer. If a condition warrants expert technical advice, an engineer from Soils and Foundations may be contacted to determine the best method for its correction.

2-421A Subsurface Drainage Systems

Subsurface drainage systems consist of interceptor and outlet pipes and are classified into these pay items: Underdrains, Foundation Underdrains, Slope Underdrains, Structure Underdrains, and Outlets for Underdrains. Perforated concrete pipe, cradle-invert clay pipe, perforated asphalt-coated corrugated metal pipe, perforated PVC pipe, or perforated aluminum pipe is specified as the type of pipe to be installed.

Underdrains generally are installed parallel to the roadway, 3 to 4 ft. (1 to 1.2 m) below the bottom of the subbase. Only in exceptional instances should the inside edge of the drain be located less than 12 in. (300 mm) from the outside edge of the pavement. When the objective of a proposed underdrain is to intercept seepage water before it reaches the highway, the Inspector should locate the underdrain as close to the bottom of the cut slope as practicable with the equipment used.

Foundation Underdrains are used to drain rock cuts, springs or pocketed basins under the road and subbase where long grades, depth changes, and superelevation about median areas results in potential water traps. Installation is 3 to 4 ft. (1 to 1.2 m) below the bottom of the pavement.

Outlets for Underdrains consist of standard pipe of the type specified, installed between the terminal end of the perforated pipe underdrain and the outlet drainage structure. Where practical, outlet pipes should be connected directly to other drainage structures. Independent outlets must be terminated with a standard underdrain outlet endwall.
Figure 2-4.7 Underdrain

The edge of the trench should be at least 6 in. and, preferably, more than 12 in. from the edge of the pavement.

- Edge of pavement
- Pavement
- Varies
- Base or base and subbase
- Subgrade
- Trench is backfilled with aggregate
- Underdrain pipe
- Gravel fill or aggregate similar to that used to backfill the trench is placed, if the initial foundation is not suitable
- Trench width varies with the diameter of the underdrain pipe

3 to 4 ft. (1 to 1.2 m)

May be reduced to maintain a minimum grade to an outlet.
2-421B Excavation and Installation

The trench for underdrains is excavated the same as that for culverts. If the bottom of the trench is unstable or in rock, the trench is excavated 6 in. (150 mm) deeper. The extra excavation is filled with gravel fill or aggregate similar to that used to fill the trench.

Underdrains are bedded and installed as below.

- If a perforated pipe is used, and the perforations are to be at the bottom of the pipe, a bed is made with 3 inches (75 mm) of the aggregate used to fill the trench. The aggregate is tamped true to line and grade.
- If the pipe used has a bell, the pipe is installed with the bell up grade and the spigot end entered fully into the adjacent bell.
- If clay or concrete pipe is used, the joints do not have to be filled with a joint sealant or fitted with a gasket.
- If metal, bituminized fiber, plastic, polyethylene or asbestos cement pipe is used, the pipe must be carefully butted together and held by bands or other approved means to prevent displacement of the joint.

2-421C Backfilling

After installation, aggregate is placed around and over the pipe to 12 in. (300 mm) above the top of the pipe. The remainder of the trench is filled with aggregate and tamped in layers as shown on the plans. If perforated pipe is used and the holes are upward or if sand is used instead of aggregate, a 3 in. (75 mm) layer of Size No. 8 (3/8-in.) aggregate is placed over the pipe and around all of the holes. Geotextile may be substituted for the 3 in. (75 mm) layer of aggregate. If geotextile is used, the entire length of the pipe is wrapped in the fabric. The fabric is lapped and bonded. Where the seams of the fabric are not welded or bonded, the fabric must be lapped. For pipes 6 in. (150 mm) or larger, the lap must be equal to the diameter of the pipe. For smaller pipe, the lap must be at least 6 in. (150 mm).

In some instances, the Contractor's equipment may be of such capacity that the trench for the underdrain is wider than the designed width. The contractor may elect to fill the entire trench with aggregate. If the contractor elects to backfill the trench with earth to give the required cross section and place only the required amount of aggregate, the aggregate and earth must be separated by a layer of filter fabric. In either case, the earth or other material used as backfill outside the limits of the underdrain should be placed and compacted in the same manner as backfill for culverts.

If subbase material or gravel is to be placed over the underdrain, a 6 in. (150 mm) layer of the material must be placed immediately after the trench is filled.

Call Before You Dig regulations require the contractor to place warning tape 12 in. (300 mm) above an underdrain installation. The tape must be durable, designed to withstand extended underground exposure, green in color, and durably imprinted with an appropriate warning message. There is no additional pay for providing and placing the tape. Additional information about Call Before You Dig can be found in Volume 2, Chapter Three, “Excavation and Embankment.”

2-422 Ditches and Channels

Ditches and channels of the specified type and cross section are to be installed where noted on the plans or ordered by the Engineer. Unstable soil conditions encountered in the field prior to actual ditch or channel construction should be referred to the Project Engineer for resolution. Gravel wedges, gravel blankets, or riprap with geotextile have been used effectively to stabilize wet slopes.
Chapter 5 - Base Courses

2-501 Subgrade

2-501A General

The subgrade is the part of the roadbed on which the pavement and shoulder structures are constructed. The pavement and paved shoulder structures include subbase, base and surface courses. The surface of the subgrade is the same grade as the bottom surface of the subbase.

Subgrade is covered in Article 2.09 of the *Standard Specifications*. The name of the pay item is “Formation of Subgrade.” Formation of the subgrade involves shaping and compacting the existing embankments and excavations to the grade and cross slope shown on the plan cross sections and then protecting the finished subgrade from damage and maintaining subgrade drainage. Additional excavation and fill may be required during subgrade formation to achieve the correct density or stability or to bring the subgrade to the correct line, grade and cross section.

The subgrade item may involve additional types of work. If the contract has no item for clearing and grubbing and no items for grading, the work of clearing waterways, ditches, drainage structures, and culverts is performed under the subgrade item. Clearing and grubbing work is covered in Chapter Three, “Excavation and Embankment.” In addition, scarifying existing stone or gravel roads, if needed, is covered under the subgrade item.

2-501B Construction Method

Prior to forming the subgrade, grade stakes should be set by the survey party or contractor. The Inspector must ensure that the contractor sets the stakes needed to construct the subgrade to the required lines, grades, and cross section. Stakes must be set at least every 50 ft. (15 m). The Inspector checks grades transferred to the contractor's stakes and makes necessary minor adjustments to true up the lines. A hand (Locke) level can be used.

The Chief Inspector must inspect the subgrade thoroughly and be assured that it is in the proper condition to receive the subbase, base and surface courses. The subgrade must be free of intermittent hard or soft spots and must be uniformly compacted to the density called for in the *Standard Specifications*. Volume 2, Chapter Three, “Excavation and Embankment,” covers the sampling and testing procedures. Irregularities eventually show up in the surface. The surface cannot be properly compacted if it rests upon a yielding subgrade, and the correct thickness of subbase cannot be installed unless the subgrade is shaped and compacted to the designed cross section.

2-501C Payment

Payment for the formation of subgrade is by square yards (meters). The limits of the pay area run along the edges of pavement or, if paved shoulders are constructed, along the outside edges of the shoulders. If additional excavation or fill is needed for density or stability, the payment is governed by the rules for excavation and embankment items. There is no additional direct payment for excavation or fill needed to achieve the correct line, grade, and cross section.
2-502 Subbase

2-502A General

Subbase is placed on the floors of cuts or on embankments. The material consists of a clean soil-aggregate mixture of bank or crushed gravel, crusher-run stone, reclaimed miscellaneous aggregate, or a combination of these materials. Subbase is covered in Article 2.12 of the Standard Specifications.

The top surface of the subbase supports the pavement, shoulders, and related appurtenances. Additionally, subbase allows water to drain from beneath the pavement and intercepts the upward flow of water. Because of its drainage characteristics, subbase helps prevent the formation of ice beneath the pavement and, consequently, helps prevent frost heave and related problems.

The Inspector completes a Base & Bituminous Concrete Inspection Report, Form CON-136, each day that subbase material is used. Figure 2-5.1 shows a CON-136.

2-502B Construction Method

Before any subbase is placed, the underlying material is graded and compacted to the required cross section to drain water that may reach the subbase—either from the top or arising by seepage from the underlying material. Unstable, yielding foundation material should be removed and replaced with satisfactory embankment material or additional subbase, as directed by the Engineer. Care should be taken to match the characteristics of the additional material to those of the material in place to avoid creating a trap for water. After embankment grading is complete, the Inspector should spot check the cross sections of the top surface before subbase material is placed and the final cross sections after subbase grading is complete. The Inspector should contact District Survey, if needed.

If the required subbase thickness is not more than 8 in. (200 mm) after compaction, the subbase can be placed in one course. If the total compacted thickness is 8 in. (200 mm) or more, the subbase is placed in courses not greater than 6 in. (150 mm) each after compaction. The subbase is compacted such that the dry density is 95 percent of the dry density of the material determined by AASHTO T-180, Method D. Volume 2, Chapter Three, “Excavation and Embankment,” covers the general procedures for density sampling and testing. The “Schedule of Minimum Requirements for Sampling Materials for Test,” published by the Division of Material Testing, includes information about sampling for subbase tests.

Because subbase may be placed intermittently and in varying thicknesses on different sections of the road, the Inspector must check its end points and points of change in depth to make sure that water will not be trapped. For example, where the mainline and a ramp or local road comes together, a constant depth is not always attainable because of different requirements or designer preferences. Figure 2-5.2 shows an example of underdrain placement that prevents trapping water where two different road sections meet.

If the subbase does not extend the full width of the roadway by design, the Inspector must provide means to drain the subbase by installing sections of base through material that may be impervious to water, to the outer face of the slope, and bring the situation to the attention of the Project Engineer. The Inspector must make sure that a section of subbase is not terminated at a grade point but carried at least 25 ft. (8 m) out of a cut section onto the adjacent fill section.

In addition to serving as a drainage layer, the subbase itself has little or no detrimental frost action, such as frost heaving or frost boils during a thaw. Both of these conditions are dependent on the subbase being “clean,” that is, having very little silt or clay or excessive fines. Bank-run material, such as natural gravel, must be closely watched to ensure compliance with the gradation requirements. Most gravel banks contain stratified courses of fine and coarse aggregate material. Blending the material to comply with the gradation requirements is the responsibility of the contractor. Unsatisfactory material must be removed and replaced with acceptable material.
Figure 2-5.1 Base & Bituminous Concrete Inspection Report, Form CON-136

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Class</th>
<th>Lane</th>
<th>Location Blk. to Blk.</th>
<th>Length</th>
<th>Proposed Width</th>
<th>Area</th>
<th>Factor</th>
<th>Proposed Depth</th>
<th>Theoretical UTons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Width Measurements</th>
<th>Depth Measurements</th>
<th>Mix Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station</td>
<td>Plan Width</td>
<td>Field Width</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>Quantity</th>
<th>Sect.</th>
<th>SubContract. No.</th>
<th>UTons Received</th>
<th>UTons Used</th>
<th>Wanted/Requested*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paving Work Force and Equipment, List of Inspection Personnel Assisting in Operation, No. of Tickets by Class

<table>
<thead>
<tr>
<th>No.</th>
<th>In. to In.</th>
<th>No.</th>
<th>In. to In.</th>
<th>No.</th>
<th>In. to In.</th>
</tr>
</thead>
</table>

Information on Reverse | Additional Sheets Attached | Reviewed by | Chief Inspector | Project Engineer

Inspector’s Hours of Work: Lane Hours
Start | End

Contractor’s Hours of Work: Day of Week
Start | End

Date | L.R.B.
Figure 2-5.1 Base & Bituminous Concrete Inspection Report, Form CON-136 (continued)

<table>
<thead>
<tr>
<th>Tons Rejected</th>
<th>Ticket No.</th>
<th>Class</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Waste: Show computation if over 10 t (10 tons). If material is used elsewhere on project document purpose, reason and item number material was paid under.

Sketch and Theoretical Computations:

Checked by ___________________
Required underdrains must be installed before or during subbase placement. The underdrains help dry wet spots and prevent the subbase from being contaminated by churning and mixing with wet material underneath it. If the subbase is contaminated with the soil below, it must be removed and replaced with clean material.

The top of the subbase often develops an impervious skin in a thin surface, 1 to 2 in. (25 to 50 mm) thick. The affected areas typically are large and have concentrations of fine soil. The skin is caused by the wringing action of vehicle wheels, aided by the puddling action of surface water. Because the skin prevents downward drainage into the subbase, it should be removed and replaced before paving.
2-502C Payment

Subbase is paid for by the cubic yard (meter). It is measured horizontally after final grading and compaction. The thickness is measured every 500 ft. (150 m) along lanes. For total thickness less than 24 in. (600 mm), the tolerances are –1 and +¼ in. (–25 mm and +19 mm). If thickness is deficient, additional measurements are made to determine the extent of the thin area, and the contractor must make corrections without additional pay.

2-503 Base Courses

A base course consists of a layer or layers of material placed between the top of the subbase and the surface course of a pavement to provide economical, homogeneous and stable support. Base courses are subjected to severe loading, and thus the materials must be durable enough to support and transmit these loads to the underlying roadway components.

Before any base course is placed, the subbase must be constructed according to the current Standard Specifications. As mentioned previously, the riding surface of the completed pavement is affected by irregularities in either subbase or the surface of the base course; therefore it is necessary for the Inspector to ensure that the contractor is conscientious in carrying out this phase of the work. The contractor is responsible for draining and protecting the subbase. No base material should be placed on a soft, loose, or frozen subbase.

Each day a base material is incorporated in the job, a Base & Bituminous Concrete Inspection Report, Form CON-136, is completed by the Chief Inspector. Figure 2-5.1 is an example CON-136.

Base courses include:

- Rolled Granular Base
- Processed Aggregate Base
- Bituminous Concrete Class 4
- Concrete Base

Sampling and testing requirements differ for the different types of base courses. The requirements are in the “Schedule of Minimum Requirements for Sampling Materials for Test,” published by the Division of Materials Testing.

2-504 Rolled Granular Base

2-504A General

Granular base consists of one or more courses constructed on a prepared subbase. The material is a mixture of bank or crushed gravel or reclaimed miscellaneous aggregate and approved binder material. Rolled granular base is covered in Article 3.02 of the Standard Specifications.

2-504B Construction Method

The material is spread on the subbase to produce the specified depth after compaction. Bases less than 6 in. (150 mm) deep compacted may be constructed in one course; bases over 6 in. (150 mm) must be constructed in two courses of equal depth. A mechanical spreader is not required. The material may be spread directly from trucks. However, the
trucks must be equipped to discharge the gravel fairly uniformly at the desired rate. The material must not be dumped in piles on the subbase

If additional binder is needed, it is incorporated with the material in place by scarifying, harrowing, brooming, or another approved method. The material is shaped, wetted and compacted with a roller not less than 10 tons (9 metric tons) or an equivalent vibratory roller. Segregated areas are removed and replaced. Compacting and wetting are continued until all voids are filled; then the section is left to dry. The material must be recompacted and wetted on succeeding days as directed by the Engineer. If needed, a second course is placed after the first is compacted and bound. The construction method is the same as for the first course.

2-504C Payment

The pay units for rolled granular base are cubic yards (cubic meters). Horizontal measurements are taken after the material is spread and compacted. The limits are as shown on the plans or ordered by the Engineer. Thickness measurements are taken along lanes at intervals of 500 ft. (150 m) or less. The thickness tolerance is ±1⁄8 in. (±19 mm). Additional measurements are taken to determine the extent of deficient areas. Areas outside the tolerances are corrected at the expense of the contractor.

2-505 Processed Aggregate Base

2-505A General

The material for processed aggregate base is a mixture of coarse and fine aggregate. The coarse aggregate consists of gravel, broken stone, or reclaimed miscellaneous aggregate, at the contractor's option. However, only one type of coarse aggregate can be used on a project unless specifically permitted by the Engineer. The fine aggregate is natural sand, stone sand, screenings, or any combination. Processed aggregate base is covered in Article 3.04 of the Standard Specifications.

2-505B Construction Method

The base is spread and then compacted and bound. Prepared subbase must be maintained true to line and grade for a minimum of 200 ft. (60 m) in advance of the spreading operation. Aggregate courses must not be placed more than 500 ft. (150 m) ahead of the compaction and binding operation.

Only approved spreaders or stone boxes are used. Power graders cannot be used unless approved by the Engineer. Rollers must be able to deliver a ground pressure of 300 lbs./in. (52.5 N/mm) of contact width and must have a mass of at least 10 tons (9 100 kg). Vibratory units must have a mass of not less than 4 tons (3 650 kg). The water used for binding is applied from an approved device.

The thickness of the first course cannot be more than 4 in. (100 mm) after compaction. The compacting and binding operation starts at the outside edge, overlapping the shoulder by 6 in. (150 mm), and progresses toward and parallel to the centerline. It covers the entire surface, each pass overlapping the preceding by a uniform amount. On superelevations, the operation progresses from the low edge to the high edge. There must be at least four complete passes of the compaction and binding equipment. The operation continues until the voids in the surface are reduced to provide a firm and uniform surface, to the satisfaction of the Engineer. The top course is spread, compacted and bound in the same manner as the bottom course, such that the combined thickness is as planned.
2-505C Payment

The payment units for processed aggregate base are tons. Payment is not made for material placed more than 3 in. (75 mm) outside the planned horizontal limits. Measurements for thickness are made along lanes at intervals of at least 500 ft. (150 m). The thickness tolerances are –¾ in. (–19 mm) and +½ in. (+13 mm). The Engineer may waive some measurements if:

- other thickness measurements taken nearby are within acceptable limits
- the contractor is using proper controls
- the serviceability of the completed construction is not impaired

Additional measurements may be taken to determine the limits of deficient areas. There is no payment for material placed over the +½ in. (+13 mm) limit. Thicknesses less than the –¾ in. (–19 mm) limit are corrected at the contractor's expense.

All aggregate must be weighed on scales in accordance with Department specifications. Scales are inspected by Weights and Measures, Division of Consumer Protection.

The District Office may allow the contractor to stockpile the aggregate prior to placement. If stockpiling is approved, a method of measurement for the item must be agreed in advance. The following methods are acceptable:

- A method to re-weigh the stockpiled material to establish the tonnage placed.
- A method to compute the pay quantity in place. If approved by the Office of Construction, the District can sample the aggregate, request a Proctor density test to determine the in-place density, and arrive at a factor for computing the in-place tonnage.
- Another suitable method recommended by the District and approved by the Office of Construction.

2-506 Bituminous Concrete Class 4

This material consists of a graded mixture of course and fine aggregates to which mineral filler is added if necessary, combined with asphalt cement in accordance with an approved job mix formula. Article 4.06 of the Standard Specifications and Chapter 2-6, “Bituminous Pavements,” cover Class 4 bituminous concrete, along with other types of bituminous concrete. Automatic grade controls should be used when placing Class 4.

2-507 Concrete Base

The base consists of portland cement concrete and may be reinforced. Construction is the same as for concrete pavements, except there usually are no joints. Concrete base is covered in Article 3.03 of the Standard Specifications. Article 4.01 of the Standard Specifications and Volume 2 Chapter Seven covers concrete pavements.

Joints are constructed around objects that project through the base and between the base and curbs, concrete gutters, etc., if ordered by the Engineer. If there are no transverse joints, make a bulkhead at the end of a day's run. The bulkhead should be made of steel or 2 in. (50 mm) plank. It is perpendicular to the surface and at right angles to the centerline. The concrete is finished to it.
Chapter 6 - Bituminous Pavements

2-601 Bituminous Concrete (HMA) Pavements

2-601A General

Hot mix asphalt (HMA) pavement consists of coarse graded or dense graded hot mixed, hot laid, bituminous paving mixtures. HMA mixtures are placed on either a prepared gravel base on new pavement structures, or an existing pavement structure for overlay projects.

HMA mixtures are composed of carefully graded coarse and fine aggregates, mineral filler when necessary, and asphaltic cement.

2-602 HMA Mixes and Applications

Superpave HMA mixes have replaced Marshall hot-mix asphalt mixes in most cases. Superpave, like Marshall, is a mix design. Marshall mix designs are designated as “Bituminous Concrete Class ().” Superpave mixes are designated as “HMA S*.” Where “S” indicates Superpave and * indicates the sieve related to the nominal maximum aggregate size of the mix, i.e. HMA S0.5. There are two (2) design levels for each nominal maximum aggregate size. The levels are based on the amount of traffic loading they will be exposed to during the designed life of the pavement. A local road, for example, would typically be a level 2. An interstate highway would typically be a level 3.

The design level has no bearing on the nominal maximum aggregate size. For example, a HMA S0.5 level 2 and a HMA S0.5 level 3 have the same nominal maximum aggregate size: 0.5 inch (12.5 mm).

Typical usage for Superpave HMA mixes:

- **HMA S0.25** - Leveling course, thin lift maintenance overlays, over milled surfaces, bridge membrane systems

 Recommended compacted lift thickness: 1 inch (25 mm)

- **HMA S0.375** - Ideal as a surface course for local roads and some secondary roadways, leveling course, wedge course, over milled surfaces, certain bridge membrane systems, good for some limited access highways

 Recommended compacted lift thickness: 1.5 inches (38 mm)

- **HMA S0.5** - Ideal surface course for all types of roadways including limited access highways and other higher volume roadways, also good for many wedge course applications

 Recommended compacted lift thickness: 2 inches (50 mm)

- **HMA S1** - Base course, thick leveling courses

 Recommended compacted lift thickness: 3 to 4 inches (75 to 100 mm)
Typical usage for Marshall HMA mixes:

Class 3 - Bituminous lip curbing, paved ditch

Class 2 - Temporary pavement for stage construction, i.e. leveling course, wedge course, over milled surface, transitions, etc.
 Recommended compacted lift thickness: 1.5 inches (38 mm)

Class 1 - Temporary pavement for stage construction, i.e. median cross-over, road widening, transitions, etc.
 Recommended compacted lift thickness: 2 inches (50 mm)

2-603 Contract Specifications

The Standard Specifications for Roads, Bridges and Incidental Construction (commonly called the Standard Specifications) and the special provisions contain the information regarding material specification, methods of construction, methods of measurement, and bases of payment by which the contractor and the State are bound in the performance of the contract work.

2-604 Contract Plans

Contract plans provide information related to pavements for roadways. This information includes:

- The typical roadway cross sections describe the location, thickness of pavement, width of pavement and specific HMA mixture(s) to which the roadway is to be constructed.
- The plan sheets provide a visual description of the roadway. These plans also describe the roadway pavement width at specific locations by station.
- The cross sections provide information regarding finish pavement line and grade by station. The maximum thicknesses for bituminous concrete are shown on the typical cross sections.

When a HMA wearing surface is applied to a bridge deck, the slab plan and the miscellaneous details sheets in the bridge plans describe the HMA mixture and thickness of the overlay to be placed on bridge decks.

2-605 Production Responsibility

HMA mixtures consist of coarse aggregate, fine aggregate, mineral filler if necessary, and asphalt cement combined to meet composition limits by weight and other characteristics as described in Section M.04. Proportioning of the materials, within the composition limits specified, is the responsibility of the Contractor or Producer. Approval of the source of all materials is required before such materials can be used. The Contractor or Producer must submit a job mix formula for each HMA mix design to be produced to the Department’s Material Testing Laboratory for approval. When the job mix formula is approved, the Contractor is required to furnish a mixture that complies with the formula within the tolerances as described in Section 4.06.

Changes in the source of supply require approval by the Department’s Material Testing Laboratory, and may require adjustment of the job mix formula by the Contractor. The Chief Inspector, prior to any paving, must obtain copies of the approved job mix formula from the Laboratory testing representative. One copy is kept in the project files, and the other copy is kept by the Paving Inspector at the paving site.
2-606 Inspection Responsibilities

The responsibilities for acceptance inspection, sampling and testing are split between the Department’s Material Testing Laboratory and the District forces.

2-606A Material Testing Laboratory

The Assistant Manager, Division of Materials Testing, is responsible for providing the personnel required to examine and approve the Contractor's mixing plant and the trucks used for transporting the HMA mixes to the project.

2-606B District Responsibilities

The Assistant District Engineer assigns the Project Engineer and inspection personnel required to receive the bituminous materials and inspect the placement of the materials in accordance with the contract specifications at the paving site on the project.

2-606C Preliminary Inspection and Approval of Plant

Plant equipment for the production and transportation of bituminous concrete must conform to the requirements of the current Standard Specifications. Inspection, approval and certification that the plant is equipped in conformance with the requirements of the contract specifications are the function and responsibility of the Assistant Manager, Division of Materials Testing.

Upon receipt of the Contractor's report of Anticipated Source of Materials, the Assistant Manager, Division of Materials Testing, will arrange for the inspection of the equipment at the plants selected to supply HMA. Materials Testing will notify the District Engineer of the results of the inspection. Requirements for plant inspection can be found in the manual for the Division of Materials Testing.

2-607 Inspection Prior to Paving

The Paving Inspector must perform the following checks prior to the start of paving:

2-607A Paving Equipment

Before paving is started, all paving machines and rollers must be inspected and approved for conformance with specifications by the Paving Inspector or another assigned inspector. The Inspector should be sure that sufficient equipment, in good working order, is available so that once paving starts it can be continued without undue delays and shutdowns.

2-607B Paving Machines

Most HMA mixtures are placed with a paver. The paver spreads the mixture, in either a uniform layer of a desired thickness or a variable layer to a desired elevation and cross section, ready for compaction.
The paver consists of two basic units: a tractor and a screed. The tractor receives, conveys and augers the mixture to the screed and propels the screed forward. The tractor may be mounted on either rubber tires or crawlers. In addition to the engine, the tractor unit has a hopper for receiving the mix from the haul trucks, conveyors to move the mix through the flow control gates to the augers, flow gates to prevent overloading the augers, and augers to evenly spread the mix in front of the screed. Rollers are mounted on the front of the tractor to push the haul trucks during the dumping process. The rollers should turn freely so the trucks will have little effect on paver operation.¹

The screed performs the actual placing of HMA material to the desired width and thickness or elevation, as shown in the sketch in Figure 2-6.3. The screed is towed by the tractor and is free to float up or down until the bottom of the screed is parallel with the grade over which it is traveling.

Figure 2-6.1 Typical Bituminous Paver- side view

![Figure 2-6.1 Typical Bituminous Paver- side view](image)

Figure 2-6.2 Typical Bituminous Paver- top view

![Figure 2-6.2 Typical Bituminous Paver- top view](image)

¹ Figures 2-6.1 through 2-6.4, 2-6.7 through 2-6.11, 2-6.18, and 2-6.24 were developed from material provided by the Blaw-Knox Construction Equipment Company. Used with permission.
The relationship between the vertical movement of the screed tow point and the elevation of the screed is the key to the paver's ability to lay smooth pavements. There is an 8-to-1 ratio so that a 1 in. (25 mm) vertical movement of the tow point will result in only a \(\frac{1}{8} \) in. (3 mm) vertical corrective movement of the screed, and before that \(\frac{1}{8} \) in. (3 mm) movement is accomplished, the paver must move 5 times the length of the screed arm.

Figure 2-6.3 Screed Details

Because of the free-floating principle, the screed does not reflect any of the minor bumps and dips in the existing grade—resulting in a smoother pavement. An exaggerated view of the leveling action of a paver is shown in Figure 2-6.4.

Pavers must be equipped with automatic grade and slope controls as specified in the Standard Specifications. The automatic screed controls can be set for automatic, semiautomatic or manual automatic operation on most pavers. Automatic screed controls typically have these main components:

- Grade sensor,
- Slope sensor,
- Control station, and
- Slope control.

The grade sensor rides on a string line, a ski or a joint matcher to detect changes in elevation and transmits the information electronically to the controls. The electronic controls can be checked by varying the position of the grade sensor and observing if the screed controls react to make the correct adjustments. When the ski is used, the grade sensor should always ride on the center of the ski so that all elevation changes are averaged.

Use of the automatic controls further enhances the paver's capability to produce a smooth pavement surface regardless of irregularities in the surface being paved. Slope—crown or super-elevation—is controlled by the slope sensor or pendulum set for the desired slope. Once the screed is set for the desired mat thickness and slope, the automatic controls activate the motors or cylinders to change the screed tilt to automatically compensate for road surface irregularities.
Four types of rollers are used to compact HMA pavements: double drum tandem (static), vibratory double drum, oscillatory/vibratory double drum and pneumatic tire. Vibratory and oscillatory rollers are capable of operating in static or dynamic modes. Vibratory and oscillatory rollers use dynamic forces to aid in the compaction of the HMA.

Rollers using the vibratory system achieve compaction through vertical amplitude forces. Rollers with this system shall be equipped with indicators that provide the operator with amplitude, frequency and speed settings/readouts to measure the impacts per foot during the compaction process.

Rollers using the oscillatory system achieve compaction through horizontal shear forces. Rollers with this system shall be equipped with frequency indicators. Rollers can operate in the dynamic mode using the oscillatory system on concrete structures such as bridges and catch basins if at the lowest frequency setting.

All rollers must have proper sprinkling systems to wet the drums or tires to prevent the mix from sticking. Scrapers are usually required on drum rollers. Rollers must be equipped with drip pans to prevent oil, grease, or fuel from dropping onto the roadway—because any petroleum product will damage bituminous pavement. Clutches must function smoothly; a roller that jerks when starting, stopping or reversing will contribute to a rough surface.

The tires on pneumatic-tire rollers are typically arranged so the gaps between the tires on one axle are covered by the tires on the other as shown in Figure 2-6.5. The Contractor is required to furnish evidence regarding tire size, pressure and loading to confirm that the proper contact pressure is being developed and that the loading and contact pressure are uniform for all wheels.
A Material Transfer Vehicle (MTV) shall be used when placing a HMA surface course that is greater than 5,000 feet (1524 m) in length and 28 feet (8.5 m) in width. A surface course is defined as the total thickness of the same HMA mix that extends up to and includes the final wearing surface whether it is placed in a single or multiple lifts, and regardless of any time delays between lifts. See Figure 2-6.6.

A Load Factor Rating Analysis should be obtained from the Designer for all structures that the MTV may be required to traverse during the paving operation. See Form 2-6.31 for a sample letter to Design from the Project Engineer requesting the analysis.

The MTV must be a self-propelled vehicle specifically designed for the purpose of delivering the HMA mixture from the delivery truck to the paver. The MTV must have the capability to remix the HMA mixture.

The use of a MTV will be subject to the requirements stated in Section 1.07.05- Load Restrictions. The Engineer may limit the use of the vehicle if it is determined that the use of the MTV may damage highway components, utilities, or bridges. The Contractor shall submit to the Engineer at time of pre-construction the following information:

- The make and model of the MTV to be used
- The axle weights and axle spacing for each separate piece of paving equipment (haul vehicle, MTV, and paver).
- A working drawing showing the axle spacing in combination with all three pieces of equipment that will comprise the pacing echelon.
2-607E Lighting

Adequate lighting is required for night paving. The Inspector must check the lighting equipment before paving begins to ensure that it complies with specifications and is functional. Continuing checks must be made during paving to ensure that lights continue to function.

2-608 Base Preparation

HMA may be placed:

- over existing pavements, either bituminous or concrete,
- on newly constructed aggregate or bituminous base courses, or
- for widening projects, on a combination of existing pavement and base course.

The existing surface must be compact, stable, and free of all debris—sand, mud, leaves or other materials—before placing the new bituminous pavement. This may involve patching, leveling, wedging, and cleaning. Inspect the surface for potholes, base failures, dips, bumps, cracks or other defects, and arrange for corrections. Check the prepared subgrade or prepared base course for compaction and for proper line, grade and cross slope to conform to the plans and specifications. Many of the faults that eventually appear in the surface of a pavement are the result of inadequacies in the subgrade or base.

Gravel subbase must be dry and all defects corrected. The entire base should be compacted for a distance of 2,000 ft. (600 m) ahead of the paving operation.
2-609 Utilities

Where there are underground utilities, a determination must be made as to whether vibratory compaction equipment will damage the utility. Close coordination with the utility companies is essential. Density specifications are not automatically waived if vibratory compaction is not possible. Alternate methods of compaction, like pneumatic tire or oscillatory rollers, should be considered.

The Inspector must note all overhead obstacles such as utility power lines, guy wires, traffic signals, bridge overpasses, and overhead signs. Overhead obstacles must be clearly marked or flagged so that paving equipment operators and truck drivers will not hit them. The marking of such obstacles should be done only by the appropriate utility company. The Inspector should inform the Contractor of these obstacles to avoid any possible conflicts and to maintain safe and adequate distances between equipment and the obstacles. Dump truck drivers must be especially careful of overhead obstacles when raising truck bodies.

Utility companies that have facilities located within the highway right-of-way that will be affected by a paving project must be notified at the start of the project, well before paving is scheduled. (Agreements with the utilities for any adjustments should be obtained prior to start of construction. Utilities should be invited to attend the preconstruction meeting.)

When the utility company does not return the agreement in a reasonable period of time or fails to appear at the preconstruction meeting, a certified letter must be sent to that utility company before the paving is to commence, advising them of the start date and that the utility location will be marked. It is very important that the Department attempt, in every way possible, to have the utility companies on the site during the paving operation. Where utilities have not adjusted their facilities prior to paving, the Paving Inspector must notify the District Office before allowing paving to commence.

2-610 Prepaving Meeting

A prepaving meeting must be held in advance of the actual start of paving. It is always held at the project site.

The prepaving meeting should be scheduled so the Contractor's paving foreman, who will supervise the actual paving operation, can attend. The paving foreman will then understand the project and can assign the proper equipment to perform the work as specified. The prepaving meeting agenda is shown in Form 2-6.1 in the appendix at the end of this chapter.

Seasonal Requirements: Paving shall be divided into two seasons, In-Season and Extended Season; In-Season shall be from May 1 – September 30, and Extended Season shall be from October 1- April 30. In no case shall the final lift of HMA be placed during the extended season unless otherwise authorized or directed by the Engineer. No HMA mixes shall be placed when the air or base temperature is below 32°F. HMA for temporary pavement will be subject to the seasonal requirements unless otherwise authorized or directed by the Engineer.

Additional Requirements for Extended Season:

- The minimum mixture temperature for all HMA mixtures in the delivery truck prior to discharge into the paver or transfer vehicle hopper shall be 290°F. The temperature will be taken from the initial discharge of mixture from the truck. If found to be below the minimum requirement, the truck will not be allowed to unload remaining mixture.
- The Contractor shall use a minimum of 3 rollers with operators for paving lengths greater than 1000 feet. Two rollers must be capable of operating in the dynamic mode.
• The Contractor’s Quality Control Plan shall include a section on Extended Season Paving and address paver speed, roller patterns and balancing mixture delivery and placement operations to meet specification requirements.

2-611 Test Section

The Contractor may be required to place a test section whenever the requirements of Sections 4.06 or M.04 are not met. The Contractor shall submit the quantity of mixture to be placed and the location of the test section for review and acceptance by the Engineer. The equipment used in the construction of a passing test section shall be used throughout production.

If a test section fails to meet specifications, the Contractor shall stop production, make necessary adjustments to the job mix formula, plant operations, or procedures for placement and compaction. The Contractor shall construct test sections, as allowed by the Engineer, until all the required specifications are met. All test sections shall also be subject to removal as set forth in Section 1.06.04.

2-612 Traffic Control

Where public traffic must be maintained through a paving operation, a proper signing pattern must be in place in accordance with the contract item “Maintenance and Protection of Traffic” prior to beginning the paving. Safety is the most important factor in any construction activity.

The traffic pattern must accommodate the traveling public, Contractor personnel and inspection forces. Inspection forces include those sampling and testing material. Maintaining an uninterrupted traffic flow so the paving operation proceeds without stoppages is one of the key factors in attaining a superior quality paving project.

2-613 Inspection during Paving

2-613A The Day Before

Inspection staff must notify the District Office the day before a paving operation so arrangements can be made with the Department’s Material testing Laboratory to allow for coverage at the plant and to enable the District to schedule nuclear density assurance testing. The information required is the plant producing the material and the estimated tonnage. This information should be given to the District as far in advance as possible; however, it should be received no later than mid afternoon of the normal working day before the paving operation. The information will be relayed to the Department’s Material testing Laboratory so they can schedule their personnel.

2-613B Transportation of Mixture

Inspection of hauling equipment is the responsibility of the Contractor. The Paving Inspector, however, must check each truck when it arrives at the work site and reject the load if the truck does not conform. The mixture shall be transported from the mixing plant in trucks that have previously been cleaned of all foreign material and that have no gaps through which mixture might inadvertently escape.

Truck body coating and cleaning agents must not have a deleterious effect on the transported mixture. An excess of the cleaning agent must be avoided. The use of gasoline, kerosene, or fuel oil for cleaning the trucks is prohibited. All truck bodies should be raised prior to loading to drain excess coating materials.

Loaded trucks shall be tightly covered with waterproof covers acceptable to the Engineer. Mesh covers are prohibited.
Loaded trucks must not exceed the statutory or permitted load limits referred to as gross vehicle weight (GVW). The Contractor shall furnish a list of all vehicles and allowable weights transporting mixture.

If a truck delivers mixture to the project and the ticket indicates that the truck is overweight, the load will not be rejected but a “Measured Weight Adjustment” will be taken in accordance with Section 4.06.04.

All vendors producing HMA for the State under the terms of the contract must have their truck weighing scales, storage scales, and the mixing plant automated to provide a detailed weigh ticket to the Inspector for each batch, at the paving site for each load of material delivered.

A weigh ticket must accompany each load of mix transported to the project and must include the exact information specified in Section 4.06.03 of the current *Standard Specifications* and as shown in Volume 2, Section 2-632D.

2-613C Paving Inspection

At least one Paving Inspector must be present at all times that a paving operation is underway. The Contractor shall perform all quality control sampling and testing, provide inspection, and exercise management control to ensure that HMA production and placement conforms to all requirements. The Inspector provides quality assurance.

The Paving Inspector is responsible for receipt and placement of the material. Control of the shipment of materials is the responsibility of the supplier. Close liaison between the plant and Paving Inspector is essential. Use the telephone or other available and adequate means. The Paving Inspector must advise the Contractor immediately if bad weather or other unsatisfactory conditions at the job site require the suspension of paving operations. Delays in stopping the trucks may result in wasted material.

The Paving Inspector is personally responsible for collecting the weigh tickets and signing each ticket prior to unloading, to assure that the material is actually incorporated in the work. Never allow Contractor personnel to collect the tickets.

The Inspector should frequently check the temperature of the mix in the trucks and at the paver, by use of a probe type armored thermometer or an infrared thermometer. Any loads not within the temperature requirements of the specifications must be rejected. Rejection of mixture based on temperature will only be allowed if verified by means of a probe type thermometer.

The Inspector should visually check each load to determine that the load is satisfactory. Mistakes in batching and mixing can occur at the plant without being noticed by the Contractor. The Paving Inspector should be especially vigilant in watching for certain characteristic behaviors of the mix which indicate trouble:

- An overheated or burned batch will give off a cloud of blue smoke and the mix will have a brown, dead appearance.
- If the bitumen has drained off or flowed to the bottom of the truck and the aggregate on top is uncoated, it could indicate the aggregate is dirty or wet.
- Excess bitumen in the mix will flush to the surface during rolling, and will appear fat, greasy and soupy.
- Excessive bitumen will also cause the mix to lie flat in the truck rather than dome up.
- Aggregates not dried sufficiently will cause the asphalt to puddle and the mix to be flat in the truck, and drops of water may appear dripping from the tailgate.
- Ensure that each truck dumping into the paver leaves empty.

Any change in the character of the mix, either in the trucks or as it is being placed, should be reported immediately to the Contractor or paving foreman so the condition can be corrected. The Inspector should watch for segregation in the mix. Segregation can be caused by improperly stockpiling aggregate so the larger stones roll to the bottom of
the pile or by improperly loading the mix into the trucks at the paving plant. The preferred method of loading tandem-axle or tri-axle dump trucks is shown in Figure 2-6.8. About 40 percent of the mix is loaded in the center of the front half of the truck bed. The truck is then moved forward so the next 40 percent or so of the mix is deposited in the center of the back half of the bed. The truck is then moved backward so the remaining mix can be placed between the first two piles.

The reason for rejection of any load must be recorded on the ticket and on the paving reports, so that proper deductions can be made from the pay quantities.

The HMA mixture shall not be placed whenever the surface is wet or frozen. No HMA mixes shall be placed when the air or base temperature is below 32°F.

Paving shall be divided into two seasons, In-Season and Extended Season; In-Season shall be from May 1 – September 30, and Extended Season shall be from October 1- April 30. In no case shall the final lift of HMA be placed during the extended season unless otherwise authorized or directed by the Engineer. Additional requirements for extended season:

- The minimum mixture temperature for all HMA mixtures in the delivery truck prior to discharge into the paver or transfer vehicle hopper shall be 290°F. The temperature will be taken from the initial discharge of mixture from the truck. If found to be below the minimum requirement, the truck will not be allowed to unload remaining mixture.
- The Contractor shall use a minimum of 3 rollers with operators for paving lengths greater than 1000 feet. Two rollers must be capable of operating in the dynamic mode.
- The Contractor’s Quality Control Plan shall include a section on Extended Season Paving and address paver speed, roller patterns and balancing mixture delivery and placement operations to meet specification requirements.

The Paving Inspector must be sure that all of the necessary preliminary material tests have been made and that all the tests required in the “Schedule of Minimum Requirements for Test” are submitted as paving continues. The Contractor is responsible for tests at the plant.

2-614 Tack Coat

A tack coat is the application of asphalt material to ensure a bond between newly placed HMA mixtures to varying contact surfaces. A thin uniform coating of tack coat material shall be applied immediately before overlaying and be allowed sufficient time to break (set). All surfaces that have been in place longer than three (3) calendar days shall have an application of tack coat and for those less than three (3) days it shall be at the sole discretion of the
Engineer. The tack coat shall be applied by a non-gravity pressurized spray system that results in uniform overlapping coverage at a target application rate of 0.07 ± 0.02 gallons per square yard for a non-milled surface and a target application rate of 0.12 ± 0.02 gallons per square yard for a milled surface. For areas where both milled and un-milled surfaces occur, the tack coat shall be a target application rate of 0.07 ± 0.02 gallons per square yard. The Engineer must approve the equipment and the method of measurement prior to use. The material for tack coat shall not be heated in excess of 160°F and shall not be further diluted.

Tack shall be applied uniformly without streaking or puddling. If a nozzle is not spraying properly, stop the distributor immediately and have the nozzle cleaned or adjusted. Where streaking occurs, direct the Contractor to make the necessary adjustments to eliminate the condition. Any puddles of tack coat material must be cleaned up before placing the mix. If it is allowed to remain, it will cause bleeding into the mix creating a “fat” spot—an area with an excessive amount of asphalt.

The height of the spray bar shall be such that a double overlap is achieved, see figure 2-6.9. The effects of having the spray bar too high or too low are excessive overlap or no overlap as shown in Figure 2-6.10.

The distributor must be capable of applying the tack coat material in accurately measured quantities and the specified rate of application.

Figure 2-6.9 Spray Bar Overlaps

![Spray Bar Overlaps Diagram]

Figure 2-6.10 Incorrect Spray Bar Overlaps

![Incorrect Spray Bar Overlaps Diagram]
Areas inaccessible to the spray bar should be tacked with a hand sprayer. Extreme care must be taken with a hand sprayer to get uniform coverage without puddling.

2-615 Mechanical Spreading

The basic principle of all mechanical spreaders—the paving machine—is the same. The machine consists of a self-propelled tractor and a screed unit. The tractor unit provides the motive power and includes the receiving hopper, the conveyor and spreading augers.

2-615A Screed Unit

The screed unit is attached to leveling arms that extend from the tow point on the tractor unit. See Figures 2-6.1 through 2-6.3 and 2-6.11. The tamper, screed depth cranks, crown controls, screed heater and the screed itself are all part of the screed unit. The screed rides on the finished surface. Most pavers have vibrating screeds to partially compact the mix as it is placed.

The spreading augers are worm screws that uniformly spread the mix across the full width of the machine. Each side of the machine is equipped with a feeder and auger unit, which can be operated simultaneously or independently. The gates in the back of the hopper can be adjusted so there is a constant flow of material coming to the augers. The material around the augers should just cover the auger shaft.

The tamper bar is located on the front of the screed and is a vertical plate with an inclined face, facing toward the front end of the machine. The tamper bar provides the initial compaction to the mix. The vertical travel of this bar is about 1/8 in. (3 mm) at approximately 1,200 strokes per minute. The tamper in its lowest position is about 1/64 in. (0.4 mm) below the bottom of the screed. This fixes the surface elevation of the pavement just before the screed slides onto it. The real tamping is done by the front of this bar and will ensure uniform compaction.

The screed unit is the unit which imparts the smooth riding quality to the pavement. The screed is adjustable to obtain the desired crown or cross slope in the pavement and must be set before paving is begun.

The thickness of the course is set before the paving begins by setting the screed to the desired height. The screed should be raised an additional 10 to 20 percent of the required depth to allow for the additional compaction by rollers behind the paver. After a short run of about 20 ft. (6 m), the depth of the material being placed should be checked. Any required adjustments to the thickness are made by the Contractor turning the thickness control levers. These levers are located on the screed unit, and are turned to the right to increase the depth of the material being laid and to the left to decrease it. The most important thing to remember in adjusting thickness controls is not to move the control more than ¼ turn at a time; otherwise the machine does not have time to act and variations in the level of the surface will result. Once the thickness of the material being laid is satisfactorily set on the machine, there should be very little reason to touch the screed depth cranks, and the Inspector should discourage workers from constantly adjusting them.

Controlling the vertical position of the free-floating screed, with respect to the grade surface over which the paver is moving, is the primary element in producing high-quality pavements. Factors such as paving speed, head of material, mix consistency, pre-compaction and screed angle all influence the vertical position of the screed. If any of these factors are varied during the paving operation, the variation will cause a change in the mat depth, density and/or texture. The three primary variable factors that influence the vertical position of the free-floating screed are listed below and shown in Figure 2-6.11.
Figure 2-6.11 Factors That Influence the Vertical Position of the Screed

- Factor F-1—angle of attack,
- Factor F-2—head of material, and
- Factor F-3—paving speed.

2-615B Angle of Attack

The angle of attack is the angle that exists between the bottom surface of the screed and grade surface over which the paver is moving. Paving over a flat, level surface with all variables held constant will produce a mat of constant profile. If the screed or tow points are vertically displaced, a change in the angle of attack occurs. The screed moves to restore the original angle as illustrated in Figure 2-6.12. The restoring action of the screed is referred to as “self-leveling.”

When the angle of attack is increased, more material is allowed to pass under the screed, causing it to rise until the screed is again moving in a plane essentially parallel to the cross slope. Conversely, decreasing the angle will reduce the amount of material allowed to pass beneath the screed, causing the screed to drop until it is again parallel to the grade.

The angle of attack is controlled by either the manual screed depth cranks or the automatic level controls. One full turn of the depth crank will raise or lower the screed ¼ in. (6 mm). However, adjustments should be made in small increments to produce a smooth-riding pavement. The change in depth begins immediately after adjusting the crank but must move approximately 5 times the length of the screed side arm before the full change in thickness is completed.
2-615C Head of Material

The head of material is the volume of paving material directly in front of and along the entire length of the screed. The volume and consistency of the head of material are primary factors in the amount of mix that flows under the screed and affects the mat density, texture and profile. The volume in front of the screed determines the amount of pressure or resistance to forward travel exerted on the screed.

The volume of material in front of the screed should be maintained at a near constant level, almost covering the auger shaft along the entire length of the screed. Modern pavers have automatic controls to maintain the correct level. See Figure 2-6.13 for the correct head of material.

If the head of material is too high, the resistance to forward travel is increased. The screed will rise, and may cause ripples, auger shadows, long waves, increased depth, and a less dense mat. See Figure 2-6.14. If the head is too low, the resistance to forward travel is decreased and the screed will gradually fall, resulting in a thin mat and possible voids in the mat. See Figure 2-6.15. A fluctuating head of material will result in a combination of the mat deficiencies described above plus alternating changes in the mat texture and depth.
2-615D Paving Speed

The speed of the paving operation should be determined by the rate of material delivery to the paver. The optimum speed results in the paver being in continuous operation, never stopping, and using the mixture as it is delivered, never permitting trucks to stack up waiting to unload. Continuous, uninterrupted forward travel at a constant speed, with other variables held constant, will produce a smooth riding surface. While absolute compliance with this goal is usually not possible, the fewer interruptions or changes in paving speed, the smoother the finished surface will be. The paving speed should be adjusted to that which gives a uniform texture and coordinates with plant production.

Pavers should not be operated at speeds in excess of 40 ft. (12 m) per minute under any conditions. There is a tendency of some paver operators to run the paver faster than necessary so they can get off the paver for a break periodically. This results in non-uniform surfaces.

2-615E Other Factors

In addition to the three major factors discussed above, you should be aware of other improper operating procedures that can affect the riding quality of the pavement.

- Truck bumping the paver—this is the most common cause of transverse marks and ridges in the finished mat. Drivers should stop their trucks ahead of the paver and let the paver operator pick up the truck as the paver travels forward.
- Truck driver holding brakes—this will reduce the paving speed causing an increase in mat depth. In extreme instances, it may cause the paver wheels to slip or break traction, resulting in a bump in the mat.
- Unequal or over inflation of paver drive tires can cause the drive wheel to slip or break traction, resulting in a rough, uneven mat.
Excessive hand raking (luting) behind the paver causes segregation of the mixture, and therefore is not permitted. The paver should be so adjusted that only an occasional touch-up should be necessary by hand lutes.

The vibrating screed must be kept hot at all times. The heater unit is attached to the top of the screed plate and is generally used only to keep the temperature of the screed at the temperature of the mix. It is necessary to heat the screed at the start of paving when placing HMA. The heater may be required occasionally during the day, depending on the heat of the mix and the air temperature. If paving is delayed for any length of time during the day, the heater should be lit to maintain the heat on the screed, to prevent scuffing or tearing of surface when the paving operation is resumed. Overheating the screed can cause the screed to warp, which results in poor pavement surface quality.

The screeds must be cleaned at the end of each day of paving and at other intervals at the request of the Engineer. Approved solvents, cleaners and scrapers are used for cleaning. All contact surfaces of paving equipment should be lightly oiled after cleaning. All cleaning should be performed in such a manner that the HMA in place is not damaged by the cleaning agent, and the screeds and equipment must be dry before reuse. The cleaning of the paving equipment must be done in an environmentally acceptable manner. The use of any petroleum product such as diesel or kerosene is prohibited.

A mat troubleshooting guide is shown in Table 2-6.1, in the appendix at the end of this chapter. This guide can be used to identify the causes of many problems encountered with the laid mix.

2-616 Hand Spreading

Hand spreading of HMA mixtures is discouraged. Where hand spreading is necessary, the mix should be dumped from trucks onto a platform and spread from this platform. Each shovelful should be turned as placed. Other methods acceptable to the Engineer will be permitted.

Do not allow any walking in the loose mixture, and avoid excessive luting that pulls the coarse aggregate to the surface. Pins and strings should be set to ensure the correct contour of the completed surface. The lutes, shovels and tampers should be kept hot and clean. No cleaning agent that has a deleterious effect on the mixture can be used on the hand tools. Also avoid using overheated tools, when they are cleaned with fire.

2-617 Delays or Shutdowns

Whenever the absence of loaded trucks necessitates a pause, the paver should be stopped with a substantial quantity of mix ahead of the screed. As discussed under head of material, running the paver until the mix is too low will result in a dip in the pavement. And the small mass of mix will cool faster.

When a lengthy delay in paving occurs, the screed has a tendency to settle into the fresh mat. Generally, if a delay in excess of thirty minutes should occur, the pavement should be treated the same as at the end of a normal paving day. The material in the machine should be run-out, and the fresh mat completely rolled. When paving is resumed, the end of the mat should be cut back to the point of full pavement thickness as shown on the plans. The paving machine should be reset as is done at the start of each paving day.

When unforeseen weather conditions prevent further placement of the mix, the Engineer is not obligated to accept or place the bituminous concrete mixture that is in transit from the plant. The Engineer may permit placement of material that is in transit when the paving operation is overtaken by sudden storms, provided the mixture is within the temperature limits specified, and a safety hazard does not exist. A large quantity of material can be in transit and will be either placed in less than ideal conditions or wasted. To prevent either from occurring, the Chief Inspector should be familiar with the Contractor’s Quality Control Plan and plant production to reach a decision to shut down operations because of inclement weather. This information should be obtained before the start of any paving operations. The following types of information should be obtained:

- The telephone numbers and names of quality control operators at the plant,
- The Contractor’s anticipated production rate,
The length of time required to stop production,

The tonnage produced to clear the dryer/mixer after shutdown,

The number of haul vehicles,

The anticipated tonnage in transit, and

The Contractor's estimate of how quickly work can be secured and operations shut down.

The decision to shut down for inclement weather must remain with the paving inspection force. The items listed above must be considered in making that decision.

2-618 Thickness and Tonnage Control

The thickness and width of the pavement structure is shown on the typical sections in the project plans. The actual compacted thickness of each course of material must conform to the planned design. The design thickness is determined so the pavement structure will be strong enough to carry the anticipated traffic. A course can be a lift or multiple lifts comprised of the same HMA mixture placed as part of the pavement structure. A lift is a single HMA mixture placed at a defined thickness.

Figure 2-6.16 HMA Course and Lift Diagram

EXAMPLE: If plans show a total of 4 inches of HMA S0.5

COURSE = 4 inches (100 mm)

LIFT = 2 inches (50 mm)

If the mat is too thin, it will likely fail prematurely. If it is too thick, the pay quantities will overrun and increase the cost of the project unnecessarily.

Adequate thickness and width measurements are to be taken and recorded on DWRs. If the depths begin to vary from the limits in Subsection 4.06.04 of the Standard Specifications, the Inspector should take additional depth measurements until the extent of the problem is identified so corrections can be made.

The thickness of the mat is checked in two ways:

• After initial rolling, make a small hole with a putty knife in the mixture, and check the depth of the course with a depth gauge.

• Check the yield of a load or series of loads actually covered against the theoretical distance that the loads should cover.

Depth variations are permissible in the specifications, and the determination above reflects the paving depth trend. Where the depth measurements indicate an adjustment of measured weight, and it is not practical to determine the limits of the area to be adjusted by normal means, cores may be taken to determine the limits.

The plans specify the thickness that the HMA material is to be placed. This is known as the “planned quantity.” The planned quantity is used in both checks.
Construction Manual
Volume 2 Construction

If an adjustment for thickness of material placed is required use the Adjustment Schedule for Bituminous Concrete form, see Section 2-636.

2-619 Determining Planned Rate of Spread

Through experience as noted above, it has been found that mixes in Connecticut weigh about 115 lbs. per sq. yd. for each 1 in. of depth (2.46 kg per m² for each mm of depth) when compacted.

The formula for determining the compacted mat thickness is:

\[
\frac{\text{Planned Quantity (lbs/ yd}^2\text{)}}{\text{Estimated Weight of Mix [lbs/ (yd}^2\text{ in})]} = \text{Desired Mat Thickness (in)}
\]

Planned Quantity (kg/m²)/Estimated Weight of Mix [kg/ (m² mm)] = Desired Mat thickness (mm)

Example 1: Planned thickness is 3 in. (75 mm).

\[
3 \times 115 = 345 \text{ lbs/yd}^2
\]

\[
75 \times 2.4 = 184 \text{ kg/ m}^2
\]

2-620 Depth and Yield Checks

2-620A Depth Checks

The thickness of each lift will be checked by taking depth measurements immediately after completion of the breakdown rolling, and while the mixture retains sufficient heat to allow corrective measures to be taken. These depth measurements will be considered as applying for the full width of the lane. The intervals of width and depth measurements in any one lane will vary due to site and placement conditions, but should be taken minimally every 250 ft. (76 m). This information is to be documented in the project records. Refer to the section, "Records."

2-620B Yield Checks

Yield checks are made by comparing the area covered with the quantity placed. It is recommended that a minimum of four (4) yield checks be made per day. Spot checks for individual loads or several loads can be made at any time to ensure that the proper thickness of material is being placed. For most mixes used in Connecticut, the yield should be about 105 to 115 lbs. per square yard per inch of depth (2.24 to 2.46 kg per square meter per millimeter of depth). The mixture should be spread to a loose depth that will produce a specified finished thickness. The loose depth must be determined by experiment.
The actual rate of spread is more accurate than individual depth checks because it considers the average spread over a larger paving area.

2-620C Inspector Responsibility

It is the Paving Inspector's responsibility to ensure that the actual amount of mix placed by the Contractor complies with the plans. The Inspector collects mass slips (weigh tickets) as mix is delivered to the paving site and keeps records of the actual amount of mix placed. This record serves two purposes:

- to document the amount of mix actually placed—the placed quantity, and
- to serve as a basis for comparing the placed quantity with the planned quantity.

The Inspector must compute the actual rate of spread to compare with the planned rate. The planned rate is typically shown on the plans in lbs per square yard (kilograms per square meter), as mentioned above. The actual rate of spread may be computed in lbs/yd² (kg/m²) or lbs per linear foot (kg per linear meter). Both the planned and actual rates must be in the same units for valid comparisons, of course.

The purpose of computing the actual rate of spread is to determine if the planned amount is being placed. If the actual rate exceeds the planned rate, too much mix is being placed, resulting in an overrun of material. If the actual rate is less than planned, too little mix is being placed and the pavement is thinner than planned. In either case, adjustments should be made to bring the actual quantity in line with that planned.

2-620D Stationing

The distance that a load or series of loads is spread can be determined by noting the station at the beginning and end, and subtracting the lower from the higher. For example:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning</td>
<td>10 + 60.0</td>
</tr>
<tr>
<td>Ending</td>
<td>12 + 35.3</td>
</tr>
<tr>
<td>Distance</td>
<td>175.3 ft.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning</td>
<td>4 + 250</td>
</tr>
<tr>
<td>Ending</td>
<td>6 + 425</td>
</tr>
<tr>
<td>Distance</td>
<td>2175 m</td>
</tr>
</tbody>
</table>

2-620E Computing Actual Rates of Spread

As stated above there are two methods of computing the actual rate of spread. The calculations are similar, differing primarily in the units in which the rates are expressed.

Examples of both methods of checking the actual rates with planned rates follow. The sketch in Figure 2-6.17, showing the amount paved and quantities used, applies to both examples.
Method 1(English)—Pounds per Square Yard

The planned rate of spread is 345 lbs/yd²

A 1. Total the weights of the loads placed, in lbs, to the point where the check is made.

The total of the first five loads equals 240,304 lbs.

2. Determine the total length paved in yards.

Loads 1 through 5 covered 191.7 yds.
3. Determine the area paved in square yards.

 Total Length × Width Paved = 191.7 yds. × 4 yds. = 766.8 yd²

4. Calculate the actual rate of spread in lbs/yd².

 \[
 \frac{\text{Total Mix Placed (lbs)}}{\text{Area Paved (yd²)}} = \frac{240,304}{766.8} = 313.4 \text{ lbs/yd}^2
 \]

5. Determine relationship between the Placed Quantity and the Planned Quantity.

 If Placed Quantity = Planned Quantity: Mat thickness is okay

 If Placed Quantity > Planned Quantity: Overrun

 If Placed Quantity < Planned Quantity: Underrun

 The Placed Quantity of 313.4 lbs/yd² is less than the Planned Quantity of 345 lbs/yd².

 You are underrunning.

B After Load 10, you have paved 333.3 yds and have placed a total of 500,008 lbs.

 \[
 \text{Placed Quantity} = \frac{500,008}{1,333.2} = 375.0 \text{ lbs/yd}^2
 \]

 Area = 333.3 × 4 = 1,333.2 yd²

 The Placed Quantity of 375.0 lbs/yd² is greater than the Planned Quantity. You are overrunning.

C After Load 20, you have paved 756.7 yds and have placed a total of 1,044,246 lbs.

 \[
 \text{Placed Quantity} = \frac{1,044,246}{3,026.8} = 345.0 \text{ lbs/yd}^2
 \]

 Area = 756.7 × 4 = 3,026.8 yd²

 The Placed Quantity equals the Planned Quantity.

Method 1(Metric) — Kilograms per square meter

The planned rate of spread is 184 kg/m²

A 1. Total the weights of the loads placed, in kg, to the point where the check is made.

 The total of the first five loads equals 109,000 kg.

 2. Determine the total length paved in meters.

 Loads 1 through 5 covered 175.3 m.
3. Determine the area paved in square meters.

 \[\text{Total Length} \times \text{Width Paved} = 175.3 \, \text{m} \times 3.7 \, \text{m} = 648.6 \, \text{m}^2 \]

4. Calculate the actual rate of spread in kg/m².

 \[\frac{\text{Total Mix Placed (kg)}}{\text{Area Paved (m}^2\text{)}} = \frac{109,000}{648.6} = 168 \, \text{kg/m}^2 \]

5. Determine relationship between the Placed Quantity and the Planned Quantity.

 If Placed Quantity = Planned Quantity: Mat thickness is okay

 If Placed Quantity > Planned Quantity: Overrun

 If Placed Quantity < Planned Quantity: Underrun

 The Placed Quantity of 168 kg/m² is less than the Planned Quantity of 184 kg/m².

 \[\text{Placed Quantity} = \frac{226,800}{1127.8} = 201.1 \, \text{kg/m}^2 \]

You are underrunning.

B After Load 10, you have paved 304.8 m and have placed a total of 226,800 kg.

 \[\text{Area} = 304.8 \times 3.7 = 1127.8 \, \text{m}^2 \]

 \[\text{Placed Quantity} = \frac{226,800}{1127.8} = 201.1 \, \text{kg/m}^2 \]

 The Placed Quantity of 201.1 kg/m² is greater than the Planned Quantity. You are overrunning.

C After Load 20, you have paved 692 m and have placed a total of 472,300 kg.

 \[\text{Placed Quantity} = \frac{472,300}{2560.4} = 184.4 \, \text{kg/m}^2 \]

 \[\text{Area} = 692 \times 3.7 = 2560.4 \, \text{m}^2 \]

 The Placed Quantity equals the Planned Quantity.

Method 2 (English)—Pound per Linear foot

The planned rate of spread is 345.0 lbs/yd²

A 1. Convert the Planned Quantity from lbs/yd² to lbs per linear foot.

 The paved area per linear foot is needed for the conversion. In our example the width being paved is 4 yds:
The conversion is as follows:

\[
\frac{\text{Paved Length} \times \text{Paved Width}}{\text{Paved Length}} = \frac{1 \text{ yd} \times 4 \text{ yd}}{1 \text{ yd}} \times \frac{1 \text{ yd} \times 3 \text{ ft}}{3 \text{ ft}} = 1.33 \frac{\text{yd}^2}{\text{ft}}
\]

2. Total the weights of the loads placed, in pounds, to the point where the check is made.

The total of the first five loads equals 240,304 lbs.

\[
\text{Planned Quantity} \times \frac{\text{Paved Area}}{\text{linear foot}} = 345.0 \frac{\text{lbs}}{\text{yd}^2} \times 1.33 \frac{\text{yd}^2}{\text{ft}} = 458.9 \frac{\text{lbs}}{\text{ft}}
\]

3. Determine the total length paved in feet.

Loads 1 through 5 covered 575.1 ft.

4. Calculate the actual rate of spread in lbs/ft

\[
\frac{\text{Total Mix Placed}}{\text{Total Length Paved}} = \frac{240,304 \text{ lbs}}{575.1 \text{ ft}} = 417.8 \frac{\text{lbs}}{\text{ft}}
\]

5. Determine relationship between the Placed Quantity and the Planned Quantity.

The Placed Quantity of 417.8 lbs/ft is less than the Planned Quantity. You are underrunning.

B After Load 10, you have paved 1,000 ft and have placed a total of 500,008 lbs.

\[
\frac{\text{Placed Quantity}}{1,000 \text{ ft}} = \frac{500,008 \text{ lbs}}{1,000 \text{ ft}} = 500.0 \frac{\text{lbs}}{\text{ft}}
\]

Total length = 1000 ft

The Placed Quantity of 500.0 lbs/ft is greater than the Planned Quantity. You are overrunning.

C After Load 20, you have paved 2,270 ft and have placed a total of 1044,246 lbs.

Total length = 2270 ft

The Placed Quantity is slightly more than the Planned Quantity.
Method 2 (metric)—kilograms per meter

The planned rate of spread is 184 kg/m²

A 1. Convert the Planned Quantity from kg/m² to kilograms per meter

The paved area per meter is needed for the conversion. In our example the width being paved is 3.7 m:

The conversion is as follows:

\[
\text{Planned Quantity} \times \text{Paved Area/meter} = 184 \text{ kg/m²} \times 3.7 \text{ m²/m} = 680 \text{ kg/m}
\]

2. Total the weight of the loads placed, in kg., to the point where the check is made.

\[
\text{FACTOR: paved Length} \times \text{Paved Width} / \text{Paved Length} = 1 \text{ m} \times 3.7 \text{ m}/1\text{m} = 3.7 \text{ m²/m}
\]

The total of the first five loads equals 109,000 kg.

3. Determine the total length paved in meters.

Loads 1 through 5 covered 175.3 m.

4. Calculate the actual rate of spread in kg/m

\[
\text{Total Mix Placed} / \text{Total Length Paved} = 109,000 / 175.3 = 621.8 \text{ kg/m}
\]

5. Determine relationship between the Placed Quantity and the Planned Quantity.

The Placed Quantity of 621.8 kg/m is less than the Planned Quantity. You are underrunning.

B After Load 10, you have paved 304 m and have placed a total of 226,800 kg.

\[
\text{Placed Quantity} = 226,800 \text{ kg} / 304 \text{ m} = 746 \text{ kg/m}
\]

Total length = 304 m

The Placed Quantity of 746 kg/m is greater than the Planned Quantity. You are overrunning.

C After Load 20, you have paved 692 m and have placed a total of 472,300 kg.

Total length = 692 m

\[
\text{Placed Quantity} = 472,300 \text{ kg}/692 \text{ m} = 682.5 \text{ kg/m}
\]

The Placed Quantity is slightly more than the Planned Quantity.
2-621 Compaction

2-621A Rolling

Generally, compaction is achieved by establishing rolling procedures referred to as:

- initial or breakdown rolling,
- intermediate rolling, and
- finish or final rolling.

The types of rollers used for compaction of bituminous pavements include:

- Static steel drum
- Vibratory steel drum
- Oscillatory steel drum
- Pneumatic tire

The static and vibratory steel drum rollers are most commonly used in Connecticut. The types, sizes and number of rollers must be approved by the Engineer. The rollers must be of the type appropriate for each phase of rolling. As previously stated in section 2-607, rollers must be equipped with water sprayers and scrapers on the tires and drums. The tires and drums must be kept moist during rolling to avoid picking up the material. Use only enough water to prevent pickup. The equipment must be ready, at the job site, prior to delivery of HMA and be maintained in proper operating condition throughout the paving operation.

2-621B Initial or Breakdown Rolling

Initial or breakdown rolling is normally performed with a vibratory or oscillatory roller having a weight (mass) of not less than 10 tons (9,100 kg). The number of rollers needed depends on the Contractor’s rate of production. Where only one roller is needed, a standby roller is required in case of equipment breakdown.

Rolling should begin as soon as the spread mixture will bear the weight of the roller without shoving or cracking. Flushing the pavement with water to hasten cooling is strictly prohibited.

No set rule can be given for the temperature at which the rolling should take place. In practice, rolling operations are governed by trial-and-error experience. With Superpave HMA mixes, initial or breakdown rolling should begin immediately after placement. Rolling performed after the pavement has partially cooled can cause the pavement to have a rough, uneven surface texture or make achieving specified density difficult.

Rolling should begin at the sides or low point and progress toward the center, parallel to the centerline of roadway, as shown in Figure 2-6.18. If a longitudinal joint is formed, it should be rolled first. Alternate trips of the roller should be terminated in stops at least three feet (one meter) distant from any preceding stop. All turning movements should be completed on previously compacted material. Other rolling procedures may be directed by the Engineer as conditions may require. Rolling should be discontinued if the surface shows signs of cracking and should be continued later as directed. Rolling should proceed continuously and in such a manner that all roller marks are eliminated. Rollers must be in good condition and must be operated by competent roller operators. The pavement should be rolled so that the entire surface receives substantially equal compaction.
On super elevated curves, rolling should begin at the low side and progress to the high side. All rolling should be done so that each preceding track of the roller is overlapped by at least half the width of the roller. When rolling pavement edges, the roller should extend 2 to 4 in. (50 to 100 mm) beyond the edge of the pavement.

After the required passes are completed, the roller should be moved to the outside of the lane on the cooled portion of the mat to repeat the process on the next segment.

Steel drum rollers should be operated with the drive drum forward, or the uphill direction of paving. The drive drum applies a more direct vertical load than the tiller drum and causes less shoving of the material since the turning force tends to tuck the material under the drum. Exceptions to rolling with the drive drum forward occur when the roadway longitudinal grades are excessive or the cross slope or superelevation is high. In such cases, the drive drum may chatter, displace the mixture and cause a rough surface. The recommended practice in such cases is to do the breakdown rolling with the tiller drum forward.

Rolling should proceed continuously at a rate that provides for adequate compaction and the removal of all roller marks. Rolling too fast can cause surface cracks and a rough, uneven and wavy surface. The recommended maximum speed for all non-vibratory rollers is 5 mph or 440 fpm (8 km per hour).

2-621C Intermediate Rolling

Intermediate rolling may be done with a static, vibratory, oscillatory or pneumatic-tire roller. If a pneumatic-tire roller is used, it should be equipped with wide tread compaction tires capable of exerting an average contact pressure from 60 to 90 psi (420 to 620 kPa) uniformly over the surface, adjusting ballast and tire inflation pressure as required.

The ground pressure developed by pneumatic-tire compactors is a function of four factors; tire size, tire ply rating, tire loads and tire inflation pressures.
2-621D Finish Rolling

Finish rolling is normally done by a static roller having a weight (mass) of not less than 10 tons (9,100 kg). Finish rolling should be done while the material is still workable enough for removal of the roller marks. A dual vibrating drum roller, operating in the static mode, may be used as the finish roller.

On certain bridge deck overlays and paving jobs where, due to physical limitations, a full roller contingent is not practical, the Engineer may, at his option, permit a lesser number of rollers provided all compaction requirements are met. The use of a vibratory roller in the dynamic or vibratory mode is prohibited on bridge decks or concrete structures. Oscillatory rollers, if used at the lowest frequency setting, may be used on structures.

In all places inaccessible to a roller, such as adjacent to curbs, gutters, bridges and manholes, the required compaction may be obtained by hand tamps. Depressions, which may develop before the completion of rolling, shall be remedied by adding new material to bring the depressions to a true surface.

2-622 Compaction Testing

The Contractor is responsible for all quality control testing. In-place nuclear density tests are taken to check the compaction of the mat. The Contractor’s Quality Control personnel make the Gyratory molds to set the standards for the nuclear gauges used on the project.

In-place densities must be taken for each lift of HMA placed. The required compaction of each lift, expressed as a percent of the theoretical density, is shown in the Standard Specifications. Theoretical densities are determined by AASHTO Test Method T209. A sample data and computation sheet for nuclear density tests for bituminous concrete is shown in Figure 2-6.19.

2-623 Transverse Joints

All transverse joints shall be formed by saw-cutting a sufficient distance back from the previous run, existing HMA pavement or bituminous concrete driveways to expose the full thickness of the lift. A brush of tack coat shall be used on any cold joint immediately prior to additional HMA mixture being placed.

2-624 Permanent Transitions

Permanent transitions are required at the beginning and ending of all paving projects. In addition, a keyway must be milled into the existing pavement for the final course to provide a tight, smooth joint. The depth of the keyway should equal the thickness of the course. A typical keyway is shown in Figure 2-6.20. All permanent transitions, leading and trailing ends, shall meet the following length requirements:

a) Roadways greater than 35 MPH = 30 feet per inch of vertical change (thickness)
b) Roadways 35 MPH or less = 15 feet per inch of vertical change (thickness).
c) Bridge Overpass and underpass transition length will be 75 feet either

(1) Before and after the bridge expansion joint, or
(2) Before or after the parapet face of the overpass.

Any temporary transition to be in-place over the winter shutdown period, holidays, or during extended periods of inactivity (more than 7 calendar days) shall conform to the “Permanent Transition” requirements shown above.
2-625 Permanent Transitions at Structures

Overlays must be transitioned on either side of structures. The lower lift(s) are uniformly tapered for a minimum of 150 feet on each approach to the structure. The top course is carried over the deck at the same time the course is placed on the roadway.

2-626 Temporary Transitions

When traffic must be carried over the pavement, it is necessary to form a temporary transverse joint at shutdowns and at the end of a day's work. The joint is constructed as shown in the series of drawings in Figure 2-6.21. A temporary transition is defined as a transition that does not remain a permanent part of the work. All temporary transitions shall meet the following length requirements:

- a) Roadways greater than 35 MPH
 - (1) Leading Transitions = 15 feet per inch of vertical change (thickness)
 - (2) Trailing Transitions = 6 feet per inch of vertical change (thickness)

- b) Roadways 35 MPH or less
 - (1) Leading and Trailing = 4 feet per inch of vertical change (thickness)

To reduce cold joints to a minimum, the day's run of all passes shall end at the same station.

When paving is resumed, the wedge and paper are removed to provide an exposed mat that is full-depth and at the proper grade for continuing the lay. The screed is blocked up with starting blocks as shown in Figure 2-6.22. The paver should be positioned with the front of the preheated screed over the joint line. After the hot mixture is conveyed into place, sufficient time to reheat the joint should be allowed before moving the paver forward. The paver should be advanced enough to allow the workmen to perform the necessary hand work. Use the straightedge to check the joint to ensure the proper grade before permitting the roller on the surface.
Figure 2-6.21 Construction of a Day Joint

- Rolled Mat
- Unrolled Mat
- Wedge Area
- Excess Asphalt

- Remove all asphalt from this area

- Rolled Mat
- Unrolled Mat
- Cleared Area for Wedge

- Square edge with rake or lute

- Joint paper or material
- Wedge
- Taper
The following rolling procedures are suggested for the two transverse joint situations normally encountered.

- **Without an Abutting Lane**: A Single lane being paved, or the start of a paving operation beginning at the transverse face of an existing pavement. Abutting lanes not yet paved.

 The screed unit and hopper box of the paving machine are placed on the existing pavement. Spreading by machine commences slightly before the end of the existing pavement. Hand grading the starting edge is always required. Hand grading segregates the material, and all large aggregate should be pulled off the mat. Adding or removing materials, grading, smoothing and shaping the surface and edges must be diligently done. The surface of the spread material should be slightly higher than the proposed or existing pavement grades. As a general rule, a ¼ inch per inch of compacted thickness should be added to allow for compaction of the lift. Adjust as necessary to achieve proper thickness after compaction. Check the joint with a straightedge before and after rolling.

 Ideally, a transverse joint should be compacted transversely. The rolling equipment should operate across the width of the lane instead of longitudinally down the lane. Rolling should commence by pinching the struck edge. The roller is positioned on the existing pavement such that only 6 in. (150 mm) of the roller width will compact the material. Boards, long enough to allow the roller to move completely off the mix on both sides of the pavement, should be placed along the edge of the lane to prevent it from being rolled down. Successive passes should gradually provide for coverage by the full width of the roller drum. If the roller cannot compact the joint in the transverse direction because of site restrictions, the joint will have to be rolled in the longitudinal direction.

 When the transverse rolling is completed, longitudinal rolling of the joint can commence, starting at the lower edge of the lane. Following the breakdown rolling, the pavement surface across the joint should be checked with an approved straightedge and string lines. All inadequacies must be corrected and rolled, and the surface rechecked. When the pavement surfaces adjacent to the joint have been satisfactorily graded and compacted, rolling of the lane can commence.

- **With an Abutting Lane**: Lane being paved abuts a paved lane. Setting the paver and starting the spreading operation, including shaping and grading the material is the same as for the first situation described above.

 The first pass of the roller should be along the longitudinal joint for about 6 in. (150 mm) of the fresh material. Following the breakdown rolling, the pavement surface across the joint should be checked with an approved straightedge and string lines. All inadequacies must be corrected, rolled, and surface-checked again. When the pavement surfaces adjacent to the joint have been satisfactorily graded and compacted, rolling of the lane can commence as described in the section, “Paving Adjacent Lanes” below.
2-627 Longitudinal Joints

Longitudinal joints of different lifts or courses should never be constructed directly one upon the other. The longitudinal joint for the first or intermediate lift should be offset 6 to 12 in. (150 to 300 mm) from the exact centerline or lane line. The joint in the top lift should be on the exact centerline or lane line. The joint should never be located under the pavement markings; ideally it should be off-set approximately 6 inches. The Inspector and the Contractor should decide before paving is begun what the width of each lane for both the base and surface courses should be to provide the overlap between lanes. For each of the lifts placed, an offset line to the edge of the lift should be carefully staked. Paving machines are equipped with a guide bar which is lined up with this offset line, and the machine is held to this line as it proceeds.

To summarize the construction of good longitudinal joints, the following points should be emphasized:

- No joint should be over the joint in the underlying lift or course. Keep them staggered approximately 6 in. (150 mm).
- Keep the joints straight. It is impossible to get a satisfactory joint if the machine zigzags or wanders back and forth across the desired line.
- Maintain near vertical faces on all lane edges.
- Keep the joints clean and free of loose particles of material.
- Overlap the screed onto the previously laid mix enough to ensure that the lane being laid is snug against the other. If this is not done, furrows will eventually develop after traffic has been using the road for a while.
- When laying the lift adjacent to a previously compacted lane, allow sufficient thickness for compaction. Normally, the approximate excess thickness should be ¼ inch per inch of compacted thickness. For example, if the designed compacted lift thickness is 2 inches, the uncompacted lift thickness should be 2 ½ inches. If too much material is left, a ridge will develop along the line of the joint. Too little material could leave a rut or make achieving specified density impossible.
- Roll the joint as soon as possible.
- Treat the vertical face with a tack coat if it has been left long enough to cool and dry out, or if specified, use heaters.

To obtain tight and well-compacted longitudinal joints, the sequence of HMA placement operations for all courses is subject to the control of the Engineer. When two paving machines are available, practically all of the troubles arising at longitudinal joints can be eliminated by laying hot joints. This can be done by keeping one machine a short distance behind the other so that the adjacent lanes are rolled simultaneously while the material in both lanes is still hot.

2-627A Notched Wedge Joint

When using the Notched Wedge Joint method, the equipment and methods must first be approved by the Engineer. The Notched Wedge Joint must conform to figure 2-6.23.
2-628 Paving Adjacent Lanes

Unless otherwise specified or agreed upon, the HMA should be spread one-half width for the length decided on by conference with the Contractor. This distance will be governed by the rate at which the material cools. The initial side paved must not cool off to the extent that a line of demarcation occurs. This may be broken into four opposite sides per eight-hour day or approximately two hours for each line or lane, as directed by the Paving Inspector. For single-course construction, the inside edge of the first lane paved must be placed on the exact centerline, to give positive width and location control.

To establish a true centerline, a line is marked or a string line tacked onto the base course at a convenient offset and parallel to the exact centerline. The inner edge of the first lane should be squared up on the exact centerline using the offset line as a guide.

With this method, the first lane should be true to line and grade and have a near vertical face at the joint. (Before starting the second lane, the string line or mark should be transferred to the surface of the first lane and offset about 2 in. (50 mm) from the true centerline as a guide for the second lane.) The material being placed in the second lane is then slightly crowded against the face of the previously placed lane. The paver should be positioned so that, in spreading, the material overlaps the edge of the previous lane by no more than 1 in. (25mm) and should have enough excess material thickness to allow for compaction. Generally, the excess material thickness should be a ¼ in. per inch of designed compacted mat thickness. No raking or luting of the joint overlap material should occur. Only the occasional ‘bumping’ back of excess or misplaced material should take place.

2-629 Surface Tolerance

The pavement surface of any lift shall meet the following requirements for smoothness and uniformity. Any irregularity of the surface exceeding these requirements shall be corrected by the Contractor.

- Smoothness- Each lift of the surface course shall not vary more than ¼ inch from a Contractor-supplied 10 foot straightedge. For all other lifts of HMA, the tolerance shall be ¼ inch. Such tolerance will apply to all paved areas.

- Uniformity- The paved surface shall not exhibit segregation, rutting, cracking, disintegration, flushing or vary in composition as determined by the Engineer.
Irregularities exceeding the limits above must be corrected. Corrective work usually involves loosening the surface with a rake, adding additional material, grading, rolling and rechecking with a straightedge. Surfaces that look coarse can be improved at this time by the careful addition and grading of select fine material.

Portions of completed pavements that are defective in the surface tolerance, composition or compaction should be removed and replaced or overlaid with additional material, as required.

2-630 Pavement Smoothness (Rideability) Adjustment Overview

A limited number of contracts will contain the item and special provision for Rideability. A complete review of the special provision is advised.

The smoothness adjustment rewards smooth pavements and penalizes rough pavements. Each tenth mile section of the road is measured by the ConnDOT ARAN van and is processed by ProVAL software to determine its International Roughness Index (IRI). IRIs below 60 inches per mile result in bonuses and IRIs above 80 inches per mile result in penalties.

The smoothness adjustment applies to the surface lift of main travel lanes, climbing lanes, operational lanes, acceleration lanes, deceleration lanes, and turning roadways that are at least 0.4 miles (2,112 feet) in length.

It does not apply to sections shorter than this or to:

- ramps
- shoulders
- gore areas
- pavement on horizontal curves which have a 900 foot or less centerline radius of curvature
- pavement within the superelevation transition of these curves

Bridge decks shall be included if they are paved as part of the project and have an asphaltic plug or similar product for the bridge joints. Structures with exposed concrete, elastomeric concrete or steel joint systems shall be excluded.

Before the surface lift is paved, ConnDOT will make a test run of the IRI and provide this information to the Contractor. This helps the Contractor identify any problem areas so he can address them before paving the surface lift. Within 30 days of paving the surface lift ConnDOT will measure the IRI to determine smoothness. The Chief Inspector requests the ARAN van to measure the smoothness, by sending an email to dot.MatTesting@ct.gov, with a Subject of “ARAN/Photolog Van Request”. This request should include the CORE-CT Project code and be made 72 hours before the ARAN van is needed.

Work should be organized to minimize the number of times the ARAN van is needed. The “trial” evaluation shall be limited to one (1) test lane in each direction. Typically, the ARAN van should be called only twice per project - once for testing before the surface lift and once for after the surface lift has been constructed. Final evaluations for payment shall measure all lanes of interest in each direction of travel.

It is generally expected that all paving of the lift under the surface lift in both directions of travel will be completed before calling the ARAN van. Likewise, work should be organized so that the ARAN van is called only once for the surface lift. Exceptions may be made for limited access highways and unusual circumstances, such as paving that extends beyond one paving season. The special provision states that the contractor is responsible for ensuring that the pavement is clean and dry when the IRI measurements are performed.

The IRI results will be provided to the Chief Inspector with guidance how to apply the item payment or deduction.
2-631 Semi-final and Final Pavement Inspections

Semi-final pavement inspections and final pavement evaluations are required on all projects that have 2,500 tons or more of final course, which include final courses made up of multiple lifts of the same HMA material. These inspections can, however, be performed on any project the District deems appropriate. The Pavement Advisory Team (PAT) will perform the semi-final pavement inspections and final pavement evaluations with the assistance of the Project Engineer and/or the Chief inspector.

All required corrections are the contractor's responsibility, and no payment should be made for the material, labor and equipment used.

See Figure 2-6.25 for sample Final Pavement Evaluation Report

2-631A Opening to Traffic

Traffic is not permitted on the newly laid pavement until the material has cooled and hardened to the satisfaction of the Paving Inspector. Flushing with water to hasten the cooling is prohibited. Vertical pavement edges must be protected to prevent damage before opening the roadway to traffic.

2-632 Records

2-632A Form MAT-100

A MAT-100 must be prepared for each production day to provide testing coverage for HMA material placed. These forms are a permanent part of the field and laboratory records, and therefore must be kept current, accurate and neat. Refer to Volume 1, Chapter 4 – Materials Testing.

The MAT-100 is completed by the Inspector at the end of production for that day. A hard copy is sent to the Department’s Material Testing Laboratory. Where there are multiple vendors on a project within a production day, separate MAT-100’s must be prepared.

2-632B Weekly HMA Production Report

Each District should forward to the Department’s Material Testing Laboratory a weekly HMA Production Report showing HMA material placed on District administered contracts. Form 2-6.26 is a sample Weekly HMA Production Report.

2-632C Inspectors’ Reports

The Paving Inspector must keep accurate records of the stations worked, locations, areas covered in square yards and tons used, and record all batches condemned or wasted with an explanation for the reason for rejection. The information will be included on the Base & Bituminous Concrete Inspection Report (Form CON-136). A sample Base & Bituminous Concrete Inspection Report (Form CON-136) is shown in Form 2-6.27. A Form CON-136 must be completed for every day that paving is performed.

Items to be recorded on Form CON-136 include:

- The project number,
- Weather and temperature readings,
• The item number and class of paving,
• The location of the paving and quantities placed,
• Width and depth checks,
• Any loads rejected and the reasons for rejection,
• The hours worked by the contractor,
• The work force and equipment assigned by the contractor, and
• The inspection personnel assigned.

Thickness checks and yield computations should appear on the Form CON-136, and any significant discrepancy should be explained (i.e. Contractor paved too wide, etc.).

Information for depth checks shown on the Form CON-136 includes:
• The station and offset where the check was made, and
• The depth of each course at that location.

Sample Recording:

<table>
<thead>
<tr>
<th>Station Offset</th>
<th>Course #1</th>
<th>Course #2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 + 00.00</td>
<td>1-5/8 in. (41.3 mm)</td>
<td>1-1/2 in. (18.2 mm)</td>
<td>3-1/8 in. (79.4 mm)</td>
</tr>
</tbody>
</table>

2-632D Weigh Tickets

As previously noted Paving Inspectors are personally responsible for collecting the weigh tickets and signing each ticket as the load is dumped. Project supervisors should check daily to ensure compliance with this directive.

Weigh tickets should be checked for adequate information. The minimum information that should be shown on a weigh ticket includes:
• State of Connecticut printed on ticket
• Name of producer, identification of plant and specific storage bin (silo) if used
• Date and time of day
• Mixture Designation (If RAP is used, the plant printouts shall include RAP dry weight, percentage and daily moisture content.) Class 3 mixtures for machine-placed curbing must state "curb mix only".
• Net weight of material loaded into truck (When RAP is used, RAP moisture shall be excluded from mixture net weight).
• Gross weight (Either equal to the net weight plus the tare weight or the loaded scale weight).
• Tare weight of truck- daily scale weight.
• Project number, purchase order number, name of contractor (if name of contractor other than producer)
• Truck number for specific identification of truck

• Individual aggregate, RAP, and virgin asphalt high/target/low weights shall be printed on batch plant tickets (For drum plants and silo loadings, the plant printouts shall be printed out at 5 minute intervals maintained by the vendor for a period of three years after the completion of the project).

The net weight of mixture loaded into the truck must be equal to the cumulative measured weight of its components. In addition, any deficiencies or special conditions should be noted on the ticket.

The Inspector should make the following checks:

• Where computerized weigh tickets are provided for the delivery of HMA, verify at least twice a day the accuracy of the individual batch weights that comprise the total. Add the weights of the aggregate and check the total weight on the ticket. Any discrepancies on individual tickets should be reported immediately to the Department’s Material Testing Laboratory.

• Truck weigh tickets should include gross, tare and net weights. Mathematically check the net weight several times each day.

• Note on the ticket when a mathematical check is made and the results of the check.

• If inconsistencies are found on any ticket, all tickets for the day must be mathematically checked.

Temperatures of the mix are to be recorded, with the time taken, on both the weigh tickets and DWRs.

For partially used loads, document how the amount used was determined (measurements), where the remainder went, and the use for the remainder. This information should appear on both the DWR and batch/weigh ticket.

If any HMA is used for an unusual purpose, document the purpose it was used for, reason for use and how the material was paid for. Again, information should appear on both the DWR and batch ticket.

2-632E HMA Density Reporting Procedure

1. State personnel density test reports:

 • Scan daily QA test report(s) for each lot at the project’s field office the same day/night tests taken so that the Chief Inspector (C.I.) has a copy, when possible.

 • If daily QA test report(s) is processed at the District, the staff responsible shall scan report the following morning and e-mail it to the C.I. of the project. The C.I. should place a printed copy of the report (or summary sheet of the average test results) in a folder accessible to the Contractor for their information.

 • The density technician (or District staff responsible) shall enter average density for the mat and joint of each lot into Pavetrack the same day/night or at the latest the following morning. There is no need to wait for the actual production test results because the average density will be automatically adjusted when the DMT enters those results.

2. Consultant personnel density reports:

 • Make a printed copy of the daily QA test report (or summary sheet of the average test results) and place into a folder accessible to the Contractor for their information.

 • The density technician shall enter the average density for the mat and joint of each lot into Pavetrack the same day/night or at the latest the following morning.

Note: the QA test report, whether scanned the same day/night or e-mailed the following day shall be for “informational purposes only” as the results may be adjusted based on the actual production test results (Gmm) from the DMT.
3. **State and Consultant Technicians:**
 - When performing QA density testing, the technician must announce their arrival to the Contractor QC representative or paving foreman. This shall be done for safety reasons. Likewise, it must be announced when they have completed their testing or are leaving the work zone.

2-633 Test Frequencies

Refer to the section “Minimum Testing Requirements—Acceptance and Assurance” in the “Schedule of Minimum Requirements for Sampling Materials for Test” for the minimum requirements for acceptance and assurance samples. Sampling and testing for bituminous concrete must be in accordance with those requirements.

If the frequency of assurance tests is found to be insufficient during periodic analyses of projects, it is to be addressed in the preliminary reports and, if not resolved during the project, the final Materials Certificate would list that item as an exception.

2-634 District Monitoring

All projects involving bituminous concrete pavement are monitored by District Record Examiners for compliance with the specifications and policies concerning receipt of and payment for bituminous items.

2-635 Legal Load Limits and Oversize/Overweight Permit Regulations

Inspectors must be aware of the contract requirements concerning load restrictions, legal weight limits for vehicles, and oversize/overweight permit regulations. Refer to the various published documents pertaining to load restrictions that apply to construction vehicles.

If an adjustment is required use the Adjustment Schedule for Bituminous Concrete form, see Section 2-636.

2-636 Asphalt (HMA) Adjustment Procedures

There are several different types of adjustments that may have to be made for HMA items that have been placed on a project.

Some of the adjustments cannot be made by using original contract items. Depending on the Special Provision date, the adjustments shall be calculated in the following ways:

2-636A Asphalt (HMA) Adjustment Procedures for Provisions dated before 1/13/09

Within Site Manager, three adjustment items have been added at the project line item level under Category 01 to standardize the way the adjustments are made. When the inspector determines that an HMA adjustment is required, a DWR must be created identifying the appropriate HMA Adjustment Item.

It is important that the DWR documents why the adjustment applies, date(s) the adjustment is for, how it was calculated, and any associated references to the Project’s Volume 3.

Adjustment Items:

1. **HMA Material Deficiency Adjustment**, unit = Est., price = $1.00. This adjustment is monetary and is always a negative value. Item Code will be HMAM001, Line Item 5005
2. **HMA Density Adjustment**, unit = Est., price = $1.00. This adjustment is monetary and can be either a positive or a negative value. Item Code will be HMAD001, Line Item 5006
3. **Rideability Adjustment**, unit = Est., price = $1.00. This adjustment typically occurs only once during the project. However, some larger projects that are staged may require multiple adjustments throughout the course of the project life. This adjustment is monetary and can either be a positive or a negative value. Item Code will be HMAR001, Line item 5007.

A sample form for all asphalt adjustments along with a directions page is shown in Form 2-6.28.

2-636A.1 HMA Overweight Adjustment (tons)

Net weight adjustment will be made when a truck delivers material to the project and the truck exceeds the allowable gross weight for that vehicle type. The quantity of overage, in tons, will be deducted from the total delivered tons measured for payment. This adjustment may be applied even after the material has been incorporated into the project. See Form 2-6.28, Adjustment Schedule Form.

2-636A.2 HMA Material Deficiency Adjustment (dollars)

Ten percent of the total quantity of material that exceeds one or more of the mix tolerances will be used to determine the Material Deficiency Adjustment. The job mix formula adjustment tolerances can be found in Table 3 (Job Mix Formula Tolerances for Consecutive Tests) in Subsection 4.06.04 of the *Standard Specifications, Form 816*. See Form 2-6.28, Adjustment Schedule Form.

2-636A.3 HMA Density Adjustment (dollars)

The average of theoretical maximum specific gravity calculations for the material placed in a continuous paving operation will be used to establish the average percent density. (The paving of bridges will be treated as a separate continuous paving operation per bridge.) This average percent density will then be used for any adjustment according to Table 6 in Subsection 4.06.04 of the *Standard Specifications, Form 816*. See Form 2-6.28, Adjustment Schedule Form.

2-636A.4 Measured Weight Adjustment (tons)

The material in all courses of HMA, except lifts of designed non-uniform thickness, i.e. wedge or shim course will be subject to adjustment for thickness and width. The averages of the thicknesses or widths of each lift will be determined by measurements taken by the Engineer. When the total thickness or width exceeds the theoretical yield, an adjustment will be applied to the installed HMA pavement. When a deficiency in thickness or width is found, with the approval of the Engineer, the Contractor shall take corrective action. Areas that are corrected will be measured as though originally constructed. No payment will be made for material removed and disposed of, or for the restoration of affected base or adjusted construction, for the purpose of corrective work. See Form 2-6.28, Adjustment Schedule Form.

2-636A.5 Liquid Asphalt Adjustment (dollars)

This adjustment is associated with the price of performance-graded binder component of HMA mixtures. The asphalt price adjustment will only be applied to HMA mixtures such as Class 1, 2 and 4, Superpave 0.375 in. (9.5mm), 0.5 in. (12.5mm) and 1.5 in. (37.5mm). The adjustment will be applied on a monthly or semi-monthly basis in accordance with the payment estimate schedule of the HMA pay items. Asphalt adjustment will be made upward or downward only when the asphalt period price varies more than $5.00 from the asphalt base price. The Connecticut Department of Transportation will provide the Asphalt Price of the performance-graded binder. See Figure 2-6.30, Liquid Asphalt Adjustment Form.
2-636B HMA Adjustment Procedures for Special Provisions dated 1/13/09 or Later

2-636B.1 HMA Overweight Adjustment (tons)

Net weight adjustment will be made when a truck delivers material to the project and the truck exceeds the allowable gross weight for that vehicle type. The quantity of overage, in tons, will be deducted from the total delivered tons measured for payment. This adjustment may be applied even after the material has been incorporated into the project. See Form 2-6.28, Adjustment Schedule Form.

Tons Adjusted for Weight (T\textsubscript{W}) = GVW – DGW = (-) Tons

Where: DGW = Delivered gross weight as shown on the delivery ticket or measured on a certified scale.

2-636B.2 HMA Material Deficiency Adjustment (dollars)

Ten percent of the total quantity of material that exceeds one or more of the mix tolerances will be used to determine the Material Deficiency Adjustment. The job mix formula adjustment tolerances can be found on Table 3, 3A and 3B (Job Mix Formula Tolerances for Consecutive Tests) in Subsection 4.06.04 of the Standard Specifications, Form 816. See Figure 2-6.28, Adjustment Schedule Form.

Tons Adjusted for Marshall Design (T\textsubscript{MD}) = M \times 0.10

Where: M = Tons of bituminous concrete mixture exceeding tolerances in Table 3

Tons Adjusted for Superpave Design (T\textsubscript{SD}) = (AV\textsubscript{a} + AP\textsubscript{b}) \times Tons

Adjustment for Air Void = AV\textsubscript{a} = \frac{(V\textsubscript{a}1 + V\textsubscript{a}2 + V\textsubscript{a}3 + \ldots + V\textsubscript{an})}{n}

Where: V\textsubscript{a} = Total air void adjustment value for the lot
V\textsubscript{ai} = Adjustment value from Table 3A resulting from each sub lot
n = number of air void tests in a production lot

Adjustment for Liquid Binder = AP\textsubscript{b} = \frac{\left([AP\textsubscript{b}1 + AP\textsubscript{b}2 + AP\textsubscript{b}3 + \ldots + AP\textsubscript{bn}\right]}}{n}

Where: AP\textsubscript{b} = Total liquid binder adjustment value for the lot
AP\textsubscript{bi} = Adjustment value from Table 3B resulting from each sub lot
n = number of binder tests in a production lot

2-636B.3 HMA Density Adjustment (dollars)

The average of theoretical maximum specific gravity calculations for the material placed in a continuous paving operation will be used to establish the average percent density. (The paving of bridges will be treated as a separate continuous paving operation per bridge.) This average percent density will then be used for any adjustment according to Table 4 (Adjustment Values for Pavement Density) in Subsection 4.06.04 of the Standard Specifications, Form 816. See Figure 2-6.28, Adjustment Schedule Form.

Tons Adjusted for Density (T\textsubscript{D}) = \left\{[PA\textsubscript{M} \times .40] + [PA\textsubscript{J} \times .60]\right\} \times \text{Tons accepted}

Where: T\textsubscript{D} = Total tons adjusted for density for each lot
PA\textsubscript{M} = Mat density percent adjustment from Table 4
PA\textsubscript{J} = Joint density percent adjustment from Table 4
2-636B.4 Measured Area and Thickness Adjustment (tons)

The material in all courses of HMA, except lifts of designed non-uniform thickness, i.e. wedge or shim course will be subject to adjustment for thickness and width. The averages of the thicknesses or widths of each lift will be determined by measurements taken by the Engineer. When the total thickness or width exceeds the theoretical yield, an adjustment will be applied to the installed HMA pavement. When a deficiency in thickness or width is found, with the approval of the Engineer, the Contractor shall take corrective action. Areas that are corrected will be measured as though originally constructed. No payment will be made for material removed and disposed of, or for the restoration of affected base or adjusted construction, for the purpose of corrective work. See Figure 2-6.28, Adjustment Schedule Form.

\[
Tons \text{ Adjusted for Area (T_A)} = \left[\frac{L \times W_{adj}}{9} \right] \times (t) \times 0.0575 \text{ Tons/SY/inch} = (-) \text{ Tons}
\]

Where:
- \(L\) = Length (ft)
- \((t)\) = Actual thickness (inches)
- \(W_{adj}\) = (Designed width (ft) + tolerance /12) - Measured Width

\[
Tons \text{ Adjusted for Thickness (T_T)} = A \times t_{adj} \times 0.0575 = (-) \text{ Tons}
\]

Where:
- \(A\) = Area = \(\left\{ \frac{L \times (\text{Designed width} + \text{tolerance (lift thickness)/12})}{9} \right\} \)
- \(t_{adj}\) = Adjusted thickness = \(\left\{ \frac{(Dt + \text{tolerance}) - \text{Actual thickness}}{\text{Design thickness}} \right\} \)
- \(Dt\) = Designed thickness (inches)

2-636B.5 Asphalt Adjustment Cost (dollars)

This adjustment is associated with the price of performance-graded binder component of HMA mixtures. The asphalt price adjustment will only be applied to HMA mixtures such as Class 1, 2 and 4, HMA S0.25, HMA S0.375, HMA S0.5 and HMA S1. The adjustment will be applied to the material on the period on which it was placed in accordance with the payment schedule of the HMA pay items. Asphalt adjustment will be made upward or downward only when the asphalt period price varies more than $5.00 from the asphalt base price. The Connecticut Department of Transportation will provide the Asphalt Price of the performance-graded binder. See Figure 2-6.30, Liquid Asphalt Adjustment Form.

2-636C Rideability Adjustment (dollars)

The rideability of the section of roadway will be taken after all the paving has been completed. This will produce a figure that will be used only once to adjust the payment for the complete roadway. See 2-630 for more information.

2-637 Pavement Rehabilitation

2-637A General

Pavement rehabilitation projects may involve drainage improvements, excavation or borrow material, sedimentation control, traffic control, or upgrading of guardrail and other safety devices. Work involved on rehabilitation projects must be of the same quality as new construction. Refer to the appropriate section in this Construction Manual for inspection guidelines for the item being inspected.

2-637B Inspection of Work Site Before Work Commences

Rehabilitation projects are often in built-up areas. Changes or improvements, such as buildings on adjacent properties, additional driveways, utility installations, and maintenance projects, completed since the original work was constructed, may not show on the plans. The designers may not have had time to check existing topography and site conditions while designing the rehabilitation project. Therefore, the Chief Inspector and project inspectors must anticipate these problems through pre-inspection to prevent conflicts during rehabilitation.
The following items should be completed before construction begins:

- Measuring of removal items before work commences is very important. Measure all removal items, guide rails, catch basin tops, HMA, granite or concrete curb, and the like, and record the measurements in the Volume III book for future payment on the Inspector's DWR.

- The pavement type and the extent of deterioration should be noted and the type of restoration agreed upon between the Chief Inspector and Contractor. Elevations may have to be taken for drainage or rideability purposes. Check for humps, dips and correct cross slope with string line or Locke level shots to determine if leveling courses will be necessary before beginning the main paving.

- Original ledge and earth sections should be checked and verified in the field and on the cross sections for correctness. It may also be necessary to take additional intermediate cross sections where the plan sections do not show actual field conditions.

- Check the elevations and condition of catch basin tops, manhole frames, and water and gas main gates to determine if they can be raised or must be reconstructed. Drainage structures may also have to be extended or rebuilt.

- Check for overhead clearances of utility lines, traffic and illumination lights, bridges, and signing structures. Allow for the increased elevation of the roadway due to any leveling and the overlay in determining if there will be insufficient clearance when the project is completed.

- Check for fixed objects versus the deflection rate for new guide rail. The railing may have to be beefed up or the type of rail changed. For example, a utility pole or other fixed object may be so close to the guide rail that the rail would deflect enough under impact for a vehicle to hit the pole.

- A tree meeting must be held at the project site, to review any tree removal and site clearing of vegetation. Make sure to invite Department project personnel, the designer (either Department or consultant), a roadside development representative, the Town or City Tree Warden and/or other municipal representative, a representative from the Department of Maintenance, and the District Construction Environmental Coordinator. Trees to be removed must be flagged for a minimum of five days before removal.

- The Contractor is required to submit a sedimentation and erosion control plan for the Engineer's approval. This plan must show the type of erosion control and proposed location of each item, as well as a maintenance schedule. Although placement of controls is depicted on plan sheets, adjustment may be needed to meet actual field conditions.

- After approval of the plan, installation of the controls will be done prior to any construction activities that will cause a disturbance of the surface and possible erosion problems.

- The profiles of the approaches to bridges must be checked for rideability and proper transitions. Overlaying the bridge may not be done in conjunction with the roadway overlay project. When bridge decks are not paved, milling the approaches is necessary to provide proper rideability. If the bridge and the approaches are on a vertical curve, milling for a greater distance from the bridge may be necessary to provide good rideability.

- Pedestrian and vehicle traffic normally must be carried through rehabilitation project work zones. The Inspector and Contractor should follow the traffic controls in the plans.
2-637C Inspection of HMA Prior to Overlay

The existing pavement must be repaired before a HMA overlay can be placed.

2-637D Repairs to Existing Bituminous Pavement

Defects in bituminous pavements that require repairs prior to overlaying include:

- Cracks,
- Alligator cracking,
- Potholes,
- Sags, dips, traffic ruts, and
- Bumps.

The methods of repairing these are detailed below.

2-637D.1 Crack Sealing

Any areas that will be milled should be delineated so these areas will not be crack sealed, as this would be a waste of time and money. Cracks are first cleaned of dirt, vegetation, and the like with compressed air. Only joints and cracks greater than $\frac{1}{8}$ in. (3 mm) wide are cleaned and sealed. Where possible, fill the cracks with paper rope to a level of 1 in. below the riding surface. Place the joint-seal material through a nozzle. The level of the sealer should not be greater than $\frac{1}{8}$ in. (3 mm) below the pavement surface.

Cracks over 1 in. (25 mm) wide are repaired using HMA S0.25, compacted into the crack.

2-637D.2 Alligator Cracking Pavement Repairs

Where the pavement has an area in which cracks are too numerous (alligator cracking) to repair, a thin overlay of HMA S0.25 will be necessary. These areas are usually in shoulder areas where the existing pavement thickness is thinner than the travel lanes. Truck climbing lanes are also susceptible to this.

2-637D.3 Pothole Repairs

Repairs to potholes, utility crossings or any depressions should be made at this time. Use a tack coat on all surfaces of the existing pavement to be repaired before placing the repair material.

2-637D.4 Leveling

After crack sealing repairs are made, check the existing pavement for depressions, rises or bumps that may require corrective work. Depressions may require leveling courses and rises or bumps may require milling to achieve a smooth and uniform pavement surface.

The self-leveling capability of paving machines does not eliminate the need for quality grading and preparation of the surface prior to placing the HMA.
Locating areas to be shimmed or milled requires some experience. First, visually check the pavement for areas where shims may be needed. Then utilize hand (Locke) levels, straightedges, rulers, and string lines to determine the type of repair needed—shimming or milling. Checking the existing pavement surface after a rain will make depressions that require corrective leveling easier to spot. The limits of these repair areas should be delineated with paint or keel and be noted on the IR with the depth and HMA mix to be used in the repair.

Depending on the depth of the shim courses, different HMA mixes may be utilized. Base, intermediate or surface material may be used for leveling. Agreements on the HMA mix to be used should be made beforehand between the Paving Inspector and the Contractor. A tack coat must be used prior to leveling.

When the surface of an existing pavement or old base is irregular, it must be brought to a uniform grade and cross section. A leveling course is used when the road surface is so irregular that it cannot be corrected with the normal leveling capabilities of the paver. Leveling wedges of HMA mix are used to level sags and depressions in an old pavement prior to the surface course paving operation. Leveling and wedging are normally used to correct short profile and cross section problems. They may also be used to change the profile of a roadway or cover a milled surface.

Leveling and wedging material must be placed in lifts to ensure compaction. The top of each lift should be parallel to the desired profile or cross section as shown in the top drawing in Figure 2-6.29. Determine the number and lengths of lifts by the allowable lift thickness and the depth of the area to be leveled. To prevent the edges of each leveling pass from reflecting through to the finished surface, it is very important to properly lute (or feather) the ends of each pass. Large aggregate should be removed and discarded.

Wedges are also used to reestablish crown on a tangent roadway or superelevation on a curve, as shown in the bottom drawing of Figure 2-6.29. The number of wedge courses necessary to rebuild the crown or superelevation depends on the total depth to be placed and the maximum aggregate size of the mix. As a rule of thumb, the minimum lift to be placed is four times the nominal maximum aggregate size of the mix. The nominal maximum aggregate size of a mix is in the mix designation. For example, HMA S0.5 level 3 has a nominal maximum aggregate size of $\frac{1}{2}$ inch or 0.5 inches.
Figure 2-6.29 Leveling and Wedging Examples

Correct Leveling

LIMITS OF FIRST PASS

LIMITS OF SECOND PASS

LIMITS OF THIRD PASS

Incorrect Leveling

Correct Wedging
2-637D.5 – Milling (Cold Plane Pavement Removal)

Cold plane pavement removal of HMA is the operation of removing an HMA overlay from a roadway surface or a structure to prepare it for a new surface treatment. This surface treatment is most likely an HMA overlay.

Contractors shall use self-propelled planning machines capable of loosening pavement material, accurately establishing profile grades within a tolerance of a ¼ inch. These machines shall have a positive means for controlling cross-slope elevations in order to allow placement of the overlay pavement to a uniform thickness. Bridges and other structures may require alternate methods of surface removal, it is recommended to remove HMA overlays from bridge decks by using fine milling equipment capable of uniformly removing the existing surface to depths required. This should be performed after a pre-survey of the overlay thickness has been determined. A pre-survey will limit damage to the bridge deck surface should a cold plane milling machine be used for overlay removal.

Always check contract plans and specifications to review any weight limits for the structures in question. When in doubt, contact the designer of record for clarification. The designer may want to review the catalog cut sheet for the equipment in question.

In response to the availability of different milling items the below delineate specialized milling practices with the intention of designating appropriate milling surfaces prior to resurfacing. It is recommended inspectors review plans against field conditions to assure the proper milling types are utilized.

MILLING OF HOT MIX ASPHALT (HMA) – (0- 4 INCHES) (0 TO 100 MM)
MILLING OF HOT MIX ASPHALT (HMA) – (OVER 4 TO 8 INCHES) (OVER 100 MM TO 200 MM)
MILLING OF HOT MIX ASPHALT (HMA) – (GREATER THAN 8 INCHES) (GREATER THAN 200 MM)

Milling should only be used for the following conditions where an overlay of 2 inch (50mm) or more of HMA overlay is proposed:
- Adjust cross slopes to improved storm event runoff
- To completely remove HMA over Portland Concrete Pavement
- Removal of HMA in excess of 4 inch depth

FINE MILLING (0 TO 4 INCHES) (0 TO 100 MM)

Fine milling should only be used for the following conditions where an overlay of 2 inch (50mm) or less of HMA overlay is proposed in order to limit the reflection of milled surface through the proposed overlay:
- To smooth heaved or rutted HMA (wash boarding)
- To plane off texture or seal coats
- The restoration of rideability to a roadway
- Adjust cross slopes to improved storm event runoff

MICRO-MILLING (0 TO 2 INCHES) (0 TO 50 MM)

Micro-milling should only be used for the following conditions, where an overlay is not anticipated:
- To smooth heaved or rutted HMA (wash boarding)
- To plane off texture or seal coats
- The restoration of rideability to a roadway
- Improvement of roadway friction coefficient

It is not the intention of this type of milling to be used for the complete removal of a HMA lift or course from a roadway or structure surface. Also, it is not recommended for HMA surface layer of less than 1.25 inch (32 mm) thick and for shoulders with an asphalt layer of 2 inches (50 mm) or less.
2-637E Repairs to Existing Concrete Pavements

Repairs to concrete pavements may be partial-depth patches or full-depth pavement replacement.

2-637E.1 Partial-Depth Patch Repairs

Partial-depth patch repairs are made with HMA. Only spalled areas in concrete pavements will be repaired. The area to be patched will be squared up by saw cutting to a depth of 1 in. (25 mm). The cuts will be made parallel and perpendicular to the direction of travel. The area within the saw cuts is then removed to solid concrete. Tack coat material must be brushed or sprayed into the patch area. HMA material is then compacted into the repair area. Delaminated areas are not repaired prior to overlays, so chain dragging, sounding, or any other means of detecting delaminated areas is not used.

Again, only visually spalled areas are to be repaired.

2-637E.1a Preparations

Before any existing concrete is removed, the Engineer will perform a visual inspection of the concrete pavement and designate areas where concrete removal is required. The Engineer will identify only the areas where surface distress is evident. Where several areas to be repaired are very close together, the Engineer may combine these individual patches into one large patch area. The minimum size area requiring preparatory work will be as specified in the contract documents. Smaller spalls are cleaned and filled with HMA S0.25.

The removal of deteriorated concrete will be accomplished by individual blunt-nosed pneumatic hammers, approved by the Engineer. Chisel-point pneumatic hammers are not permitted. The angle from the horizontal of the pneumatic hammers should not exceed 45 degrees. A chipping hammer may only be used for removing deteriorated concrete or existing poor-quality HMA patches. Pneumatic tools should not be placed in direct contact with reinforcing steel. Fillets at inside corners of intersecting limit lines must be carefully removed.

All deteriorated, loose or otherwise poor-quality concrete and HMA patch material must be removed. All exposed surfaces in the repair areas should be thoroughly cleaned of loose and foreign material by air blasting, water blasting, sandblasting, or other acceptable methods. All blasting operations should be performed using techniques approved by the Engineer. Blowing debris into the travel portion of the roadway is not permitted. The resulting surfaces should be free of loose particles, dust, oil, excess moisture, or any other substances. The Engineer will then visually inspect the hole to ensure that all of the loose or poor-quality materials have been removed. Any existing HMA patches that are in good condition should remain in place. Existing reinforcing steel that is damaged and/or corroded, or has insufficient cover, will be removed as directed by the Engineer. This steel will not be replaced.

Sound reinforcing steel, which is in the proper position in the slab, should be left in place. It must be cleaned of any dirt, oil, paint, grease and loose or thick rust before the area is patched.

2-637E.1b Tacking

A light overlapping spay of tack coat should be applied to the prepared area prior to placement of the HMA material. The tack coat should be placed in accordance with Article 4.06.03 of the Standard Specifications.
2-637E.1c Repairs

Prepared partial-depth areas should be filled and thoroughly compacted with HMA S0.25. HMA S0.25 should be placed in accordance with Section 4.06 of the Standard Specifications. The surface elevation of the HMA patch should be slightly higher than the surrounding concrete after compaction to allow for additional compaction under traffic.

In areas where joints or cracks require patching, the loose or deteriorated concrete or HMA should be removed as previously described and replaced with HMA S0.25. The remaining portion of the joint or crack should receive the following treatment:

- Thoroughly clean the crack, in conformance to Section 4.06 of the Standard Specifications.
- Place paper rope or backer rod in joints as specified in the contract documents.
- Any joint or crack with an opening 1 in. (25 mm) or greater should be filled and compacted with HMA S0.25 in accordance with Section M.04 of the Standard Specifications.
- Any joint or crack with an opening less than 1 in. (25 mm) should be filled with sealant material conforming to Section 4.06 of the Standard Specifications.

2-637E.2 Full-Depth Concrete Pavement Replacement

If, during the removal operation, the Engineer determines that the pavement has severely deteriorated or faulted to a point where full-depth repair is required, the specification entitled “Concrete Pavement Replacement for Roadway (Full Depth)” should be used. The Contractor may submit an alternate concrete removal method for approval by the Engineer. Milling the deteriorated surface in combination with pneumatic hammers is one such alternative. Carbide-tooth routing machines or diamond-blade grinders may be used.

Refer to the discussion and guidelines in Volume 2, Chapter 7 “Concrete Pavements.”

2-637E.2a Subbase and Subgrade Preparation

Preparation and repair of the subbase or subgrade is usually needed prior to full-depth concrete pavement replacement. Refer to Volume 2, Chapter 5 “Base Courses.”

2-637F HMA Overlay

When the surface of the existing pavement has been repaired and approved by the Engineer, the HMA overlay is placed. The HMA overlay is placed in accordance with Section 4.06 of the Standard Specifications. Refer to the section on HMA pavement beginning on Page 2-6.1 for the inspection procedures.

2-638 Bituminous Lip Curbing

2-638A General

The procedure for submittal of the mix formula for bituminous lip curbing by the Contractor or Producer and approval by the Department’s Material Testing Laboratory is the same as that for HMA pavement. Prior to the start of any curb work, the Paving Inspector should receive from the Laboratory an approved job mix formula for “Curb and Paved Ditch” construction.
Bituminous lip curbing should be machine-formed to the dimensions and shape indicated in the standard drawings. The Engineer may permit hand-laid curbing where machine work is impractical. Hand-laid curbing must conform to the same details as machine-formed curbing.

Before placing the curb, the pavement surface must be cleaned of all loose and foreign material. An offset string line should be established on the pavement at a distance from the face of curb recommended for the machine to be used. If it is necessary for the outside wheels to operate in the area behind the shoulder, the area is to be graded and compacted to a smooth surface. A light application of tack coat is to be applied to the pavement area under the curb base. Do not apply the tack material too wide or heavy since it may result in poor curb alignment or inadequate adhesion to the base.

Curbing should be installed as soon as possible after the roadway is overlayed to prevent the pavement being washed out during a rainstorm.

The curb should be backed up with borrow soon after the curb is placed. This borrow shoulder should be seeded as soon as possible to prevent erosion.

2-638B Machine Construction

The curbing machine should be inspected before the operation begins. Most lip curb machines consist of a hopper into which the mix is placed, a motorized worm gear or screw, and the curb mold form. The worm gear pushes the mixture out through the form under pressure. It is this pressure which provides the compaction required by the specifications. If the compaction is inadequate, the Inspector should check with the plant to determine that the mix is correct. The temperature of the mix should also be checked. A mix with a low temperature cannot be adequately compacted. If the temperature is too high, the curb may slough off during placing. The temperature specified on the design mix must be within the master range of 265 to 325 °F (129 to 163 °C). It may be possible to obtain additional compaction by placing additional weights on the machine, or holding back on the machine. Worn screws or dirty molds result in open-textured, scored curb surfaces. Bituminous lip curbing is subject to the same weather and temperature restrictions as HMA paving mixes. Each load of material should be checked several times while the material is being discharged.

The placing of the curbing should be as continuous as possible so as to avoid the need for curb joints. In forming joints, the contact surface of previously constructed curbs should be painted with a thin tack coat just prior to placing the fresh curb mix.

The machine should never be left running while waiting for the trucks. The vibrations from the machine can cause the curb already placed to slough and form a dip in the curb.

The alignment must be parallel to the edge of the pavement, and breaks in the alignment are not permitted. Care must be exercised when hand finishing at obstructions, such as catch basins, and also at the end of the curb, to see that the connection is smooth with good alignment and grade.

2-638C Hand Construction

If curbs are to be placed by hand, the curb mix must be placed immediately upon arrival, or it must be placed on platforms outside the area on which it is to be spread and then distributed into place. The mix should be shaped to the required cross section and compacted by iron tampers weighing not less than 12 lbs. (5 kg) and having a bearing area not exceeding 50 sq. in. (32,260 mm²).
2-638D Bituminous Concrete Driveway Aprons

Where the plans provide for bituminous driveway aprons with bituminous lip curbing, the lip curbing turn-ins should be paved first. This way when the driveway is paved, the roll of the driveway will meet the top of the curb as the design standards show.

The lip of the driveway at the gutter line should be as shown in the applicable standard detail.

2-638E Precautions

The surface of the curbing should be tested with a 10 ft. (3 m) straightedge laid parallel with the centerline of the road, and any variation exceeding ¼ in. (6 mm) will be corrected.

After completion of the curbing, traffic will be kept at a safe distance for a period of not less than 24 hours, and until the curbing has set sufficiently to prevent injury to the work.
Form 2-6.1 Prepaving Meeting Agenda

PREPAVING MEETING

Date: _______________ Location: ______________________________________

Project No.: ___________ Rte. /Town: ______________________________________

Termini: ______________________________________

Proj. Eng. /Supvr.: _______________ Phone: _____________________________
C.I. /Gen. Supvr.: _______________ Phone: _____________________________
Inspector(s): ______________________________________

Prime contractor: ______________________________________
Supt.: ___________________________ Phone: _____________________________

Paving Contractor: ______________________________________
Supt.: ___________________________ Phone: _____________________________
QC/QA Rep.: ___________________________ Phone: _____________________________

Plant(s): Primary: _______________ Location: ___________________________
 Backup: _______________ Location: ___________________________

Milling Contractor: _______________ Start Date: _______________
Supt.: ___________________________ Phone: _____________________________

Project information: Spec.: ____ Supplement Date: _______________

Special Provisions: ______________________________________

PAVEMENT STRUCTURE:

<table>
<thead>
<tr>
<th>Class/Type/Level</th>
<th>Depth</th>
<th>Start Date</th>
<th>Work</th>
<th>hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wedge:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binder:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expected Completion Date of all Paving: _____________________________
PrepaVing Meeting (continued)

Cancellation Procedure:
- **Cancel Time:** _________ AM / PM
- **Contact – DOT:** ________________ Phone: __________________
- **Contractor:** ________________ Phone: __________________

Production/Placement:
- **Paving length:** ________________ **No. lanes/passes:** ________________
- **Tons/Day:** ________________ **Tons/Hours:** ________________
- **Haul time:** ________________ **No. Trucks:** ________________

- **Paver:** Brand/Model: __________________
- **Special Attachments:** __________________
- **Rollers:**
 - **Breakdown:** __________________
 - **Intermediate:** __________________
 - **Finish:** __________________

- **Transfer Unit:** Yes / No If yes, type: __________________
- **Tack Coat Supplier & Distributor:** __________________
- **Compaction Testing by:** __________________

Cold Weather Paving (Oct. 15 to Apr. 30)
- **Approval given:** Yes / No **By whom?** __________________
- **Procedure Attached:** Yes / No

Notes:

Table 2-6.1 Mat Troubleshooting Guide

Mat Tearing- Full Width of Mat

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Excessive Speed</td>
<td>1) Have Quality Control manager paving foreman slow paver</td>
</tr>
<tr>
<td>or</td>
<td>2) Correct at plant</td>
</tr>
<tr>
<td>2) Unstable mix (temp., aggregate, etc.)</td>
<td>3) Extend lift</td>
</tr>
<tr>
<td>3) Screed lift not fully extended</td>
<td>4) Replace</td>
</tr>
<tr>
<td>4) Screed plate worn out</td>
<td>5) Check burners-review heating procedures</td>
</tr>
<tr>
<td>5) Cold Screed</td>
<td>6) Increase mat depth; change to design with smaller maximum</td>
</tr>
<tr>
<td>6) Paving thinner than largest aggregate mix</td>
<td></td>
</tr>
<tr>
<td>nominal aggregate size</td>
<td></td>
</tr>
<tr>
<td>7) Material too cold</td>
<td>7) Correct at plant</td>
</tr>
<tr>
<td>8) Excessive moisture in mix</td>
<td>8) Correct at plant</td>
</tr>
<tr>
<td>9) Strike-off too low</td>
<td>9) Raise strike-off</td>
</tr>
<tr>
<td>10) Strike-off too low or in low position</td>
<td>10) Adjust</td>
</tr>
<tr>
<td>11) Strike-off too high or in high position</td>
<td>11) Adjust</td>
</tr>
<tr>
<td>12) Pre-strike off too low</td>
<td>12) Adjust</td>
</tr>
<tr>
<td>13) Vibrator running too slow</td>
<td>13) Increase Vibration</td>
</tr>
</tbody>
</table>

Mat Tearing-Center (Before Rolling)

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Not enough lead crown</td>
<td>1) Adjust as needed</td>
</tr>
<tr>
<td>2) Flow gates closed down too far</td>
<td>2) Adjust gates</td>
</tr>
<tr>
<td>3) Worn screed plate</td>
<td>3) Replace screed plate</td>
</tr>
<tr>
<td>4) Kick back on augers worn off</td>
<td>4) Replace or repair</td>
</tr>
<tr>
<td>5) Segregation in mix</td>
<td>5) Check hauling, dumping procedures & plant operation</td>
</tr>
<tr>
<td>6) Cold screed</td>
<td>6) Check burners-review heating procedures</td>
</tr>
<tr>
<td>7) Strike-off too low or in low position</td>
<td>7) Adjust</td>
</tr>
<tr>
<td>8) Strike-off too high</td>
<td>8) Adjust</td>
</tr>
<tr>
<td>9) Pre-strike off too low</td>
<td>9) Adjust</td>
</tr>
</tbody>
</table>
Table 2-6.1 Mat Troubleshooting Guide (continued)

Mat Tearing- Quarter Points

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Cold Screed</td>
<td>1) Check burners-review heating procedures</td>
</tr>
<tr>
<td>3) Cold material</td>
<td>3) Correct at plant</td>
</tr>
<tr>
<td>4) Aggregate larger than mat depth</td>
<td>4) Increase mat depth; change to mix design with smaller nominal maximum aggregate size</td>
</tr>
<tr>
<td>5) Extensions incorrectly installed</td>
<td>5) See machine operator’s manual</td>
</tr>
<tr>
<td>6) Auger worn out</td>
<td>6) Replace augers</td>
</tr>
</tbody>
</table>

Mat Tearing- Edges

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) End plate not square</td>
<td>1) Adjust as needed</td>
</tr>
<tr>
<td>2) Cold material build-up at end of augers</td>
<td>2) Extend augers</td>
</tr>
<tr>
<td>3) Extensions installed incorrectly</td>
<td>3) Reinstall extensions</td>
</tr>
<tr>
<td>4) Flow gates closed down too far</td>
<td>4) Adjust gates</td>
</tr>
<tr>
<td>5) Pre-strike off too low</td>
<td>5) Adjust</td>
</tr>
</tbody>
</table>

Material Tearing- Outside (Before Rolling)

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Too much lead crown</td>
<td>1) Adjust</td>
</tr>
<tr>
<td>2) Cold screed</td>
<td>2) Check burner- review heating procedures</td>
</tr>
<tr>
<td>3) Flow gates open too high</td>
<td>3) Adjust gates</td>
</tr>
<tr>
<td>4) Paving thinner than largest aggregate</td>
<td>4) Increase mat depth; change to mix design with smaller nominal maximum aggregate size</td>
</tr>
<tr>
<td>5) Extensions installed incorrectly</td>
<td>5) Reinstall extensions</td>
</tr>
<tr>
<td>6) Cold material building up at end of augers</td>
<td>6) Extend augers</td>
</tr>
<tr>
<td>7) Strike-off too low or in low position</td>
<td>7) Adjust</td>
</tr>
<tr>
<td>8) Strike-off too high or in high position</td>
<td>8) Adjust</td>
</tr>
<tr>
<td>9) Pre-strike off too low</td>
<td>9) Adjust</td>
</tr>
</tbody>
</table>
Mat Tearing - Behind Main Screed with Extensions Retracted

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Extensions too low in front of main screed</td>
<td>1) Adjust up</td>
</tr>
</tbody>
</table>

Loose Streak in Center of Mat

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Insufficient lead crown</td>
<td>1) Adjust as needed</td>
</tr>
<tr>
<td>2) Worn augers or kickback paddles</td>
<td>2) Repair or replace</td>
</tr>
<tr>
<td>3) Flow gates too low</td>
<td>3) Adjust as needed</td>
</tr>
<tr>
<td>4) Augers worn out</td>
<td>4) Replace augers</td>
</tr>
</tbody>
</table>

Screed Rises at Each Take Off

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Overloaded augers</td>
<td>1) Machine adjustment</td>
</tr>
<tr>
<td></td>
<td>a. Auger speed</td>
</tr>
<tr>
<td></td>
<td>b. Flow gates</td>
</tr>
<tr>
<td>2) Augers worn out</td>
<td>2) Repair or replace augers</td>
</tr>
<tr>
<td>3) Waiting too long between loads</td>
<td>3) Have Quality Control properly balance the paving operation</td>
</tr>
<tr>
<td>4) Varying mix temperatures</td>
<td>4) Inform Quality Control personnel at plant</td>
</tr>
<tr>
<td>5) Grade sensor mounted at tow point</td>
<td>5) Move back on side arm</td>
</tr>
<tr>
<td>6) Strike-off too high or in high position</td>
<td>6) Adjust</td>
</tr>
</tbody>
</table>

Screed Marks

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Trucks bumping paver</td>
<td>1) Inform Quality Control manager or paving foreman; train truck drivers</td>
</tr>
<tr>
<td>2) Waiting too long between loads</td>
<td>2) Have Quality Control properly balance the paving operation</td>
</tr>
<tr>
<td>3) Screed lift not fully extended</td>
<td>3) Extend lift</td>
</tr>
<tr>
<td>4) Fluctuating head of material</td>
<td>4) Check flow gate openings, auger & conveyor</td>
</tr>
<tr>
<td>auger & speed</td>
<td>Check flow gate openings, auger & conveyor</td>
</tr>
<tr>
<td>speed, paver speed</td>
<td>speed, paver speed</td>
</tr>
<tr>
<td>5) Cold screed</td>
<td>5) Review/check screed heaters & heating procedures.</td>
</tr>
<tr>
<td>6) Strike-off too low or in low position</td>
<td>6) Adjust</td>
</tr>
<tr>
<td>7) Pre-strike off too low</td>
<td>7) Adjust</td>
</tr>
<tr>
<td>Transition Lines Between Screed & Extensions</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>POSSIBLE CAUSE</td>
<td>CURE</td>
</tr>
<tr>
<td>1) Extensions set too high or low</td>
<td>1) Adjust height of extensions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voids In Extension Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSSIBLE CAUSE</td>
</tr>
<tr>
<td>1) Extension starved for material</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bright Streak Down Center of Mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSSIBLE CAUSE</td>
</tr>
<tr>
<td>1) Too much lead crown</td>
</tr>
<tr>
<td>2) Flow gates too high</td>
</tr>
<tr>
<td>3) Augers worn out</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auger Shadows</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSSIBLE CAUSE</td>
</tr>
<tr>
<td>1) Overloaded augers</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2) Flow gates too high</td>
</tr>
<tr>
<td>3) Worn augers</td>
</tr>
<tr>
<td>4) Segregation in mix</td>
</tr>
</tbody>
</table>
Ripples

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Fluctuating head of material</td>
<td>1) Check flow gate openings, auger & conveyor speed, paver speed</td>
</tr>
<tr>
<td>2) Augers overloaded</td>
<td>2) Machine adjustment</td>
</tr>
<tr>
<td>3) Electronic control hunting</td>
<td>a. Auger speed</td>
</tr>
<tr>
<td>4) Flow gates open too high</td>
<td>b. Flow gates</td>
</tr>
<tr>
<td>5) Paver speed in excess</td>
<td>3) Check electronic controls</td>
</tr>
<tr>
<td>6) Loose or worn depth crank assembly</td>
<td>4) Adjust as needed</td>
</tr>
<tr>
<td>7) Roller in poor mechanical condition</td>
<td>5) Have Quality Control manager or paving foreman slow paver</td>
</tr>
<tr>
<td>8) Worn augers</td>
<td>6) Repair, tighten or replace</td>
</tr>
<tr>
<td>9) Unstable mix</td>
<td>7) Repair or replace</td>
</tr>
<tr>
<td>10) Too much lead crown</td>
<td>8) Repair or replace</td>
</tr>
<tr>
<td>11) Not enough lead crown</td>
<td>9) Correct at plant</td>
</tr>
<tr>
<td>12) Trucks holding brakes</td>
<td>10) Adjust screed</td>
</tr>
<tr>
<td>13) Screed lift not fully extended</td>
<td>11) Adjust screed</td>
</tr>
<tr>
<td>14) Temperature of mix varying</td>
<td>12) Inform Quality Control manager or paving foreman; train drivers</td>
</tr>
<tr>
<td>15) Strike-off too low or in low position</td>
<td>13) Extend lift</td>
</tr>
<tr>
<td>16) Strike-off too high or in high position</td>
<td>14) Inform Quality Control personnel at plant</td>
</tr>
<tr>
<td>17) Pre-strike off too low</td>
<td>15) Adjust</td>
</tr>
<tr>
<td></td>
<td>16) Adjust</td>
</tr>
<tr>
<td></td>
<td>17) Adjust</td>
</tr>
</tbody>
</table>

Wavy Surface- Long

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Running hopper empty between loads</td>
<td>1) Train operator & adjust paver speed</td>
</tr>
<tr>
<td>2) Fluctuating head of material</td>
<td>2) Check flow gate openings, auger & conveyor speed, paver speed</td>
</tr>
<tr>
<td>3) Augers overloaded</td>
<td>3) Machine adjustment</td>
</tr>
<tr>
<td>4) Temperature of mix varying</td>
<td>a. Auger speed</td>
</tr>
<tr>
<td>5) Screed lift not fully</td>
<td>b. Flow gates</td>
</tr>
<tr>
<td>6) Over-correction of depth cranks</td>
<td>4) Inform Quality Control personnel at plant</td>
</tr>
<tr>
<td>7) Worn augers</td>
<td>5) Extend lift</td>
</tr>
<tr>
<td></td>
<td>6) Review correct procedures</td>
</tr>
<tr>
<td></td>
<td>7) Repair or replace</td>
</tr>
</tbody>
</table>
Wavy Surface- Long (continued)

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8) Flow gates closed down too far</td>
<td>8) Adjust gates</td>
</tr>
<tr>
<td>9) Segregation in mix</td>
<td>9) Check hauling & dumping procedure & plant operation</td>
</tr>
<tr>
<td>10) Waiting too long between loads</td>
<td>10) Have operator properly balance the paving operation</td>
</tr>
</tbody>
</table>

Wavy Surface- Short

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Electronic control hunting</td>
<td>1) Check electronic controls</td>
</tr>
<tr>
<td>2) Fluctuating head of material</td>
<td>2) Flow gate openings, auger & conveyor speed, consistent paver speed</td>
</tr>
<tr>
<td>3) Augers overloaded</td>
<td>3) Auger speed; flow gates</td>
</tr>
<tr>
<td>4) Temperature of mix varying</td>
<td>4) Inform Quality Control personnel at plant</td>
</tr>
<tr>
<td>5) Flow gates closed down too far</td>
<td>5) Adjust gates</td>
</tr>
<tr>
<td>6) Unstable mix</td>
<td>6) Correct at plant</td>
</tr>
<tr>
<td>7) Trucks holding brakes</td>
<td>7) Inform Quality Control manager or paving foreman; train drivers</td>
</tr>
<tr>
<td>8) Loose or worn depth crank assembly</td>
<td>8) Repair, tighten, or replace</td>
</tr>
<tr>
<td>9) Worn augers</td>
<td>9) Repair or replace</td>
</tr>
<tr>
<td>10) Segregation in mix</td>
<td>10) Check hauling & dumping procedure & plant operation</td>
</tr>
<tr>
<td>11) Roller in poor mechanical condition</td>
<td>11) Repair or replace roller</td>
</tr>
</tbody>
</table>

Hair Line Cracks

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Poor rolling procedures</td>
<td>1) Check roller manufacturer recommendations</td>
</tr>
<tr>
<td>2) Augers overloaded</td>
<td>2) Auger speed; flow gates</td>
</tr>
<tr>
<td>3) Excessive moisture in mix</td>
<td>3) Correct at plant</td>
</tr>
<tr>
<td>4) Fluctuating head of material</td>
<td>4) Auger speeds; flow gates; consistent paver speeds</td>
</tr>
<tr>
<td>5) Excessive speed</td>
<td>5) Have Quality Control manager or paving foreman slow paver</td>
</tr>
<tr>
<td>6) Unstable mix</td>
<td>6) Correct at plant</td>
</tr>
</tbody>
</table>
Table 2-6.1 Mat Troubleshooting Guide (continued)

<table>
<thead>
<tr>
<th>Possible Cause</th>
<th>Cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor Longitudinal Joints</td>
<td></td>
</tr>
<tr>
<td>1) Delay in rolling</td>
<td>1) Improve coordination</td>
</tr>
<tr>
<td>2) Over-correction of depth cranks</td>
<td>2) Review correct procedures</td>
</tr>
<tr>
<td>3) Overloaded augers</td>
<td>3) Auger speed; flow gates</td>
</tr>
<tr>
<td>4) End plate not square</td>
<td>4) Adjust as needed</td>
</tr>
<tr>
<td>5) Head of material varying</td>
<td>5) Auger speed; flow gates; consistent paver speed</td>
</tr>
<tr>
<td>6) Overlapping joint too much</td>
<td>6) Review correct procedures</td>
</tr>
<tr>
<td>Poor Transverse Joints</td>
<td></td>
</tr>
<tr>
<td>1) Incorrect milling procedure</td>
<td>1) Review and follow proper milling specification</td>
</tr>
<tr>
<td>2) Over-correction of depth cranks</td>
<td>2) Review correct procedures</td>
</tr>
<tr>
<td>3) Poor rolling operation</td>
<td>3) Review correct procedures</td>
</tr>
<tr>
<td>4) Augers overloaded</td>
<td>4) Machine adjustment</td>
</tr>
<tr>
<td></td>
<td>a. Auger speed</td>
</tr>
<tr>
<td></td>
<td>b. Flow gates</td>
</tr>
<tr>
<td>5) Screed lift not fully extended</td>
<td>5) Extend lift</td>
</tr>
<tr>
<td>7) Varying mix temperature</td>
<td>7) Inform Quality Control personnel at plant</td>
</tr>
<tr>
<td>8) Cold Screed</td>
<td>8) Check screed heaters & review heating procedures</td>
</tr>
<tr>
<td>9) Not rolling joint soon enough</td>
<td>9) Review correct procedures</td>
</tr>
<tr>
<td>10) Material too cold</td>
<td>10) Correct at plant</td>
</tr>
<tr>
<td>11) Incorrect joint preparation</td>
<td>11) Review recommended procedures</td>
</tr>
<tr>
<td>12) Fluctuating head of material</td>
<td>12) Machine adjustment</td>
</tr>
<tr>
<td></td>
<td>a. Auger speed</td>
</tr>
<tr>
<td></td>
<td>b. Flow gates</td>
</tr>
<tr>
<td></td>
<td>c. Consistent paver speed</td>
</tr>
<tr>
<td>Bleeding</td>
<td></td>
</tr>
<tr>
<td>1) Excessive moisture in mix</td>
<td>1) Correct at plant</td>
</tr>
<tr>
<td>2) Poor rolling operation</td>
<td>2) Review correct procedures</td>
</tr>
<tr>
<td>3) Excessive tack coat</td>
<td>3) Correct tack application</td>
</tr>
<tr>
<td>4) Vibrator running too fast</td>
<td>4) Reduce vibration</td>
</tr>
<tr>
<td>5) Eccentric weights set incorrectly</td>
<td>5) Reset</td>
</tr>
<tr>
<td>6) Strike-off too low or in low position</td>
<td>6) Adjust</td>
</tr>
<tr>
<td>7) Strike-off too high or in high position</td>
<td>7) Adjust</td>
</tr>
<tr>
<td>8) Pre-strike off too low</td>
<td>8) Adjust</td>
</tr>
</tbody>
</table>
Table 2-6.1 Mat Troubleshooting Guide (continued)
Screed Rides Nose Down

POSSIBLE CAUSE

1) Screed depth crank improperly set
2) Screed depth crank bearings badly worn
3) Forward area of screed plate badly worn
4) Strike-off too high or in high position
5) Pre-strike off set too high

CURE

1) Adjust for correct angle of attack
2) Replace bearings
3) Replace screed plate
4) Adjust
5) Make adjustment as outlined in machine operators manual

Unable to Control Screed

POSSIBLE CAUSE

1) Screed lift not fully extended
2) Cold screed
3) Paving thinner than largest aggregate
4) Unstable mix
5) Loose or worn depth crank assembly
6) Strike off too high or in high position
7) Pre-strike off set too high

CURE

1) Extend lift
2) Check screed heaters & review heating procedures
3) Increase mat depth; change to mix design with smaller aggregate
4) Correct at plant
5) Repair, tighten or replace
6) Adjust
7) Make adjustment as outlined in machine operators manual

Pushing Under Roller

POSSIBLE CAUSE

1) Poor roller operation
2) Unstable mix
3) Pre-strike off too low

CURE

1) Review rolling procedures
2) Correct at plant
3) Adjust

Unsatisfactory Compaction

POSSIBLE CAUSE

1) Poor roller operation
2) Vibrator running too slow
3) Eccentric weights set incorrectly

CURE

1) Review rolling procedures
2) Increase vibration
3) Adjust

Example 2-6.1 HMA ADJUSTMENTS:

Adjustments may be applied to bituminous concrete quantities and will be measured for payment using
the following formulas’

Yield Factor for adjustment calculation = 0.0575 tons/sy/inch
Actual Area = (Measured Length ft. x Avg. of width measurements ft.)
Actual Thickness (t) = total tons delivered/(Actual Area sy x 0.0575 tons/sy/inch)

Project Example

Two lanes road overlay
HMA S 0.5 (with +/- ¼” tolerance), From Table 2
2” lift
Plan width = 42 ft. (2) 12 ft. Lanes
(1) 10 ft. Shoulder
(1) 8 ft. Shoulder

Field Widths = 42.3’, 42.6’, 42.5’, 42.6’, 42.4’
Avg. field width (Wavg.) = 42.48 ft.

Field Length (L) = 2,100 ft. (measured)

Tons Delivered (no waste) = 1,325.68 tons

A) **Tons Adjusted for Area (T_A)** = [(L x W_adj)/9] x (t in.) x 0.0575 tons/sy/inch

W_adj = (Design width + tolerance) – Avg. field width
= (42’ + 2’/12) – 42.48’ = -0.31 ft.

Actual Thickness (t) =
Total tons delivered / (Actual Area sy x 0.0575 tons/sy/inch)

Actual Area = (Measured Length ft. x Avg. field width ft.) / 9
= (2,100’ x 42.48’) / 9 = 9,912 sy

Actual Thickness (t) = 1,325.68 tons / (9,912 sy x 0.0575 tons/sy/inch)
= 2.32 inch

Tons Adjusted for Area (T_A) = [(2,100’ x -0.31’)/9] x 2.32” x 0.0575 tons/sy/inch
= - 9.65 tons
Example 2-6.1 HMA ADJUSTMENTS:

B) Tons Adjusted for Thickness (T_T) = $A \times T_{adj} \times 0.0575$ tons/sq/inch

$$A = \text{Area} = \frac{[L \times (\text{design width ft.} + \text{tolerance ft})]}{9} = \frac{[2,100' \times (42' + 2'/12)]}{9} = 9,839.67 \text{ sy}$$

$$T_{adj} = \text{Adjusted thickness} = (D_t + \text{tolerance}) - \text{Actual thickness}$$

$$T_{adj} = (2'' + 0.25'') - 2.32'' = -0.07''$$

Tons Adjusted for Thickness (T_T) = $9,839.67 \text{ sy} \times 0.07 \text{ inch} \times 0.0575 \text{ tons/sy/inch}$

$$= -39.60 \text{ tons}$$

C) Tons Adjusted for Weight (T_W) = GVW – DGW = (-) tons

If the quantity of Bituminous Concrete representing the mixture delivered to the project is in excess of the allowable Gross Vehicle Weight (GVW) for each vehicle, an adjustment will be made using the above formula:

Where: DGW = Delivered Gross Weight as shown on the delivery ticket or measured on a certified scale.

For example:

$$\text{GVW} = 21.15 \text{ tons and DGW} = 23.25 \text{ tons}$$

Tons Adjusted for Weight (T_W) = $21.15 - 23.25$

$$= -2.1 \text{ tons}$$

D) Mixture Adjustment:

1) Marshall Design

Tons Adjusted for Marshall Design (T_{MD}) = $M \times 0.10$

Where: M = Tons of Bituminous Concrete mixture exceeding tolerances in Table 3.

Division of Material testing will provide the amount of Bituminous Concrete mixture to be adjusted

Example: $M = 500.0 \text{ tons}$

Tons Adjusted for Marshall Design (T_{MD}) = 500.0×0.10

$$= -50.0 \text{ tons}$$
Example 2-6.1 HMA ADJUSTMENTS:

(2) Superpave Design

Division of Material testing will provide the amount of HMA to be adjusted for Air Void and Liquid Binder based on Tables 3A and 3B.

Tons Adjusted for Superpave Design (T_{SD}) = $(AV_a + AP_b) \times \text{Tons}$

Example:

\begin{align*}
\text{Tons applied} &= 525.0 \quad \text{HMA, S0.5, Level 2} \\
V_a &= 2.8 \\
\text{According to Table 3A,} \\
AV_a &= -5.0 \% \\
\text{Pb} &= 5.0 \% \\
AP_b &= 0.0 \\
\text{According to Table 3B} \\
AP_b &= 0.0
\end{align*}

\begin{align*}
T_{SD} &= (-5.0\% + 0.0) \times 525.0 \text{ tons} \\
&= -26.25 \text{ tons}
\end{align*}

E) Density Adjustment

Density will be adjusted for each Lot (non-bridge and bridge) according to Table 4

\begin{align*}
\text{Tons Adjustment for Density (T_D)} &= \left[(PA_M \times 0.40) + (PA_J \times 0.60) \right] \times \text{Tons accepted} \\
\text{Example:} \\
\text{Tons accepted} &= 575.0 \\
\text{Mat Density} &= 94.5 \%, \text{ Joint Density} = 92.8 \%
\end{align*}

\begin{align*}
\text{Tons Adjustment for Density (T_D)} &= \left[(2.5\% \times 0.40) + (0.0 \times 0.60) \right] \times 575.0 \text{ tons} \\
&= 5.75 \text{ tons}
\end{align*}

Total HMA Adjustment

\begin{align*}
&= [T_A + T_T + T_W + (T_{MD \text{ or } T_{SD}}) + T_D] \times \text{HMA Unit Price} \\
&= \text{Est.}
\end{align*}

Where: Est.=Pay unit represented in dollars representing HMA incentive or disincentive.
TABLE 2-6.2 - Thickness Tolerances

<table>
<thead>
<tr>
<th>Mixture Designation</th>
<th>Lift Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 4 and HMA S1</td>
<td>+/- 3/8 inch</td>
</tr>
<tr>
<td>Class 1, 2 and 12 and HMA S0.25, S0.375, S0.5</td>
<td>+/- ¼ inch</td>
</tr>
</tbody>
</table>

TABLE 2-6.3

TOLERANCES FOR CONSECUTIVE TESTS (MARRSHALL)

<table>
<thead>
<tr>
<th>Classes</th>
<th>Criteria</th>
<th>% Tolerances (+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Binder</td>
<td>0.4</td>
</tr>
<tr>
<td>1, 2, 4, 5, 5A & 5B</td>
<td>#200</td>
<td>2.0</td>
</tr>
<tr>
<td>1, 2, 4</td>
<td>#50</td>
<td>4</td>
</tr>
<tr>
<td>1, 2, 5, 5A & 5B</td>
<td>#30</td>
<td>5</td>
</tr>
<tr>
<td>1, 2, 4, 5, 5A & 5B</td>
<td>#8</td>
<td>6</td>
</tr>
<tr>
<td>1, 2, 4, 5, 5A & 5B</td>
<td>#4</td>
<td>7</td>
</tr>
<tr>
<td>1, 2, 4, 5, 5A & 5B</td>
<td>3/8 & ½ inch</td>
<td>8</td>
</tr>
</tbody>
</table>

TABLE 2-6.3A

ADJUSTMENT VALUES FOR AIR VOIDS (SUPERPAVE)

<table>
<thead>
<tr>
<th>Adjustment Value (AVa) (%)</th>
<th>HMA S0.25, S0.375, S0.5, S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2.5</td>
<td>3.5 - 4.5</td>
</tr>
<tr>
<td>0.0</td>
<td>3.0 - 3.4 or 4.6 - 5.0</td>
</tr>
<tr>
<td>-5.0</td>
<td>2.7 - 2.9 or 5.1 - 5.3</td>
</tr>
<tr>
<td>-10.0</td>
<td>2.3 - 2.6 or 5.4 - 5.7</td>
</tr>
<tr>
<td>-20.0</td>
<td>≤ 2.2 or ≥ 5.8</td>
</tr>
</tbody>
</table>

TABLE 2-6.3B

ADJUSTMENT VALUES FOR LIQUID BINDER (SUPERPAVE)

<table>
<thead>
<tr>
<th>Adjustment Value(APb) (%)</th>
<th>HMA S0.25, S0.375, S0.5, S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Equal to or above the min. liquid content</td>
</tr>
<tr>
<td>-10.0</td>
<td>Below the min. liquid content</td>
</tr>
</tbody>
</table>
TABLE 2-6.(M.04.03–5) SUPERPAVE MINIMUM BINDER CONTENT
BY MIX TYPE & LEVEL.

<table>
<thead>
<tr>
<th>Mix Type</th>
<th>Level</th>
<th>Binder Content Minimum (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0.25</td>
<td>1*</td>
<td>5.6</td>
</tr>
<tr>
<td>S0.25</td>
<td>2</td>
<td>5.5</td>
</tr>
<tr>
<td>S0.25</td>
<td>3</td>
<td>5.4</td>
</tr>
<tr>
<td>S0.375</td>
<td>1*</td>
<td>5.6</td>
</tr>
<tr>
<td>S0.375</td>
<td>2</td>
<td>5.5</td>
</tr>
<tr>
<td>S0.375</td>
<td>3</td>
<td>5.4</td>
</tr>
<tr>
<td>S0.5</td>
<td>1*</td>
<td>5.0</td>
</tr>
<tr>
<td>S0.5</td>
<td>2</td>
<td>4.9</td>
</tr>
<tr>
<td>S0.5</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>S1</td>
<td>1*</td>
<td>4.6</td>
</tr>
<tr>
<td>S1</td>
<td>2</td>
<td>4.5</td>
</tr>
<tr>
<td>S1</td>
<td>3</td>
<td>4.4</td>
</tr>
</tbody>
</table>

* NOTE: Level 1 for use by Towns and Municipalities ONLY.

TABLE 2-6.4
ADJUSTMENT VALUES FOR PAVEMENT DENSITY

<table>
<thead>
<tr>
<th>Average % Density</th>
<th>% Adjustment for non-bridge lots</th>
<th>% Adjustment for bridge lots</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.1 – 100</td>
<td>-2.5</td>
<td>- 2.5</td>
</tr>
<tr>
<td>94.5 – 97.0</td>
<td>+2.5</td>
<td>+2.5</td>
</tr>
<tr>
<td>92.0 – 94.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>91.0 – 91.9</td>
<td>-2.5</td>
<td>- 10.0</td>
</tr>
<tr>
<td>89.1 – 90.9</td>
<td>-15.0</td>
<td>- 30.0</td>
</tr>
<tr>
<td>87.0 – 89.0</td>
<td>-30.0</td>
<td>- 50 or Remove and Replace</td>
</tr>
<tr>
<td>86.9 or less</td>
<td>Remove and Replace</td>
<td>Remove and Replace</td>
</tr>
</tbody>
</table>
Form 2-6.19 Nuclear Density Tests (Sample)

NUCLEAR DENSITY TESTS - BITUMINOUS CONCRETE
BUREAU OF ENGINEERING AND HIGHWAY OPERATIONS
(302-664-0736)

<table>
<thead>
<tr>
<th>PROJECT NO.:</th>
<th>19-93</th>
<th>SENT TO:</th>
<th></th>
<th>LAB NO.:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRICT:</td>
<td>6</td>
<td>CONTRACTOR:</td>
<td>Tilcon / Foreman: Ron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOWN:</td>
<td>Brooklyn</td>
<td>PROJECT ENGINEER:</td>
<td>Mike Wilson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASS:</td>
<td>SP. 12.5, Level 3</td>
<td>MATERIAL FROM:</td>
<td>Tilcon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPACING REFERENCE LINE:</td>
<td>ft</td>
<td>LOCATION:</td>
<td>Wauregan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT IN POUNDS:</td>
<td>2,543</td>
<td>TEST DATE:</td>
<td>Thurs, September 22, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT IN TONS:</td>
<td>58.81</td>
<td>WEATHER CONDITIONS:</td>
<td>Clear Sky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TESTED BY:</td>
<td>Paul Machinski</td>
<td>BASE TYPE:</td>
<td>Bituminous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST MODE:</td>
<td>AC</td>
<td>BASE CONDITION:</td>
<td>Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAUGE NO.:</td>
<td>350</td>
<td>RECOMMENDED PAVING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE DENSITY:</td>
<td>92.6</td>
<td>STANDARD COUNTS:</td>
<td>30 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE MOIST. DENSITY:</td>
<td>91.9</td>
<td>DENSITY:</td>
<td>22754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATION:</td>
<td>352+00RT</td>
<td>MOISTURE:</td>
<td>14628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSITY PERCENT:</td>
<td>91.0</td>
<td>90.2</td>
<td>92.1</td>
<td>92.1</td>
<td>94.2</td>
</tr>
<tr>
<td>AVERAGE PERCENT:</td>
<td>90.6</td>
<td>92.1</td>
<td>94.0</td>
<td>92.3</td>
<td>92.6</td>
</tr>
<tr>
<td>STATION:</td>
<td>352+00RT</td>
<td>353+30RT</td>
<td>356+06RT</td>
<td>358+45RT</td>
<td>360+98RT</td>
</tr>
<tr>
<td>TEST LOCATION</td>
<td>Right Shoulder O/S 2 feet left of right edge.</td>
<td>Right Shoulder, O/S. 5 feet left of right edge.</td>
<td>Right Lane, O/S. 10 feet left of right edge.</td>
<td>Right Shoulder, O/S. 3 feet left of right edge.</td>
<td>Right Lane, O/S. 10 feet left of right edge.</td>
</tr>
<tr>
<td>DENSITY PERCENT:</td>
<td>92.9</td>
<td>92.4</td>
<td>93.4</td>
<td>92.9</td>
<td>92.3</td>
</tr>
<tr>
<td>AVERAGE PERCENT:</td>
<td>92.7</td>
<td>93.2</td>
<td>92.8</td>
<td>91.3</td>
<td>94.2</td>
</tr>
<tr>
<td>STATION:</td>
<td>354+07LT</td>
<td>355+52LT</td>
<td>357+58LT</td>
<td>359+73LT</td>
<td>362+19LT</td>
</tr>
<tr>
<td>TEST LOCATION</td>
<td>Left Lane, O/S. 22 feet left of right edge.</td>
<td>Left Lane, O/S. 15 feet left of right edge.</td>
<td>Left Lane, O/S. 20 feet left of right edge.</td>
<td>Left Lane, O/S. 23 feet left of right edge.</td>
<td>Left Lane, O/S. 23 feet left of right edge.</td>
</tr>
</tbody>
</table>

LONGITUDINAL JOINT COMPACTION TESTS

<table>
<thead>
<tr>
<th>TEST</th>
<th>TEST LOCATION</th>
<th>TEST LOCATION</th>
<th>TEST LOCATION</th>
<th>TEST LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.10</td>
<td>90.3</td>
<td>352+00RT</td>
<td>90.4</td>
<td>90.7</td>
</tr>
<tr>
<td>AVG. = 90.7</td>
<td>92.5</td>
<td>358+45RT</td>
<td>91</td>
<td>91.3</td>
</tr>
<tr>
<td>AVG. = 92.3</td>
<td>92.6</td>
<td>355+52LT</td>
<td>90.7</td>
<td>89.7</td>
</tr>
<tr>
<td>AVG. = 92.3</td>
<td>94.1</td>
<td>362+19LT</td>
<td>93.5</td>
<td>93.8</td>
</tr>
</tbody>
</table>

REMARKS: REQUIRED PASSING DENSITIES: 92 - 97% (Mat.) Joint (90 - 97%)

Volume 2
2-6.68
ver. 2.2 (Jan 2011) Bituminous Pavements
Form 2-6.19 Nuclear Density Tests (Sample) (Continued)

<table>
<thead>
<tr>
<th>PAVER MFG:</th>
<th>CAT 1066B.</th>
<th>PAVER TYPE (WHEEL OR TRACK):</th>
<th>wheel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLLER:</td>
<td></td>
<td>WEIGHT:</td>
<td>12 ton</td>
</tr>
<tr>
<td>NO. 1</td>
<td>Dual steel drum Vibratory</td>
<td>MANUFACTURER:</td>
<td>Hymac 766C</td>
</tr>
<tr>
<td>NO. 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO. 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER OF PAVING Lanes:</td>
<td>two</td>
<td>WIDTH OF EACH LANE:</td>
<td>7 - 13 feet</td>
</tr>
<tr>
<td>LENGTH OF DAYS PAVING:</td>
<td>1500+/+ feet</td>
<td>TOTAL LENGTH OF JOB:</td>
<td></td>
</tr>
<tr>
<td>TACK COAT (YES / NO):</td>
<td>Yes</td>
<td>DISTRIBUTION METHOD:</td>
<td></td>
</tr>
<tr>
<td>UNIFORM DISTRIBUTION (YES / NO):</td>
<td>Yes</td>
<td>GRAVITY:</td>
<td></td>
</tr>
<tr>
<td>PRESSURIZED:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Approximately 1200 tons of superpave 12.5 bituminous was placed at a thickness of 2 inches and compacted using one dual steel drum vibratory roller. Contractor could not provide an additional operator for this day. The plant was down for approximately three hours due to the mix was off-test. Method of locating test site. 1500 feet of paving divided by 5 tests/line = 300 feet X random number.

<table>
<thead>
<tr>
<th>ROLLING BY ROLLER NO.</th>
<th>NUMBER OF PASSES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLLER NO. 1</td>
<td>6</td>
<td>Four in the vibratory mode, two in the static mode.</td>
</tr>
<tr>
<td>ROLLER NO. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROLLER NO. 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACCEPTABLE COMPACTION OBTAINED: YES: X NO:
WAS LAST PART OF EACH LINE PASS SUFFICIENTLY COMPACTED: YES: X NO:

NOTICE: THIS SECTION TO BE COMPLETED ONLY BY NUCLEAR DENSITY TECHNICIAN.

ACCEPTABLE COMPACTION WAS NOT OBTAINED BECAUSE OF:
- [] INSUFFICIENT ROLLING
- [] INSUFFICIENT NUMBER OF ROLLERS
- [] OTHER (EXPLAIN)
- [] WRONG WEIGHT ROLLERS
- [] MATERIAL COLD, OR ALLOWED TO COOL
- [] DEFICIENT BASE
- [] MIX PROBLEMS

COMMENTS (EXPLANATION IS MANDATORY IF DENSITY IS LESS THAN SPECIFIED):

NAME OF NUCLEAR DENSITY TECHNICIAN: Paul Machinski

SIGNATURE: Paul Machinski
Form 2-6.25 Final Pavement Evaluation Report

Unit 596-PAT
Rev. 6/03

Note: This report is required for all projects with a top course of 2,500 tons or more.

FINAL PAVEMENT EVALUATION REPORT

District No. ______ Project No. ______ Route/Town: ________________________________

Project Engineer: __________________ Chief Inspector: ____________________________

Pavement Information (Top Course)

Paving Contractor: ___________ Class: ______ Depth: ________________

Date Started: ___________ Date Completed: ________________

Plant(s) used: ___________

Drum ______ Silo Used? ______

Batch ______ Silo Used? ______

Dates of evaluation: ________________ Reviewer(s): ____________________________

Pavement Rating System: 1= Excellent 2= Good 3=Fair 4= Requires Repair*

<table>
<thead>
<tr>
<th>Rating</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
<td></td>
</tr>
</tbody>
</table>

A. **Pavement Appearance (overall)**

1) Segregation (Rating of 1 = none or minimal)

Check next to type, if present: ______Truck End ______Centerline ______Joint/Edge ______Random

2) Surface Appearance (overall)

Check next to type, if present: ______Shadows (center/outside) ______Cracks ______Flashing ______Rutting

____Roller marks/lines ______Screed marks/lines ______Fuel/solvent spills ______Non-uniformity

3) Joint Construction (overall) - note excessive handwork, bump, cracks, etc.

Transverse (excessive handwork, bumps, etc.) ______

Longitudinal (excessive handwork, cracking, etc.) ______

4) Rideability (overall)

Transfer Device Used?

B. **Other Problems Encountered – Circle examples**

1) Mix condition: Overheated / Cold / Dry / Tender (cracks when rolled) / Bleeding / difficult to compact / Inconsistent-nonuniform

2) Was any paving done during: Rain / Cold (under 40°F or 10°C) / Surface damp or wet

3) Compaction/Density: Difficult / Easy to achieve

4) Paving Delays due to: Insufficient Equip. / Equip. Breakdown / Plant Breakdown / Traffic / Waiting for Trucks

- If repairs are required has the contractor been notified?

Page 1
Form 2-6.25 Final Pavement Evaluation Report (con't.)

Unit 590- PAT

Note: This report is required for all projects with a top course of 2,500 tons or more.

Additional Comments:

Submitted By: ______________________

Approved By: ______________________

Cc:
Form 2-6.26 Weekly HMA Production Report

WEEKLY HMA PRODUCTION FOR DISTRICT 2 CONSTRUCTION

Week of Monday: September 19, 2005 through Sunday September 25, 2005

<table>
<thead>
<tr>
<th>Date</th>
<th>Project</th>
<th>Producer / Plant</th>
<th>Material</th>
<th>Call in Tons</th>
<th>Tons Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/19/2005</td>
<td>19-92</td>
<td>Tilcon, Wauregan</td>
<td>SP - .5(L3)</td>
<td>400</td>
<td>161</td>
</tr>
<tr>
<td>9/20/2005</td>
<td>19-92</td>
<td>Tilcon, Wauregan</td>
<td>SP - .5(L3)</td>
<td>1200</td>
<td>1040</td>
</tr>
<tr>
<td>9/21/2005</td>
<td>19-92</td>
<td>Tilcon, Wauregan</td>
<td>SP - .5(L3)</td>
<td>1200</td>
<td>970</td>
</tr>
<tr>
<td>9/22/2005</td>
<td>19-92</td>
<td>Tilcon, Wauregan</td>
<td>SP - .5(L3)</td>
<td>1200</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td>558</td>
</tr>
<tr>
<td>9/19/2005</td>
<td>19-92</td>
<td>Tilcon, Wauregan</td>
<td>SP - 1.5(L3)</td>
<td>600</td>
<td>558</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td>80</td>
</tr>
<tr>
<td>9/19/2005</td>
<td>40-123</td>
<td>American, Jewett City</td>
<td>Class 2</td>
<td>80</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td>80</td>
</tr>
<tr>
<td>9/21/2005</td>
<td>40-127</td>
<td>Tilcon, Montville</td>
<td>Class 1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTALS: 4700 3607
Form 2-6.27 Base & Bituminous Concrete Inspection Report (Form CON-136)

Section 1: Location
- **Plant Location:**
- **State:**
- **County:**
- **City:**
- **Project No.:**
- **Weather:**
- **Air Temperature:**
- **Surface:**

Section 2: Measurements
Width Measurements
- **Station:**
- **Plan Width:**
- **Field Width:**

Depth Measurements
- **Station:**
- **Plan Depth:**
- **Field Depth:**

Air Temperatures
- **Station:**
- **Temperature:**

Section 3: Materials
Item No.
- **Item Description:**
- **Quantity:**
- **Recl.:**
- **Batch/No.:**
- **VTone Received:**
- **VTone Used:**
- **Waste:**

Section 4: Paving Work Force and Equipment
- **Paving Work Force:**
- **List of Inspectors Assisting in Operation:**
- **No. of Tickets by Class:**
 - **No.:**
 - **No.:**
 - **No.:**
 - **No.:**

Section 5: Inspector's Signature
- **Inspector's Signature:**
- **Reviewed by:**
 - **Chief Inspector**
 - **Project Engineer**
- **Inspector's Hours of Work:**
 - **Start:**
 - **End:**
- **Lane Closures:**
- **Contractor's Hours of Work:**
 - **Start:**
 - **End:**
- **Day of Week:**
- **Date:**
- **I.R.B.:**
Form 2-6.27 Base & Bituminous Concrete Inspection Report (Form CON-136) (continued)

<table>
<thead>
<tr>
<th>Tons Rejected</th>
<th>Ticket No.</th>
<th>Class</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Waste: Show computation if over 10 t (10 tons). If material is used elsewhere on project document purpose, reason and item number material was paid under.

Sketch and Theoretical Computations:

Checked by ____________________
Form 2-6.28 Adjustment Schedule for Bituminous Concrete Form

SEE APPROVED FORMS FOLDER FOR LATEST VERSION
Form 2-6.30 Liquid Asphalt Adjustment Form

ASPHALT ADJUSTMENT
Item No. 0406999A (2/9/04 special provision)

The asphalt price adjustments will be paid on a monthly or semi-monthly basis in accordance with the payment estimate schedule for bituminous concrete pay items.

No adjustment will be made unless the difference between the posted Asphalt Base Price and Asphalt Period Price exceeds $5.00.

| Percentage of Performance-Graded Binder (PG%): | 1: For HMA mixtures listed as Class 1 and Superpave 12.5mm (0.50 inch), the PG% applied = 6.0
2: For HMA mixtures listed as Class 2 and Superpave 9.5mm (0.375 inch) and Superpave 6.25mm (0.25 inch) the PG% = 6.0
3: For HMA mixtures listed as Classes 4 and Superpave 37.5mm (1.5 inch), the PG% = 4.0 |

(HMA): Hot Mix Asphalt - The quantity (tons or metric tons) of accepted HMA measured for payment for the payment estimate period in which an adjustment applies.

(ABP): Asphalt Base Price - The average selling price per standard ton or metric ton, F.O.B., which is posted by the Department of Transportation and is in effect the Wednesday that is 28 days prior to actual bid opening.

(APP): Asphalt Period Price - The average selling price per standard ton or metric ton, F.O.B., which is posted by the Department of Transportation, and is in effect on the last day of payment estimate period in which the HMA mixture is subject to adjustment.

Website INTRANET Address for Asphalt Base and Period Prices is at the following link:
http://opndot/asphalt/asphalt.aspx

Formula: HMA x ((PG%) / 100) x (Asphalt Period Price - Asphalt Base Price) = $

<table>
<thead>
<tr>
<th>HMA</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG%</td>
<td>0.0</td>
</tr>
<tr>
<td>APP</td>
<td>$0.00</td>
</tr>
<tr>
<td>ABP</td>
<td>$0.00</td>
</tr>
<tr>
<td>Total Payment =</td>
<td>No Adjustment Necessary</td>
</tr>
</tbody>
</table>

Prepared by:
Form 2-6.31 Sample Letter Requesting Load Factor Rating Analysis

STATE OF CONNECTICUT
DEPARTMENT OF TRANSPORTATION
OFFICE OF CONSTRUCTION

subject: Bridge Analysis Request
Office of Construction
Project no. XXXX-XXXX
Project Description, Town

Memorandum
date:

to: Project Designer
Bureau of Engineering and
Highway Operations

from: Project Engineer
Bureau of Engineering and
Highway Operations

Project XXXX-XXXX requires the use of the Material Transfer Vehicle on the project and a Load Factor Rating Analysis is required for all structures that the equipment may be required to traverse over during the paving operation. Please have a Load Factor Rating Analysis performed for the structures listed below and transmit information to this office on whether any restrictions will apply.

<table>
<thead>
<tr>
<th>Route</th>
<th>Direction</th>
<th>Structure No.</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A sample of a loading schematic for transfer vehicle is attached. The loading analysis is using the assumption that the Road Tec Shuttle Buggy SB2500 will be used.

Cc: Lewis S. Cannon – James Connery - Liaison
James Norman – State or CE Unit for Project
Bridge Design Unit for Project
DE-ADE
Project Engineer – Chief Inspector
Terri Thompson - PAT
ATTACHMENT - SAMPLE ANALYSIS FOR PROJECT

BRIDGE NO. 00186

LOAD FACTOR RATING SUMMARY

<table>
<thead>
<tr>
<th>MATERIAL TRANSFER VEHICLE</th>
<th>OPERATING FACTOR</th>
<th>OPERATING TONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.84</td>
<td>117.5</td>
</tr>
</tbody>
</table>

LOAD FACTOR RATING SUMMARY

<table>
<thead>
<tr>
<th>MATERIAL TRANSFER VEHICLE</th>
<th>OPERATING FACTOR</th>
<th>OPERATING TONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.88</td>
<td>122.7</td>
</tr>
</tbody>
</table>

TRUCK MATERIAL TRANSFER VEHICLE PAVER

<table>
<thead>
<tr>
<th>9.6'</th>
<th>4.1'</th>
<th>4.5'</th>
<th>18'</th>
<th>14.33'</th>
<th>24.75'</th>
<th>3'</th>
<th>6.5'</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5K</td>
<td>18K</td>
<td>22.5K</td>
<td>22.5K</td>
<td>63.7K</td>
<td>64.9K</td>
<td>18K</td>
<td>16K</td>
</tr>
</tbody>
</table>

84.78'
Form 2-6.31 Sample Letter Requesting Load Factor Rating Analysis (continued)

BRIDGE NO. 00188 (SOUTHBOUND)

EXISTING FASCIA BEAM - NOW INTERIOR BEAM (W30x108)

LOAD FACTOR RATING SUMMARY

<table>
<thead>
<tr>
<th>MATERIAL TRANSFER VEHICLE</th>
<th>OPERATING FACTOR</th>
<th>OPERATING TONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.29</td>
<td>179.7</td>
</tr>
</tbody>
</table>

EXISTING INTERIOR BEAM (W30x116)

LOAD FACTOR RATING SUMMARY

<table>
<thead>
<tr>
<th>MATERIAL TRANSFER VEHICLE</th>
<th>OPERATING FACTOR</th>
<th>OPERATING TONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.33</td>
<td>185.9</td>
</tr>
</tbody>
</table>

NEW INTERIOR BEAM (W30x124)

LOAD FACTOR RATING SUMMARY

<table>
<thead>
<tr>
<th>MATERIAL TRANSFER VEHICLE</th>
<th>OPERATING FACTOR</th>
<th>OPERATING TONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.22</td>
<td>309.7</td>
</tr>
</tbody>
</table>

TRUCK MATERIAL TRANSFER VEHICLE PAVER

- TRUCK: 9.6' x 4.1' x 4.5' x 18' x 14.3' x 24.75' x 3' x 6.5'
 - 13.5K 18K 22.5K 22.5K 63.7K 64.9K 18K 18K

- MATERIAL TRANSFER VEHICLE: 84.78'

- PAVER: 38.5K
Chapter 7 - Concrete Pavements

2-701 New Pavement

Concrete pavement consists of a mixture of portland cement, fine and coarse aggregate, and water. Additives may be used to entrain air in the concrete or to retard set. Fly ash may be used to replace part of the portland cement. The pavement may be reinforced with steel fabric or bars.

There are two basic types of concrete plants. Central mix plants proportion and mix the concrete. Dry batch plants only proportion the ingredients of the concrete; the concrete is mixed in trucks. Either of the two types of plants may furnish concrete for a paving project.

The pavement is supported by the subgrade and subbase. Volume 2, Chapter 5, “Base Courses,” covers these two subjects. Because the quality of the subgrade and subbase are very important in concrete paving, selected parts of subgrade and subbase construction are covered in this chapter, as well.

There are two basic methods of placing and finishing concrete pavements: side-form paving and slip-form paving. Stationary forms are used in side-form paving. The forms are built to the line and grade of the finished pavement, and the paving equipment rides on the forms. Slip-form paving usually uses string lines for line and grade. The paving units are equipped with sensors that run along the string lines. Concrete is contained by short side-forms built into the paving equipment. Both of the two basic methods are included in the chapter.

Before the concrete is placed, the subgrade is prepared, and the subbase is constructed. Forms or string lines are set, depending on the type of paving operation. Steel dowels are put in position at joints. The concrete is mixed at a central plant or in a truck mixer. While the concrete is being placed, joints are formed, and steel reinforcement is placed, if it is required. After the concrete is placed and its surface is finished, it must be cured and protected from damage while it gains strength. Before the highway is opened to traffic, the joints must be sealed.

2-702 Specifications and Plans

2-702A Specifications

Article 4.01 of Standard Specifications contains information about the mixing of concrete for pavements and the methods of construction for placing and finishing concrete pavements, as well as the methods of measurement and bases of payment for the associated contract items. Article M.03 of the Standard Specifications contains information about the materials used for concrete mixes, and Article M.06.01 addresses steel reinforcement. The contract special provisions and the Standard Specifications are binding on both the State and contractor in the performance of the work.

2-702B Plans

Contract plans provide information related to roadway pavements:

- The typical cross sections show the location, depth, width, and class of pavement to be constructed.
- The plan sheets provide a visual representation of the roadway and the width of the roadway at specific stations.
- The cross sections show finished pavement line and grade by station.
2-703 Inspection Team

The Chief Inspector assembles a paving team consisting of Concrete Inspectors, Form Inspectors, Paving Inspectors, and Finishing Inspectors. The team should be organized as far in advance of the actual paving as practicable. The Chief Inspector should make all members of the paving team aware of their specific duties and make certain they are familiar with the contract specifications.

The Chief Inspector is responsible for the performance and quality of the work, the inspection service, and the inspection personnel assigned to the project. Because of the many operations being performed during the paving phase of the work and the time limitations imposed on them, complete cooperation between the members of the paving team and the Chief Inspector is required.

2-704 Mix Request

Annually, the Central Laboratory approves the operation of all concrete batch plants that will furnish concrete to DOT projects. Additionally, all materials to be incorporated in concrete mixes are tested for approval. The Laboratory designs the standard DOT concrete mixes for each concrete plant. If the concrete for the paving project is furnished from an approved plant, the Chief Inspector should obtain a copy of the approved mixes. An example mix design is shown in Figure 2-7.1.

The contractor may deviate from the approved mixes or use an unapproved plant, such as a batch plant at the construction site. All mix changes require Laboratory approval. Unapproved plants require Laboratory approval and mix designs.

The Chief Inspector should check the contract special provisions for special requirements on additives, aggregate size, cement, and air content. For a mix design, the volume of the batch should not exceed the manufacturer's rated capacity of the drum by more than 10 percent.

2-705 Materials Control

Material sampling requirements are in the publication “Schedule of Minimum Requirements for Sampling Material for Test,” published by the Division of Materials Testing. The “Schedule” shows who samples a material, the location from which samples are taken, and the frequencies of sampling. A Request for Test form (MAT-100) must accompany all samples, Certified Test Reports, Material Certificates, and items on the Approved Product List that are submitted to the Laboratory. The Request for Test form is discussed in Volume 1, Chapter 4, “Materials Testing,” where a form example can be found.

The Chief Inspector sees that samples of all materials to be incorporated in the work, except materials tested at their sources, are forwarded to the Materials Testing Division as soon as the materials arrive on the job. If a material is to be tested at its source, the Inspector sends a Request for Test form (MAT-100) to the District Laboratory. The Laboratory representative for the District takes the sample.

Materials cannot be used until a favorable test report is received from the Materials Testing Division or until the Engineer gives written permission. The State does not pay for work in which unapproved materials are used.
Figure 2-7.1 Mix Design

PORTLAND CEMENT CONCRETE MIX DESIGN

<table>
<thead>
<tr>
<th>Last Revision Date:</th>
<th>April 2003</th>
<th>Producer:</th>
<th>Tilton CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class:</td>
<td>PAVEMENT</td>
<td>Location:</td>
<td>Herford</td>
</tr>
</tbody>
</table>

Coarse Aggregate

<table>
<thead>
<tr>
<th>Type:</th>
<th>Traprock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>Tilton CT</td>
</tr>
<tr>
<td>Location:</td>
<td>Newington</td>
</tr>
</tbody>
</table>

Fine Aggregate

<table>
<thead>
<tr>
<th>Type:</th>
<th>Washed Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>Tilton CT</td>
</tr>
<tr>
<td>Location:</td>
<td>Granby</td>
</tr>
</tbody>
</table>

Location: Cement

<table>
<thead>
<tr>
<th>Type:</th>
<th>l/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>St Lawrence</td>
</tr>
<tr>
<td>Location:</td>
<td>Catskill NY</td>
</tr>
</tbody>
</table>

BATCH INFORMATION

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
<th>Unit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>615</td>
<td>lb</td>
<td>365</td>
</tr>
<tr>
<td>Water</td>
<td>285</td>
<td>lb</td>
<td>169.1</td>
</tr>
</tbody>
</table>

Coarse Aggregate:

<table>
<thead>
<tr>
<th>Size</th>
<th>Amount</th>
<th>Unit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>825</td>
<td>lb</td>
<td>489</td>
</tr>
<tr>
<td>#6</td>
<td>625</td>
<td>lb</td>
<td>371</td>
</tr>
<tr>
<td>#8</td>
<td>525</td>
<td>lb</td>
<td>311</td>
</tr>
</tbody>
</table>

Fine Aggregate:

<table>
<thead>
<tr>
<th>Amount</th>
<th>Unit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1126</td>
<td>lb</td>
<td>669</td>
</tr>
</tbody>
</table>

Approved Admixtures: Darex II, WCCA w/hycem

1. All weights (masses) are in pounds for one cubic yard (kg for one cubic meter) of concrete.
2. One gallon of water weighs (has a mass of) 8.33 lbs. (3.78kg).
3. Mix design is based on the weight (mass) of dry aggregate (i.e., the delivered aggregate weight (mass) will be adjusted due to moisture and the amount of water will be decreased).
4. “Batch batches” used for the coating of washed truck mixers shall be in accordance with section 6.01.03(b) of the Standard Specifications, and shall be reflected on the batch ticket.
5. Original mix design from the producer has been approved and is on file at the Division of Materials Testing, 280 Wesl Street, Rocky Hill, Connecticut 06067.
2-706 Batching and Mixing Equipment

There are two basic types of concrete plants:

- Dry-batch plants proportion the ingredients of the concrete but do not mix the concrete. The concrete is mixed in trucks.

- Central-mix plants proportion and mix the concrete.

Most central-mix plants are automated. There are a few that are not automated, but they are used infrequently. Dry-batch plants are not common in Connecticut. They are used on occasion for limited concrete pavement operations. Generally, they serve as backup plants. Truck-mixed or transit-mixed concrete may be used only with the written permission of the Engineer for limited amounts of pavement and for exceptional cases.

The Chief Inspector is responsible for seeing that batching and mixing equipment is inspected and approved as meeting the requirements of the contract specifications. The Inspector performs much of the required inspection, although parts of the inspection must be performed by other agencies or divisions of the Department. For example, batch-plant scales are sealed by the Department of Consumer Protection, Weights and Measures. As mentioned, the Division of Materials Testing approves all batch plants.

2-707 Plant Personnel

The District is responsible for furnishing Batch Inspectors if they are needed. Automated central-mix plants that are approved by the Laboratory do not require Batch Inspectors. Approved nonautomated plants and dry-batch plants require oversight from Batch Inspectors during the start of operations, when changes are made in the mix, and when the Chief Inspector considers it necessary.

Batch-plant personnel and Inspectors must become familiar with and must enforce Article 4.01.03 of the Standard Specifications and the rules and procedures that have been set up by the Department governing the control of batching operations. Batch-plant personnel cannot waive any rules or requirements set up by the Department for the control of batching operations. They cannot change the mix, except for adjustments to compensate for variations in water content of the materials. The Chief Inspector should be consulted immediately on any question about the performance of the contractor or operations connected with the plant.

2-708 Truck Mixers

Truck mixers must be certified by the National Ready Mix Concrete Association or approved equal. Certification stickers, verifying approval, will be located on the drivers side door of all certified vehicles.

If the use of truck mixers and truck-mixed or transit-mixed concrete is allowed, the provisions of the Standard Specifications must be applied fully. The Chief Inspector or the Concrete Inspector must check to ensure that each truck mixer has been inspected and approved by the Division of Materials Testing and become familiar with Article 4.01.03–C of the Standard Specifications.

2-709 Preliminary Checks

The Inspector should conduct preliminary checks of labor for finishing the pavement, miscellaneous tools for placing and finishing, and sampling and testing equipment. The checks should be performed well in advance of the paving operations to allow sufficient time to correct items that do not pass inspection. If cold weather is expected, the
Inspector should check that the proper provisions are on hand.

2-710 Finishing Labor

The Inspector should check the staffing for the concreting operation with the contractor to see if sufficient finishers are assigned to satisfactorily complete the pavement as it is placed. For guidance, the Inspector can compare the actual staffing with the material submitted by the contractor regarding placement and finishing.

2-711 Placing and Finishing Tools

The following tools must be on hand, checked, and approved before paving work starts:

- fine-grade template (scratch board),
- form gauge
- transverse expansion and contraction joints,
- joint caps,
- large square for setting bulkheads and transverse joints,
- vibrators for consolidating concrete along the sides of the forms,
- two concrete spades or two immersion-type high-frequency vibrators,
- a hand-operated screed that can be used in case of breakdown of the finishing machine,
- a burlap drag for finishing,
- material for foot bridges,
- $\frac{3}{4}$ in. \times 1$\frac{1}{2}$ in. (19 mm \times 38 mm) spring-steel strips to serve as guides for finishing the expansion joints,
- a device for forming joints,
- at least three lutes of an approved type,
- a master straightedge,
- two 10 ft. (3 m) aluminum straightedges,
- edging tools,
- a hose line or watering carts for curing, and
- curing mats.

The Inspector should check the dimensions and trueness of the fine-grade template and form gauge. All lutes and straightedges should be checked with a string or wire before the operation starts and each morning afterward.
2-712 Testing Equipment

The Inspector should ensure that the following equipment is immediately available for use:

- a slump cone and 5/8 in. (16 mm) bullet-pointed rod, including suitable platform;
- an air meter or scales and a calibrated container for determining the air content of the concrete;
- at least six cylinder molds; and
- a set of dies and brass tags.

The Inspector should check these items frequently during the project to ensure that deficiencies are promptly corrected.

2-713 Cold Weather Provisions

If cold weather procedures are in effect, sufficient protection material must be on hand, together with approved means to heat water, aggregates, and the contents of the mixer drum, before paving work can proceed. If liquid membrane curing compound is used, a water bath apparatus must be provided, if necessary, to bring the material to the consistency required for application.

2-714 Subgrade

The subgrade acts as a support for the pavement structure. It must be properly shaped and compacted, and the elevation should agree with plan profile and cross-section sheets. The primary concern is to develop an embankment surface that provides firm, uniform support for the subbase and pavement.

All loose rock or boulders over 5 in. (125 mm) must be removed or broken off to a depth of not less than 12 in. (300 mm) below subgrade. The depressions made by removing the large rocks or boulders should be filled with suitable material and satisfactorily compacted.

Trouble areas should be corrected prior to placing subbase. All soft, yielding, unstable material should be removed. The work may involve excavation in fill areas, if there is an indication that the material near the surface is retaining moisture, or it may involve additional excavation in cut areas and the use of a greater subbase depth. It may indicate the need for an underdrain installation. If the surface of the embankment is low, be selective in the type of material used to bring it to grade.

The subgrade must be brought to the required elevation and thoroughly compacted with a power roller weighing not less than 10 tons (9,100 kg) or with an equivalent vibratory roller.

2-715 Subbase

Granular subbase material must conform to the requirements of Grade B, from Article M.02.06 of the Standard Specifications, and should be placed in layers not exceeding 6 in. (150 mm) after compaction. The subbase should be compacted with the correct type of compaction equipment. If hauling is done over the surface, it is important to have the traffic distributed evenly.
The Inspector should watch for hard spots in the travelway and soft spots along the edges. If water is applied, the equipment should begin working while conditions are optimum. Scarify or remove the top surface, if it develops an impervious skin because of traffic, concentration of fine soil, and/or puddling action of surface water. Tighten up soft areas with coarse material.

If slip-form paving is used, the contractor must, at no cost to the State, stabilize the subbase on which the pavement is placed and the travel path of the paver. The travel path must not vary more than 3/16 in. (5 mm) from the established grade.

In addition to increasing the structural support for the pavement, the subbase should improve the drainage of the pavement and intercept the upward flow of water caused by capillary action. The Inspector should check the plans for the location of subbase depth changes and eliminate any potential water traps by providing outlets.

If subbase is placed in cut sections, the Inspector must be sure that the underdrains provided for extra depth sections are functioning such that no water is trapped below the subbase. If suitable underdrains were not provided, they must be installed before any concrete is placed.

The grade of the subbase should be left slightly on the high side. The subbase should never be left low so that it is necessary to place material along or under the forms to raise them to the desired grade. The subbase should be brought up to just above fine-grade level prior to beginning form work. The slight excess of material is then removed during the fine grading and form setting operations and disposed of outside of the lane area.

The contractor is required to protect the subbase against the action of the elements or any damage resulting from construction activities. The contractor must provide for draining surface water from the subbase at all times. After the forms are placed, the contractor must take care to prevent water from collecting on the subbase and softening the subbase or forming muddy pockets.

2-716 Side Forms

2-716A Reference Line

The Inspector must use an offset longitudinal grade line as a reference line to check the location of the actual form line. Following the semifinal grading of the subbase material, the survey party establishes an offset longitudinal grade line parallel to the roadway base line, centerline, or lane lines.

2-716B Form Condition

When the forms are first spread out, the Chief Inspector assigns the Concrete Inspector to straightedge each individual form to ensure that each form is free of warps and bends. The top surface must not show a deviation from a straight line of more than 1/8 in. (3 mm) in 10 feet (3 m). The lateral deviation must not exceed 1/4 in. (6 mm) per 10-ft. (3-m) section of form. The form locks must be checked to ensure that the forms can be properly locked together when set.

If the forms are bent, twisted, or have irregularities of any kind, the Inspector must order them removed from the work until the defects are corrected. If necessary, the Inspector should mark the forms needing repair with paint. Forms must be clean of all dirt, concrete particles, and rust. Approval of the forms on another project is no reason to accept them.

2-716C Bracing Pins

At least three bracing pins are used to anchor a section of form. The size and length of the pins is important. The requirements vary with differing subsoil materials. However, the pins must be of sufficient size and length to hold the...
forms firmly in the required position. If the forms show movement during the first placing of concrete, or through use of a fine grading machine, the size and length of the pins are one of the chief items of possible correction.

2-716D Wooden Forms

A wooden form usually is made of well-seasoned lumber of adequate thickness and of a width equal to the depth of the pavement to be placed against it. The form must be thoroughly pinned and braced so that deviations in the line or grade of the completed pavement do not exceed the allowance of the specifications.

2-716E Sharp Curves

If a curve is so sharp that the use of standard steel forms will result in a series of chords, wooden forms or acceptable metal forms must be used. Saw cuts are made at frequent intervals, when necessary, in wooden forms to obtain the true curvature. For a sharp curve, the Inspector must not approve the use of standard steel forms and then depend on the finisher to edge a true line at peaks of the curve. It cannot be done satisfactorily.

2-716F Line and Grade

Before placing the forms, the alignment and grade of the lane, as indicated by the concrete stakes, are transferred to steel pins placed on the actual form line. Offset measurements are made, and the pins are placed for line so that the outer face of a pin is on the edge of the lane. Grades are transferred, and the form grade is marked on the pins with a sharp keel or scratch mark. Masons line, free from knots, is attached at grade elevation and stretched from pin to pin. The line should be carefully checked by eye for any minor irregularities or kinks in either alignment or grade. The string line closely represents the top inside edge of the forms. A slight lateral allowance usually must be made for the longitudinal keyway.

At points of intersection, change of pavement widths or other special joints, a special form layout must be planned so that no featheredge is left. For this reason, it generally is necessary to build the beginning of the flare or taper with the nearest adjacent lane. This special construction should be planned to extend 12 in. (300 mm) or more outside the normal lane edge. An example layout is shown in Figure 2-7.2.

When placing forms adjacent to a completed lane, a grade line should be used. Elevation checks should be made using the completed lane as a grade line, applying the pavement crown or superelevation.

2-716G Form Placement

Forms are set only after the subbase is properly prepared, including the area under the forms. The Inspector must ensure that forms rest firmly on a prepared surface throughout their entire length and width.

The form area is excavated by hand to pavement depth below the string, and each section of form is placed in its approximate position. When a few hundred feet (hundred meters) of forms have been placed, final adjustment is made to the positions of the forms.

Before any concrete is placed, the forms must be in proper alignment and grade for at least 500 ft. (150 m) in advance of a single-lane-width paving operation. The Chief Inspector may allow some deviation from this rule. However, the Inspector may never permit concrete to be mixed and placed if less than 350 ft. (100 m) of forms are properly set in advance of the strike-off machine. If less than 350 ft. (100 m) are ready for pavement, the paving operation must be shut down until the form work is carried ahead at least the initial 500 ft. (150 m). The Chief Inspector must report deviations from the rule to the Project Engineer. The number of deviations should be kept to a minimum.
When approaching or leaving horizontal or vertical curves, the Inspector must ensure that sufficient forms are set ahead to make a satisfactory transition.

The surfaces of all forms that come in contact with the concrete must be thoroughly cleaned and lightly coated with oil. Leaning forms or forms sprung into line are removed and reset.

When paving operations are in progress, the Concrete Inspector must be assured that the forms immediately in advance of the strike-off machine have not been forced out of line by the trucking equipment operating between or adjacent to the forms. If forms are forced out of line, immediate adjustment must be made to bring the forms back and hold them in their original positions.

2-716H Longitudinal Joint Key

The longitudinal construction-joint key is placed in accordance with the standard paving details and must be securely held in position so that it will not move out of alignment if the concrete along the forms is spaded or vibrated. It must extend to within 6 in. (150 mm) of each transverse expansion joint, and particular care must be taken to see that the extremities of the key are supported in the proper alignment.
2-717 **String Lines**

2-717A **Slip-Form String Lines**

Slip-form paving operations usually use equipment units that automatically sense line and grade from a string line. One string line usually is used for both fine grading and paving. It is set on one or both sides of the grade, depending on the design of the equipment. Regardless of the terrain over which the machine must track, it will maintain the grade indicated by the string line. It is important that the string line is as accurate as practicable.

2-717B **Normal String-Line Setting**

The location of the metal stakes that support the string line is oriented to the grade stakes. Before the hubs are set, the terrain should be visually inspected by the survey party. The following factors must be considered before any hubs are set, to determine the most feasible location for the string line:

- other work that may be performed either between the string lines or along the shoulders,
- the amount of material to be wasted near the string lines and the disposition to be made of the material,
- obstructions along either side of the roadway,
- the limits of the machine sensor-arm supports,
- the height of the string line above grade required for the paving equipment, and
- the percent of fall (cross slope) from the centerline of the roadway to the hubs or edge of pavement.

Location of the string line may vary with each section of the roadway because of superelevations, crowns, and offsets. Each section should be evaluated separately to determine the proper location or position of the line.

Hubs are set after considering the factors above. Setting hubs is one of the more critical phases of the paving operation, as the line and grade for all following work depends on them. The Chief Inspector must ensure that a DOT survey party checks the completed hub run for accuracy of line and grade prior to installing the string line.

Metal stakes are driven into the ground, normally at 50 ft. (15 m) intervals, along one side of the roadway if using a machine equipped with a cross-slope system or along both sides of the roadway if using a machine with sensors installed on both sides. On ramps and superelevations, stakes may be set at 25 ft. (7.5 m) intervals for greater accuracy.

The stake should be located 12 in. (300 mm) to the rear of the hub. It should be vertical and driven deep enough for good stability. The slotted end of the string-line rod must be directly over the center of the tack in the top of the hub and slightly above the intended string-line elevation. The Inspector can use a rule to measure the height of the road above the tack and a plumb bob to assure the rod end is over the tack. Figure 2-7.3 shows a typical setup.

The string line itself is checked, after it is installed and tensioned, so that no sag between stakes is visible. Check the string line with a rule for the exact height above the tack. After the string line is adjusted to the exact height, check for a smooth alignment of the string line by sighting down the line.
2-717C String-Line Repairs

A break in the string line can be repaired by tying the string line together with a square knot. The knot does not affect the accuracy of the machine but must be tied securely enough to permit retensioning of the string line.

If the string line is repaired, moved, damaged, or partially dismantled for any reason, paving operations must be halted until the line can be reset and rechecked. During actual grading or paving operations, a constant watch over the string line must be maintained to prevent interference of any kind from causing a deflection in the line. Examples are personnel leaning against the line, lifting the line to crawl under, and hanging coats or tools on the line, and stakes being nudged by passing equipment.
2-718 Fine Grade

The fine-grade elevation may be determined from accurately set forms or completed lanes of pavement. The Chief Inspector assigns the work to the inspector ahead of the paving operation. It is that inspector's responsibility to see that the subbase is ready to receive the concrete pavement.

The grading is checked with an approved template or scratch board as grading progresses. The bottom contour of the scratch board must conform precisely to the desired contour of the subbase.

The template may be furnished by the contractor and designed to ride the forms; it should be moved along as the fine grading operation progresses. Areas where the points scratch the surface must be cut down and low areas filled in and compacted. There should be at least two templates available for use. When the templates are in use, they must be checked at least twice daily by the Inspector. The Inspector also can check the grade with the use of string lines tied between each form.

If the fine grading is done by a machine, it is adjusted to cut accurately to the required grade. The Inspector must check the fine grade as conscientiously as if the work was done by hand. Some fine grading machines produce a lateral thrust that causes the forms to rock and the form pins to become loose. If this occurs, the operation of the machine must be immediately corrected, or the forms must be more firmly fastened, so that there is no further rocking of the forms.

The current trend favors an adjustable blade unit that is mounted on a grader. The grader works between the forms. The blade unit rolls along the top of the forms, and the surplus material is carried along within the forms and usually removed with a front-end loader. The grade of the blade can be closely controlled, and only a minimum amount of hand labor is required to complete the shaping operation.

Immediately after grading to the required elevation, the fine grade is rolled with an approved roller. The subgrade template is drawn over the completed area for a final check, and irregularities are corrected. The Inspector must be sure that the entire depth of the forms, including bottom edges, is fully exposed.

When concrete is being placed, any irregularities in the subbase surface caused by trucking equipment working between forms must be reshaped and rolled, as needed. If the trucking equipment ruts the subbase, it is an indication that the subbase is not in proper condition for the work.

The Concrete Inspector must continually observe the condition of the fine grade surface immediately ahead of the paving train and keep a close check on its elevation and state of compaction. The check must be by template, as described above. The Inspector should see that the fine grade is thoroughly dampened well in advance of the paving train to prevent drawing excessive amounts of water from the fresh concrete. The procedure of dampening the fine grade must be regulated so that concrete is never placed within 100 ft. (30 m) of the sprinkled fine grade. Concrete must never be placed on a subbase that contains frost.

2-719 Joints

2-719A Transverse

Transverse joint layout is the responsibility of the field forces. Approximate locations of the transverse expansion and contraction joints can be determined well in advance of the paving operation. It is customary to plot the various joints on a set of construction plans. The preferred spacing of the joints is as shown in Figure 2-7.4 and Standard Sheet 401-A.

At bridge structures, ramps or pavement widening it usually is necessary to adjust the length of one or two pavement slabs. The maximum desired length of a slab is 50 ft. (15 m); the minimum length is 20 ft. (6 m). If it is necessary to adjust a slab length, consideration should be given to the length of the fabric or mat reinforcement. The use of short
lengths is discouraged. Adequate provisions must be made for expansion. The maximum expansion-joint spacing
should not exceed 1000 ft. (300 m).

If pressure relief joints are called for on the plans, the contractor must construct the joints in accordance with the plan
details. A sketch of a pressure relief joint is shown in Figure 2-7.5.

2-719B Longitudinal

The longitudinal joint arrangement must conform to the details shown on the plan sheets or the orders of the Engineer.
The current trend in design is to show the specific locations of the longitudinal joints on a plan sheet, providing for lane
continuity and delineation that best serve traffic needs. The starting and ending stations of all pavement widening must
be complied with unless it is apparent that a minor change satisfies other joint criteria better.

2-719C Locating Transverse Joints

The location of joints for the first lane is made by measurement along the forms with a tape. The transverse line of the

Figure 2-7.4 Transverse Joint Layout

\[
d = \text{DISTANCE BETWEEN TRANSVERSE CONTRACTION JOINTS} = 12160 \text{ mm}
\]

TRANSVERSE EXPANSION JOINTS ARE PLACED AT INTERVALS OF
NOT LESS THAN 150 m AND NOT MORE THAN 300 m,
500 FT. AND NOT MORE THAN 1000 FT.
BE LIBERAL IN THE ESTIMATE OF TRANSVERSE EXPANSION JOINTS
TO ALLOW FOR THE JOINT NECESSITATED BY END OF EACH DAY'S POUR.
Joint is obtained by pulling a string across the forms and, with the use of a good square, obtaining a point on the opposite form. Be sure the line is at right angles to the centerline or on a radial line if the joint is in a curve.

After locating the first joint, the Inspector should scribe a line at right angles to the pavement surface on the inside of the forms at the locations of the other joints. If the joint is accurately located for the first lane constructed, the placing and aligning of joints in subsequent lanes is simplified. Any slight deviation in the line of the first joint probably will be amplified in the line of the adjacent joint. On dual-lane projects, care should be taken to see that the line of the joints in each lane is continuous.

There may be changes in length of an original slab because of intersections, drainage structures, inside or outside lanes on horizontal curves, or dual lanes divided by a median area. The Chief Inspector should determine the correct joint location before the concrete pavement is placed. Thus, any adjustment in slab length can be distributed among the slabs to ensure a satisfactory appearance.

2-719D Transverse Joint Construction

The transverse joints normally are expansion, contraction or construction joints. The expansion joint units consist of a horizontally mounted, capped, sliding dowel assembly that is attached to a compressible, yet rigid, piece of joint filler. The height of the joint filler varies with the depth of pavement. However, the top surface is always located ¾ in. (19 mm) below finish grade. Figure 2-7.6 is a drawing of an expansion joint.

A contraction-joint unit consists of a horizontal sliding dowel assembly that is installed on the subgrade and extends approximately to mid-depth of the pavement. Figure 2-7.7 is a drawing of a contraction joint. A shallow vertical joint has to be formed in the pavement surface to develop a plane of weakness over the center of the dowel assembly. The vertical joint may be formed in either of two ways:
A steel strip is installed in a holding device prior to placing the concrete. The strip should be removed following the finishing operation.
• A contraction-joint groove is saw cut into the finished concrete to a depth indicated in the specifications or on the plans.

Transverse joints must be installed perpendicular to the pavement surface. If the concrete surfaces adjacent to the joint assembly are inclined, the pavement can slide upward as the slabs expand during long periods of hot weather. Transverse joints must be installed perpendicular to the centerline on tangents or radially on curves.

2-719E Load-Transfer Assemblies

Omission or improper installation of load-transfer units may result in joint faulting, transverse or corner cracking of the ends of slabs, leakage, and pumping. The joint assembly must be installed so that the longitudinal axes of the load-transfer units are not only parallel to the surface of the concrete but also parallel to the longitudinal axis of the pavement. A relatively small deviation from the correct alignment may cause a very high localized stress in the concrete surrounding a load-transfer unit, particularly during extreme temperatures that cause relatively large movements of the concrete at the joints.

Joint assemblies must not be installed until after the final check on the subbase is completed. Place the expansion assembly in the proper location. Make sure that the ends of the joint butt against the forms and coincide with the vertical line drawn on forms. The bottom of the joint, as well as the joint supports, must rest on the subbase for the entire length. Preventing mortar from flowing around the ends or under the joint helps ensure a cleaner joint, less hampered movement under temperature changes, and freedom from localized stresses.

Check all caps on load transfer units with expansion slip dowels for adequate expansion space.

The joint should be anchored in the manner indicated by the Standard Specifications or the standards attached to the plans. Recheck the line of the transverse joint with a square, and check the line of one or two load transfer units for right angles with the joint. After placing the metal protection cap on the joint, pull a string across the forms and check the depth of the joint below finished grade. Pull a string slightly ahead of the joint and check the distance down to several of the load transfer units. Repeat the operation in back of the joint. After a joint is set and checked, do not allow the workers to walk on it or to disturb it in other ways.

Tie down the transverse joint units with suitable pins or 60d nails. Be sure that the assemblies are not cocked or tipped and that the dowel component is parallel to the base and surface. Lubricate the caps on the ends of all expansion joint dowels.

2-719F Dummy Joints

Dummy transverse joints, or weakened plane joints, are constructed at the locations and according to the dimensions shown on the plans. The horizontal controls that apply to transverse expansion joints are applied to the locations and line of dummy joints.

After the transverse screeding operation is complete, but prior to longitudinal screeding or luting, a groove is made in the soft concrete by a suitable device. It should extend vertically downward from the surface to the depth shown on the plans and be true to line. Insist on a uniform depth throughout the length of the dummy joint, as well as a consistent depth for each joint. Do not allow the workers to enlarge the groove when edging. The larger the opening, the greater are the chances of obtaining a rough-riding pavement.

2-719G Bulkheads

Bulkheads are constructed if the end of a day's run or shutdown for lunch occurs at a transverse expansion joint. Install a 2 in. (50 mm) wooden bulkhead, cut to proper depth and contour, and slotted to slip over the load-transfer units in
back of the transverse joint. Securely stake the bulkhead to prevent misalignment of the joint. About 5 ft. (1.5 m) beyond the joint, place a section of regular road form transversely across the road with its top at finished grade, for use as a second rail. Operation of the lute at the end of the slab is to be done from the concrete and the top of this cross form to prevent a short wave in the end of the slab.

2-719H Construction Joints

Transverse construction joints are formed only in case of breakdown causing a delay of more than 30 minutes in the concreting operations. The length of pavement laid up to the time of breakdown cannot be less than 10 feet (3 meters) from the nearest joint. Shorter sections must be removed. Transverse construction joints are constructed in the same manner as transverse expansion joints, except that a bulkhead of wood or steel is used, and no expansion material or load-transfer units are required. Tie bars conforming to the requirements of longitudinal tie bars are placed at intervals of 2½ ft. (0.75 m) or less across all transverse construction joints.

2-719I Longitudinal Joint Construction

Longitudinal joints serve to delineate traffic lanes for the motorist. If improperly laid out, the joints can have an adverse effect on the planned flow of traffic. Thus, it is vitally important that the pavement layout and longitudinal joint details do not deviate from the requirements of the construction plans.

For single-lane construction, the longitudinal joint between slabs must be of the tongue-and-groove type, equipped with tie devices. Figure 2-7.8 shows this kind of joint. The keyway form should be checked for size, shape, and proper attachment to the pavement form. It should be continuous on the inside lane form and properly installed on the outside lane form for abutting ramps and pavement widening. The joint keyway form should extend to within 6 in. (150 mm) of each transverse joint. If the joint keyway form is steel, it is necessary to cut the end of the transverse expansion joint filler material to fit. However, before placing the abutting lane, a precut piece of suitable filler material should be placed in the form cutout. The longitudinal joint support units should be properly installed, firmly attached to the form, and properly oriented.

The normal spacing of the tie devices is 5 ft. (1.5 m) center to center. Ten foot (three meter) forms generally have holes spaced 2½ ft. (0.75 m) on centers. If the Inspector establishes the location of the first transverse joint closest to the point where the forms are being set, the proper location for the tie device can be easily established. Succeeding longitudinal joint assemblies then can be installed at the prescribed spacing. If lane length differences result from horizontal curvature or other reasons and the prescribed joint spacing and clearance cannot be satisfied, additional holes might have to be made in the forms. The holes are usually needed at transverse joint units.

Figure 2-7.8 Longitudinal Joint
If new lanes are constructed adjacent to existing roadways, special types of longitudinal joint assemblies are specified. Grouted-in-place dowels and expansion shield bolts are frequently used.

For multilane pavement construction, the longitudinal joint support units may be installed prior to the placement of the lower course when the transverse baskets are set, or they may be placed by hand or by a mechanical placer after the lower course has been brought to grade. The joint supports consist of steel tie bars and are 5 ft. (1.5 m) on center.

Longitudinal joints for single-lane construction are usually finished by hand. For multilane construction, the joints may be formed by means of an approved nonmetallic joint forming insert or by saw cutting.

2-720 Paving Trains

Different types of equipment are needed to spread, consolidate and strike off the concrete, place reinforcement if required, and finish the pavement. The equipment units follow each other in a line during paving operations and, taken together, are called a “paving train.” The types of equipment vary considerably. Some machines perform a specific operation; others perform several.

2-720A Side-Form Paving

One type of paving train can be called the “open screed” type. Distribution of the concrete between the forms is achieved initially by spreading out the material as it is being discharged from trucks or hoppers, such that the transverse screeds on the finishing equipment can complete the placement. The train normally is made up of the following sequence of equipment units:

- a lower course strike-off machine,
- a top course strike-off machine,
- a transverse screeding machine,
- a longitudinal finishing machine, and
- a tining machine.

The transverse screeding machine can serve as the top course strike-off machine; however, this usually means it must make two passes over the pavement surface.

Another type of paving train can be called the “hopper” type. The concrete is discharged from trucks or a mixer into hopper units on the finishing equipment. The hoppers travel across the lane, discharging the concrete through a hopper gate. Fixed plates and transverse screeds strike off and consolidate the concrete. This type of train usually has the following:

- a lower course strike-off machine,
- a top course strike-off machine,
- a longitudinal finishing machine, and
- a tining machine.

All of the machines probably would have transverse screeds, except for the tining machine.
Either of these paving trains is acceptable. It is permissible to place the slab full depth at one time and vibrate the reinforcement into position. Substituting a comparable piece of equipment used in one train for that used in another is permissible, providing the paving train is complete and the necessary operations are performed satisfactorily.

The paving train machinery should be placed on graded forms before the following components or operations are checked. The inspection should be performed a few days before pavement operations are scheduled to start, so that adjustments can be made without delaying work.

2-720A.1 Initial Strike-Off Spreader

The Inspector should check for the conditions listed below.

- The strike-off plate is straight and clean.
- The strike-off plate is properly set for the lower course depth.
- The distributing or spreader arm on a Blaw-Knox unit travels the full width of the lane.
- The distributing hopper on an M-xon unit travels the full width of the lane.
- The hopper gates open and close properly.
- The distributing movement is smooth and does not rack the forms.
- The strike-off plate can be readily raised and reset for expansion joints.
- The wheels have scrapers.

2-720A.2 Transverse Finishing Machine

The Inspector should check for the conditions below.

- The screeds are clean and straight.
- The leading edge of the front screed is set 1/8 to 3/16 in. (3 to 5 mm) above the rear edge.
- The rear screed has a front tilt of 0 to 1/8 in. (0 to 3 mm).
- The screed frequency can be changed.

2-720B Slip-Form Paving

A slip-form paving train is made up of self-propelled equipment units designed with side forms. The side forms must support the concrete long enough to avoid appreciable edge slumping and to allow necessary finishing while the concrete still is within the forms. The units usually are:

- a slip-form spreader machine,
- a slip-form paver machine, and
- a finishing machine
2-720B.1 Spreader

The spreader receives the concrete from the hauling units and places it in rough form in its proper location on the roadbed to the depth of the mat reinforcement. Reinforcement mats are placed immediately behind the spreader.

2-720B.2 Paver

The paver normally performs the following functions: depresses the mesh; consolidates the concrete; strikes off, screeds, and floats the surface; forms the slab edge, including keyways; and inserts the longitudinal joint support units. Before starting, the Inspector should check for the following conditions.

- Mesh depressor is set to the correct depth.
- Screeds are set to grade and the pavement template.
- Float pan is clean and properly adjusted.
- There is a sufficient supply of longitudinal joint support unit inserts on board.
- All attachments (depressor, vibrators, etc.) are properly functioning.

2-720C Finishing Machines

Finishing machines are used both in side-form and slip-form paving. They may be of the transverse screed type, longitudinal screed type or longitudinal float type. Check for the following conditions.

- The screeds are straight and clean.
- The screed end pans are not worn excessively.
- The connection and fit of the end pans on the screed are satisfactory.
- The screed is set according to the manufacturer's recommendation.
- The screed distributing arms are operable.
- The float unit is clean and straight.
- The float unit is adjustable and can be raised and lowered easily.
- The float unit is not subject to distortion in its raised position, as when moving.

2-720C.1 Longitudinal Float

The longitudinal float should be checked by using the guidelines below.

- The screed blade must be straight. It can be checked with a taut wire held along each edge and along the center of the blade. Adjustments can be made by bolts provided for the purpose. If the screed blade is dented or bent so that proper adjustment cannot be made by the bolt adjustment, a new blade must be provided.
- The blade must be flat and smooth at the bottom, with relatively sharp corners. Check by placing a straightedge transverse to the screed at several points. If the bottom is worn round inside the original bevel, the blade must be discarded. Failure to provide a blade that is a plane on the bottom may cause longitudinal rippling or tearing.
The bottom of the screed must be the plane of the top of the concrete. Check for longitudinal compliance with wires stretched across the forms, or by running the screed over the forms and checking for any variation along the length of the blade. Check for lateral compliance by running the screed toward the center of the lane, stopping the screed at intervals and checking with a wire stretched from form to form. If the wire is not parallel to the bottom of the blade at both ends, adjust the screed and its supports on the carriage.

Scraper attachments for keeping the top of form and wheels clean must be adjusted to remove all concrete. Failure to maintain clean contact surfaces introduces slight irregularities in the surface.

2-720C.2 Flexplane Float

The Flexplane float has transverse screeds to smooth and shape the surface and a rear-mounted, pan-shaped float for longitudinal finishing.

2-720C.3 Chevron Float

The chevron float is a V-shaped drag float that provides for transverse screeding as well as longitudinal finishing.

Attention should be given to the adjustment of the float. This channel section is flexible. When the machine is picked up and moved, it flops around and is easily sprung. The truss members are easily bent. Turnbuckles are built into the truss work, and they should be used to make adjustments. Never use a sledge hammer. All edges of the channel sections must be straight and smooth, and the screed should be adjusted so that the forward edge is slightly above the surface, while the rear edge appears to be slightly indented. On superelevated sections, the transverse setting of the float must be adjusted to compensate for the pavement slump.

2-720C.4 Tube Float

The tube float is a pipe tube about 20 ft. (6 m) long that is suspended diagonally across the paved lane on a carriage assembly, similar to the other finishing machines. This type of float is usually used with a slip-form paver.

2-720D Tining Machine

The tining machine applies a textured finish transverse to the centerline of the surface. The Specifications call for the tines to be 0.03 in. (0.75 mm) thick, 0.08 in. (2 mm) wide, and 4 to 6 in. (100 to 150 mm) long, spaced ½ in. (12 mm) apart.

2-721 Final Preparations for Placement of Concrete

The mat reinforcement is placed along the forms, the forms are oiled, and all scuff marks are removed from the fine grade. The fine grade is moistened. The inspection team and testing equipment are assembled at the paving site.

When the concrete delivery starts, the batch tickets are signed by the supplier, and the discharge times are noted on each ticket.

The following sections describe the duties of the inspectors. Depending on the type of operation, the duties may be varied to ensure a smooth running, well-organized team.
2-722 Inspection Team

2-722A Concrete Inspector

The Concrete Inspector is responsible for the placing and finishing of the concrete. To satisfactorily cover each detail of the work, the Inspector will be very busy at times. However, if conditions warrant, the Concrete Inspector will be required to spend the major portion of the time with the paving operations. In addition, the Concrete Inspector may delegate the immediate responsibility for the inspection and control of certain operations.

If air-entraining admixtures are used, the Inspector must ascertain that the approved measuring device is in satisfactory working order and that a suitable supply of the admixture is on hand or is readily available. The Concrete Inspector must arrange for the inspector ahead of the paving equipment to check the fine grade with a subgrade template and to true up the form alignment, if necessary.

Cement having a temperature higher than 160 °F (71 °C) must not be used in the concrete. The temperature of cement at the plant must be measured and recorded at least four times daily. Concrete delivered in place must be at least 60 °F (15 °C) and must not exceed 90 °F (32 °C).

2-722B Paving Inspector

The Paving Inspector must check the following conditions.

- Forms, if used, are set at the correct line and grade.
- The transverse and dummy joint locations are properly laid out for a suitable distance ahead.
- The reinforcement, when placed, is not bent and is lapped the required distance.
- The batch or delivery tickets are properly received.
- The lower course and mat reinforcement is properly placed.
- The top course of concrete is placed within the allowable 45-minute interval.

The Inspector also is responsible for field testing the concrete for air content and slump and for casting test cylinders. Daily paving reports must be completed. The reports should show the roadway stations for the beginning and end of the placement, the quantity of the items involved, and the results of the field control tests.

2-722C Finishing Inspector

The Finishing Inspector must check all lutes and straightedges for trueness and all edging tools for size and wear. The Inspector should learn to use a straightedge in a manner that does not disturb the pavement surface. The Inspector straightedges the pavement along three points for the full length of each slab and has irregularities corrected. The Inspector should critically review the finishing of all joints and insist that the surface texturing operation be performed at the proper time, so that the desired surface finish and texture are attained. The Inspector must determine when the concrete cure operation should begin.

To identify each starting point, the Finishing Inspector must make up a brass tag showing the station and date of the beginning of the day's work. This tag is placed on the outside edge of the lane within the edged area of the first joint.
Immediately after the forms are removed from the previous day's run, the Inspector checks that all honeycomb is suitably patched and that the ends of the expansion joints are open to their full depth. When this work is complete, the Inspector checks that sides of the pavement are properly covered with the cure cover material.

The finishing work is the final control, and its results will be reflected in the appearance, durability, and riding qualities of the pavement. The finishing operation should keep pace with the placing operation. A satisfactory surface can be attained only if competent workers are able to perform their duties before initial set takes place.

2-723 Concrete Mix

As previously stated, if sources of the cement and aggregates are known, tested, and approved, the Division of Materials Testing will design a mix for the job.

2-723A Mix Adjustments

Any mix adjustments must be approved by the Laboratory.

2-723B Consistency

The consistency of the mix is important. Excess water greatly reduces the strength of the concrete and results in concrete outside the required slump range. If proper consistency is maintained, the finishing process can be carried out in a consistent manner.

For a central-plant-mix operation, concrete that is not placed within 45 minutes of the time of mixing, concrete that has developed initial set, or concrete that has a slump not in accordance with the limits established by the Engineer is rejected and disposed of outside the work.

2-723C Slump Test

Slump tests are made to help control the consistency of the mix during paving operations. The Inspector must make each slump test exactly alike so that the results are uniform.

Measurements of slumps are recorded to the nearest ¼ in. (6 mm) and are included in the CON-134 Inspector's Daily Report.

The first slump test should be made on the first or second truckload. Subsequent tests should be made at pavement intervals of not over 500 ft. (150 m). In addition, the Inspector should make tests anytime the batches appear to change consistency. If the concrete is too dry or too wet, the Batch Plant Inspector must be immediately instructed to make another moisture test.

To perform a test, a clean standard slump cone is placed on a dampened test board set on a level surface. The slump cone must be kept clean, smooth inside, and free of dents or other distortions. It must be moistened with enough water to wet the surface but not leave any free water. The cone then is filled with the concrete in three layers, each layer approximately one-third of the volume of the cone.

Each layer must be rodded with 25 strokes of a 5/8 in. (16 mm) rod, 24 in. (600 mm) in length, bullet-pointed at the lower end. The strokes must be distributed in a uniform manner over the cross section of the mold and must penetrate into the underlaying layer. The bottom layer must be rodded throughout its depth. After the top layer has been rodded, the surface of the concrete is struck off such that the mold is exactly filled. The mold is immediately removed from the concrete by raising it carefully in a vertical direction. The slump is measured immediately by determining the
difference between the height of the cone and the height of the slumped concrete measured at the vertical axis of the specimen.

The allowable slump for paving mixtures should be kept as low as possible, consistent with workability of the concrete. The slump must be between 1½ in. (38 mm) and 3 in. (76 mm) for side-form paving and between 1 in. (25 mm) and 1½ in. (38 mm) for slip-form paving.

The Inspector must never accept ease of distribution as a reason for using mixes that are too wet to finish properly. Mixes that contain sufficient water to bleed and prevent proper finishing must be avoided, regardless of the measured slump.

2-723D Test Cylinders

Test cylinders are cast by placing fresh concrete in the mold in three layers, each approximately one-third the volume of the mold. The concrete is rodded with twenty-five strokes of the tamping rod. The strokes should be distributed in a uniform manner over the cross section of the mold and should penetrate into the underlying layer by 1 in. (25 mm). The bottom layer should be rodded throughout its depth. After the top layer is rodded, the surface of the concrete is finished to a true plane. Care should be taken in moving the cylinders to the curing box after their initial set. After standing for twenty-four hours, specimens are removed from the molds and cured.

2-724 Concrete Placement—Side-Form Paving

This section covers concrete placement using side-form paving methods and general paving information, such as placing concrete adjacent to transverse joints, paving adjacent lanes, and cold weather paving. The section, “Concrete Placement—Slip-Form Paving,” Section 2-725 covers concrete placement using slip-form paving methods. The section, “Finishing Pavement,” Section 2-726 covers finishing operations for both side-form and slip-form paving.

2-724A Side-Form Placement of Lower Course

Prior to the placing of any pavement concrete, the subbase and form alignment must be checked as previously noted, and the fine grade must be suitably sprinkled. The sprinkling of the fine grade should be carefully observed. Workers often do not realize the importance of this operation, and they are apt to become careless and fail to properly take care of the work. Immediately after the fine grade has been sprinkled, a worker should clean the subbase adjacent to the forms to ensure that the bottom is exposed at all points. This is an important step in attaining the required depth at the pavement edges. All scuff marks should be removed from the fine grade.

The operation of depositing and spreading must be continuous between transverse joints. In case of an unavoidable interruption, a joint should be formed at the point at which the work stops, provided that the section on which the work has been suspended is at least long enough to permit one mat of reinforcement to be placed. Shorter sections should be removed.

Covers for all underground structures should be set accurately to grade. Care must be exercised to place the covers such that they will conform as nearly as possible to the finished contour of the pavement. To accomplish this, the cover grade should be set by a string line drawn taut between the forms or between the finished lane and the form. The center of each end of the cover should be held to a point 1/8 in. (3 mm) below the line.
2-724B Spreading

The concrete should be deposited on the subbase as rapidly as possible, and every effort should be made to avoid breaking the continuity of the successive batches placed. The concrete must be reasonably distributed as it is dumped onto the subbase. If successive batches are dumped in piles, unequal settlement of the materials occurs in the vicinity of the piles, which is reflected in the finished surface.

The Inspector should note the condition of the concrete.

- It should be in a plastic condition and have the appearance of a homogeneous mass.
- There should be no indication of segregation.
- There should be no free water along the edges of the pile.

The concrete should be deposited on the subbase in a manner that requires as little rehandling as practicable. The bottom layer should be struck off to the required grade to receive the mesh or bar mat reinforcement, again with a minimum amount of handling. The operation should be performed with an approved mechanical spreader or with shovels. The use of rakes or any other type of equipment that causes segregation should not be permitted. If the concrete is placed along the forms with shovels, the workers should be instructed to turn the shovels over as they place the concrete, so that the backs of the shovels are toward the forms as the concrete leaves them. This procedure helps minimize honeycomb along the edges of the lanes, particularly where the horizontal key prevents easy spading.

2-724C Consolidation

An immersion vibrator should be used for consolidating the concrete. It should have a frequency of not less then 3500 impulses per minute. Avoid contact with the forms and load transfer assemblies when vibrating. Do not allow the vibrator to be held in one spot for more than 10 seconds. Pay particular attention to the transverse expansion-joint units. Watch for displacement of the dowels from the longitudinal joint-support units.

Because of the obstruction caused by the horizontal key, the concrete placed adjacent to the form supporting it must be consolidated by use of spades or an immersion high-frequency vibrator. This operation should be carefully observed because lack of or improper vibration results in objectionable honeycomb adjacent to the key. The Inspector must see that the operator does not over-vibrate and does not leave the vibrator unattended while it is in operation. When the forms are removed the following day, the edges of the pavement are observed for honeycomb. All honeycomb should be immediately patched with mortar.

2-724D Placing Concrete Adjacent to Transverse Joints

Placing concrete adjacent to transverse joints must be done with care to avoid moving, tipping or damaging the joint assembly. Technological changes in the design and operation of concrete placing and finishing equipment have helped to eliminate many of the problems associated with the placement and consolidation of concrete at transverse joints. However, the following precautions and restrictions should be followed.

- If discharging directly onto the subgrade from trucks, do not allow the concrete to drop on or against expansion joints or contraction joints with attached joint forming strips as it invariably knocks the assemblies out of line. The concrete should be deposited on the subbase as near to the respective joint as practicable.
- Consolidation of the concrete at all transverse joints is essential to the proper functioning and finishing of the concrete. Careful spading or vibrating around the joint and load-transfer units helps to ensure a good joint.
Spreading equipment that employs a traveling distributing arm or rotary screws to strike off the concrete placed within the forms should not be allowed to work close to expansion- or contraction-joint units. The Inspector should observe the forward movement of the concrete to determine just when the machine should stop.

At all expansion-joint units and at some strip-type contraction-joint units, the spreading machine should be stopped while the height of the distributing device is reset. When going from one slab to the next, some operators attempt to judge the location of the joint and begin lowering the spreading device without stopping the forward motion of the machine. The procedure often moves or damages the joint.

2-724E Reinforcement

The reinforcement for concrete pavement consists of either fabric reinforcement or bar-mat reinforcement. Samples must be submitted to the Laboratory and approved before use. The details of the design and method of spacing and lapping, together with the location of the reinforcement, are indicated on the standards. The Inspector should thoroughly examine the standards, to obtain a full understanding of the requirements, as well as knowledge about the manner in which the reinforcement should be placed.

After the first layer of concrete is screeded to the desired level, the mats are set in the concrete at the elevation shown on the plans, placed in the center of the lane, and lapped the required 14 in. (360 mm) with the preceding mat. If any of the members are bent, they should be straightened out before placing the mat. If the screeding has been properly performed, it is not necessary to stamp the mat into its proper position.

The Inspector should carefully observe the placement of reinforcing steel to ensure the mats are properly lapped and placed at the required elevation and that they are not disturbed by the forward motion of the spreading machine or screed. It must be particularly observed that no bars are bent upward at lap points. The mat reinforcement should extend to within 2 in. (50 mm) of all transverse and longitudinal joints.

To prevent the mats from being carried ahead by the forward motion of the screed or spreading machine, they should be placed such that the mat to the rear laps over the forward mat. The position of the mats should be checked occasionally by digging down with a trowel after the final screed has passed to see that the mats have not moved. If the mats have moved, they could be located directly above the load transfer device, thus destroying the intended weak plane. If using bar-mat reinforcement, C-clips should be used to tie the mats together between contraction joints.

Any portion of the bottom layer of concrete that has developed initial set or has been in place longer than 45 minutes without being covered by the top layer must be removed and replaced with new concrete. Otherwise, there is a risk of creating a plane of separation between the bottom and top layers of concrete at the elevation of the reinforcing; the plane reduces the strength of the pavement. The initial set and time limit for the bottom layer can be used to govern the distance between pavers in a two-paver operation.

An alternative method of placing reinforcing is to vibrate the mat into the full depth of concrete by an approved machine. The equipment manufacturer's procedure is used.

2-724F Side-Form Placement of Top Course

The concrete being discharged from the trucks or equipment hoppers should be spread evenly over the lower course, not placed in piles. The forward screed of the strike-off machine should carry a small surplus of concrete. Avoid overloading the screed.

The concrete carried by the rear screed should not be excessive. If carrying surplus material, this screed has a tendency to float, so that the surface is not even with the forms. If a surplus accumulates, have the machine move ahead on the
forms and lose it. Then back it up and make another pass. More than two passes of the strike-off machine should not be required. If, after the second pass, the surface is still high or rough-looking, review the concrete placing operation.

2-724G Paving Adjacent Lanes

2-724G1 Equipment Operation

Paving operations that require operating equipment on the older lane are not allowed until the required structural strength is attained. The strength is determined by the compressive strength obtained for test cylinders for the section of pavement in question. The operation of all equipment on the older pavement must be so that no marking or chipping of joints and longitudinal edges occurs.

Flat, rubber-tired wheels must be used in place of flanged wheels if finishing and spreading equipment travels on the concrete. If heavy equipment is operated or moved on concrete pavement, secure the maximum protection to the longitudinal and transverse edges. Center the equipment in the pavement width. Do not permit equipment to travel up to a transverse joint and stop. Instead, the equipment should be stopped at a point such that its load is somewhat equally distributed on both sides of the joint. To protect the surface of the pavement from abrasion, the paver must be operated on wooden mats having thicknesses of not less than 2 in. (50 mm) or on suitable fiber belting at least 1 in. (25 mm) thick and 2 in. (50 mm) wider than the width of the treads.

Caution the contractor that breaking or spalling of the concrete edges due to operation of equipment on or adjacent to the new concrete is not acceptable and must be repaired at the contractor's expense, as required in the Standard Specifications.

2-724G2 Longitudinal Joint

If the expansion joint filler was notched on the completed lane to fit around the longitudinal keyway, remove all concrete from the recess and carefully install a properly shaped piece of expansion material. Locate the edge of the inserts. Be sure the ends butt and the joints are straight. Be certain all of the longitudinal joint support units are installed. Insist that the top surface of both lanes along the longitudinal joint be at the same level. Caution the finishers during the edging operation to keep the longitudinal joint as narrow and tight as possible.

2-724H Construction Joints

In case of a breakdown or long delay where a regular joint cannot be formed, install a construction joint. The minimum length of pavement allowed is one mat length. Longitudinal-joint tie bars, rather than transverse contraction or expansion joint units, should be placed at intervals of 2½ feet (0.75 m) or less across all transverse construction joints. In normal operations, a reinforced expansion-joint unit is customarily used at the terminating point of a day's pour as the bulkhead.

2-724I Cleanup

When paving operations are completed adjacent to a paved lane, but before the curing mats are placed, the edge of the adjacent lane should be cleaned of all excess material that would cause unsightly appearance or an irregular surface. The cleaning may be accomplished with shovels and brooms.

If the adjacent lane is still under cure, have the covers carefully replaced. If membrane cure is being used, the disturbed work area should be given another application of the cure compound.
2-724J Cold Weather

Cold weather procedures are used from October 15 to April 15, unless the Engineer directs otherwise. The procedures are in Article 6.01.03–12 of the Standard Specifications, covering structural concrete.

The temperature of the concrete must be no less than 60 °F (16 °C) when placed in the forms. The temperature surrounding the pavement must be kept above 60 °F (16 °C) for five days after placement, above 40 °F (5 °C) for an additional nine days, and then gradually lowered to the ambient air temperature. Mixing water must be heated, but its temperature cannot exceed 150 °F (65 °C). If aggregate is heated, its temperature must be between 50 °F and 100 °F (10 °C and 37 °C). The Engineer may vary the temperatures for the mix, water, or aggregate in extreme weather.

Every precaution must be taken to protect the concrete from freezing. If it is expected that the temperature will drop below 35 °F (2 °C) during the curing period, the concrete is cured using one of the approved methods. Then a layer of hay or straw 6 in. (150 mm) to 8 in. (200 mm) thick is placed on the concrete, and a layer of mats or cover sheets is spread over the hay or straw. The edges of the mats are firmly fastened in place. The covering remains in place until no further protection is needed.

The Standard Specifications state that any concrete placed during cold weather is done at the contractor's risk, and damaged sections must be removed and replaced at the contractor's expense. However, if in doubt as to whether paving operations should be started or resumed, consult the Assistant District Engineer.

2-725 Concrete Placement—Slip-Form Paving

2-725A Slip-Form Spreader Operation

The spreader places the concrete to the depth of the mat reinforcement, 2½ in. (65 mm) below finish grade if the concrete is placed in two layers. The placement width is approximately 6 to 12 in. (150 to 300 mm) less than the lane width. The remaining part of the slab is filled in by the paver when the top course is placed. Some important points are below.

- The subbase must be thoroughly moistened directly ahead of the spreader to prevent rapid loss of water from the concrete, to a depth of at least 1 in. (25 mm).

- Care must be taken to see that the correct quantity of concrete is placed; too much will overload the following paver, and too little will result in having to halt the paving while additional material is added.

- The interval between the spreader and paver is important; the distance should be kept as short as possible because the concrete will set in about 20 minutes.

The reinforcing mats are placed immediately behind the spreader. They are placed from a mesh cart or from previously distributed piles along the roadway. The mats must be overlapped 14 in. (360 mm) in the direction of travel, and the sheets should be locked together to prevent dragging by the paver or depressor. Locking is by bending two or three wire ends around a transverse wire in the preceding mat. If bar mat reinforcement is used, C-clips should be used to lock the mats together. The mats should be placed so that the transverse wires are up, to prevent depressor bars from breaking the wire welds.

If placing the concrete in two layers, the second course is placed in a windrow on the center of the reinforcement. The concrete should be placed so as not to shift the reinforcement laterally. The windrow helps to hold the mats in place when clipped together and lessens the possibility of being dragged by the paver.
2-725B **Slip-Form Paver Operations**

The paver is the most important piece of equipment in a slip-form paving train. It is directly responsible for the riding quality, thickness, and cross section of the finished pavement. Errors made by the paver are practically impossible to correct; therefore, constant inspection of the machine is an absolute necessity.

2-725C **General Inspection**

During operation, the Inspector should check for the following:

- steel depth is correct,
- pavement thickness is correct,
- vibrators are working,
- screed board is allowing sufficient material to pass to carry proper surcharge ahead of screeds,
- longitudinal joint-support units are inserted at proper intervals,
- float pan is leaving the desired surface,
- pavement edges are vertical, square, no honeycombing, and
- pavement width and template are correct.

2-725D **Paver Speed**

The paver should travel at the slowest possible forward speed that the screeding action allows. The concrete must be consistent in slump (1 to 1½ in. [25 to 38 mm]). The slow forward speed allows the edges to stay in the slip form longer for support, allows the longitudinal joint assemblies to be inserted squarely, and prevents the mat reinforcement from dragging.

2-725E **Paver Movement**

A smoother pavement results if the paving can be done without interruption than if the paver must stop due to lack of concrete, difficulty in steel placement, or other delays in the paving cycle. Each paving project should be examined for proper balance between mix production, delivery, and lay down, so that the operation can proceed smoothly and orderly.

Moving forward at a very slow rate is preferable to stopping. The operator should anticipate foreseeable delays caused by lack of concrete and slow the machine to reduce the number of times it must be stopped.

2-725F **Base Irregularities**

If running with one string line or running locked to grade, it is very important that the paver tracks move on a smooth surface. Bumps will be reflected in the finished pavement. It may be necessary to assign a laborer to clear spilled concrete from the track path.

The possibility of base irregularities showing up in the surface depends on the paving machine's length of skid and the closeness of the irregularities. In many instances, the skid is able to bridge across irregularities, and they do not show
up on the surface. Subbase irregularities that produce variable concrete thickness do not necessarily result in decreased yield. The irregularities can balance themselves out such that the overall yield is not affected.

Slip-form pavers use their own weight (up to 20 tons [18 metric tons]) to mold the plastic concrete into the correct shape. As a result of this extreme load on the subgrade and base materials, consolidation of the base materials may cause undulations to appear on the pavement surface. If the embankment is compacted uniformly, each area of the grade is compressed an equal amount. However, around drainage structures having minimum cover and bridge approaches, adjacent sections of the subbase are unequal in compressibility. The sensing units detect the settlement of the paver, but due to a time lag in actual response of the screeds, the adjustment always is too late to balance the settlement with increased slab thickness. This causes undulations that may not be detected by a 10 ft. (3 m) straightedge. Even though not detected by the straightedge, they affect pavement roughness as measured by the profilograph.

Shoulder areas require additional care in their construction. Concrete batch trucks ride the shoulders and quickly cause soft areas to distort. The areas affect the smooth flow of truck deliveries and may cause the paths for the paver to be unstable.

2-725G Mix Consistency and Quality

The mix should be uniform from batch to batch. Edge slumping occurs if the concrete's slump is in excess of 1½ in. (38 mm). (The standard mix probably will be changed to accommodate the paver being used.) If the mix does not have enough water, depressions occur around the transverse joint ties. The mix does not flow readily around the steel cage, causing a depression extending approximately 4 ft. (1 m) long in back of the joint. The depression is easily found by straightedging.

A sandy mix is quickly identified. The roll in front of the spreader or paver has areas with large amounts of mortar that appear to remain stationary. Another sign is tearing of the pavement surface behind the finishing machine. Concrete that is on the sandy side of the design mix helps the edges stand without sloughing.

2-725H Edge Slumping

Edge slumping usually is caused by excessive water in the concrete mix. However, it may be caused by improper vibration frequency of the finishing screeds or by operating the vibrators when the paver is stopped. The roll in front of the paver may become too high or too low from time to time. The height of the roll should be corrected by changing the speed of the paver. Controlling the roll height by varying the height of the strike-off screed manually is unsatisfactory, as it causes pavement roughness.

2-725I Consolidation

Proper consolidation of the concrete is obtained by the action of several vibratory elements. Improper frequency is rarely a problem because the frequency of the vibrators is set at the factory and most machines do not have the ability to vary it. However, the amplitude of the vibrators is variable and can be controlled by the operator. The proper amplitude vibrates the concrete at least 12 in. (300 mm) from the vibrating element.

2-726 Finishing Pavement

2-726A Hand Finishing

The number and ability of the finishers must be adequate. These workers must be experienced and capable. Correction must be made, if there is an insufficient number of finishers or if they are not capable of satisfactorily completing the
work as required. Finishing operations must keep pace with the placing of the concrete, and all other pavement operations must be geared accordingly.

2-726B Finishing Machine

As soon as the full depth of the concrete is spread to approximate uniform elevation, it is struck off by the finishing machine. A slight excess of concrete must be maintained ahead of the transverse screed to ensure cutting action at all times. Material must not pile up in front of the forward screed so that there is a heavy flow under it. Too much material tends to lift the screed above the forms, while too little leaves low spots on the surface. Depressions or torn areas that develop in the surface must be filled at once with fresh concrete. Mortar or material picked up outside the forms must not be used for filling depressions.

There often is a tendency on the part of the operator of the transverse finishing machine to make too many passes over the surface, with the result that excess mortar accumulates on the surface. This weak, segregated material must be floated over the forms. The Inspector must never allow the material to be carried ahead to the transverse joint. Do not allow any wet mortar to be deposited along the slab edges. Special care must be taken to see that good quality concrete is always used along the edges and joints, because they are subject to the greatest stresses. If added mortar is used in the finishing of the edges and joints, the pavement will be defective.

In general, the transverse finishing machine should not make more than two passes. The Inspector should never allow an excess of concrete (8 in. [200 mm] or more) to pile up in front of the forward screed. The equipment should be operated so that it moves forward slowly at a uniform speed and should not stop in the section being screeded. The rear screed should carry a roll of concrete not more than 2 to 3 in. (50 to 75 mm) deep. If it is deeper than that, excess material is flowing under the forward screed.

If air-entrained concrete is being used, there is little sedimentation or bleeding and, thus, very little free water for surface lubrication during finishing operations. Sometimes as a result, the concrete adheres to the finishing-machine screeds, causing a torn surface. The tearing usually can be overcome by increasing the rate of screed oscillation. If the air temperature is high and there is a drying wind, it is very important that the hand-finishing operations follow closely behind the finishing machine. If this is not done and a flash set occurs before the final finishing and edging are completed, a poor surface will result.

Operation of the transverse screed must be carefully observed up to and over the transverse joint. Do not allow the screed operator to bring up an accumulated roll of mortar on the rear screed and deposit it into depressions around the transverse joint. Do not allow the screed operator to pass over the joint with a large amount of concrete carried on the front screed.

Instruct the supervisor to have the large accumulation of mortar and concrete removed before screeding is carried over the joint. Depressions at the joint must be filled in with good unsegregated concrete. Never allow the use of mortar in filling depressions, whether it is at a joint or elsewhere in the pavement.

The tops of the forms and the wheels of the finishing machine must be kept free of concrete. Inspection of the shoes or wear plates should be made at least once daily to ensure that they are not worn sufficiently to affect the cross section of the pavement.

2-726C Longitudinal Floats

The Standard Specifications provide for longitudinal floating as soon as possible after the concrete has been consolidated by the transverse screed. The Specifications require that the longitudinal float be mechanically operated. Where mechanical longitudinal floating cannot be done, a hand float must be provided and used. There are four basic types of equipment currently in use: the longitudinal or bull float, the Flexplane type of drag float, Lewis type of chevron float, and the tube float.
2-726C.1 The Longitudinal Float

The longitudinal float, or sometimes referred to as the bull float, should operate within 100 ft. (30 m) of the transverse screed. The distance may vary, however, because of weather that causes excessive drying, excessively humid weather, or variations of the mix. In general, it is desirable to delay the operation until the surface has started to dry out slightly, so that some settlement has begun to take place. It is not desirable to delay the operation too long because the concrete will be too dry for the final finish work.

When properly operated, the screed should carry a small roll of concrete along all but about the rear 24 in. (600 mm) of its length. The roll is largest at the forward part of the screed and tapers off toward the rear half of the screed. If the concrete is of the desired consistency, it rolls rather than flows. If the roll is small, say less than 1½ in. (40 mm) in diameter, the screed may be lifted as it reaches the form, and the roll of mortar picked up for the return pass. If the roll grows larger than this, or if the material flows in front of the screed, it is to be wasted over the forms. The forward speed of the longitudinal float should be regulated so that, if necessary, two complete passes can be made over each area. The operator must continuously observe the amount of mortar being carried by the screed. The material must be distributed along the length of the screed and must not roll off the rear to form a ridge. The operator should force down any large aggregate that might tear the surface.

2-726C.2 The Flexplane Float

The Flexplane float has transverse screeds to smooth and shape the surface, and a rear-mounted, pan-shaped float unit to provide for the longitudinal finish.

The float should have a slight front-to-back tilt, exert a slight amount of pressure on the surface, have about a 1/8 in. (3 mm) crown at the center, and be free of nicks and dents. The finished surface should be smooth and free of all finishing marks.

2-726C.3 The Chevron Float

The chevron float is a V-shaped drag float that provides for transverse screeding as well as longitudinal finishing. The float component is suspended from the rear of the machine. It consists of two sections of a trussed 12 in. (300 mm) wide channel section, each about 12 ft. (3.5 m) long, jointed at the front to form a “V.” The flat surface of the channel is placed in contact with the screeded surface, and the forward travel of the machine drags it over the surface, smoothing out all remaining marks.

The amount of concrete carried by the two transverse screeds should be held to a maximum 5 in. (125 mm) diameter roll for the forward screed and a 2 in. (50 mm) roll for the rear screed. If you note a buildup of concrete on the screeds, the material should be wasted, the machine backed up to where it appears the surface is to grade (a string line pulled across the forms will help confirm this), and another pass made.

A check should be made to determine if a localized high spot was the reason for the screed buildup, or if the forward transverse screeding machines are leaving too much concrete. If the concrete has a tendency to roll down at the forms, again check the surface with a string. The operator might have raised the screeds to cover up a high spot. This shows up as a dip along the longitudinal joint. Watch the action of the end pans. They are hinged and float easily.

2-726C.4 The Tube Float

This type of finisher requires extremely good grade control and surface finishing by the screeds on the top course strike-off machine on the slip-form paver.
As the finishing machine moves longitudinally, the tube smooths the wet concrete surface. Excess concrete is pushed ahead of the tube and, because of its diagonal orientation, eventually rolls to the edge of the lane. Two passes of the float usually are required for a satisfactory surface finish. If more passes are required, check the adjustment of the top course strike-off machine. As in normal concrete paving, overworking the surface should be avoided. The spray bar should be used sparingly to keep the float from dragging.

The most important consideration with this machine is that the float or burlap drag should only be raised or lowered when the machine is in motion. Stopping the finisher prior to raising the float or drag results in a ridge of material that is extremely difficult to remove.

2-726D Luting

All small irregularities and the longitudinal screed trail must be removed immediately after the surface is consolidated. The Standard Specifications provide for the use of a manually operated smoothing lute or striking straightedge of approved type and dimensions to follow the longitudinal floating operation. The lutes must be equipped with either an aluminum or steel blade, 10 ft. (3 m) long. The use of paddle-type lutes to finish pavement should not be permitted.

At the beginning of the day's work, the lutes must be lapped back at least 5 ft. (1.5 m) on the preceding day's pavement and then moved slowly over the surface of the concrete from one side to the other. Movements longitudinally must be made by raising the lute completely above the surface and lifting it ahead not more than half its length or by sliding it along the form the same distance.

Luting should eliminate all finishing machine marks and remove all small irregularities. The lute should barely scratch the surface, except where high spots occur. For low areas, fresh concrete should be carried back, spread in the low area, hand floated to the correct grade, and smoothed with the lute. The luting operation should be carried across all joints as if they were not present. At the end of the day's run, considerable care should be exercised in luting the area over and adjacent to the final joint.

If the finishing machine operations are carried out correctly, the surface should be smooth enough so that very little luting is required. Often a finisher has the tendency to do too much floating, and the Inspector should insist that only enough of it is performed to ensure a smooth texture of surface that will straightedge properly.

As mentioned previously, the use of paddle-type lutes to finish the pavement surface should not be permitted. However, a float suitable for cutting excessive high spots or floating fresh concrete placed in low spots should be available.

2-726E Joints

2-726E.1 Expansion Joints

Immediately after the surface has been luted, a pointed trowel should be run along each side and to the full depth of the protection cap. (Figure 2-7.6 shows an expansion joint.) The cap is removed and a spring-steel strip equal to the width of the joint is carefully placed on the filler. It is important that the joint is finished with the material originally deposited adjacent to the joint. Never allow the finisher to remove the coarse aggregate and substitute mortar or segregated material to facilitate finishing.

When the spring-steel strip has been placed, the concrete adjacent to it is thoroughly consolidated, floated and given a preliminary edging. On completion of the preliminary edging, the joint is checked with a straightedge designed to check joints. The blade of this straightedge may be of wood at least 4 ft. (1.2 m) in length, 4 to 5 in. (100 to 125 mm) high, and 2 in. (50 mm) wide. It must have a 14 ft. (4.3 m) handle attached and a notch in the center of the cutting
edge, so that it can ride over the spring-steel strip and so that the pavement on either side of the joint can be properly checked.

The steel strip is removed carefully so that the concrete adjacent to the joint is not disturbed. The removal of the steel strip should leave the top of the joint filler fully exposed. The finisher should run a pointed trowel, held vertically, along both sides of the filler. This ensures that the joint opening is directly over the filler and that the vertical sides do not overhang any part of the filler.

The importance of the proper installation and finishing of each transverse expansion joint cannot be overemphasized, as poor workmanship will result in pavement spalling and rough riding conditions. The Inspector must be present at the installation, finishing and straightedging of every joint installation made throughout the day. Extra efforts must be taken with the preliminary straightedging, as any correction found necessary at or adjacent to the joint after the final edging has taken place will generally result in an unsatisfactory joint.

When the forms are stripped, the joints should be inspected to see that there is no grout around the ends or on top of the expansion material. Remove any immediately after the removal of the forms.

Do not permit the use of caps or spring-steel strips that are bent or deformed in any way. See that the caps are clean of hardened concrete that may prevent the cap from resting on the joint for its entire length. Do not permit the joint finish to be overworked.

2-726E.2 Contraction Joints

Forming of the transverse contraction joint groove over the previously placed load transfer assemblies follows the longitudinal finishing equipment. The grooves may be formed either by using steel strips or by saw cutting. (Figure 2-7.7 shows a contraction joint.)

For 9 in. (230 mm) concrete, a $\frac{1}{4} \times 2$ in. (6×50 mm) strip of steel may be manually inserted into the steel guides attached to the load transfer assembly. The strip should be as wide as the lane, clean of all foreign material, free of kinks, and straight. The strips are very limber and flexible and are easily distorted. They should be installed so that the tops of the strips are $\frac{3}{4}$ in. (19 mm) below the finished surface.

The strips can be installed after the lower course has been placed. Bridges must be placed across the forms at each joint and a trowel used to remove enough concrete so that the strips can be installed. Do not allow the workers to walk in the fresh concrete or use sledge hammers to straighten kinked strips. The concrete that was removed should be replaced, and the new material consolidated and smoothed off with a float.

In the second method, the contraction joint groove is cut with an approved concrete saw. Adequate water and lighting equipment must be provided before sawing operations begin. At all times during the sawing operations, there must be available on the project at least one standby saw in good working order and an ample supply of saw blades.

Positive methods, subject to the approval of the Engineer, are employed to assure that the sawed groove is centered directly over the transfer unit from edge to edge of pavement. Reference stakes or nails should be used. Contraction joint grooves must be sawed normal to the pavement surface, true in alignment, at the intervals and to the minimum depth and width specified or approved.

It is the contractor's responsibility to perform all joint sawing operations at such times and in such sequence as to preclude unsatisfactory results due to uncontrolled cracking or excessive raveling. The time of sawing depends on existing and anticipated weather conditions and must be such as to prevent uncontrolled cracking. Time of sawing is particularly critical at contraction joints in lanes adjacent to previously constructed lanes. Normally, all transverse joints are sawed as soon as possible and in consecutive sequence. If climate or other conditions warrant, the contractor may deviate from normal.
If a crack has developed, sawing should be omitted at the joint location. Otherwise, sawing should commence as soon as the concrete has hardened sufficiently to permit sawing without excessive raveling. Once started, the sawing operations must not be stopped, except for raveling or uncontrolled cracking.

Immediately upon completion of sawing a joint, it is thoroughly cleaned with air (when dry cutting blades are used) or with water (when wet cutting blades are used) until all dust or slurry has been removed. If found necessary, the sawed joint must be cleaned again immediately before being sealed.

2-726E.3 Transverse Joints

A 10 ft. (3 m) metal straightedge placed at right angles to the joint should show no variation over 1/8 in. (3 mm) in the surfaces of adjacent slabs. Edging of joints should be carefully inspected, particularly for maintaining a true grade across the joint. Particular attention should be paid to the finishing and edging of the joint that occurs at the beginning of each day's run so that the grade of slabs matches just before final texturing. This edging should be done at a stage when the surface is dry enough to prevent any settlement under the weight of the tool, but not before initial set.

2-726F Straightedging

After the luting has been completed, the surface must be systematically checked for smoothness with a 10 foot (3 m) straightedge. Straightedging is performed over the entire length of the slab and along three points in width while the concrete is still plastic.

The more common type of straightedge in use today consists of an aluminum blade, different in shape from the lute, 10 foot (3 m) long, mounted on a long handle. The straightedge should be checked frequently and, when not in use, it should be placed where it cannot be injured. The straightedge should never be used for luting or floating.

Care must be taken to see that the straightedging is done at a stage when the surface is dry enough to prevent any settlement under the weight of the tool. If the concrete is too soft, the blade of the straightedge will sink into the surface, thus reducing the possibility of detecting minor variations of 1/8 in. (3 mm) or slightly over. If straightedging is delayed too long and the initial set takes place, the resulting delay in the final finishing operations often causes a bad section of surface finish and joint work. The Inspector must be alert to this condition, particularly on a hot, dry day. The Inspector should not permit water to be sprinkled on the surface of the concrete to facilitate finishing, because it causes scaling.

High spots usually can be removed by the lute. Low spots should be brought to grade by placing fresh concrete in the depression and having the lute man strike off and smooth the surface. Straightedged all corrected areas. Pay particular attention to the transverse joints. Straightedged diagonally as well as conventionally to detect any unevenness. When starting a new pavement section, lap the tool back on the completed work at least one-half the blade length.

Shortly after curing mats or paper are removed from the pavement, the Chief Inspector should make immediate arrangements to have the cured surface straightedged. This inspection should be made without delay. When irregularities exist that reveal inferior workmanship, immediate corrective measures can be taken.

2-726G Tining

The surface texture is done by steel tines as soon as the concrete allows transverse grooves, 1/8 to 3/16 in. (3 to 6 mm) deep and ½ in. (12 mm) apart without tearing the surface or filling in the grooves. The grooves are placed across the
entire width of the pavement, perpendicular to the centerline.

2-726H Edging

After luting is complete and before edging the sides of the pavement, a trowel should be run along the edges of the slab to free the concrete adjacent to the forms and expansion joints and to facilitate use of the edger. Then the edging tools should be worked along the edge of the lane, preparatory to the final tooling.

If the concrete is too soft when the edging work is done, the rounded corners become refilled, causing an unsightly edge. If edging work is delayed until the concrete has hardened, the bond is disturbed and it is difficult to secure a good finish.

Good edging tools must be used to help ensure edging uniformity throughout the job. Often the concrete finishers are loath to part with a worn edging tool, as such a tool offers little resistance and is easier to operate. The Inspector, therefore, should make frequent checks of the tools to see that the required radius is not distorted or entirely worn out, and should ensure that the contractor has a sufficient supply of edging tools on hand so that immediate replacement of worn tools can be made when necessary.

The Inspector must insist on uniform edging work. The radii must be true and the troweled surface uniform and in a plane with the slab surface. Tipping the edging tool causes an objectionable burr or depression and must be avoided. Likewise, stone encountered in the edge area must not be traveled over with the flange of the edger. If a piece of stone in the concrete is encountered, it should not be removed and replaced with mortar scraped from the surface or form; rather, it should be tamped below the required grade and the resulting depression filled in with fresh concrete and smoothed.

If it is necessary to hand-float the edges, some correction of the preceding operation is needed. Check the machines and method used in the prior work. It is particularly important to secure a true edge on the lane that will act as a form for an adjacent lane, so that the finishing machines will have a true surface to ride on.

Many of the current contracts do not require that the longitudinal-joint recess be filled with joint seal when the pavement is constructed on a single-lane basis. Smooth-riding longitudinal joints can be realized only if the joint recess is in accordance with the plan dimensions and shape and the edges of the abutting lanes are correct.

2-727 Curing and Protection

Curing is required to protect the concrete from rapid drying by preventing the loss of moisture through evaporation. Moisture is needed so that the water and cement can complete their chemical reaction and to protect concrete from shrinkage. Curing is done after the final finish. There are three acceptable curing methods: moist curing, membrane curing and polyethylene cover-sheet curing.

The wheels of paving equipment usually have flanges. When paving adjacent lanes, check to ensure that the flanges do not strike and spall the concrete along the longitudinal joint. During the curing period, do not allow the forms or form pins to be placed on the surface. Walking on the surface should be discouraged.
2-727A Moist Curing

Quilted covers, if kept saturated, provide the required protection by permitting evaporation of water from their top surfaces. The dimensions of the mats must conform to the requirements of the Standard Specifications. They must extend over the sides to cover the edges of the pavement. As soon as the forms are removed, the mats are placed so as to fully cover the top and sides of the concrete and, if necessary, are held there by weights to prevent the wind from disturbing them. Each mat must be lapped at least 12 in. (300 mm) on adjacent mats. Mats that are torn or frayed or in which the lining is lumpy must not be used.

Curing must begin as soon as the finishing operations are completed and the concrete surface is set up enough to withstand marring by curing mats. During hot, drying weather, finishing must be completed and the curing material must be placed before the surface dries out to the extent that hairline cracks appear because of early shrinkage. The concrete surface is particularly susceptible to hairline cracking on a hot day that is accompanied by a stiff breeze. Under these conditions, a very close watch should be kept on the concrete and, at the very first signs of hairline cracking, the curing mats should be placed over the surface, even if the surface has not set up enough to resist marring.

Curing mats must be wet enough so that the side adjacent to the concrete remains damp. Dry mats absorb and tend to draw water out of the concrete, preventing proper curing. Do not place dry mats over the concrete, even though promises are made that they will be wet immediately afterward. This does not work out, as usually the amount of water sprayed on the mats is not sufficient to soak through to the bottom of the mat. Insist on the mats being damp before placing over concrete.

Wet blankets are heavy, and caution must be used to avoid dragging them over the surface when placing them. A blanket must be placed by unrolling it from a 2 × 4 (50 × 100) or by four workers carrying the blanket by the corners and lowering it carefully onto the concrete surface.

After mats have been placed, they must be immediately saturated and kept saturated with water throughout the required period, as prescribed by the special provisions of the contract or in the Standard Specifications. The Inspector should check occasionally during periods of exceptionally hot, drying weather by turning blankets up to see if the lower side is wet. Even with an apparently wet surface, from regular sprinkling, the bottom may be dry.

2-727B Curing Compound

The curing compound must be white, pigmented 100-percent resin-based material or a water-soluble, linseed-oil-based compound. Both types of curing compounds must be sprayed uniformly over the surface by a self-propelled mechanical sprayer. The resin-based material must be applied as soon as the free water has disappeared, while the linseed-oil-based compound should be applied immediately after the finishing operation.

The Inspector should assure that the minimum coverage requirements are obtained by checking the gallons (liters) used against the square yards (meters) covered. The joints must be protected so that the curing material does not adhere to the edges of the joints, causing possible failure of the joint sealing compound. The surface should be checked during the curing period to ensure that no abrasion has occurred that would decrease the moisture-retaining qualities of the material.

The usual application rate is 1 gal./150 sq. ft. (0.3 L/m²). Cover sheets should be available on the project to protect the pavement from rain or for use if equipment breaks down. The equipment used for applying the material should be equipped with a device that provides for adequate agitation of the compound to prevent settlement of the coloring pigment.

When the side forms are removed, all honeycombed areas should be patched before the edges are spray cured.
2-727C Polyethylene Cover Sheet Curing

Polyethylene cover sheets must be placed in such a manner that the surface of the concrete is not marred. The adjoining covers must overlap at least 12 in. (300 mm), and the lap must be securely weighted down to form a closed joint. Before reusing polyethylene covers, they must be checked for rips or tears, and repairs must be made if required.

In the event that checking develops before the cover sheets can be placed, the normal procedure is modified at the direction of the Engineer. Moist curing mats must be used for the initial 24 hours of the curing period, and the cover sheets must be placed for the remainder of the curing period.

On removing forms, the edges must be covered down to the bottom of the pavement. The cover sheets must remain in place for seven days.

2-728 Temporary Crossovers

Prior to normal opening of the concrete pavement, it may be necessary to construct temporary crossovers at driveways or intersections. These crossovers must be constructed as shown on the standards that are a part of the pavement plans. A crossover bridge must be of sufficient height above the concrete so that it will not deflect against the concrete surface under maximum load. The crossing must bridge the lane completely from supports outside the concrete. Earth ramps are constructed so as to provide a smooth approach to and from the bridge.

2-729 Removing Forms

Forms must not be removed from freshly placed concrete until it has set for at least 12 hours. The workers who are assigned to remove the forms should be instructed in the proper manner to avoid spalling the edges of the concrete. Metal wedges, lever fulcrums, or stake-pulling devices are not permitted to have a bearing on the concrete when pulling forms or lifting pins. The Inspector must not allow the removed forms to be placed on the new concrete or the pins to be thrown carelessly about.

After the side forms are removed, the Inspector examines the ends of all joints to see that they are not bridged with grout. If they are bridged, they must be cleaned immediately. All honeycombed areas must be pointed up. Under no condition is the placement of shoulder material to be allowed until there is positive assurance that the joints are open. The workers must be instructed to replace the curing cover at the edges exposed by the removal of the forms.

2-730 Sawing Longitudinal Joints

Longitudinal joints must be constructed as shown in the plans and in conformance with the specifications, or as ordered by the Engineer. (Figure 2-7.8 shows a longitudinal joint.) The joints may be constructed by the following methods.

- If pavement is constructed a single lane at a time, the longitudinal joints between slabs must be of the tongue-and-groove type and constructed by means of the devices shown on the plans. The joints must be equipped with tie devices as shown on the plans.

- If multilane construction is used, the longitudinal joints may be formed by an approved nonmetallic joint forming insert introduced into the plastic concrete by mechanical equipment. The insert must be sufficiently rigid to remain in good alignment, and the size and shape must provide a joint of the specified configuration.

- If multilane construction is used, the longitudinal joint may be constructed with an approved concrete saw. It is the contractor's responsibility to perform the saw cutting operations at a time when excessive raveling or uncontrolled cracking does not occur. As sawing operations progress, the completed sawed joint must be thoroughly cleaned with air if dry cutting blades are used or with water if wet cutting blades are used until all dust or slurry is removed. Sawing must be performed within 4 to 24 hours of the placement of the concrete pavement.

In all cases, the longitudinal-joint groove must be constructed perpendicular to the pavement surface, true in alignment, and to the minimum depth and width specified or approved.
2-731 Sealing Joints

Before the pavement is opened to any traffic, public or contractor, all joints must be sealed as required. This is the last operation prior to opening the roadway to traffic. The sealing of the transverse and longitudinal joints prevents surface water from seeping through the joints and accumulating in the subgrade where frost action and other disintegrating effects may result.

The special provisions and plan notes should be reviewed to determine if the longitudinal joint is to be sealed. The current practice is not to seal the joint for single-lane construction.

Prior to pouring any filler, the joints must be swept clean, and any adhesions of dried grout particles must be chipped and removed or swept. The transverse joints must be cleaned for the full width of the expansion material, and the top of the expansion material must show over its entire area. The presence of any concrete in a transverse joint prevents free compression of the joint material and may cause spalling along the joint in hot weather. These joints and all others should be thoroughly cleaned of foreign material, including mortar, by scraping and blowing them out with compressed air. Watch for small stones that become lodged. They promote spalling of edges.

The joint seal material should be of the type specified. It should be mixed and heated in a suitable kettle, and a careful check should be made of the temperature as it is being heated. Particular care must be used in heating the material to avoid burning. The material usually is a rubber compound that is in a liquid or fluid state before heating. Heating activates the setting agents, and the material changes state when it cools to become a resilient solid. Heating too long or at too high a temperature may damage the material. The material is usually applied under pressure with a mechanical applicator. The joint should be completely and neatly filled. Avoid placing excess material. The limits are flush to 1/8 in. (3 mm) below the surface. The Inspector must ensure that the workers engaged in this operation do not allow the joint seal to spatter or drip onto the adjacent pavement.

Prior to the final acceptance of the pavement or before the suspension of work for the winter months, the joints must be inspected and defective joints must be resealed.

2-732 Daily Reports and Tests

Paving Inspectors usually make out the standard Inspector's Daily Report, CON-134. Designated Paving Inspectors are required to make out a supplemental inspection report, CON-135, Concrete Pavement Daily Inspection Report, to record quantities, personnel, work limits, work hours, concrete mix information, and test results for materials. Figure 2-7.9 is an example of CON-135M. CON-134 is covered in Volume 1, Chapter 3, “Project Documentation.”

During the course of each day's paving operations, quality-control determinations are necessary to ensure that such things as air content, slump, and structural strength are satisfactory. The duties are performed by the Inspectors assigned to the paving operation.

- The air content and slump should be checked periodically during the day, especially in the morning when the operation begins, and when the concrete changes.

- Eight cylinders should be cast for each concrete placement, four in the morning and four in the afternoon. Should the operations suspend early, every effort should be made to cast the necessary cylinders. They should be properly marked and placed out of the way of things so they will not be damaged.

Remember, these cylinders are used to determine the strength of the pavement, and a satisfactory compressive strength must be obtained before the pavement can be opened to traffic. Should they fail, the quality of the pavement will be questioned, and more tests will be required.
Figure 2-7.9 Concrete Base & Pavement Inspection Report (Form CON-135M)

<table>
<thead>
<tr>
<th>Location Sta. to Sta.</th>
<th>Side</th>
<th>Lane</th>
<th>Width (m)</th>
<th>Length (m)</th>
<th>Depth (m)</th>
<th>Theoretical m³</th>
<th>Actual m³</th>
<th>Theoretical Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>Quantity</th>
<th>Sect.</th>
<th>Sub/Contr No.</th>
<th>Location/Station/Reference</th>
</tr>
</thead>
</table>

Paving Work Force and Equipment
- List of Inspection Personnel Assisting in Operation: No. to No.

Inspector's Signature:
- Reviewed by: No.
- Chief Inspector: No.
- Project Engineer: No.

Inspection's Hours of Work:
- Start: No.
- End: No.

Lane Closures:
- Day of Week: No.
- Date: No.
- I.R.#: No.
Concrete Base & Pavement Inspection Report (Form CON-135M) (continued)

<table>
<thead>
<tr>
<th>m³ Rejected</th>
<th>Ticket No.</th>
<th>Class</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actual Batch Mass Used

<table>
<thead>
<tr>
<th>Cement - kg</th>
<th>Sand & Moist. - kg</th>
<th>Stone - kg</th>
<th>Stone - kg</th>
<th>Mixing Water - kg</th>
<th>Total Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entrained Air

<table>
<thead>
<tr>
<th>Time Taken</th>
<th>Air-Entrained Agent</th>
<th>Amount Used - mL</th>
<th>% Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slump Tests

<table>
<thead>
<tr>
<th>Time Taken</th>
<th>Total Water per Batch - L</th>
<th>Amount of Slump - mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sketches / Computations:

Checked by ______________
2-733 Air Content

The air content of freshly made concrete is determined with a pressure air meter. A Chace air indicator is used to check air content to determine if additional pressure air meter tests should be run. The pressure air meter is more sensitive and accurate than the Chace air indicator and therefore must be used for acceptance tests. Simultaneous tests with the pressure meter and air indicator should be made in the morning at the start of the day's operation and again at midday to correlate the instrument readings. Additional tests with the pressure meter are performed if cylinders are cast of which the air content as determined by the Chace indicator approaches the allowable air content limits of the mix.

Periodically during the course of the day's operation, check tests should be made with the Chace indicator. To fully document the information, the Inspector must record the percent of entrained air and the instrument used to determine it.

The Inspector responsible for the quality-control testing of concrete must read and thoroughly understand the manufacturer's operating instructions for the equipment used. The general operating procedure for each of the instruments is below

2-733A Pressure Air Meter

The generalized procedure is as follows:

- Select a proper sample of concrete.
- Fill the measuring bowl in three equal layers.
- Rod each layer 25 times with an approved tamping rod.
- Tap the outside of the measuring bowl with an approved nonmetallic mallet after rodding each layer.
- Strike off the concrete flush with the top surface of the measuring bowl.
- Wipe the flange area of the measuring bowl.
- Place and secure the cover assembly.
- Open the fill valves and add water to the prescribed level.
- Set the meter's air gauge now at the zero calibration. The zero calibration for each meter is usually marked on the instrument. Depending on the type of instrument, the fill valves should be left open or shut while air is pumped into the meter to standardize the gauge. Tap the gauge lightly with the fingers and wait about 30 seconds. Add or bleed air, as required, to maintain the zero calibration reading.
- Depress the release valve.
- The gauge reading gives the air content.

2-733B Chace Air Indicator

The general procedure is:

- Fill the brass cup with cement mortar paste. Exclude particles larger than #10 sieve (2 mm). Rod the material in the cup with a knife or wire to compact the mortar and strike off the excess even with the top of the cup.
- Place a finger over the stem opening of the glass vial and fill the vial with alcohol.
Insert the stopper in the vial, invert the vial, remove your finger, and adjust the alcohol level in the vial stem by manipulating the stopper. The level of the alcohol in the stem should coincide with the top stem marking.

Place a finger over the stem opening. Roll the indicator from vertical to horizontal several times until all the mortar has been dissolved out of the cup. Keep the sand from entering the vial stem.

Bring the indicator back to a vertical position. Remove your finger from the stem opening. Count the number of spaces from the top mark to the new liquid level.

The number of spaces represents the air content in percent.

The Chace indicator reads direct for concrete mixes containing 15 cu. ft. (0.425 m³) of mortar. Readings obtained for mixes containing other than 15 cu. ft. (0.425 m³) of mortar are to be multiplied by a conversion constant to determine the actual air content.

The mortar content of the mix can be determined as follows.

- Get the specific gravity of the stone from the Laboratory.
- Multiply this specific gravity by 62.4 lbs./gal. (1,000 kg/m³).
- Divide the product into the total weight (mass) of stone in the mix. This gives the stone content in cubic feet (meters).
- Subtract this from 27 cu. ft. (1 m³) (if you are using a 27 cu. ft. [1 m³] mix), and the answer will be the cubic feet (meters) of mortar.
- Refer to the design-mix letter from Central Laboratory.
- For the mortar content per cu. yd. (m³), multiply the stem readings by the conversion factor below.

Figure 2-7.10 Mortar Content Conversion Factors

<table>
<thead>
<tr>
<th>Mortar Content (m³)</th>
<th>Conversion Factor</th>
<th>Mortar Content (m³)</th>
<th>Conversion Factor</th>
<th>Mortar Content (m³)</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.71</td>
<td>0.46</td>
<td>1.08</td>
<td>0.62</td>
<td>1.45</td>
</tr>
<tr>
<td>0.32</td>
<td>0.75</td>
<td>0.48</td>
<td>1.13</td>
<td>0.64</td>
<td>1.50</td>
</tr>
<tr>
<td>0.34</td>
<td>0.80</td>
<td>0.50</td>
<td>1.18</td>
<td>0.66</td>
<td>1.54</td>
</tr>
<tr>
<td>0.36</td>
<td>0.84</td>
<td>0.52</td>
<td>1.22</td>
<td>0.68</td>
<td>1.59</td>
</tr>
<tr>
<td>0.38</td>
<td>0.89</td>
<td>0.54</td>
<td>1.26</td>
<td>0.70</td>
<td>1.64</td>
</tr>
<tr>
<td>0.40</td>
<td>0.94</td>
<td>0.56</td>
<td>1.31</td>
<td>0.72</td>
<td>1.68</td>
</tr>
<tr>
<td>0.42</td>
<td>0.99</td>
<td>0.58</td>
<td>1.36</td>
<td>0.74</td>
<td>1.73</td>
</tr>
<tr>
<td>0.44</td>
<td>1.04</td>
<td>0.60</td>
<td>1.40</td>
<td>0.76</td>
<td>1.77</td>
</tr>
</tbody>
</table>
2-734 Pavement Cores

Prior to opening the pavement to traffic, the Chief Inspector makes arrangements to have cores taken to determine pavement thickness for payment purposes.

2-735 Opening the Pavement to Traffic

Under no condition can the roadway be opened to traffic until the compressive strength of the concrete has reached a minimum value of 3,500 psi (25 MPa). Eight cylinders must be cast daily by the Inspector to represent each day's run of concrete, and arrangements must be made with the Laboratory to have the cylinders broken at the intervals required.

Before opening a section of pavement as a temporary detour to the general public, shoulder material should be placed along the outer edge of the lane up to the pavement level for at least 18 in. (500 mm) in width to eliminate abrupt drop-offs at the pavement edge. If the ends or sides of the slabs at intersections must be protected from abrasion of traffic, suitable approaches must be provided to form a smooth, easy approach to the pavement and that, at the same time, adequately protect the edges of the concrete from undue stresses that might cause cracking or spalling.

Concrete lanes adjacent to the opened section must be protected by barricades to prevent vehicles from driving onto the closed lane. Do not permit the contractor to use one opened strip of concrete for two-way travel by batch trucks, unless the shoulder is built up to the grade of the concrete pavement and is of sufficient width to permit passage of trucks side by side. Otherwise, there will be travel over the unopened section or severe damage to the edge of the concrete. Before opening a section of roadway, except as a temporary detour, all construction and safety appurtenances must be completed. Work outside the shoulders or safety appurtenances may continue to completion after opening the roadway to traffic.

2-736 Full-Depth Concrete Pavement Replacement

2-736A Concrete Removal

Before any existing concrete is removed, the Engineer inspects the concrete slabs where shown on the plans and designates any additional areas that require concrete removal. Full-depth repairs may be necessary because of the size of spalls, depth of deteriorated concrete or joint failure. Concrete removal is limited to the amount of concrete pavement that can be replaced during the working period.

2-736B Sawing

The existing pavement is sawed full depth along the boundaries designated by the Engineer. The sawing equipment must be capable of sawing neat vertical faces along the patch boundaries. Saw blades with toothed wheels are not permitted for sawing the patch boundaries. Saw cuts with a toothed-wheel saw blade are permitted inside the patch boundaries to facilitate concrete removal. If a toothed-wheel saw blade is used, a minimum 3 in. (75 mm) clearance must be maintained between the internal cuts and the boundaries of the patch.

It usually is necessary to saw into the adjacent slabs or shoulders to ensure that cuts are full depth in the corners. This “over-sawing” should be minimized. All over-sawed areas must be cleaned and filled with approved crack sealant.

Sawing may be performed in advance of the concrete removal operation. However, it is limited to a distance not to exceed the amount of patching that can be completed during the next five working periods. The distance is determined by the Engineer, based on past performance of the contractor.
2-736C Removal

The concrete can be lifted out with chains, lift-pins, or other approved devices. Breaking concrete in place is not permitted. During the removal operations, the contractor must be careful to minimize disturbance and damage to the subbase, adjacent pavement, or bituminous shoulder. Any areas damaged during either the concrete sawing or removal operation must be repaired to the satisfaction of the Engineer by extending the patch boundary at the sole expense of the contractor.

2-736D Existing Bituminous Patches

If existing bituminous concrete patches must be replaced with concrete, the pavement is cut full depth and removed. The adjacent concrete must be free of all bituminous material prior to placing the concrete. The edges of the existing concrete are inspected to ensure that neat vertical faces exist. The adjacent concrete edge must be repaired or recut if ordered by the Engineer.

2-736E Subbase

Disturbed or loose subbase is removed. The contractor is responsible for protecting the subbase and subgrade. The subbase is dampened prior to concrete placement, if ordered by the Engineer.

If the subbase or subgrade is too wet for concrete placement, the contractor is required to excavate and fill. Subbase replacement material must meet the requirements for graded aggregate subbase in accordance with Article M.02 of the Standard Specifications. Construction methods for the material must be in accordance with Article 2.12.03. The Engineer may require the contractor to install transverse subgrade drains in accordance with Article 7.51 of the Standard Specifications.

2-736F Load Transfer

Holes for load transfer devices must be drilled along the transverse joint at mid-slab depth, 12 in. (300 mm) center to center, as shown on the plans. Drills are mounted on a rigid frame to ensure proper horizontal and vertical alignment, and the holes are drilled to within a tolerance of ±1/8 in./ft. (±10 mm/m). The drilling equipment and procedure must have the prior approval of the Engineer.

No. 10 (No. 30M) deformed steel bars are used in all fixed transverse joints. Load transfer bars 1¼ in. (32 mm) in diameter are used in all working transverse joints, as shown on the plans. All bars are 18 in. (460 mm) long and embedded 9 in. (230 mm) into the existing, adjacent slab.

Holes for deformed tie bars are drilled along the longitudinal joint between adjacent lanes at mid-slab depth as shown on the plans. Tie-bar spacing is 24 in. (600 mm) center to center or as shown on the plans. Tie bars are No. 5 (No. 16M) deformed steel bars for 9 in. or 10 in. (230 mm or 250 mm) concrete pavements and No. 4 (No. 10M) deformed steel bars for 8 in. (200 mm) concrete pavements. All tie bars are 30 in. (760 mm) long and embedded 15 in. (380 mm) into the slab of the adjacent lane. Tie bars must be installed as shown on the plans. If tie bars are not permitted, ¼ in. (6 mm) fiber board is used to break the bond between adjacent lanes.

The Engineer must inspect epoxy-coated bars to ensure that no damage has been sustained by the coating during shipment and handling.

Chemical anchor material is used to secure the load-transfer bars or tie bars in place. Chemical anchor material is placed using a flexible long-nose tube that injects the material in the back of the hole, in accordance with the manufacturer's recommendations. The injected chemical anchor material must be listed on the Approved Product List of the Department and approved by the Engineer for the specified use.
The bar is inserted in the hole with a slight twisting motion so that the material in the back of the hole is forced around the bar. A retention disk, made of polymeric material, is slipped tightly over the bar and against the slab face. The protruding ends of smooth load-transfer bars are lightly greased immediately in advance of concrete placement.

2-736G Forms

Forms are required on the bituminous shoulder side of the patch. To accommodate the side forms, the contractor must saw cut full depth and excavate 6 in. (150 mm) wide into the adjacent shoulder. Forms must extend along the existing shoulder pavement a minimum of 12 in. (300 mm) on either side of the patch and must be secured to prevent movement during concrete placement. After the removal of the form, the excavated portion of the shoulder is replaced with Bituminous Concrete Class 1 in accordance with Article M.04 of the Standard Specifications and must be true to the line and grade of the new patch and existing shoulder.

2-736H Reinforcement

Smooth welded-steel-wire fabric is used in full-depth patches. The reinforcement is placed at a depth of 3 ± ½ in. (75 ± 13 mm) as measured from the top of the slab. A minimum clearance of 2½ in. (60 mm) from the slab edges and dowel bars must be maintained.

2-736I Placement and Finishing

Concrete is placed in accordance with Article 4.01 of the Standard Specifications. Concrete placement is restricted to the late afternoon or evening during the summer months, or as directed by the Engineer. The limitation minimizes the effect of the daily expansion of adjacent slabs. The concrete mix is placed evenly to a level slightly above the adjacent pavement surface. The use of a continuous mobile mixer to facilitate patching operations, if using a proprietary rapid-setting concrete mixture, may be permitted with the approval of the Engineer.

2-736J Consolidation

Vibration must be used to thoroughly consolidate the concrete throughout the entire patch area. An approved spud-type vibrator or pan vibrator is used to consolidate the concrete. Vibrators must be capable of transmitting 10,000 to 15,000 vibrations per minute. Internal vibration must be used to consolidate the concrete beneath the reinforcing steel. Utmost care must be exercised to ensure that the concrete around the dowel bars and slab edges has been properly consolidated.

Vibrating plates or vibrating screeds must be used on the surface of all concrete pavement replacements for strike-off and consolidation. After the concrete is finished to a level slightly above the existing pavement surface, the vibrating plate or screed is drawn over the surface at a uniform speed, without stopping, to finish the surface smooth and even with the adjacent concrete. The type of screed or plate must be approved by the Engineer.

2-736K Strike-off and Finishing

The surface is struck off to finished grade with a steel or wooden template, and floated to a smooth finish. Addition of water to facilitate the finishing of the patch surface is not permitted. Finishing operations must be completed before initial set takes place. Patches less than 10 ft. (3 m) long (measured in direction of travel) are screeded parallel to the centerline. Patches greater than 10 ft. (3 m) long (measured in direction of travel) are screeded perpendicular to the centerline.
2-736L **Surface Tolerances**

The surface profile of the patch must not vary more than 1/8 in. (3 mm) in 10 ft. (3 m) when a 10 ft. (3 m) straightedge is placed on a surface at any angle. Sags or depressions in the surface of the patch area that exceed the tolerance are repaired at the expense of the contractor. High areas are ground down at the expense of the contractor by approved machinery as directed by the Engineer.

2-736M **Joint Sealing**

Joints are formed and sealed as shown on the plans. Joint sealing must be completed within five days after concrete placement. Joint sealant reservoirs are formed and filled with approved sealant. The reservoirs are thoroughly cleaned with water and dried with compressed air. An approved sealant is applied in accordance with Articles M.03.01-8a and 4.01.03-F.6(f) of the *Standard Specifications* and as shown on the plans.

2-736N **Curing**

Concrete for pavement and high-early-strength portland cement concrete are maintained with liquid curing compound as specified in Article 4.01.03–F.7(a) of the *Standard Specifications*. In addition, an insulating curing blanket with a minimum thermal insulation value of R-3.5 must be placed over the patch if high early strength is required or if the ambient and existing concrete surface temperature is expected to drop below 50 °F (10 °C). Curing of rapid-setting concrete must be in accordance with the manufacturer's recommendations.

2-736O **Testing**

Any newly placed concrete patch having a hollow sound if chain dragged or sounded with a hammer must be replaced by the contractor in accordance with the contract documents.

The Inspector makes test cylinders in accordance with Article 4.01.03–I of the *Standard Specifications*. Additional cylinders are made to ensure the concrete has attained the required compressive strength prior to opening to traffic.

2-736P **Opening to Traffic**

Traffic will be allowed on areas of the roadway where the contractor has placed and finished full-depth concrete patches after the material meets the following criteria.

- Concrete for pavement must conform to Article 4.01.03–J of the *Standard Specifications*.
- High-early-strength Portland cement concrete and rapid-setting concrete must attain a minimum compressive strength of 1,800 psi (12,400 kPa).
Chapter 8 - Structures

2-801 New Construction

Bridge construction requires close cooperation between the contractor and Chief Inspector. A bridge design must meet the conditions unique to a specific site. It is especially important for the contractor to understand the desires of the Department in regard to the design as well as the finished product.

2-801A Storage/Staging of Materials and Equipment on Structures

The Federal Highway Administration issued an advisory to all State Highway Departments in the summer of 2007 asking for review of current practices for the stockpiling of materials and the staging of construction equipment on bridges under construction. The Office of Construction reviewed this advisory and in coordination with the offices of Design, Bridge Safety, Maintenance, and Federal Highway. As a result, the Load Restriction Specification, Article 1.07.05 was revised. It should appear as a special provision in all future projects until it can be incorporated into a Supplemental to the 816.

Designers are being directed to add notes to their structure plans to indicate the allowable load for existing structures and the proposed structure, if applicable. When a structure is not posted, the contractors will be allowed to stockpile material and store construction equipment, when the maximum weight of equipment or material stored in each 12 foot wide travel lane of any given span shall be limited to 750 pounds per linear foot combined with a 20,000 pound concentrated load located anywhere within the subject lane. If these notes do not appear on the plan sheets, the Office of Bridge Safety shall be contacted immediately by the Project Engineer to determine the allowable load for the existing structure and the project’s designer for the proposed structure.

The operation of standard construction equipment for the rehabilitation and/or reconstruction of a structure do not fall under this guideline. The existing structure and proposed structure should have been reviewed for typical construction loadings. Any specific restriction will appear as a note on the plan. The Project Engineer should touch base with the designer after a thorough plan review to discuss loading restrictions, especially if:

- The structure has a pin and hanger assembly
- Load Restrictions are posted
- The bridge has been classified to have a specific structural problem awaiting repair
- The bridge is a steel arch truss structure

If anticipated storage of equipment or material exceeds the above provision, then the Contractor shall submit his proposal of storage, supported by calculations stamped by a Professional Engineer registered in the State of Connecticut, to the Engineer for approval 14 days prior to the storage operation. All submittals shall include a detailed description of the material/equipment to be stored, the quantity of storage if it is stockpiled materials, the storage location, gross weight with supporting calculations if applicable, anticipated duration of storage, and any environmental, safety, or traffic protection that may be required. The storage location on the structure shall be clearly defined in the field. If structures are in a state of staged construction or demolition, additional structural analysis may be required prior to authorization of storage. It is noted that operations associated with structural steel demolition and erection will follow their respective specifications.
2-801B Load Restrictions

All inspectors should be aware of load restrictions associated with the Department’s roadway and bridge construction. In accordance with State Statute 14-269:

- This statute will apply to any four-wheeled motor vehicle equipped with pneumatic tires which is engaged in construction work or in supplying or transporting materials or equipment for public or private construction projects and which is operating upon a highway or bridge within twenty-five miles of such construction project.
- No such motor vehicle may be operated upon any highway or bridge if its gross weight, including its load, exceeds forty thousand pounds.
- No such four-axle motor vehicle may be operated upon any highway or bridge if its gross weight, including its load, exceeds seventy-three thousand pounds.
- Any person who violates the provisions of subsection (b) or (d) of this section shall be subject to the penalties set forth in subsection (f) of section 14-267a.

Inspectors are cautioned that permitted equipment should not be moved or restaged without prior review with District staff to determine if any permit modifications are required on the part of the Contractor. This includes, but is not limited to, crossing an existing or newly constructed structure.

2-802 Chief Inspector's Duties

The Chief Inspector ensures that the bridge is constructed in accordance with the plans, contract documents and specifications. The work usually requires the assistance of others, such as survey parties, testing personnel, soils engineers, etc. The Inspector should request needed assistance through the Project Engineer.

Upon being assigned to a bridge project, the Inspector must make a careful study of the plans and become thoroughly familiar with the proposed work. All dimensions and elevations shown on the plans must be checked and verified for correctness and conformity. The Inspector checks the steel requirements of the plans against the approved shop drawings. The Inspector should also check the quantities for discrepancies.

Bridge plans should show all dimensions and details necessary to complete the construction or to enable the contractor to prepare necessary working drawings. In the case of Department-designed structures, shop drawings are submitted for approval by the various suppliers to the Department. In the case of consultant-designed structures, the Department sends the shop drawings to the consultant for approval. The approved plans are returned to the Inspector through the Project Engineer.

The Inspector reviews the contractor's proposed methods of construction for cofferdams, shoring, bracing and form work; and if, in the judgment of the Inspector, there is any doubt as to the adequacy of the proposed methods, the Inspector should immediately notify the Project Engineer.

The Inspector should understand the methods to be used by the contractor to construct the bridge and must be knowledgeable about the contractor's schedule of operations. Although the contractor must execute the work in accordance with the plans and to the lines and grades established by the Department, the Inspector must check and be thoroughly familiar with all aspects of the construction to guard against possible errors and omissions.

The Inspector checks any work that is ready for inspection as well as any operations in progress that affect the quality of the work. The Inspector should immediately point out to the contractor's representative any errors detected so that they may be corrected without delay. If the Inspector encounters an aspect of the proposed construction on the plans or in the contract documents that may not satisfactorily accommodate actual field conditions, the matter should be promptly discussed with the Project Engineer.
The Inspector is responsible for determining all quantities for payment. The Inspector makes or arranges to make all field measurements necessary for the accurate computation of the quantities.

2-803 Changes

The contractor may request changes in the plans or contract provisions regarding construction methods, materials, or procedures. Requests are made by the contractor (not by a subcontractor) to the Assistant District Engineer who requests a final review by Design, if deemed necessary. Typically, Design sends its comments directly to the Assistant District Engineer, with a copy of the comments to the Manager of Construction Operations.

2-804 Shop Drawings

Before fabricating any material, the contractor must submit shop drawings to the Engineer for approval. The drawings must include erection plans, material lists, and material designated for project use, such as:

- reinforcing steel
- anchorage details for rail attachments at the ends of bridge parapets
- structural steel
- pretensioned concrete beams and deck units
- post-tensioned concrete superstructures
- post-tensioned pier caps
- concrete for structures (including remain-in-place forms, if applicable)
- “modular” expansion joints
- mechanical/electrical components of movable bridges
- elastomeric compression seals
- bearings
- bridge scuppers
- pipe for bridge drainage
- stain protection
- metal bridge rail
- open steel sidewalk grating
- granite facing
- illumination

In addition to bridge items, shop drawings are required for precast retaining walls, side-mounted sign supports, bridge-mounted sign supports, and tubular and truss sign supports.
The drawings are submitted to the designer, except for side-mounted sign-support drawings. They are submitted to the Office of Traffic Engineering. Regardless, a copy of the letter of transmittal is sent to the District. The Inspector should maintain a shop drawing log to track approvals and notify the Project Engineer if approvals are not timely.

2-805 Manufacturer's Supervision

The Specifications for a number of bridge structure items require a representative or technical adviser of the manufacturer to be present at the installation to give the aid and instruction needed to obtain satisfactory results.

The following list indicates the items that currently require a manufacturer's representative to be present at the time of installation:

- Portland Cement Concrete—Joint Seals for Structures—Type “A” Joint Seal only
- Class Concrete (Post Tensioned Superstructure)—Epoxy Bonding Compound
- Epoxy Coal-Tar Delineation for Bridges
- Elastomeric Expansion Device
- Modular Expansion Joint
- Post-Tensioning of Superstructure
- Post-Tensioning Pier Cap
- Epoxy Bonding Compound – Chemical Anchors
- Amine-Epoxy Surface Coating
- Amine-Epoxy Skin Patch
- Amine-Epoxy Finishing Patch
- Remove Concrete Nosing and Curb
- Membrane Waterproofing
- Pot or Disc Bearings
- Epoxy Injection Crack Repair
- Some types of Precast Retaining Walls
- Some field-applied bridge coatings

Because this list will change, the specifications of the individual projects should be reviewed to determine what other items may require a representative of the manufacturer to be present at the time of the construction.

2-806 Cofferdams and Underwater Concrete

Cofferdams are covered in Article 2.04 of the Standard Specifications. They must be constructed to protect uncured concrete and masonry from water damage and foundations from erosion.
If cofferdams are required, the contractor must submit drawings prepared and sealed by an engineer licensed in Connecticut, along with a complete description of the process for construction of the cofferdam. The drawings and description are reviewed, and comments are offered by the Department. The furnishing of the plans and methods does not relieve the contractor of any responsibility for the safety of the work or for the successful completion of the project.

2-807 Foundation Seals

If the foundation cannot be dewatered, the Engineer may require the construction of a concrete foundation seal. A sketch is shown in Figure 2-8.1. Tremie concrete is normally used. The contractor must submit drawings and a detailed description of the process for review and approval before placing the seal. If a mud wave is created during the placement of the tremie seal, the displaced material is removed to preserve the full foundation cross section specified in the contract documents.

After the seal has been placed, the foundation is pumped out, and the footing is placed in the dry. If weighted cribs are employed and the crib weight is used to overcome a part of the hydrostatic pressure acting against the bottom of the foundation seal, special anchorage such as dowels or keys are provided to transfer the entire weight of the crib into the tremie concrete. If a tremie concrete seal is placed, the cofferdam must be vented or ported at the low-water level as directed.

Figure 2-8.1 Foundation Seal
2-808 Pumping

During the placement of concrete or masonry and for 24 hours after placement, pumping must be done from a sump located outside the horizontal limits and below the elevation of the work being placed. Pumping to dewater a sealed cofferdam must not begin until the seal has set sufficiently to withstand the hydrostatic pressure.

Refer to Sections 2-111A and 2-111B for information pertaining to environmental considerations for handling water and dewatering of cofferdams.

2-809 Removal of Cofferdams or Cribs

Cofferdams or cribs are removed by the contractor after the completion of the substructure and without damage to the substructure. No part of the cofferdams or cribs that extend into the substructure may be left in place without written permission from the Engineer. Any damage to the substructure will be repaired by and paid for by the contractor.

2-810 Stability of Foundation

The contractor is responsible for stabilizing the foundation area such that the concrete footing can be constructed in the dry and in its proper location.

2-811 Excavation

Structure excavation definitions are found in Article 2.03 of the Standard Specifications. The Inspector must be familiar with Article 1.07.07 and the latest edition of OSHA Publication 2207.

Cofferdams and pumping necessary for the completion of the work must be properly located and be constructed with adequate interior horizontal dimensions and structural adequacy to properly perform all required work incidental to the construction.

The elevation of the bottom of a footing, as shown on the plans, may be varied by the Engineer to secure a satisfactory foundation. If rock is encountered, accurate cross sections must be taken before any cofferdams are installed or excavation work is performed, and after the excavation work has been satisfactorily completed.

If foundation piles are not used and excavation to suitable bearing must be made below the planned bottom of the foundation, the additional excavated spaces under the substructure units are to be filled with concrete, the footing elevation lowered, or the footing deepened as specified in the contract documents or as directed by the Engineer. Rock foundations that are to receive footing concrete must have a rough finish. If excavation to suitable bearing for box culverts must be made below the planned bottom of the foundation, additional excavated spaces under the barrels are backfilled with select backfill. The spaces under the wing-wall footings are filled by lowering the footing elevation or deepening the footing.

Structure excavation for footings may be increased by not more than 2 ft. (600 mm) and remain within the scope of the excavation item. Quantity changes resulting from dimension variations exceeding 2 ft. (600 mm) are to be paid for in accordance with the Standard Specifications. Permission to increase the size of the footing must be requested from the Engineer.
2-812 Tying New Concrete to Existing Concrete

If portions of an existing structure are used in the new structure, the new structure is tied to the existing one.

If existing concrete is removed, the existing reinforcement steel to be incorporated in the final structure should be straightened and cleaned. The contractor is required to submit a straightening procedure in writing for approval. Care must be taken not to damage the bars. All existing reinforcing steel extending into an area of epoxy-coated reinforcing steel must be sandblast-cleaned and epoxy-coated.

If the existing, exposed reinforcement has lost 20 percent or more of its original cross-sectional area, it must be replaced. A new bar of the same diameter is provided and placed so as to have the minimum required lap at each end of the new bar. If the required bar lap is available, the deficient bar is used as a dowel. If the required bar lap is not available (or too much concrete would need to be removed to obtain the required lap), a welded or approved mechanical splice is used.

If dowel bars are required to tie new concrete into an existing structure, the dowel holes will be at least the diameter of the dowel bar plus ½ in. (13 mm). Dowel-bar hole sizes are different for epoxy-grouted bars than for cementitious-grouted bars. The Inspector should be aware of the manufacturer's requirements and recommendations. Depth of embedment is as shown on the plans.

2-813 Foundations

The design of a structure foundation involves various dead loads, live loads, site limitations and restrictions, the relationship of the structure to the adjacent roadways, roadway geometry (both over and under the structure), stream flow and alignment, and the type and support capacity of the soils. The Engineer must be notified immediately if there are questions as to the ability of the underlying material to support the structure or if the existing conditions differ from those shown on the borings or on the plans.

The elevation of the bottom of the footing specified in the contract documents can be considered an approximation. During construction, any changes in dimensions or elevations of footings to secure a satisfactory foundation must be reviewed and approved by the design engineer.

Prior to the completion of excavation for a bridge footing, box culvert, or structural plate pipe, the Inspector will notify the Project Engineer so that the Project Engineer or a designated assistant may examine the foundation before any concrete is placed. Footings for structures must be constructed on suitable foundations, and no concrete may be placed or foundation piles driven until the foundations are approved by the Engineer.

There are three common types of foundations:

- spread footings
- foundations seated in rock
- pile-supported foundations

2-813A Spread Footings

Spread footings usually are used if the bearing capacity of the soil at the site is adequate to support the structure. Generally, spread footings are the most economical type of foundation. Granular fill is usually needed to provide for uniform load transfer from the footing to the existing ground and/or to establish a level bearing area. The granular fill must be carefully placed and thoroughly compacted in layers on a shaped and graded foundation area, as shown on the plans.
To provide for uniform load transfer from the structure, through the footing, to the existing ground, the structure should be constructed on undisturbed soil. Faces of footings are placed plumb against undisturbed material, rock, sheeting, shoring, or forms. If the excavation does not stand plumb, the contractor must furnish and install sheeting, shoring, or forms as required. OSHA requirements for support of embankments in excavations must be met. If specified in the contract documents, sheeting used to construct spread footings must be left in place and cut off below finished grade to the depth shown in the plans. If not specified, the sheeting may be removed.

The design of sheeting and shoring is the responsibility of the contractor. If the material retained by the sheeting and shoring is greater than 6 ft. (1.8 m) high, the detail, procedure, and computations must be submitted to the Department for approval. The submittal must be sealed by an engineer, licensed in Connecticut and experienced in this type of work.

Forms used for footings must be removed, and any void between the footing and the embankment must be backfilled with suitable material. The material is compacted to not less than 95 percent of its maximum density. Foundation concrete must be used for this backfill if footings are submerged. Working drawings for forms used for footings are not required.

In certain instances, subsurface soils require preconsolidation using a superimposed load, or surcharge. If a superimposed load is to be installed over a granular fill in place, the granular fill should be placed about 6 in. (150 mm) higher than the proposed elevation of the footing. The additional depth of material provides for a settlement allowance and facilitates the placement of the footing on a firm, uncontaminated granular base (after removal of the surcharge and any excess granular fill).

2-813B Foundations Seated in Rock

Foundations for structures in rock-cut locations are usually supported by a modified concrete spread footing that is constructed on rock. Special care must be taken in excavating the rock to the limit prescribed on the plans to avoid excessive fracturing of the rock that reduces its bearing capacity. This could result in a reduction of the stability of the structure.

Rock or other hard foundation material is cleaned of loose material and cut to a firm surface, either level or stepped, as directed by the Engineer. All seams or crevices are cleaned out and grouted. All loose and disintegrated rock and thin strata are removed.

The Inspector must maintain a record of the elevations of the bottoms of all drill holes and a sketch of their locations if ledge rock is removed to reach foundation grade. The data become part of the project records. The contractor should be cautioned that payment for structure excavation rock will not be made for depths greater than 6 in. (150 mm) below the plan grade or approved revised plan grade. Refer to Article 2.03 of the Standard Specifications.

2-813C Pile Supported Foundations

If the existing soils cannot satisfactorily support a structure, foundation support is provided by piles or caissons. The piles may be end bearing or friction type:

- End-bearing piles usually are steel pipe piles or steel H-piles that are driven to refusal with an approved hammer. Prior to driving end-bearing piles, soil borings are studied, and the soil types above the rock are evaluated for elevation and driving resistance. Hard pan, till or decomposed rock often overlie satisfactory rock. High pile-driving resistance [high blows per foot (meter)] should not be mistaken for refusal.
Friction piles may be steel H- or pipe piles, or precast or cast-in-place concrete piles. Friction piles often are driven to a prescribed tip elevation or blow-count resistance. The criteria are based upon soil testing, test-pile driving resistance results, and pile-load test results.

The type of pile specified must be driven in accordance with the current Standard Specifications and based upon the specific recommendations of the Soils and Foundations Division. The Inspector must notify the Project Engineer of the date set for driving test piles sufficiently in advance of the actual operation to arrange to have the Soils and Foundations Engineer or designer present. Test piles are driven with the same equipment and by the same methods to be used for the piles of the permanent structure, because appreciable differences in hammer types, weights, and drop result in differences in penetration and bearing.

The depth of penetration and the length of piling for structures are usually determined by driving test piles. The contract documents specify the test-pile locations, minimum penetrations and bearing values, and estimated tip elevations. The contractor uses the information to order and drive the test piling. Then the actual, safe bearing value of the test piling is determined by load testing.
Some project’s Special Provisions call for the contractor to hold off on ordering the pile lengths for the job until after data from driving the test pile has been analyzed.

2-813C.1 Load Test

Load tests are covered in Article 7.02.03-10 of the Standard Specifications, “Determination of Bearing Values of Piles.” The load-test setup, the measuring system, the loading device, the loading procedure, the frequency of measuring the movement of piles, and the recordkeeping must conform to the contract documents.

The contractor must submit drawings and computations to the Engineer showing all details of the proposed pile load-test setup and must obtain the Engineer's approval prior to starting the work. The submittal includes the method of applying the load, the reaction frame and reaction pile configuration, if used, and the placement and support of measuring devices.

At each load test location, the Engineer provides driving criteria for the test pile. The pile is driven and load tested to the test load specified in the contract documents or as directed by the Engineer. If the pile fails to achieve the required capacity, a contingent load test is performed on a second test pile. This pile may be located adjacent to the initial test pile and driven according to revised driving criteria provided by the Engineer. The Engineer may elect to have the contractor redrive piles that do not meet the required penetration resistance.

If, at any stage during the test, the Engineer detects malfunctioning of any apparatus furnished by the contractor, the load being eccentrically applied, or the anchor piles yielding, the Engineer will order the test abandoned, and the contractor will replace it with another test at no additional cost to the State. The contractor must have an employee present at the site at all times during the performance of the test to maintain the required load.

After the test piles are driven, and the pile load tests, if any, are performed, the Soils and Foundations Engineer or consultant designer will promptly analyze the data and furnish the Assistant District Engineer with a list of recommended order lengths for the piles in that locality. If these lengths appear proper, the Project Engineer will use them to make up an order list to the contractor for pile lengths to be furnished by the contractor. The Department is responsible for determining required pile length.

2-813C.2 Driving Plan

The contractor must submit a plan of the pile-driving method to the Engineer, including type of hammer, for approval prior to driving any piling.

2-813C.3 Equipment

The size of the hammer must be appropriate for the type and size of the piles and the driving conditions. The hammer to be used must be approved by the Soils and Foundations Engineer. The Inspector should refer to Article 7.02.03-5 of the Standard Specifications.

The hammer to be used for driving permanent piles must be the same hammer that was used to drive the test piles. If the contractor changes hammers, the contractor must drive additional test piles at his expense before driving the permanent piles, even if the energy ratings of the hammers are identical.

Hammers are to be operated at speeds recommended by the manufacturer for the bearing value specified. The manufacturer's manual for the hammer employed must be available to the Engineer at the project site.

If the required penetration is not obtained by the use of a hammer complying with the requirements, a heavier hammer, jetting, spudding, or a combination of these methods may be used to obtain the required penetration. The Inspector must be aware that hammers delivering an energy that the Engineer considers detrimental to the piles will not be used.
Diesel hammers and vibratory methods for driving piles, other than prestressed concrete piles, are permitted subject to the restrictions in the applicable Standard Specifications.

Pile-driver leads are used for driving all piles unless otherwise permitted by the Engineer. The contractor must drive the piles within the tolerances as specified without injury to the piles. Any leads that do not produce satisfactory end results in the driving of piling are to be removed from the work.

Long piles and battered piles may require guides and additional support to prevent excessive bending or buckling under the hammer blow. Piles must be held in place and aligned by templates or other means approved by the Engineer.

2-813C.4 Driving

In pile-driving operations, the Inspector must be aware of a number of circumstances that may cause driving resistance to be falsely indicated.

- If using a pile hammer that is too light, a considerable amount of the energy is absorbed by inertia of the pile instead of being available for driving.
- The stroke of the hammer may be shorter than needed and should always be checked.
- Slowing down some types of single-acting hammers by the operator will reduce the stroke by several inches (millimeters).
- Resetting the slide bar on a hammer will create back pressure and will ultimately reduce the penetration of the pile under each blow.
- Soft wood placed in the cushion pad will absorb energy, falsely indicating resistance.
- Reduction of speed in a double-acting hammer will reduce the energy of the hammer.

If piling must penetrate strata that resist driving, the contractor must auger or drill holes through the strata. The size of the auger or drill may not be larger than the nominal diameter of a round pile or the minimum diameter of a circle in which an H-pile fits and must meet with the approval of the Engineer before use. After the hole is completed, the pile is inserted and dry sand is used to completely fill any voids between the pile and the walls of the hole. Driving is then completed, after which any remaining voids are completely filled with dry sand.

Once driving a pile has begun, it must be kept continuous except for splicing. A temporary halt in driving a pile may allow the pile to “set”. It may be necessary to continue driving the halted pile for a distance of several feet (meters) before resistance returns to what it was before the stoppage.

If splicing is necessary, it should be performed before approaching the estimated tip elevation. If splicing steel H-piles or shells for cast-in-place concrete piles is necessary, the piles or shells must be spliced as specified in the contract documents by electric arc welding conforming to the American Welding Society (AWS) Structural Welding Code for the full periphery. The number of splices permitted should be compatible with driving conditions at the site and the standard lengths of piling produced by manufacturer.

A pile may become overstressed during driving. If a pile is founded on rock, it becomes a column and additional driving cannot increase its bearing value, but it may seriously damage the pile by brooming, fracturing, or shearing. When the resistance to driving is increased to near the design resistance, smaller increments should be used to check penetration. They will aid the Inspector in ascertaining the number of blows required for each foot (meter) of penetration, the total driving length, and the elevation of the tip of the pile.

Disposition of pile cutoffs is covered by Article 7.02.03-14 of the Standard Specifications or by the project special provisions.
2-813C.5 Tolerances

Piles are driven to the following tolerances:

- **General.** Foundation piles should not be driven out of the position specified in the contract documents by more than 6 in. (150 mm) in any direction regardless of the length of piles. Variation from the vertical or from the batter should not be more than ¼ in./ft. (20 mm/m).

- **H-Piles.** Rotation of the pile in excess of 25 degrees from the planned axis is not permitted.

- **Bents.** Piles must be driven so that the cap may be placed in its proper location.

2-813C.6 Unacceptable Piles

Any pile that does not conform to the contract documents is corrected at the contractor’s expense by one of the following methods or by other methods approved by the Engineer:

- The pile is withdrawn and replaced by a new pile.

- A second pile is driven adjacent to the unacceptable pile.

- The pile is spliced or built up.

- A sufficient portion of the footing is extended to properly embed the pile.

2-813C.7 Reporting

An accurate and complete record should be kept of each driven pile for substantiating the length driven, driving resistance, and tip elevation. The records are kept on Form CON-87 which can be found in the Approved Forms folder.

2-814 Formwork

The contractor is responsible for assuring that forms are adequate. If there is reason to believe that the formwork is inadequate to support pressures from plastic concrete, the Inspector should consult with the Project Engineer and immediately notify the contractor of the concern.

Forms must be fabricated and erected to accurate measurements and lines, and with tight joints, by experienced and capable carpenters, and they must be thoroughly finished and braced. Used lumber must be cleaned before it is reused. Plywood must be free of broken edges and other damage that affect the exposed surface. All defects, including penetrations, ply delaminations, and holes, are plugged and finished flush with the surfaces of the forms. All forms are oiled with clear form oil before use.

Sufficient ties and spreaders should be provided to properly align the forms. Sufficient bracing must be provided to hold the forms in their proper positions while the concrete is being placed. Metal ties and anchors used to hold the forms in alignment and location must be constructed so that the metal can be removed to a depth of at least 1 in. (25 mm) from the surface of the concrete without damage to the concrete. All cavities should be filled with an approved mortar or non-shrink grout. Spreaders are removed when the concrete reaches their level.
The contractor establishes string lines or other suitable means for checking the alignment of the forms during and after concrete is placed. The Inspector must check for alignment and grade before, during, and after the placement of the concrete. The Inspector personally checks established string lines and requires the contractor to assign a competent foreman to check and adjust the alignment of the forms during the concreting operations. The Inspector must closely observe all corners and walers to ensure that any movement during the placement of concrete is brought to the contractor's attention. The contractor must realign and strengthen the forms or halt the placement of concrete until the possibility of form movement or failure is eliminated.

2-815 Reinforcement

Reinforcement is covered in Article 6.02 of the Standard Specifications.

2-815A Plan Dimensions

All plan dimensions related to reinforcing steel are out-to-out measurements. Spacing is measured center to center.

2-815B Cutting and Bending

Reinforcement bars are cut and bent at the mill or shop to the shapes specified in the contract documents before shipment to the job site. Reinforcement bars must not be bent in the field except to correct errors, damage by handling and shipping, or minor omissions in shop bending.

2-815C Storage

Bundles of reinforcing bars are stored at the site on suitable blocking or platforms sufficiently high to keep them free from vegetation growth, accumulations of dirt, oil, or other foreign material. Blocking must be sufficiently close to avoid bending and distortion of the bars. Any distortion of the bars or damage to epoxy coating must be corrected as directed by the Engineer at the expense of the contractor.

Rebar can only be stored on the existing bridge if its weight has been reviewed as noted in Section 2-801A.

2-815D Installation

Longitudinal and transverse bars must be properly located relative to each other. An adequate number of approved metal chairs or suitable precast mortar blocks are used to support reinforcement at the proper elevations. However, reinforcing bars must not be supported by chairs, stand-offs, blocks or other methods against formed surfaces that will be exposed in the completed structure. In addition, no bars are to be cut and spliced for reasons of expediting the installation unless otherwise permitted. All splice lap lengths must be the proper length and in the proper location.

The Inspector must check that the required quantity of reinforcing steel is properly installed and that it is securely fastened so that it remains in position during the placement and consolidation of the concrete. The reinforcing bars must not become displaced or untied during concrete placement operations.
If metal chairs are used to support the reinforcement, there is a tendency for the chair legs to be exposed when the forms are stripped. A part of the chair may protrude beyond the surface of the concrete, where it is susceptible to corrosion. This can be eliminated by using precast mortar blocks to space the steel from the form, as shown in Figure 2-8.3. However, when this method is used, the concrete must be carefully vibrated to avoid honeycombing or the formation of voids around the mortar blocks. The Inspector must not allow the use of wooden blocks for the support of reinforcing steel.

2-815E Splicing

In lapped splices, reinforcement bars are placed in contact and wired together. Bars in beams, girders, walls, columns, footings, slabs, and haunches are lapped 24 diameters. Bars in the upper section of beams and girders are lapped 35 diameters if there is more than 12 in. (300 mm) of concrete under the bars. Mechanical and welded splices are allowed if in the plans or authorized in writing by the Project Engineer. Refer to Section 10 of the AASHTO Standard Specifications for Highway Bridges.

Dowel-bar splicing systems may be designated for stage construction, as indicated on the plans. The contractor may elect to use these in certain situations; the required approval is made by the Engineer.

Figure 2-8.3 Mortar Block
2-815F Epoxy Coating for Bars

The Inspector must be familiar with the special provisions for the epoxy coating for reinforcement bars and the touch-up for repair furnished by the manufacturer. Flame cutting of coated bars is not permitted.

A final visual inspection of epoxy-coated steel at the construction site should be made by the Inspector after the steel is in place, immediately prior to placing the concrete. Areas designated by the Inspector that require repair should be patched with epoxy. No concrete may be placed on a patched area until the patching material has cured for one hour. The contractor must allow the Inspector sufficient time after the reinforcement and forms are in place to conduct the inspection.

2-816 Concrete

2-816A Concrete Mix

The Inspector must become thoroughly familiar with Article 6.01 of the Standard Specifications. This Article contains the requirements for mixing, transporting, placing, and curing concrete. All sources of supply are approved by the Central Laboratory annually and are available on request from the District. Mix design information and approved vendors can also be accessed from the SiteManager Terminal Server files.

One of the first duties of the Inspector is to obtain an approved concrete-mix formula from the Central Laboratory for the anticipated suppliers of concrete. The Laboratory tests and approves the operation of each concrete plant and the materials. They also design the standard concrete mixes. The contractor may use the standard concrete mixes or submit a nonstandard mix design. If the contractor submits a nonstandard design, the Inspector assures that it is forwarded to the Laboratory with sufficient lead time to allow for approval prior to placing concrete.

Requests for material tests for fine and coarse aggregate must be submitted by the Inspector to the District Laboratory in accordance with the frequency for acceptance and requirements identified in the current ConnDOT “Schedule of Minimum Requirements for Sampling Materials for Test.”

The concrete tickets must be signed by the Inspector. The Inspector also will enter the……………???

2-816B Sampling and Quality Control

2-816B.1 Sampling

The following procedures should be used for sampling concrete:

- **Truck Mixer.** The samples, including slump, air entrainment, cylinders, etc., are taken at three or more regular intervals during continuous concrete placement. The Inspector can increase the frequency if a change in the mix is apparent. The samples must not be taken at the very beginning or very end of the distribution. The same procedure is used for trucks delivering central-mix concrete. For truck-mixed concrete, the mixer capacity, the number of revolutions at mixing speed, and other checks are recorded on each load ticket at the time a test specimen is made.

 - Any one of the following should be sufficient cause for rejection:
 - the mixing revolutions exceed 100
 - the concrete is not discharged within 1 hour from the time the truck is loaded
 - the air content or slump is not within specified range
there is segregation (see Article 6.01.03 of the Specifications)

- Stationary Mixer: The concrete sample should be taken after approximately one-half of the batch is discharged. If a chute arrangement is used, samples may be taken by diverting the concrete discharge stream completely until a sufficient amount of material is acquired. If the concrete is discharged directly into a concrete bucket, the discharge should be stopped after approximately one-half of the material is discharged, and the required amount of concrete removed from the top of the bucket. The sample should be put in a wheelbarrow. A hand bucket can be used if a wheelbarrow is not available.

2-816B.2 Testing

After sampling, whether from trucks or stationary mixers, the concrete is moved to a safe area where the necessary tests can be completed. At the site where tests and specimens are to be made, the Inspector remixes the concrete with a shovel to ensure uniformity. If buckets are used, the material is dumped on a flat, level surface, such as a piece of plywood, and remixed. After remixing, the concrete is covered to prevent loss of moisture.

The first tests to be made are the slump test and the air entrainment test. If either the slump or air test does not meet Department requirements, the load should be rejected or adjusted. The concrete plant and the inspector at the plant must be notified of the action. If the tests are satisfactory, specimens should be made.

Test cylinders should be molded by placing the fresh concrete in the standard mold in three layers, each approximately one-third of the volume of the mold. Each layer is rodded with twenty-five strokes of the rod. The strokes are distributed in a uniform manner over the cross section of the mold and should penetrate into the underlying layer by 1 in. (25 mm). The bottom layer is rodded throughout its depth. After the top layer is rodded, the surface of the concrete should be finished to a true plane. Care must be taken in moving and transporting cylinders after their initial set.

After curing for twenty-four hours, the specimen is removed from the mold and properly cured. Curing methods and locations should duplicate those of the actual structure. Care should be exercised during curing to make sure specimens are not damaged. Arrangements must be made by the Inspector to have Laboratory personnel test the specimens.

If slump and air are satisfactory and specimens have been molded, the information obtained is reported on the cylinder card MAT-29, using SiteManager or the paper form for non-SiteManager projects. The Inspectors make a minimum of three cylinders for each unit placed. The cylinders should be numbered “1, 1a, 1b;” “2, 2a, 2b;” etc. The location represented by each sample should be clearly noted.

Concrete slump and air tests are made periodically throughout the placement to ensure proper mix consistency. The procedures for making slump tests and air tests are described in Sections 2-723C and 2-733A within Volume 2, Chapter 7, “Concrete Pavements.”

The AASHTO and ASTM methods for air entrainment determination, slump testing and molding of test specimens all require a round, straight steel rod, about 5/8 in. (16 mm) in diameter and approximately 24 in. (610 mm) in length, with one end rounded to a hemispherical tip. Unless the operator exercises care, a great deal of damage can be done to the air meter, base plates, or the cylinder forms by this steel rod.

2-816C Placement

Concrete can be structurally unsound if not correctly placed, consolidated and cured, even if the right materials and mixing methods are used. The Inspector must assure that placement is in strict compliance with Article 6.01.03-8 of the Specifications.
All foreign material, such as wood chips, paper, wire, dirt, water, mud, etc., must be removed from the forms before the start of a concrete operation.

Concrete should be deposited as close as practicable to its final position. Concrete segregates if it is allowed to run or fall freely or is worked over a long distance. If concrete must be moved a long distance, use concrete hoppers and trucks. Over-vibration will not be permitted. The result is poor-quality, low-durability concrete with subsequent porosity, premature scaling and disintegration.

Vibrators are used to consolidate concrete—never to spread it. Over-vibration or the incorrect use of the vibrator causes separation of concrete materials. The vibrator should penetrate the entire depth of the layer of concrete being placed but not be allowed to remain in the same spot too long. Ten seconds is about the maximum period necessary to consolidate one area. Usually, less time is needed.

The vibrating head should not be allowed to lie idling in freshly placed concrete or against reinforcing bars that protrude from fresh concrete. The vibrator should not be operated against reinforcing steel that projects into concrete that has not reached its initial set.

2-816D Construction Joints

Construction joints are to be placed only at the locations shown on the plans or at locations approved by the Engineer. The Inspector may authorize placement of a construction joint if a section cannot be completed as planned because of an emergency (such as a plant breakdown). The contractor must request permission from the Engineer to place a construction joint if there is no emergency and the joint was not authorized previously.

A joint must be vertical or horizontal, regardless of the reason for the joint. It must be perpendicular to the line of greatest stress and located where shear is lowest. The lines of the joint must be straight and true. For a horizontal joint, edging strips are used to control the lines of the joint. If a vertical construction or expansion joint is located in a structure, 1 in. (13mm) beveled chamfer strips are placed on both sides of the joint to control the line and prevent spalling or ragged edges. A construction joint with a keyway is shown in Figure 2-8.4.

Figure 2-8.4 Construction Joint

BEFORE PLACING THE ADJACENT CONCRETE,
ROUGHEN AND CLEAN THE SURFACE AND TREAT IT
WITH A BONDING MATERIAL

CONSTRUCTION JOINT WITH KEYWAY

LONGITUDINAL REINFORCEMENT
SHOULD PASS THROUGH THE JOINT
2-816E Placing Concrete in Cold Weather

Cold weather procedures are used from October 15 to April 15, unless the Engineer directs otherwise. The procedures are covered in Article 6.01.03-12 of the Standard Specifications. The Inspector must be sure that the heating apparatus is adequate. The contractor must not allow hot spots to develop that might cause premature drying or damage of the material. The contractor must provide a sufficient number of maximum/minimum recording thermometers to record temperatures in each concrete placement undergoing cold-weather protection. There is no additional compensation for the use of heating equipment or for the maintenance of proper curing moisture.

The temperature of the concrete must be no less than 60 °F (16 °C) when placed in the forms. The temperature surrounding the structure must be kept above 60 °F (16 °C) for five days after placement, above 40 °F (5 °C) for an additional nine days, and then gradually lowered to the ambient air temperature. Mixing water must be heated, but its temperature cannot exceed 150 °F (65 °C). If aggregate is heated, its temperature must be between 50 °F (10 °C) and 100 °F (37 °C). The Engineer may vary the temperatures for the mix, water, or aggregate in extreme weather.

The contractor must have tarpaulins, insulating devices, and other suitable materials at the site to enclose or protect all portions of the concrete requiring protection. Materials should be stored close to where they will be used and, after the concrete is placed, installed as rapidly as possible to keep exposure to cold weather to a minimum. The spaces to be heated must be completely enclosed, and the temperature must be kept at required levels by the use of heaters approved by the Engineer.

Before placing concrete, the Inspector should ensure that the air temperature in the forms and the reinforcing steel is at or above the specified temperature. The temperature must be maintained throughout the entire concrete placement operation.

After the concrete is placed in the forms, daily temperature readings are taken by the Inspector to ensure that necessary temperatures are maintained. A record must be kept of these readings on the Inspector's Report. A thermocouple probe and thermometer can assist the Inspector in obtaining readings and improving the accuracy of the representative temperature of the concrete.

The curing period for all structural concrete requiring cold-weather protection must conform to the cold-weather protection period except if the normal curing period is longer. The concrete must be covered after the initial set. Proper curing moisture must be maintained at all times.

2-816F Curing

Curing is covered under Article 6.01.03-19 of the Standard Specifications, “Curing Concrete”.

Proper curing improves the three most desirable characteristics of concrete: strength, water tightness, and durability. There should not be a tendency to neglect the curing of concrete walls, abutments, piers, and other features of a structure where forms may be stripped early.

The strength of concrete is increased about 50 percent by keeping it damp the first seven days instead of allowing it to dry out rapidly. Moist curing is an aid to producing watertight concrete. As the cement paste hydrates, additional solid matter is formed, filling in spaces between the cement particles. The more complete the hydration process, the denser the concrete. In addition, moist curing improves the durability of concrete and prevents checking and dusting.

Liquid membrane-forming curing must not be used for bridges. Some of the methods that may be used are described below.

- Flooding. Units of structures that will be below water in the completed structure—bottom slabs of culverts, footings, struts, etc.—may be gradually flooded when approved by the Engineer after the concrete is 12 hours old. The temperature of this water should be maintained at 35 °F (2 °C) or above for the specified curing time.
- **Burlap.** Two layers of burlap must be used. Successive strips of burlap are overlapped a minimum of 6 in. (150 mm). The second burlap layer is placed not less than 45 degrees to the first layer, or in lieu of this, the 6 in. (150-mm) overlap of the second layer may be placed midway between that of the first layer. The material must be thoroughly saturated by immersion in curing water for at least 24 hours prior to placement and must be kept saturated throughout the time specified for curing.

- **White Opaque Polyethylene Backed Non-woven Fabric.** One layer of white opaque polyethylene backed fabric must be used. Successive strips are overlapped a minimum of 6 in. (150 mm) The material must be thoroughly saturated by immersion in curing water for at least 24 hours prior to placement and will be kept saturated throughout the time specified for curing.

- **Cotton Mats.** One layer of cotton mat material is used and must be kept thoroughly saturated with curing water prior to placement and throughout the time specified for curing. The material must be kept in tight contact with the concrete.

- **White Opaque Burlap Polyethylene Sheeting or White Opaque Polyethylene Film.** The white opaque burlap polyethylene sheeting is placed on no less than one layer of wet burlap with the burlap side of the sheeting facing down. White opaque polyethylene film, if used, is placed on no less than two layers of wet burlap. Only one layer of cotton mats is required in any usage. The materials may only be used on top of the wet burlap or cotton mats if the surfaces are unobstructed, flat and reasonably level.

Adjacent mats or sheets must be lapped no less than 12 in. (300 mm). The ends are brought down around the sides of the concrete being cured and securely fastened to make an air-tight seal.

The white opaque burlap polyethylene sheeting or the white opaque polyethylene film must remain in place for the same length of time as required for burlap or cotton mats. The protective coverings need not be wetted down. However, the covered burlap or cotton mats must be kept wet for the period specified.

2-816G Finishing Concrete Surfaces

The Inspector should refer to Article 6.01.03-21 of the *Standard Specifications*, “Surface Finish”.

Immediately following the removal of forms, all fins and irregular projections must be removed from all surfaces, except from those that are not to be exposed or not to be waterproofed. On all surfaces, broken corners or edges and any cavities must be thoroughly cleaned and, after having been kept moist, are carefully pointed and trued with a mortar of cement and fine aggregate mixed in the proportions used in the grade of the concrete being finished. Any excess mortar at the surface of the concrete must be removed. The mortar patches are to be cured. Construction and expansion joints in the completed work must be carefully tooled and cleaned. Joint filler is exposed for its full length with clean and true edges. Resulting surfaces must be true and uniform.

The *Specifications* contain a table of finishes that indicate the type of finish to use by structure component. The components are finished with either a float, grout clean-down, or rubbed finish as described in the *Specifications*.

2-816G1 Horizontal Surfaces

All upper horizontal surfaces, such as the tops of parapets, copings, and bridge seats, must be finished by placing an excess of concrete material in the forms and striking it off even with a wood template. Tops of handrail (posts and caps), headwalls, parapets, wingwalls, and barriers are steel troweled to a smooth, dense surface.

The bridge seat bearing areas of the substructure masonry must be finished to the elevations shown on the contract documents. The contractor will check the elevation of each bearing area prior to finishing ensuring conformance with
the plans. Each area must be checked for level in all directions using a spirit level, and adjustments must be made prior to the setting of the concrete. The area is steel troweled to a dense, flat surface. Bearing areas that are not flat after final finishing must be ground to achieve an acceptable surface. A bearing area is not accepted if it is at an elevation below that of the surrounding masonry.

2-816G2 Sidewalks and Safety Curbs

The concrete should be struck off with an approved screed to the elevation and slope specified in the contract documents. It must be wood-floated to give a uniformly gritty surface free from depressions or high spots. The joints must then be edged with the appropriate edging tool. Curbs are stripped and finished as soon as possible.

2-816G3 Culvert Slabs

The tops of culvert slabs that are not part of the roadway and invert slabs must be screeded either by hand or machine and have a float finish. The allowable surface tolerance must be within ¼ in. (6 mm) of the grade specified in the contract documents. Inverts of culverts having a span of less than 10 ft. (3 m) need not be straightedged.

2-817 Superstructures

2-817A Steel Bridges

Steel bridges are usually designed with steel superstructures constructed of structural steel and concrete. Their substructures are usually constructed of concrete. Further design-related definitions and information can be found in the ComDOT Bridge Design Manual and the Department's Steel Construction Manual.

Figure 2-8.5 Shear Connectors
There are two types of steel superstructures: composite and non-composite. In a non-composite steel-beam bridge with a reinforced concrete deck, each beam carries the dead and live load transmitted to it by the concrete slab. In a composite bridge, shear connectors are welded to the beams, so that after the concrete slab is placed, the slab and the beams act together as composite sections to carry the loads. A sketch of shear connectors is shown in Figure 2-8.5.

2-817B Box Girders

Steel and post-tensioned concrete box girders are now in use. Stay-in-place forms are generally not allowed for building concrete decks on box girders.

2-817C Temporary Bridges

The construction of a temporary bridge may be included in the project, usually as part of stage construction. The contractor is responsible for the design of a temporary bridge according to the contract specifications. On complex projects, the Department will provide a temporary bridge design on the plans. Shop drawings are always submitted to the Department by the contractor for review.

2-817D Prestressed Bridges

Prestressed concrete superstructure units of various shapes have been adopted for use as economical bridge-deck components. The more common prestressed units and types are:

- **Standard Prestressed Concrete Slabs.** These are hollow, rectangular concrete units with central, longitudinal voids. A unit may serve as both girder and deck surface for simple-span structures, although a bituminous or cementitious wearing surface may be applied. Normally, they are not used for spans over 65 feet (20 meters) in length.

- **Standard Prestressed Concrete Box Beams.** These are similar in shape to standard prestressed-concrete slabs but usually are deeper, used for spans up to 105 feet (32 meters). They can be covered with a bituminous or cementitious wearing surface.

- **Standard Prestressed Concrete Girders.** These are I-shaped units used primarily as girders that normally are used with conventionally reinforced concrete decks. The span limit is 120 feet (37 meters).

- **Precast Reinforced Concrete Arch.** Each unit is a concrete arch constructed of three sided, reinforced, monolithically precast sections with open ends of the size as shown on the plans. The units are tied together with transverse strands that are post-tensioned as directed by the Designer.

2-817D.1 Strength

The strength of the concrete in the superstructure units must be as shown on the plans, as defined by the following:

\[f'c = \text{the required 28-day compressive strength.} \]

\[f'c_i = \text{the required compressive strength at the time the strands are detensioned.} \]
2-817D.2 Camber

Camber is defined as the slight arch or convex curvature provided in beams to compensate for dead-load deflection. The camber of the prestressed superstructure units when delivered to the job site should approximate the value of the estimated camber. The estimated camber is computed on the basis that the superstructure units are detensioned at the prestress plant when the concrete has attained the required compressive strength (f'_{ci}), as shown on the contract plans. Too great a camber can result from the introduction of an excessive prestress force, but usually it is caused by detensioning the superstructure units before the required concrete strength (f'_{ci}) has been reached. If the camber is excessive (over or under by approximately 50 percent of the estimated camber), the Inspector should notify the Assistant District Engineer.

2-817D.3 Bearing Areas

The Inspector must check the bottom of each superstructure unit at both bearing areas for trueness of plane surface. The check is done before the superstructure unit is erected to ensure uniform bearing between the superstructure unit and the elastomeric bearing pads. The bearing surface of the bottom of a superstructure unit must lie in a plane that is parallel to the plane passing through the top of the bearing pads. The allowable deviation from a true plane is ±1/16 in. (±1.5mm), as specified in the *Manual for Inspection of Prestressed Concrete* presented by the joint AASHTO-PCI Committee.

2-817D.4 Unacceptable Units

The Laboratory notifies the supplier of all unacceptable units delivered to the site. Copies of the notifications are sent to the appropriate District Office. Field inspectors must ensure that the beams delivered to the site are found acceptable by the Laboratory. If the beams are delivered to the site and have not been accepted at the plant by the Laboratory, the beams must be rejected and returned to the supplier. Out-of-tolerance beams must not be accepted on site, regardless of any understanding that remedial corrections will be performed in the field.

2-817E Anchor Bolts and Bearings

Anchor bolts and bearing assemblies must be accurately positioned or set prior to placing concrete for the bridge seat. Anchor bolts must be set in formed holes in accordance with details and dimensions shown on the plans. The space around the anchorage material is completely filled with nonshrink, nonstaining grout. The work is done as noted on the plans or as ordered by the Engineer.

Frequently, the provision for anchor bolts becomes a part of the superstructure work. In such instances, it is not advisable to drill holes for the anchor bolts. The positioning of anchor bolts must be performed before the substructure concrete is placed. Because there is very little room for adjustment, the anchor-bolt layout must be accurate. The bolt holes must be in the correct locations and perpendicular to the plane of the bridge seat.

The layout procedure is as follows:

- After forms are constructed for the concrete substructure, the centerline of the bridge is located for the abutments and piers.
- The centerline of bearing is located for the first abutment. The angle between the centerline of the bridge and the centerline of bearing is checked to see that it is exactly as planned. Any discrepancy must be corrected by adjusting the centerline of bearing.
The distance is checked between the centerlines of bearing for the first abutment and the second abutment or pier, applying corrections for temperature and measuring tape sag. After the correct distance between the centerlines of bearing is established, an adjusted centerline of bearing is located on the second abutment or pier. The centerlines of bearing for the remaining piers or abutments are located in a similar manner.

For each abutment and pier, the centerline of the girder and the centerline of the anchor bolts are permanently located. The lines are used to determine the position of the anchor bolts and to set the masonry plates.

After the anchor-bolt holes are cast into the concrete and the bearing is prepared, each masonry plate is marked with the centerline of the girder. The centerline of the anchor bolts is marked on the bearing seat. The plate is set so that the marks on the plate coincide with the marks on the bearing seat.

The anchor bolt positions must be adjusted to accommodate expansion of the girders. Rockers will be tilted toward the abutment if the temperature is above the mean temperature indicated on the plans and away from the abutment if the temperature is below the mean temperature indicated on the plans.

2-817F Elastomeric Bearing Pads

The purpose of the elastomeric bearing pad is to transmit the superstructure loads to the substructure and to accommodate the expansion, contraction, and horizontal movements of the superstructure. This should be accomplished without slippage between the superstructure and the elastomeric bearing pad or between the elastomeric pad and the substructure. A sketch of an elastomeric bearing pad assembly is shown in Figure 2-8.6.

2-817F.1 Materials

The dimensions of the pads must be as shown on the plans, with allowable tolerance indicated in the specifications. The two most critical dimensions are the taper of the pad, or pad thickness if no taper is required, and the location of the laminae, if a laminated pad is specified. The taper (or thickness) of the pad must be correct to obtain uniform bearing between the pad and the superstructure unit, resulting in uniform stresses within the pad.

The laminae within the pad, if present, have the effect of dividing the pad into a series of pads. Therefore, the distance between laminae is equivalent to the thickness of each “internal pad” and must be of the proper dimension. The Materials Laboratory cuts the sample pad to determine the location of the steel laminae. The position of the laminae can also be determined after the superstructure unit has been set on the pad. The weight of the superstructure unit will produce a series of bulges on the side of the pad. The valleys, or the portions of the side that do not bulge, indicate the positions of the laminae. The required position of the laminae will be as shown on the plans, with the allowable tolerances stated in the specifications. No part of the laminae may be exposed.
2-817F.2 Bearing Area

Unless otherwise stated in the specifications or plans, the elastomeric bearing pad is set on a prepared concrete seat. The seat must be level and at the elevation shown on the plans, and it may not vary from a true plane by more than 1/16 in. (1.5 mm) over the entire surface on which the elastomeric bearing pad is to rest. Normally, no grout will be used to level the seat. If shims are needed, elastomeric shims will be used prior to installation of the elastomeric bearing pad.

When the elastomeric pads are used without masonry bearing plates, the masonry bearing surfaces must be ground to remove all laitance before the application of the adhesive. The surfaces of the concrete bearing areas that will be in contact with the bearing pads and the full contact area of the bearing pad will be coated with the epoxy adhesive. After the adhesive is applied and the pads are set in place, blocking or other approved mechanical methods may be used to secure the pads in their final position until the adhesive sets up.

2-817F.3 Installation

The pads and abutting surfaces must be given a final cleaning to assure that they are free from all dust, dirt, oil, grease, moisture, and other foreign substances. Cleaning may be done with an approved solvent that is compatible with the adhesive. The adhesive must be mixed and applied in conformance with the manufacturer's recommendations.

Surface temperatures and predicted ambient air temperature for the next four hours must be 50 °F (10 C) or higher at the time of application, unless otherwise specified in the contract documents or recommended by the epoxy adhesive manufacturer and approved by the Engineer.

After application of full dead load, there must be uniform bearing between the superstructure unit and the elastomeric bearing pad and between the bearing pad and the concrete seat, uniform deflection of the pad, and no tearing of the elastomer.
2-817F.4 Nonconforming Work

Any deviation from the above, or any nonconformance to the requirements of the plans or specifications, must be reported immediately to the Project Engineer. Refer to Section 1-325 for usage of Non-Compliance Notices.

2-817G Pot Bearings or Disc Bearings

Pot or disc bearings must provide for rotation in all directions. Expansion bearings have sliding surfaces of polytetrafluorethylene (PTFE) to accommodate expansion and, thus, sliding in the directions indicated on the contract plans. A sketch of a pot bearing is in Figure 2-8.7.

The Inspector must be aware of possible problems during normal use of the bearings:

- The bearing may be subjected to rotation beyond its capacity during installation.
- The electrical ground may be attached to the bearing, causing current to travel through the bearing or causing arcing of the ring against the side of the pot.
- Paint may be applied inadvertently to PTFE or stainless steel surfaces. The surfaces are intended to slip against each other. The paint impedes the movement.
- Duct tape or such, used to secure the bearing during transportation, may be left in place between the teflon and stainless steel surfaces.
- Bearings may be handled and stored improperly. They can easily be contaminated with foreign material.
- The pot bearing may “ooze” after loading.

As with all fabricated structural steel, the contractor must submit shop drawings to the Engineer for approval before fabrication of any bearing. The contractor is responsible for coordinating the work between the bearing manufacturer and the subcontractor installing the bearings. Pot bearings are preassembled in the fabricator's shop before shipping to the job site. They should not be disassembled in the field.
Before installing the bearing, the contractor certifies to the Engineer that an experienced representative of the bearing manufacturer will be available to the contractor at the site to give aid and instruction. The bearings must be placed at the predetermined location at the time of structural steel erection or, in the case of cast-in-place concrete superstructures, before the superstructure is cast. All temporary restraints are removed as directed by the bearing manufacturer.

Expansion bearings are adjusted from the normally aligned position to allow for the ambient temperature at the time of erection or casting. In addition, the bearings are adjusted horizontally on the anchor plates to properly fit the steel superstructure members being erected. After all adjustments and at the approval of the Engineer, the bearings are welded to the anchor plate.

2-817H Expansion Dams

In setting expansion dams, the length of the expansion dam on the plans is adjusted for the difference between the existing temperature and the mean temperature indicated on the plans. The following formulas are used:

- \(T \) = mean temperature indicated on the plans in degrees Fahrenheit (Celsius)
- \(E \) = existing temperature in degrees Fahrenheit (Celsius)
- \(L \) = length of the structure contributing to expansion in inches (millimeters)

When the temperature is above \(T \), the steel expands. The increase in the length of the girder because of the difference in temperature is:

\[
0.000\ 0116 \times (E - T) \times L \quad (0.000\ 0065 \times (E - T) \times L)
\]

If the other end of the girder is fixed, existing expansion space should be set smaller than that shown on the plans by subtracting the calculation result. If the other end of the girder is free to expand or contract, the existing expansion space is smaller by one-half of the calculation result.

When the temperature is below \(T \), the steel contracts. The decrease in the length because of the difference in temperature is:

\[
0.000\ 0116 \times (T - E) \times L \quad (0.000\ 0065 \times (T - E) \times L)
\]

If the other end of the girder is fixed, the existing expansion space should be set larger than that shown on the plans by adding the calculation result. If the other end of the girder is free to expand or contract, the existing expansion space is set larger by one-half of the calculation result.

If the mean temperature is not indicated on the plans, \(T \) is assumed to be 50 °F (10 °C).
A rocker setting is shown in Figure 2-8.8.

It is important to remember that a further allowance must be made for the increase in length of beam that may be produced by reduction in camber resulting from the application of dead load. In addition, an allowance for concrete creep must be made for cast-in-place concrete boxes.
2-817I Steel Erection

Article 6.03 of the Standard Specifications must be thoroughly reviewed by the Inspector prior to erecting any steel. It is very important that steel erection proceed in accordance with the approved procedure. Any deviation in crane size or lifting locations should not be permitted. All details of the erection of steel members must be discussed in the approved erection plan.

When structural steel is being erected, it is very important that diaphragms are installed and bolted as girders are placed—to stabilize the girders and prevent accidents. The Inspector must not allow work to be stopped for the day until all erected beams are stabilized by the proper installation of diaphragms and keeper blocks if necessary. The Inspector must never permit unbraced steel to be left overnight.

2-817J Shear Connectors

Shear connectors must be the diameter and height specified on the plans and must be installed in accordance with the prescribed spacing on the top flange of steel girders. Shear-connector samples of the type described on the plans must be submitted for testing and approval well in advance of the anticipated use. The Inspector may refer to Article 5.08.03 of the Standard Specifications for field testing procedures.

2-817K Welding

Welding is a critical function in the construction of steel bridges and requires constant diligence of the Inspector. The Inspector must thoroughly review the Standard Specifications Article 6.03.03-6, “Welding,” AASHTO and American Welding Society (AWS) codes, and the ConnDOT Steel Construction Manual.

Field welding must be performed by the shielded metal arc method, unless otherwise permitted by written consent of the Assistant District Engineer. Welding will not begin until all welding procedures are submitted by the contractor and accepted by the Department.

2-817K.1 Welder Qualifications

To work on the project, either in the field or shop, a welder (1) must possess a valid Department welding card and (2) must have welded on a Department project or on a project acceptable to the Department within 12 months. The Chief Inspector must personally inspect and copy each welder's card before he begins work on the project. The welder's identity must be verified by a positive means of identification (driver license, etc.).

The welder is required to requalify through examination if he cannot produce a suitably approved welding certificate, dated not more than 12 months previously, from a welding agency acceptable to the Engineer. Examinations are at the expense of the individuals and are given at independent testing agencies approved by the Laboratory. The Laboratory issues the welding card.

2-817K.2 Inspection

The contractor is required to employ a Certified Welding Inspector with a DOT welding certificate to perform fabrication-and-erection or verification inspection of the work for conformance with all applicable codes.
The Inspector must be equipped with a welder's mask to inspect a weld while it is being executed. In executing a weld, the molten metal forms a pool, and in observing this pool the Inspector can detect the presence of foreign matter such as slag, water, grease, paint, or other substances that impair the density or structure of the weld. A Certified Welding Inspector can observe the depth of penetration into the base metal.

Before any field welding is started, the structure must be adjusted to the correct grade and alignment, and provision must be made to prevent distortion during welding. All surfaces to be welded must be free of paint or primed as specified in the Standard Specifications Article 6.03.03-37, “Shop Painting,” and must be thoroughly cleaned. The edges of plates and sections to be welded will be tightly closed by service bolting, clamping, or other approved methods.

2-817K.3 Weld Quality

Proper current, voltage, and welding speed are necessary to make a good weld, and varying from normal in any of these factors affects the quality of the weld. Figure 2-8.9 shows various combinations of current, voltage and welding speed and the results that can be expected.

Figure 2-8.9 Weld Quality Factors

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th>Speed</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Smooth contour, uniform cross section with slightly convex face, straight edges, ripples spaced closely and uniformly</td>
</tr>
<tr>
<td>Low</td>
<td>Normal</td>
<td>Normal</td>
<td>Shallow, poorly defined crater, poor fusion</td>
</tr>
<tr>
<td>High</td>
<td>Normal</td>
<td>Normal</td>
<td>Shallow, poorly defined crater, poor fusion, no pronounced overlap</td>
</tr>
<tr>
<td>Normal</td>
<td>Low</td>
<td>Normal</td>
<td>Penetration small, fusion poor, porous weld.</td>
</tr>
<tr>
<td>Normal</td>
<td>High</td>
<td>Normal</td>
<td>Fusion poor, bead wide with large splatters</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Low</td>
<td>Fusion fair, bead wide and overlapping, penetration good</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>High</td>
<td>Fusion fair, insufficient deposit of weld material</td>
</tr>
</tbody>
</table>

2-817K.4 Defective Welds

After the weld has cooled and the slag has been removed, it must be cleaned with a wire brush. Common defects in the weld that the Inspector should detect are treated in the following manner:

- **Overlap.** If the edge of the weld metal is loose and protrudes over the base metal, poor fusion is indicated. The weld is cut out, and a new weld is made.

- **Undercutting.** There is an insufficient deposit of weld metal, or the base metal is necked down. The weld is cleaned and built up to standard by depositing weld metal.

- **Shallow Craters.** Poor penetration is indicated. Unless the weld is for sealing purposes only, the weld is cut out, and a new weld is made.
• **Pits, Porosity and Gas Pockets.** The weld is cut out, and a new weld is made.

• **Irregular Spacing of Ripples.** This is not harmful unless an exceptionally wide space occurs, causing a weak spot. If full strength is important, the length of the weld is increased.

The sizes and lengths of all fillet welds are checked against the plans. A weld slightly larger or longer than specified is acceptable, but the weld may not be smaller or shorter than specified. Any questions may be directed to the Materials Testing Laboratory.

The Inspector must ensure that the welder makes consistently satisfactory welds. If the welds appear to be of inferior quality, the Inspector notifies the Laboratory for review by an AWS Certified Welding Inspector employed by the Laboratory. For welders who perform satisfactory work, the Inspector must sign and date the welder's card.

2-817L Bolted Connections

Bolted connections are not to be used unless shown on the plans. The bolts must be of the size and type specified and must be installed in accordance with Article 6.03.03-19 of the *Standard Specifications*. It is important that sample bolts are taken to assure quality and approval and to ensure that the bolts are not foreign made. Bolt manufacturers can be identified by the markings on the head. Bolts should be checked for adequate torque. In some cases, load-indicating washers can be used and inspected according to the manufacturer.

2-817M Utility or Conduit Installation

Utility installations covered by contract items must be installed as shown on the plans.

Steel conduits usually are placed within the parapet area of a bridge deck. They must be continuous, extend to the proper height above the top surface of the parapet at roadway lighting unit locations, extend from the wingwalls the proper distance below the proposed roadway surface, and be satisfactorily capped. Adequate provision must be made for the temperature movements of the structure by installing expansion sleeves where directed and especially at the expansion joints of the structure. All conduits must be bent in an approved bending device to the radii limits prescribed in the electrical code.

2-817N Bridge Deck Procedures

Article 6.01.03-9, “Concrete for Bridge Decks,” of the *Standard Specifications* requires the contractor to submit plans for deck screeds, grades, and concrete placement methods and sequences. The plan is reviewed by the Inspector.

2-817N.1 Grades, Formwork and Screed Rails

The contractor may elect to screed a concrete deck slab either longitudinally or transversely, depending on the way deemed best for the size of the deck.

As a rule, the camber noted on the plans refers to the amount of camber required in the beam to offset the deflection due to the dead load to be carried by the beam plus the weight of the beam itself. The amount of camber to remain in the completed slab varies with the length of the span. In addition, screed settings are affected if the bridge is on a vertical curve.
After grades are computed for the predetermined reference points, the deflections and the amount of camber desired are applied to the computed grades to give a working grade. The working grade is used to build the forms and to set the adjustable screed.

Immediately after the steel erection is completed, elevations are taken on the beams at the reference points. No significant dead load (including deck forms) may be placed on any beam until all elevations of the steel are taken. It is recommended on larger bridges that survey elevations be taken as soon as possible, at a fairly constant temperature. Although deflections and camber are significant to design, the deck thickness is the critical element in the field. The deck thickness, as computed from the horizontal and vertical geometry of the roadway, should not be less than the thickness specified on the plans.

The beam elevations are then subtracted from the working grade, and the difference between the two should be marked on the beams in inches (millimeters). It is advisable to do the marking with something durable, such as paint, as the reference markings are used for constructing the slab forms and setting the screed. After the screed is set and necessary adjustments are made, the slab is ready to be placed. Unless it is accidently displaced, no further adjustment of the screed is necessary, as allowances for deflection and camber are made in computing the working grade.

Additional deflection allowances may be noted for structural sidewalk, safety walk, parapet or median components, and the proper deflection allowances must be made in the grades of the formwork.

On bridges with a horizontal curvature, forms between reference points are checked radially to the base line, not necessarily perpendicular to the girders.

Particular attention must be given to the location and grade of the parapet rustication and chamfer strips. The plan details covering reductions in the depth of the rustication strips and parapet coping chamfer at sign-support bases or luminaire bases merit careful review and consideration.

The lack of sufficient concrete cover over deck reinforcement is a major cause of premature deck deterioration. Thus, it is necessary that bridge decks be constructed in strict conformity with plan dimensions, and sufficient care must be taken to ensure that the clear cover over the reinforcement is as shown on the plans and within allowable tolerances. The Inspector should verify compliance with plan dimensions by an adequate number of measurements of the reinforcing bar locations before placing concrete. The epoxy-coated bars used in the deck must be checked for nicks, cutoffs, etc., and touched up properly in the field. This should ensure continuous protection of the steel to prevent rust.

2-817N.2 Placing Concrete

Unless otherwise specified in the contract documents, Class F concrete must be used for bridge decks. The air content of the placed concrete must be maintained within the limits specified to provide for durability. Deck concrete generally is placed with concrete buckets, pumps, or conveyors. The manner of placement and finishing is very similar to that for concrete pavement. See Volume 2, Chapter Seven, "Concrete Pavements."

The Inspector must be completely familiar with the deck concrete placement sequence as shown on the plans. Generally, placement sequences are provided for multi-span continuous-beam bridges. If the contractor wishes to modify the sequence from that shown on the plans, a written request must be submitted to the Engineer for approval prior to placement of any concrete. The placement sequence is critical to the construction of the bridge and the loading of the superstructure, particularly if the beams are skewed from the substructure. It is also important to consider the structural stability of the bridge during the unbalanced loading that occurs during placement of the deck concrete.

If the deck placement will occur over a fairly long time in a continuous operation, set retarders should be used in a modified concrete-mix design to allow finishing of the surface.
If practicable, placing operations commence at the lowest exterior grade point of the structure. The concrete must be spread evenly in layers, thoroughly vibrated—especially around haunches, fillets, rustication strips and shear connector devices—brought to the final grade as established by the screed rails, and finished by an approved mechanical finisher.

The machine-struck surface will be smoothed with an approved lute, straightedged, and textured with a broom drag. The surface may not vary more than 1/8 in. (3 mm) if checked with a 10 ft. (3 m) straightedge. The broom finish for decks is omitted if a waterproof membrane is applied.

The grade at the curb line should be true to prevent water from standing along the curbs. Workers should not be allowed to walk in the concrete after it has been screeded; suitable bridges must be provided to gain access to the various parts of the work. Screed rails or supports for screed rails may not be placed in the roadway area, unless specifically outlined on the plan or as directed by the Engineer.

The Inspector must assure that the concrete pump hoses or pipes are primed throughout with a lubricating grout. Approximately 5 gallons for every 50 feet (1.25 liters for every meter) of hose is needed to properly coat the inside surface. When almost all the priming grout is pumped out of the receiving hopper, the first load of deck concrete may be discharged into the hopper. Then pumping can proceed slowly until the excess grout and water are removed, and the true mix is flowing.

At the outlet end of the hose, the pipe must be located high enough above the form so that the mix can be distributed easily, but not so high as to permit a free fall that leads to segregation. Concrete should not be allowed to drop more than 3 ft. (1 m) from the chute to the form or to the previously deposited concrete.

The Inspector should keep a number of basic requirements in mind:

- The concrete hauler must discharge directly into the receiving hopper.
- An adequate supply of clean water is necessary for flushing out the cylinder system, and provision must be made for disposal of the flushed water.
- Proper mix design is essential.
- If pumping downhill, the pump should have a certain resistance to work before the pipeline reaches the downward incline. This resistance can be provided by going uphill for a few feet (meters) before turning downward.
- Weather can affect pumping performance. In hot weather, pipe exposed to the sun can be covered with wet burlap.
- A contingency plan should be available to complete the concrete placement in case of equipment breakdown.
- The pumping operation can commence at the farthest point from the pump and work toward the pump.

2-817N.3 Finishing

All exposed external surfaces of structural concrete are finished as prescribed in the Specifications. Deck surfaces receive a broom finish unless a waterproof membrane is to be applied. The top surfaces of safety walks and parapets receive a float finish.

If specified in the contract documents, the deck grooving operation will start after the bridge deck slab has been cured and has attained the minimum compressive strength specified. The bridge deck must be grooved perpendicular to the centerline of the roadway.

The grooves may be cut using a mechanical saw device that leaves grooves 1/8 in. (3 mm) wide, 3/16 in. ± 1/16 in. (5mm ± 1.5 mm) deep, and variably spaced from 5/8 in. (16 mm) to 7/8 in. (22 mm) apart. The grooves may extend across the slab to within 1 ft. (300 mm) of the gutter lines. All residue resulting from grooving operations must be
removed from all surfaces in an environmentally accepted manner. All surfaces will be left in a washed, clean condition.

2-817O Joints

Figure 2-8.10 Poured Joint Seal

![Diagram of poured joint seal](image)

2-817O.1 Sealants

A sketch of a poured joint seal is in Figure 2-8.10. The joint sealers for structures should be as noted on the plans or as required by the special provisions.

The Inspector must be thoroughly familiar with any joint sealer used. As with other coating systems, a data sheet comes in the box containing the cans of sealer. This data sheet provides the type of information that is needed by the Inspector. The data pertain to only the particular brand being used. Without the data, the Inspector has no way of making a proper inspection unless thoroughly familiar with the brand of sealer from experience. Also of equal importance in sealing joints with any material is the use of a proper bond breaker and backup material. The wrong choice of bond breaker, backup material, or both can mean failure of the joint even though the sealant and workmanship are the highest quality.

The bond breaker must exhibit the following characteristics:

- It must prevent bond between itself and the sealant.
- It must have extremely low tear strength.

Backup materials for joint sealants must do the following:

- control the depth of sealant in the joint
- serve as a supporting medium
Construction Manual
Volume 2

- be nonabsorbent or relatively nonabsorbent
- have the ability to be compressed by changing volume rather than shape

2-817O.2 Expansion Joint Material

Expansion joint material delivered to the bridge site should be stored under cover on platforms above the surface of the ground. It must be protected at all times from damage, and when placed it must be free from dirt, oil, grease, or other foreign substances. All welding will conform to AWS unless otherwise specified in the contract documents. No expansion joint material may be installed prior to approval by the Engineer of all material and installation methods.

The preformed material will consist of the longest length possible with a minimum of joints. Lengths less than 4 ft. (1.2m) must be one piece. The material is cut to a clean, true edge with a sharp tool. Care will be taken to insure straight lines at the joint.

When installing the seal, the contractor must not use any type of equipment that will damage the seal. If the seal is damaged during installation, the contractor must remove and replace the seal at the contractor's expense.

2-817O.3 Systems and Devices

The transverse compression seals will be one piece for the entire length of the roadway joint. Shop or field splices in the seal are prohibited. Compression seals for longitudinal bridge joints will consist of the longest piece practicable.

Lubricant adhesives must be applied in conformance with the manufacturer's recommendations. If the seal is stretched more than five percent, the contractor will reinstall the seal as directed by the Engineer.

- **Elastomeric Concrete Strip or Box Seal Expansion Joint System.** This system consists of all necessary reinforcing and hold-down bars, and the elastomeric concrete that holds the strip or box seal. An adhesive lubricant will be used to install the strip seal in the steel intrusions. See Figure 2-8.11. **Prefabricated Strip Seal Expansion Joint Device.** This device consists of a prefabricated elastomeric strip seal gland inserted in steel extrusions. The steel extrusions are welded to steel plates that are fastened to existing finger plates with welded studs. It is set in place with elastomeric concrete. See Figure 2-8.12.
If coating materials are used for surface treatments to curb, sidewalk, medians, parapets or any other part of a structure subjected to roadway salts, the Inspector must become familiar with the characteristics of the material well in advance of its application. As contracts normally allow a choice of equivalent brands of materials, the Inspector must be aware of the contractor's choice and retain a data sheet from the vendor for the material.
The data sheet provides information on the following:

- description of epoxy
- advantages
- properties
- effect of material temperature
- effect of curing temperature
- coverage
- how to prepare and use
- limitations
- safety

Because of the critical nature of the material and the factors limiting its use, as well as the factors that may be detrimental to the resultant quality, the Inspector must make every effort to ensure proper preparation and application.

2-818 Bridge Rehabilitation

The storage and load restriction instructions outlined in Sections 2-801A and 2-801B should be thoroughly reviewed and applied to all bridge rehabilitation projects. Special attention should be focused on staged construction where loads from temporary precast barrier curb will affect the structure for potentially long periods of time.

2-818A General

Bridge rehabilitation requires a design-construction approach by the Department and close attention to the details of rehabilitation construction. In addition, as new materials are introduced into the construction industry, the focus on proper preparation, handling, and application of materials becomes more and more important to the success of rehabilitation efforts.

Bridge rehabilitation may involve the repair of or the removal and replacement of bridge decks, the repair of substructure components, the cleaning or replacement of bearings, the strengthening of structural steel members, the repair and protection of the bridge utility conduits and supports, the paving or overlaying of bridge decks, and the proper disposal of all construction debris.

Once the work is underway, the extent or limits of deterioration may be greater than anticipated. As the construction progresses, the Inspector may encounter site conditions very different from those shown in the contract documents. The changed conditions require reevaluation of the design, project goals and objectives, and available budget.

2-818B Utilities

During any rehabilitation construction project, the Inspector must ensure that the contractor is aware of existing utility services (including water, telephone, gas, electrical, and cable) that are located on the bridge or in the bridge parapets.
As a first order of work, preliminary measurements, sketches and photographs of the locations of all existing utilities are documented jointly by the contractor, the Inspector, and the utility company representative. The Inspector inspects the visible utility components to ensure they are in good condition and meet current requirements. If there is any question concerning the condition or serviceability of the existing utilities, the Inspector should contact the Project Engineer.

To avoid unnecessary delays and costs, it is important that utility companies be advised well in advance of any construction that may affect their facilities. This contact occurs during design and pre-construction phases of the work. Inspectors must contact each affected utility company or their designated representative at the beginning of the project and advise them of the pending work.

All existing utilities must be protected against damage during construction, and in nearly all cases uninterrupted service must be maintained.

2-818C Bridge Deck Repair

The repair of deteriorated bridge decks requires:

- removing the existing bituminous concrete wearing surface and membrane (if present)
- locating and marking the deteriorated areas
- removing the deteriorated concrete
- patching the areas
- installing a waterproofing membrane to the deck surface
- overlaying or patching the deck with a new bituminous concrete wearing surface

Figure 2-8.13 Bridge Deck Repair
installing joints and joint seals

Figure 2-8.13 shows a typical bridge deck repair.

2-818C.1 Removal of Bituminous Wearing Surface

Before removal operations begin, the contractor will submit a list of the equipment to be used and the removal methods for approval of the Engineer.

The contractor removes the existing bituminous wearing surface, using approved means, to completely expose the underlying concrete deck. Damage caused by the contractor is repaired at the sole expense of the contractor. The usual methods of removal are with a backhoe or front-end loader or by milling. Vibratory scarifiers may be used but must be approved before use. Vibratory scarifiers are not allowed on:

- bridge deck spans that are supported with pin and hanger assemblies
- bridges with load restrictions (posted)
- bridges that have been classified to have a specific structural problem awaiting repair

If construction is performed during off-peak hours and traffic uses the roadway at other times, the Inspector should ensure that the contractor installs temporary pavement markings prior to allowing normal traffic to resume. The roadway should be swept clean of construction debris, and all deck areas that may ravel under traffic are temporarily repaired. Smooth transitions should be provided between the abutting approach pavement and the deck. It is preferable to have the transition ramps milled during pavement removal.

If milling of the transition areas is not possible, the Inspector should have the contractor install bituminous concrete ramping from the areas where bituminous concrete was removed to the existing pavement. The preferred taper for ramps is 1:50 or flatter. No longitudinal joint (drop-off) is allowed between lanes.

For overlays up to 2 in. (50 mm) thick, longitudinal-joint ramping may be allowed by the Inspector. For thicker overlays, ramping is not allowed, and the pavement removal will most likely need to be restricted to milling from curb to curb to avoid drop-offs.

2-818C.2 Location and Marking of Deteriorated Areas

The general areas of deterioration are indicated on the plans and are approximate. The actual limits of work are determined in the field.

Before any existing concrete is removed from the structural slab, the contractor should provide the Inspector unobstructed access to the bridge deck. During this time, the Inspector performs an inspection of the structural slab and designates areas where concrete removal is required.

The method currently used to outline the actual deteriorated areas is called “chaining” or “rattling.” A piece of heavy machine chain, 8 or 10 ft. (2.5 to 3 m) long, is held in one hand and snaked back and forth over the surface of the pavement in an S-curve pattern. The sound made by the chain on the concrete surface changes if it passes over a deteriorated or delaminated area. Practice enables the Inspector to accurately define the limits of removal. The limits of the deteriorated areas are outlined with paint as the chaining procedure progresses. Smaller areas close together may be combined into one larger area. For the final determination of the limits of removal, all limit lines must be straight with 90-degree corners.
If, during the chaining process, the Inspector finds an excessive amount of deteriorating concrete, the Inspector should alert the Project Engineer. The Project Engineer, in consultation with Design, will make a cost analysis of patching the deck (versus installing a new deck) before any deck repairs are made.

2-818C.3 Removal of Deteriorated Concrete

Deteriorated concrete may be removed by pneumatic hammer or hydrodemolition methods. The contract documents will specify the removal methods. The contractor will not perform any repair work without prior approval of the Inspector of location, limits, and type of repair.

If the removal of deteriorated concrete extends to a depth of more than one-half of the total bridge deck thickness (mid-depth between the mats of reinforcing steel), then all remaining concrete within the outline of the patch must be removed, and the deck will be repaired for its full thickness.

2-818C.3a Protective Shields

The contractor must protect the public against injury and damage from demolition operations when removing portions of existing bridge-deck slabs. If deck removal is performed over or near roadways, railroads, or waterways, the contractor must furnish and erect temporary protective shields to prevent any material or debris from entering the areas.

The protective shields must be approved by the Inspector. Flooring and siding can have no cracks or openings through which material particles may pass. The shields must be able to support 150 lbs/ft.² (730 kg/m²) over their entire area, in addition to their own weight.

A minimum underclearance of 14.5 ft. (4.4 m) must be maintained over the roadway pavement and shoulders. No portion of the shield, including connection devices, may encroach on this underclearance. If less than 16.0 ft. (4.9 m) of underclearance is provided, the contractor must furnish and erect signs indicating the exact minimum underclearance. In addition, the Chief Inspector must inform the supervisor of Motor Transport Services Unit of the reduction in vertical clearance. See Section 1-108 “Change in Travelway Clearances and Bridge Capacity Ratings”. The signs and their locations must be approved by the Inspector. They must be removed when the original underclearance is restored and will become the property of the contractor.

After the Engineer determines that the protective shields have served their purpose, they will be removed and become the property of the contractor.

2-818C.3b Removal by Pneumatic Hammer

The outline of each removal area must be saw cut to a depth of ½ in. (13 mm) with an approved power saw capable of making straight cuts. If sawing is impossible or impractical, the areas may be outlined by chisel or other approved means. If reinforcing steel is encountered within the saw cut, the depth of cut will be adjusted back to ½ in. (13 mm) after the shallow steel is passed.

Deteriorated concrete is removed by pneumatic hammers approved by the Engineer. The weights of the hammers may not exceed 30 lbs. (14 kg). A 15 lb. (7 kg) (maximum) chipping hammer is used for removing concrete below the top mat of reinforcing steel. Care must be taken not to damage the reinforcing steel in any way. Pneumatic hammers may not be placed in direct contact with reinforcing steel. If overbreakage of the concrete saw-cut edge results in a featheredge, the featheredge is resawed to create the required vertical edge.
The minimum depth of concrete removal is 1 in. (25 mm). The required depth of removal is determined by inspection of the fractured aggregate over the entire removal area. If the large aggregate fractures—instead of “popping out” (losing its bond with the cement matrix)—the concrete is sound. Care must be taken to remove fillets from the corners of intersecting removal limit lines. All intersecting removal lines should be squared.

If reinforcing steel is surrounded by deteriorated concrete, has at least one-half of its surface area exposed, or has less than 1 in. (25 mm) of cover, the depth of concrete removal must not be less than ¾ in. (19 mm) below the bottom of the steel.

If the existing reinforcement bar is damaged or corroded, it must be cut out and replaced with new reinforcement bar. New reinforcement bar is attached beneath existing reinforcement bar with a minimum lap conforming to the plans or as directed by the Inspector. Reinforcing steel that is to be left in place is cleaned of all concrete. Small concrete fragments may have to be removed with hand tools.

The concrete surface and reinforcing steel that will receive patching material must be blast-cleaned of loose particles, foreign matter, and any rust, oil, solvent, grease, dust, dirt, or bitumen just prior to patching.

2-818C.3c Removal by Hydrodemolition

Hydrodemolition usually is employed if the total surface area of the bridge deck is to be replaced. Hydrodemolition removal can be used for selective patches instead of removal by pneumatic hammer.

At least two weeks prior to the planned initiation of hydrodemolition operations, the contractor must submit to the Inspector for approval a comprehensive plan for the containment, filtration and disposal of hydrodemolition runoff water and concrete debris. The plan must ensure that all concrete debris will be removed from hydrodemolition runoff water prior to its release to the environment.

All hydrodemolition equipment should be capable of selectively removing spalled, delaminated, or otherwise deteriorated concrete and cleaning the existing reinforcing steel of all rust and corrosion products by use of high-velocity water jets acting under continuous automatic control.

The depth of concrete removal must be at least ¾ in. (19 mm) below the top reinforcing mat but may be such as to include all spalled, delaminated, or otherwise deteriorated concrete. The Inspector may require that a test area be used by the contractor to establish the depth of concrete removal and the desired hydrodemolition machine settings. The Inspector will be the sole determiner of what constitutes deteriorated concrete, using sounding methods or other evaluation measures at his discretion.

All loose concrete debris must be removed within one hour following the initiation of hydrodemolition in a patch area. Debris removal is followed by flushing the existing concrete bonding surface with water to completely remove all traces of concrete debris and cement residue that may prevent bonding. Rebonding of new concrete to the surface of the remaining sound concrete will be enhanced by the use of an approved bonding compound. If it is not convenient to clean and flush the patch area within one hour, all steel reinforcement and concrete bonding surfaces will be cleaned subsequently by high-pressure water blasting at a nozzle pressure not less than 7000 psi (48,000 kPa) with a volume sufficient to completely remove all rebonded debris and laitance.

All deteriorated concrete is removed by hydrodemolition methods, except that pneumatic hammers may be used, if approved by the Inspector, in the following cases:

- small areas within larger areas designated for hydrodemolition that are not accessible to hydrodemolition equipment
- the removal of any remaining thin concrete ridges or “shadows” directly beneath reinforcing bars
• if necessary to achieve required clearance around lap splices in the repair of deteriorated or damaged reinforcing steel

The weight of the pneumatic hammers may not exceed 30 lbs. (14 kg) for concrete removal above the top reinforcing steel and 15 lbs. (7 kg) for concrete removal below the top reinforcing steel. If pneumatic hammers are used, the minimum depth of removal will be not more than 1 in. (25 mm) shallower than any adjacent hydrodemolished deck excavation.

If the existing reinforcing steel is damaged or corroded, it must be cut out and replaced with new reinforcing steel of the same size. Sound reinforcing steel damaged during concrete removal must be repaired or replaced by the contractor at his expense, as directed by the Inspector. New steel will be attached beneath or beside existing steel with a minimum splice length as indicated on the plans or as directed by the Engineer. The concrete will be removed to a minimum depth of $\frac{3}{4}$ in. (19 mm) below the new steel.

2-818C.4 Patching

The patch product and mix are indicated in the special provisions. Products that may be specified are:

• Class F concrete
• latex modified concrete
• gypsum Portland cement

Mixing and placing concrete should be prohibited unless the ambient temperature is greater than 35°F (2°C) and rising. All mixing must be accomplished by means of a standard drum-type portable mixer. A continuous-type mobile mixer may be used if permitted by the Engineer. The total mix must be limited to the quantity that can be mixed and placed in 15 minutes.

The Inspector should not allow the contractor to patch any more than can set up by the time normal traffic patterns must be restored. The contractor may not remove more deck material than can be replaced by the time normal traffic patterns must be restored. Use of steel deck plates to cover unrepaired areas prior to making the patch is not allowed by the Department.

2-818C.4a Preparations

The concrete surface and reinforcing steel to receive patching material is blast-cleaned followed by air-blasting to remove all loose particles and dust. All blasting operations are performed using techniques approved by the Engineer, taking care to protect all pedestrians, traffic, and adjacent property. The concrete surface to be patched is dampened, and all free water must be removed.

If less than one-half of the surface area of the reinforcement is exposed after removal of deteriorated concrete, the reinforcement is coated with an approved epoxy bonding compound. The epoxy bonding compound is mixed and applied in strict accordance with the manufacturer's instructions. The steel surface is sandblasted and must be absolutely dry. Promptly after mixing, a single coat of epoxy material is applied to the partially exposed reinforcement, with minimum coverage of 20 mils thickness.

The Inspector will observe the underside of the bridge deck for pop-outs caused by the removal of deteriorated concrete. The surface area of pop-outs must be coated with epoxy resin if ordered by the Inspector. The concrete surface and exposed reinforcing steel, if any, that is to receive the coating material must be cleaned of all loose or powder-like rust, oil, dust, dirt, loose particles, and other bond-inhibiting matter just prior to coating for delamination.
2-818C.4b Spreading and Finishing

The concrete mix is spread evenly and compacted to a level slightly above the pavement surface. Vibration must be used to thoroughly consolidate the concrete and fill the entire patch area. If practicable, internal vibration is used if concrete is removed below the reinforcing steel. Hand tamping can be used to consolidate concrete in smaller patches, including pop-outs.

It is preferred that vibrating screeds be used for strike-off and consolidation. After the mix is placed and compacted, the vibrating screed is drawn over the surface. It must move at a uniform speed without stopping to finish the surface smooth and even with the adjacent concrete. The surface is float finished. Mixes requiring fast-setting gypsum portland cement set in a short time. All of the finishing operations must take place before initial set.

2-818C.4c Testing

The Inspector will make test cylinders. The dimensions, type of cylinder mold and number of cylinders is standard but may be increased by the Engineer under some circumstances.

2-818C.4d Unacceptable Work

The finished surface profile should not vary more than 1/8 inch in 10 feet (3 mm in 3 m) in any direction. High areas must be ground. Sags require removal of the concrete to a depth of ¾ in. (19 mm) and repatching. Curing of the patched areas must be in accordance with the Specifications.

Cured patches that have a hollow sound when chain-dragged or tapped (indicating delamination) will be replaced by the contractor at the contractor's expense.

2-818C.4e Opening To Traffic

Traffic is not allowed on any areas where the contractor has placed and finished concrete until the material has reached a minimum of 1800 psi (12,500 kPa). It is anticipated that this will occur in 2 to 3 days for portland cement and 1½ to 3 hours for gypsum cement mixes.

2-818C.5 Waterproofing Membrane

Installation of waterproofing membrane is covered under Article 7.07 of the Standard Specifications. In addition, the manufacturer's recommendations must be followed.

There are various types of membrane waterproofing. Some of the most frequently used products are:

- woven glass fabric
- Royston Bridge Membrane No. 10A (membrane waterproofing)
- Protecto Wrap M-400A (membrane waterproofing)
- heavy-duty bituthene (membrane waterproofing)
Design generally will specify woven glass fabric if the bridge deck is on a grade or adjacent to an intersection where vehicles will be braking or making turning movements. If a contractor requests a material substitution for this item, the Inspector must first check with the bridge designer prior to granting approval. The primers for all products must be diluted with acceptable solvents.

2-818C.6 Placement of Bituminous Concrete Wearing Surface

Application of the paved wearing surface is subject to the requirements for bituminous concrete paving, found in Volume 2, Chapter 6, “Bituminous Pavements”. A fine mix (SF) is used, and care must be taken that the membrane is not punctured or damaged in any way during placement of the wearing surface.

2-818C.7 Bridge Deck Joints

There are numerous types of bridge deck joints. The repair procedures for the joints on all bridge projects are detailed in the contract documents. In many cases, the design may require the replacement of the existing type of joint with a superior type of joint. A contractor may request a substitution for the type of joint specified. The bridge designer must approve all substitutions.

2-818D Structural Steel Inspection

Some of the more common defects and repairs involve the following:

- corrosion
- cracking
- fire damage
- collision damage

Structural steel repairs vary according to the location of deterioration, type of structure, element being repaired, and extent of deterioration. Repairs may include reinforcement of existing members, temporary support of existing members, limitation of load, replacement of members, and stress relief in members. The requirements for each type of repair are detailed in the contract documents.

As with other structural members, an in-depth inspection must first be conducted to review the repairs shown on the plans for strengthening structural steel beams and girders. The following must be evaluated:

- extent and location of damage
- extent and location of repairs
- presence of cracking
- limits of collision or fire damage
- fatigue stress damage
- remaining structural capacity
Steel-strengthening construction must include environmental considerations, as well.

The existence of fracture-critical members requires the Inspector to closely scrutinize the condition of each member and to fully understand and comply with the sequence of construction. In addition to specific defects, the Inspector must consider such information as material, age, capacity, and loading. Each of these affects the economics involved in deciding whether to repair or replace a member.

Inspectors should be aware that the proposed repairs are based on the findings of a condition survey of the structure that was conducted prior to the start of design. The survey may have been conducted several years ago. The survey may not accurately detail all parts of the structure that need to be repaired. The Inspector must be alert for differing conditions that may require changing the repair methods, materials, or limits.

2-818E Jacking

Jacking of structural steel beams and concrete substructures is necessary if temporary support of an element is needed to make repairs. Jacking usually serves to remove the loads from the permanent members. Typically, temporary jacking members are stressed higher than permanent bridge structural members. This is done because the loads are for a short duration. Thus, it is crucial that the members be sized, fabricated, and erected exactly according to the plans.

2-818E.1 Jacks and Beams

Jacks with a higher capacity than those listed in the plans may be allowed, but the contractor is responsible for monitoring the jack load to ensure the safety of the structure. The jack system must be equipped with a gauge to directly read the jack force in pounds or kips (newtons or kilonewtons) or shall be accompanied by a chart with which the dial reading can be converted into pounds (newtons). Direct reading gauges are preferred.

The contractor may use alternative jacking beams to those specified on the plans. The alternatives must be approved by the Engineer. The alternative beams must comply with the following restrictions:

- They must be in new condition.
- The section modulus and web area must be equal to or greater than those of the jacking beams shown on the plans.
- If the connection detail or the stiffener-plate details are changed, the contractor will submit detailed calculations to the Engineer for approval. These calculations will be stamped by an engineer licensed in Connecticut.

Jacking beams must be set level, unless indicated otherwise on the plans. In no instance will the contractor be allowed to chip away the concrete end diaphragms to achieve a level jacking beam.

Areas under the jacks should be thoroughly cleaned to provide a flat, clean jacking surface. Jacking surfaces that are not level or have slightly deteriorated concrete areas will be repaired to a flat, level surface with cast-in-place concrete, as specified in the contract. Test cylinders are required for the concrete mix used for bearing pedestal repairs. The existing beams will not be lowered in place until the concrete achieves 3000 psi (21 MPa) minimum strength.

2-818E.2 Welding and Repairs

All field welding is done by the shielded metal arc process. All requirements of the specifications must be adhered to, except that the requirements for radiographic and ultrasonic inspection will be waived if a visual inspection by the Inspector indicates that the welds are satisfactory. The exception applies only to structural steel that is erected for a temporary installation.
If necessary, cast-in-place concrete repairs are used to restore the jack locations to full capacity prior to the jacking. If deteriorated concrete extends on both sides of the beam that requires jacking, one side will be repaired completely before the repair to the other side is started. Both sides must be repaired before the beam can be jacked. The contractor will wait a minimum of 72 hours and until the repaired concrete obtains a minimum compressive strength of 3000 psi (21 MPa) before the jacking operation begins.

2-818E.3 Operations

The Inspector must check all pertinent dimensions and requirements, as set forth on the plans, to ensure that all pertinent stipulations are met before commencement of the actual jacking. The Inspector must be present during all jacking operations. Jacking assemblies, frames and grillages must be inspected daily while in service. All members, connections, foundations, footings, bracing, and jacks must be inspected for alignment, orientation, and trueness. Frequently, elevations and survey measurements are required to monitor the structure for movement.

An existing bearing may not be raised more than 1/8 in. (3 mm) higher than its as-built elevation, unless otherwise indicated on the plans. The maximum jacking forces shown on the plans will not be exceeded. The jack hydraulics may not be used to support the load after jacking. However, the contractor has the option of using a jack with a locking nut or cribbing blocks instead of the support scheme indicated on the plans.

It is the contractor's sole responsibility to use the correct scheme and jack capacity corresponding to the particular bearing being repaired. Damage of the existing structure resulting from the contractor's misuse of the jacking scheme must be repaired by the contractor to the complete satisfaction of the Engineer, at the contractor's expense.

Any existing bearing assemblies that will be reused, areas of paint that are damaged, and any new steel that, according to the plans, remains in place must be sandblasted in accordance with SSPC-SP10 and painted.

2-818F Repair of Cover Plate Welds

Cover plates are added to the bottom flanges of rolled beams to strengthen the members. Generally, cover plates are welded to the flange, but they may be riveted or bolted. The critical inspection area on a welded cover-plated beam is located at the end of the cover plate where the weld is transverse to the length of the beam. If the weld is not transverse to the bottom flange, it may end near the end of the cover plate. The Inspector must investigate these areas for cracking.

The contractor cleans the welds at the ends of beam cover plates, as indicated on the plans. Surfaces to be cleaned must be blast cleaned in strict conformance with provisions of SSPC-SP10 to “Near White”.

After the welds are cleaned, the designer and Inspector conduct an inspection. They decide which locations will be peened and which locations will be repaired. Repairs are completed in accordance with the plans.

Cover plate welds are peened to the limits shown on the plans. Peening is performed using a pneumatic hammer and is continued until the weld toe becomes smooth. The depth of indentation due to peening must be approximately 1/32 to 1/16 in. (1 to 3 mm). The Inspector will direct the contractor to peen a test area to demonstrate his methods and results. Areas repaired by peening are painted in accordance with specifications contained in the contract documents.

If a crack is observed, a bolted repair is made as shown in the contract documents.

If any defect is observed by the Inspector, but is not specified for repairs on the plans, the Engineer should be notified immediately.
2-818G Inspection of Structural Steel Cross Section

The failures at expansion joints on bridge decks are caused by deterioration and section loss to bridge girders from the chlorides used for snow and ice control. Some of the affected areas are at the bearings, ends of the girders, and behind the end diaphragms.

If the Inspector suspects that there is section loss, the Inspector must contact the Project Engineer, who requests Bridge Safety to provide a D-meter. The D-meter determines the thickness of the structural members. After determining the thickness of the members, the information is sent to Design to determine if a repair is necessary. Design provides corrective repair plans and procedures to the Assistant District Engineer. The Inspector ensures that both the Engineer's procedures and Article 6.03.03 of the Standard Specifications are followed.

2-818H Heat Straightening Structural Members

If a structural member is injured through neglect by the contractor, the Inspector should request a repair procedure from the contractor. The procedure is sent to Design for review and approval. Design provides the approved methods to the Assistant District Engineer.

Heat straightening is a unique method that is used with jacking, blocking, and supplemental supports to correct member misalignment caused by impact. Not all damaged members can be heat straightened. Some members cannot be straightened due to the extent of damage. For others, heat straightening may cause additional damage to the member, reducing member capacity. A member can be heat straightened only once at any one location on the member.

Generally, a member is considered adequately straightened if it is returned to line, grade, and shape within ½ in. (13 mm). Temporary support must be provided for beams while they are being heat straightened.

The Inspector will be satisfied that the repair work is implemented correctly by using the submitted and approved procedures and Article 6.03.03 of the Standard Specifications. The Inspector should be familiar with the special provisions, as heat straightening is a specialty repair, with explicit procedures and details.

2-818I Removal of Existing Bridge Decks

Removing existing bridge decks consists of removing and disposing of all materials above the top of the stringers for the width and length of the bridge superstructure. The work is performed in accordance with specifications or as ordered by the Engineer.

2-818I.1 Protective Shields

Prior to any work on the structure, the Inspector should become familiar with the special provisions and plans to determine if protective shields are necessary. If work is to be performed above traveled ways, railroads and water, the contractor is required to provide protective shields to prevent any dust, debris, concrete, form work, paint, or tools from falling onto the area below the structure or onto adjacent traffic lanes.

If protective shields are necessary, the contractor is required to submit the details of the protective shields, consisting of design calculations and working drawings, signed and sealed by an engineer who is licensed in Connecticut. The material is given to the Project engineer, who will review and approved the details only as to the methods of erection and as to whether the proposed installations provide the levels of protection required at the various locations.
If the existing structural steel will be used in the finished structure and the contractor elects to support the protective shields from the steel, all connections must be made by means of clamps or other approved devices. Drilling holes in the existing steel work or welding to the steel work for this purpose is prohibited.

2-818I.2 Operations

Before removal operations begin, the outlines of the top flanges or cover plates of all stringers and floor beams are drawn on the bridge deck, and 1 in. (25 mm) diameter pilot holes are made outside the lines to confirm the location of the steel.

Prior to removing the existing slabs, the contractor must take elevations at locations along the bottom of the bottom flange or top of the top flange by removing small sections of slabs over the stringers. Pilot holes are used at mid-span, quarter points of all stringers, and other points if necessary. Maximum spacing of the elevations is 25 ft. (7.5 m). After removing the deck, the contractor must take a new set of elevations at the same points and determine the superstructure rebound. The rebound values are used, instead of dead-load deflections, to establish grade controls and the finished top of the concrete deck that is true to planned line and grade. For bridge decks constructed with a longitudinal construction joint between stringers, diaphragms between the stringers may not be disconnected unless specified in the contract documents.

On continuous bridges, the contractor's proposed sequence of deck removal should address uplift at the ends of continuous spans.

If damage results from the contractor's operations, the removal operation must be modified, and the damaged items must be repaired or replaced by the contractor in a manner acceptable to the Engineer at the contractor's expense.

2-818J Substructure Repairs

Generally, the Inspector will encounter only concrete repairs to bridge substructures. In the rare case that a structure is constructed with steel substructure elements, inspection of repairs is performed in the same manner as inspection of structural steel strengthening.

Several materials are currently available for concrete substructure repairs. These include:

- cement-based mortar or concrete
- nonshrink quick-setting mortar
- epoxy mortar
- resin-based polymer concrete
- cement-based polymer concrete
- pneumatically applied mortar

Factors to be considered in selecting concrete repair materials include:

- size
- location
- general function of the member
portions to be repaired

Material selection is influenced by:

- compatibility of the material with the existing concrete
- environmental considerations, including aesthetics
- cost effectiveness
- expected service life
- availability of the material
- familiarity of contractors with the material

2-818K Deteriorated Concrete Removal

It is important that the Inspector accurately and completely define the limits and extent of concrete to be removed. The limits and extent of deteriorated concrete removal are very important for two reasons. The first is integrity of the repaired element. The repaired element must work as a monolithic mass, and thus, compatibility of materials is important. The second is the safety of the structure to support dead and live load. If a portion of concrete is removed from an element, it no longer has the same capacity to support load. Even if the concrete is restored, it does not carry the load carried by the corresponding portion of removed concrete prior to deterioration. In any case, the Inspector must work with the designer to maintain structural safety of the concrete substructure during repairs.

If the Inspector determines that there is excessive deterioration of a portion of a substructure element, the Project Engineer should be alerted. The Project Engineer contacts Design to request a structural analysis. It may be detrimental to the safety and integrity of the bridge to remove all of the deteriorated concrete at one time.

The Inspector must limit the extent of removal of concrete from the overhang on the piers, on bridge seats, and especially around bearing pads. If there is extensive removal of concrete in these areas, the Project Engineer must be contacted. The Project Engineer will contact Design to request a structural analysis.

It may be necessary to design temporary supports to carry the loads while repairs proceed.

2-818L Repair Materials

Portland cement concrete should be used for patching if possible. If the area to be patched is horizontal, larger than approximately 4 sq. ft. (0.37 m²) and is at least 1 in. (25 mm) deep, Class S concrete should be used. Class S superplasticized concrete currently is the preferred product for surface repairs that are less than 1 in. (25 mm) but limited to Class S aggregate size [3/8 in. (10 mm)] deep. The Inspector should become familiar with the specifications for Class S concrete before the contractor performs any repairs.

2-818M General Repair Requirements

If an existing deteriorated concrete element does not have sufficient concrete cover over the reinforcing steel, the area is repaired and built out to gain additional cover and protection of the reinforcing steel. The build-out may also make placement of the concrete easier.
All concrete patches must be mechanically anchored to the existing concrete either by encasement of existing reinforcement or by using drilled anchoring devices attached to the existing concrete.

2-818N Shotcrete

Shotcrete may be recommended for application, if many various-size repairs are needed and the repairs are on vertical or overhead surfaces. Shotcrete, also known as pneumatically applied mortar, is a specialty product that must be placed and cured correctly. Pneumatically applied mortar must have a minimum 28-day compressive strength of 3500 to 5000 psi (25 to 35 MPa).

2-818N.1 Equipment

All shotcrete equipment must be capable of thoroughly mixing all material used and must be calibrated. The mixer must be self-cleaning and capable of discharging all mixed material without any carry-over from one batch to the next. Mixing equipment must be cleaned at least once a day.

The air compressor should have a capacity sufficient to maintain a supply of clean, dry air adequate to provide the required nozzle velocity for all parts of the work, while simultaneously operating a blow pipe for cleaning away rebound. The air and water pressure must be constant and not pulsate.

2-818N.2 Preparatory Work

The contractor will contain all blast waste and loose concrete and promptly remove it to an approved disposal site. Blast waste and loose concrete must be kept out of waterways.

The deteriorated areas of concrete must be removed to sound concrete with a 30 lb. (14-kg) (maximum) chipping hammer to a minimum depth of 1 in. (25 mm) behind the reinforcement steel.

After the Engineer has determined that the cavity surface is sound, it must be sandblasted. Just prior to mortar application, all surfaces will be thoroughly cleaned, followed by wetting and damp drying.

If sound concrete is encountered before the reinforcement steel is exposed then the sound concrete is removed to a depth of 1 in. (25 mm) behind the existing reinforcement steel. If sound concrete is found within 3 ½ in. (90 mm) of the proposed finished surface, the removal operation stops, and additional No. 4 (No. 13M) reinforcing bars are doweled at 12 in. (300 mm) center to center horizontally and vertically, 2 in. (50 mm) clear of the proposed finished surface. Doweling details are as directed by the Engineer.

All exposed existing reinforcement steel that is incorporated in the new work is sandblasted to a near-white finish to remove all rust, dirt, scale, and loose concrete. All deteriorated reinforcing bars that have lost 20 percent or more of their original dimension must be cut out, and new bars are welded in their place. Dual bars of equivalent or greater section may be used. New reinforcement steel is welded to existing reinforcement steel as specified in the contract documents. The Engineer decides whether reinforcement steel is to be reused or replaced.

All areas to be repaired are reinforced with wire mesh, in addition to the reinforcement steel.

For anchoring reinforcement to masonry surfaces, expansion bolts not less than 3/8 in. (10 mm) in diameter are set into drilled holes, or plain round No. 4 (No. 13M) bars are set in approved dry-packed mortar, tightly driven into drilled holes. Drilled holes should not be less than 3 in. (75 mm) deep. All bolts or bars must be set in solid masonry (not in mortar, joints, or cracks) and must have heads or hooks on their outer ends. If approved by the Engineer, wire-mesh reinforcement can be wired to existing reinforcement without the use of expansion bolts.
2-818N.3 Application

The cement and sand must be uniformly dry-mixed in a batch-mixing machine. Material that has not been applied within one hour after being mixed must be discarded. After the materials are dry-mixed and before being charged into the placing machine, the mixture must be passed through a 3/8 in. (10 mm) screen.

Each layer is built up by several passes of the nozzle over the working area. The mixture must emerge from the nozzle in a steady, uninterrupted flow. If the flow becomes intermittent, it must be directed away from the work until it becomes constant. The nozzle must be held perpendicular to the application surface, at the distance from the surface to get the best results for the conditions. When shooting through reinforcement, the nozzle must be held at a slight angle from perpendicular to permit better encasement.

The application of the mixture to vertical surfaces begins at the bottom. The first layer should, at least, completely embed the reinforcement.

Rebound may not be worked back into the construction, and it must not be salvaged and included in later batches. Rebound and overspray may not be allowed to fall into waterways and will become the property of the contractor, who can dispose of this material at the contractor's own expense in an approved disposal site.

If a layer of pneumatically applied mortar is to be covered by a succeeding layer, it will first be allowed to take its initial set. Then all laitance, loose material, and rebound must be removed by brooming. Laitance that has been allowed to take final set is removed by sandblasting, and the surface is cleaned with an air-water jet. In addition, the surface will be sounded by the Inspector with a hammer for hollow-sounding areas resulting from rebound pockets or lack of bond.

The area of repair on existing structures must be finished to match the existing structure.

2-818O Copolymer Cementitious Mortar

If other methods and materials for patching are not satisfactory, copolymer cementitious mortar should be used. The copolymer should be used for shallow patches; the maximum thickness per layer may not exceed the manufacturer's recommendation. This product has proved somewhat difficult for some contractors, but there are sufficiently satisfactory installations to continue its use.

The minimum mortar thickness should be 1/8 in. (3 mm), and the maximum thickness should be 1 in. (25 mm). The mortar may not be specified for individual patches that exceed approximately 4 sq. ft. (0.4 m²) of surface area.

The contractor should obtain the services of a technical adviser to assist the Engineer and the contractor during the work. The adviser must be a qualified representative of the manufacturer, approved by the Engineer, and at the work site prior to mixing the components.

For all repairs, the specification requirements regarding surface preparation, mix application, and cure must be adhered to for the work to be successfully accomplished.

2-818P Crack Repair by Epoxy Injection

Epoxy injection as a means of repairing cracks will not correct the cause of the cracking. This is because epoxy resins used for injection are, like concrete, generally unable to resist tension forces. Once the cause of the cracking is corrected by other repair means, epoxy injection can bond the concrete element into a composite member, seal the concrete to preclude moisture penetration, and reduce reinforcing steel corrosion potential.
The Inspector must be careful when injecting an abutment, because if the crack is completely through the abutment, the epoxy may be injected into the soil behind the abutment.

The Inspector, in cooperation with the designer, determines the scope and extent of the epoxy injection contract work. The Inspector must be familiar with the epoxy-injection contract documents and the types of cracks that are designated to be repaired. Injection of all cracks, regardless of crack width, is not necessary. The Inspector must have a clear understanding, developed during an initial structure inspection, of the size and limits of cracks to be injected. After determining the intent of the designer, the Inspector directs the contractor accordingly.

The contractor will not perform any repair work without prior approval of the Inspector as to location, limits, and method of injection. Contractors must be prequalified specifically for epoxy injection.

2-819 Painting

In the last several years, painting of new and existing bridges and structures has become technically complex. Cleaning and painting is no longer simply the removal of the existing coatings, application of primer coats, and application of top coats. Management of blast residue—including containment, transport and disposal—is very important to both the Department and environment.

Recent developments in the protective-coating industry, research, and contractor prequalification programs of the Steel Structures Painting Council (SSPC), as well as proactive, strict environmental rules and regulations, place significant limitations on painting. The developments also provide powerful tools to the Inspector in performing his work.

References available to the Inspector include SSPC-VIS-1 and SSPC “Good Painting Practices,” as well as Article 6.03.03-23 through -38 of the Standard Specifications. Volume 2, Chapter One, “Environmental Protection,” includes general information about waste generated by painting structural steel.

2-819A Preconstruction Requirements

2-89A.1 Debris and Material Storage

Information concerning the surface-preparation debris-storage containers and their storage-site locations must be submitted to the Inspector for review and approval. Storage sites must not present a hazard to traffic and must be located in areas that are properly drained. The storage containers must be in conformance with the specifications. Volume 2, Chapter One, “Environmental Protection,” includes additional information on debris and material storage.

The contractor must supply the location of the storage facility for the paint for approval by the Engineer. This facility must comply with the latest OSHA regulations, to provide protection from the elements and ensure that the paint is not subjected to temperatures outside the manufacturer's recommended extremes. It is desirable that the storage facility be in proximity to the work site and be accessible to the Inspector at all times. The contractor is fully responsible for storage at all times.

The Inspector will contact the Office of Research and Materials to determine if the manufacturer of the coating system is on the approved supplier and manufacturer list. Prior to beginning any painting, the contractor must provide the Inspector with the manufacturer's technical data sheet and application instructions for the coating system being used.

2-819A.2 Containment System Plan

The contractor will prepare a Cleaning Containment System Plan for the capture, containment, collection and storage of the waste generated by the work. The containment system must be capable of containing blast residue generated by the work.
If required by the contract documents, the contractor will submit plans and details for the recovery system for recycling blast material used for blast cleaning; a written compliance program for worker protection; and an industrial hygienist's plan of action indicating procedures for monitoring air, soil, and water. The action plan will include the type of equipment, approximate location of monitors, and test samples for each bridge site.

Within 14 days after receiving award and prior to beginning work at each bridge, the contractor will submit working drawings of the proposed containment system. The contractor must also submit the design of the systems to be employed, including an analysis of the load that will be added to the existing structure by the containment system and blast waste. The load analysis must be performed and stamped by a licensed engineer having a minimum of five years of experience in bridge design. The analysis will assure that the system will not induce a load on the bridge that will create an overstress condition or otherwise affect the structural integrity of the bridge. The containment system or equipment will not encroach upon the minimum bridge clearances. The Inspector must ensure that the contractor's operations are at all times in conformance with the approved Cleaning Containment System Plan.

2-819A.3 Containment Meeting

Prior to the start of paint removal operations, a meeting will be held with the contractor, painting subcontractor, inspection staff, and District supervisor to review the containment requirements, plans, and monitoring process, as well as the need for strict adherence to the containment and collection requirements. The contractor must prepare a remedial action plan to address the potential of a containment or collection failure. The Inspector will advise the contractor that noncompliance in this area could result in the painting firm being found in default of the contract.

2-819B Equipment

The contractor should provide the following equipment. The equipment should be new and for the exclusive use of the Engineer to inspect the contractor's cleaning and painting operations.

- **PTC Surface-Temperature Thermometer.** The range should be from 0 to 150 °F (-18 to 66 °C). Use to record the surface temperature of the steel.

- **Psychron 566 Psychrometer.** It should include two sets of batteries. Use to record the relative humidity at the work site.

- **Spring Micrometer for Coatings.** Use to measure Testex tape to determine the surface profile of the steel.

- **Testex Press-O-Film Replica Tape—Extra Coarse (1.5 to 4.5 mils).** One roll (100 pieces) should be provided for each bridge span. Use to measure surface profile after steel is blast cleaned. The extra coarse tape is used as specified. Remove the wax paper from the tape, and place it emulsion side down on the blasted surface. Rub the mylar vigorously with the blunt burnishing tool provided until the mylar turns uniformly gray. Remove the tape, and place it between the anvils of a spring micrometer. The micrometer reading, after subtracting Testex tape thickness, represents the profile.

The following references and equipment can be reviewed at or obtained from the District Office:

- **Respirator.** Each Inspector must be properly fitted and instructed on proper use. The respirator must be worn at all times while on the project during surface cleaning and painting operations.

- **Safety Glasses, Disposable Coveralls, Gloves.**

- **SSPC-VIS 1-89.** This is a book of color prints illustrating the desired surface condition standards for various degrees of abrasive blast cleaning over mill scale and various rust grades of structural steel. It may be desirable to prepare blast test panels for reference throughout the project.
• **Inspection Mirror**. Use to view locations that are not readily accessible to ensure proper cleaning and coating applications.

• **Wet-Film Thickness Gauge**. Use to approximate the amount of coating applied while wet to help ensure that the proper dry-film thickness results. The gauge is placed squarely and firmly on the wet surface immediately after the coating application. Remove the gauge and note the highest step covered by the coating. The wet-film thickness lies between this step and the next uncoated step.

• **Magnetic Pull-Off Dry-Film Thickness Gauge**. Used to obtain nondestructive measurements of non-magnetic coatings applied to a ferrous metal surface. The gauge must be calibrated with metallic shims, provided with the gauge, prior, during and after use. To operate, hold the gauge firmly to the surface, then turn the dial forward until the magnet is in solid contact with the surface to be measured. The dial is slowly and evenly turned back until the magnet breaks contact with the surface. The coating thickness is read as the number on the scale that lines up with the hairline on the instrument.

• **Tooke Gauge**. Use only if specified to measure the dry-film thickness of the coatings, using a 50× microscope in conjunction with a microscopic incision made through the coating. However, this is a destructive test, and any areas where this is used must be repaired. Make a reference benchmark on the coating surface with a felt-tip pen. Then make an incision with one of the cutting tips through the coating down to the substrate at the location of the benchmark. The proper tip must be used, based on the anticipated thickness of the total coating:
 - 10× tip: 0–3 mils coating thickness
 - 2× tip: 3–20 mils coating thickness
 - 1× tip: 20–50 mils coating thickness

View the incision with the microscope. Line up the reticle of the microscope across the incision and count the number of divisions for each coat. The determination of the coating thickness is interpreted as follows: each division is equivalent to 1.0 mil if the 1× tip is used; 0.5 mils if the 2× tip is used; and 0.1 if the 10× tip is used. The thickness reading is the average of readings obtained across the length of the incision.

2-819C Containment Enclosures

Surface-preparation (abrasive blast-cleaning) operations are allowed only within containment enclosures approved by the Inspector. If, during surface preparation, the containment enclosure allows debris to escape, work must be stopped until the enclosure is repaired to the Inspector’s satisfaction. Any debris that escapes from the enclosure must be cleaned up by the contractor immediately.

The following apply to the containment requirements on all projects for which paint removal operations are planned:

• All seams on containment enclosures must be lapped a minimum of 2 feet (0.6 meters).

• All seams must be tied off at intervals not to exceed 1 foot (300 mm).

• All attachments to bridge parapets and the undersides of bridge decks must be sealed to prevent the escape of fugitive dust.

• The area between beams beneath the bridge deck must be enclosed with a solid bulkhead and sealed to prevent the escape of fugitive dust.

• All tarpaulins used on containment enclosures must be impervious.
2-819D Air Pressure in Containment Enclosures

SSPC “Guide 6I” and project specifications require the average negative pressure in a containment enclosure to be 0.03 in. (0.8 mm) of water relative to the ambient pressure. The negative pressure is monitored with a magnehelic gauge. A magnehelic gauge consists of a pressure gauge and two flexible tubes. The tubes are placed at two locations, and the gauge measures the difference in pressure between them.

Initial pressure readings are taken when the containment system is complete and all ventilation systems are running. The readings should be verified every five working days. Additional readings should be taken if problems occur and after any changes are made to the containment system. The contractor's dust collectors are equipped with a magnehelic gauge that measures the difference between the dirty and clean sides of the filters. The Inspector should monitor the readings to help identify problems or changes to the system.

To use the gauge, feed one tube to the outside of the containment. Use the other tube to take readings within the enclosure. Visually divide the enclosure into equal volumes, none of which should be larger than 10 \(\times \) 10 \(\times \) 12 ft. (3 \(\times \) 3 \(\times \) 3.5 m). Stack the volumes for enclosures that are higher than 12 ft. (3.5 m). Take readings at the center of each volume. No reading can be less than the 0-.03 in. (0.8 mm) required. Record the readings and calculate the average.

If the results do not meet the specifications, notify the contractor and repeat the readings. Take a minimum of five readings. To meet the specifications, no more than two readings can be below 0.03 in. (0.8 mm), no reading can be 0.00 in (0.0 mm), and the average of the readings must be 0.03 in. (0.8 mm) or greater. If the results are still not acceptable, the contractor must shut down the operation and make corrections. No blasting is allowed until after the corrections are completed.

2-819E Surface Preparation

Surfaces must be prepared as specified in the SSPC specifications, the contract specifications, and Article 6.03.03 of the Standard Specifications and as indicated by the results of the sample blast test panels. The cleaning methods are described below.

- Only recyclable blast materials may be used.
- Solvent cleaning is used to remove foreign matter such as oil, grease, soil, and other contaminants from steel or galvanized surfaces. Solvents, emulsions, cleaning compounds, steam cleaning, or similar materials and methods approved by the Engineer are used as specified in SSPC-SP 1, “Solvent Cleaning”. Soap steam cleaning must be used in cleaning steel grids that are open, decks and walkways, and machinery areas of drawbridges. Contaminated solvent must be removed before it evaporates by wiping or rinsing with clean solvents to prevent a film of contaminants from remaining on the surface.
- Hand-tool cleaning is used to remove loose mill scale, loose rust, and loose paint from steel surfaces. Non-mechanical brushing, sanding, chipping, scraping, or other hand-impact methods conforming to SSPC-SP 2, “Hand Tool Cleaning” must be used.
- Brush-off blast or power-tool cleaning conforming to SSPC-SP 7, “Brush-Off Blast Cleaning,” is used to remove loose mill scale, loose rust, and loose paint from steel surfaces. Power wire brushes, impact tools, grinders, sanders, or any combination of these tools must conform to SSPC-SP 3, “Power Tool Cleaning,” and must be approved.
- Abrasive blast cleaning is used to remove mill scale, rust, rust scale, paint or other foreign matter from steel surfaces. Sand or steel grit abrasive propelled through nozzles or centrifugal wheels producing a surface conforming to SSPC-SP 10, “Near-White Blast Cleaning” must be used only after approval. The end surface condition must conform to near white. Abrasives should be dry and free of oils, grease and other harmful materials, such as lead dust, at the time of use.
Regardless of the method used for cleaning, the contractor will comply with the specifications and the manufacturer’s recommendations. As a minimum, the contractor should feather the edges of remaining old paint so that the repainted surface has a reasonably smooth appearance. Heavy rust and pack rust must be removed by a combination of cleaning procedures, such as hand chipping (using chipping hammers or scaling hammers), brush-off blast cleaning, power tool cleaning, etc., without scarring the steel. Oil and grease must be removed by solvent cleaning. Prior to blast cleaning, all surfaces are washed with a pressure washer capable of 2000 psi (13.8 MPa) maximum pressure at the nozzle using potable water to remove dust, dirt, debris, and salt contaminants. Paint removed during washing operations must be contained and collected.

The minimum height of the steel-surface profile after cleaning is 2 to 3 mils and should be uniform. The Inspector must verify the profile height with Testex Replica Tape, extra-coarse. The used tape is included with the project records.

2-819F Waste Disposal

At the end of each work day, the contractor must haul the waste material away from the bridge site to the approved temporary storage site. The storage site must be capable of preventing the migration of the lead-contaminated abrasive into the environment. The storage area must provide protection from vandalism and unauthorized access by the general public. The waste may not remain at the temporary storage site longer than 90 days.

The testing of the surface preparation debris for classification as “contaminated” or “hazardous” and the disposal of it will be in accordance with the contract requirements. The Inspector must ensure that material that tests as hazardous is transported to a proper disposal site and that the necessary documentation is provided to assure proper disposal. The Inspector should require a signed manifest to ensure that the material has been delivered. Additional information about the procedures for hazardous-waste disposal is in Volume 2, Chapter One, “Environmental Protection”.

The Environmental Compliance Unit or DEP may be contacted to answer questions, to provide assistance, and to obtain details on the proper handling, storage, containment, and transportation of hazardous materials.

2-819G Coatings Inspection

Coating system product sampling, testing and approval must be in accordance with the contract requirements. The Inspector should have all relevant technical data sheets (TDSs) and may require the contractor to schedule a meeting with the technical adviser employed by the coating manufacturer to establish the correct application for the materials being used.

2-819H Materials

Thin skins formed in a paint container must be cut loose and discarded. Material that is livered, gelled, thick skinned, or questionable may not be used unless reapproved by the Inspector. Waste chemical solutions, oil rags and other waste must be removed daily. All necessary precautionary measures must be taken to ensure that workers and work areas are adequately protected from fire hazards and health hazards resulting from handling, mixing, and application of materials. Materials may not be used beyond their pot life. The Inspector should refer to the TDS for the materials being used.
2-819I Weather

Paint may not be applied if the ambient air temperature is below 40 °F (5 °C), the air is misty, or conditions are otherwise unsatisfactory for the work. The relative humidity should be below 85 percent. The paint must not be applied to damp or frozen surfaces. Paint operations may be stopped by the Inspector during winds up to 20 mph (32 km/h). Paint operations will stop if the wind velocity exceeds 20 mph (32 km/h) unless otherwise approved by the Inspector. The Inspector should refer to the TDS for other conditions that may apply to the material.

2-819J General Requirements

The contractor will schedule operations so that all cleaned surfaces are painted immediately, not to exceed 24 hours after cleaning. If rust bloom appears or the air or steel temperature falls below 5 °F (2.5 °C) above the dew point after cleaning and prior to application of the primer coat, the contractor must reclean the affected areas to the satisfaction of the Inspector.

If it is suspected that moisture is condensing on the surface, a well-defined area of the surface may be lightly moistened with a damp cloth and observed. If the dampness evaporates and decreases in 15 minutes, the surface is considered satisfactory for the application of paint. If fresh paint is damaged by the elements, the paint must be replaced or repaired by the contractor at no additional cost to the Department.

The contractor may begin painting operations after the Inspector has reviewed and approved the cleaned surfaces. All surfaces to be painted will be sound, properly cleaned, and thoroughly dry. The Inspector will review the proficiency of the applicator prior to beginning the full-scale painting operation. A test panel may be prepared as required by the Inspector.

2-819K Coating New Steel

The primer coat is applied in the shop as recommended by the manufacturer in a single application employing multiple-spray passes. The specified coating film thickness must be applied to all surfaces to be painted, except a light dust coating is applied to the areas of field welding and to the top and both edges of the top flange where steel stud shear developers are attached.

Except for shop coat touch-ups, steel that will be exposed to view in the completed structure must not be painted until all concrete has been placed. The contractor must protect concrete from being stained by painting operations. Damaged concrete surfaces must be restored to the originally intended color without damage to the concrete.

Bolts for field assembly may not be shop coated. After field welding and prior to applying the intermediate or tie coat, these bolts, field weld areas, and rusted or damaged areas will be brush-off blast or power-tool cleaned or abrasive-blast cleaned if required. The primer coat must be applied on these areas the same day that they are cleaned. Primer paint stained from rusted bolts is wiped before the following coats are applied.

The primer is applied from agitated containers. All touch-ups must have the same dry-film thickness as the coat being repaired but may be applied by brush. Organic zinc primer may be used to touch up the primer coat.

2-819L Coating Existing Steel

All paint must be properly mixed and applied as specified by the manufacturer, except that all painting is applied by brush unless otherwise approved by the Inspector. Roller application may be used on the finish coat. Spray painting is permitted provided the location and method of application has been approved by the Inspector. However, all areas
adjacent to machinery or mechanical components, etc., are painted by brush application only. All dry spray and runs must be removed prior to the application of the succeeding coat. Surfaces inaccessible for painting by regular means will have the paint applied by sheepskin daubers or by other means necessary to ensure coverage at the proper coating thickness. Thinning of paint is prohibited.

The Inspector notifies the Bridge Safety and Evaluation Section, Office of Engineering, in writing of any cracks or section loss that have been detected during the cleaning operation. The Structural Deficiency Report form, shown in Figure 2-8.14, is used for the notification. The Inspector must ensure that all foreign materials loosened by the blast cleaning are completely removed prior to the painting operations.

The steel will be kept dust free during painting operations, and care must be taken to protect newly coated surfaces from cleaning operations. If an area that was cleaned or painted becomes soiled, contaminated or rusted, the area is re-cleaned to the specified condition and completely recoated at no additional cost to the Department.

2-819M Defective Work

The contractor is responsible for the satisfactory application of paint. During the contract warranty period, paint must be removed, and the steel must be thoroughly cleaned and repainted at no additional cost to the Department under any of the following conditions:

- rusting occurs
- any paint coat lifts, blisters or wrinkles
- any paint coat shows evidence of having been applied under unfavorable conditions
- the workmanship is poor
- impure or unauthorized paint is used

The painting may be deemed unsatisfactory for other reasons, as well.

2-819N Stenciling

When the final coat of paint is dry, the contractor stencils a legend on the structure indicating the type of paint used in each coat and the month and year in which each application was completed. The stencil must be applied with black paint inside a fascia stringer near the abutment at a location selected by the Inspector.

2-819O Paint Storage

The inspector must be familiar with and the contractor must adhere to the coating manufacturer's recommendations for storage. Paints and thinners will be stored in well-ventilated areas and not subject to excessive heat, open flames, electrical discharge, or direct sunlight. Materials susceptible to damage by low temperatures must be stored in heated areas if necessary. All materials will be used on a rotating stock basis and remain closed until used. Paints that cannot be stirred to attain normal consistency may not be used. Paints that are not in actual use will be stored in tightly covered containers at not less than an ambient temperature of 45 °F (7 °C). Containers used for storage of coatings must be maintained in a clean condition, free of foreign materials and residue.
2-819P Health and Safety

The Department has initiated special contract requirements for the implementation of a Lead Health Protection Program (LHPP) where work tasks pose a serious airborne lead exposure risk. The contract requirements for each project must be thoroughly understood and complied with. All Inspectors assigned to painting projects, who will be subjected to the airborne lead exposure risks, are required to participate in the LHPP specified in the contract.

The Department has an agreement with the U.S. Department of Labor's Occupational Safety and Health Administration (OSHA) for assisting the Department with compliance with federal lead regulations to prevent excessive employee exposure to lead.

2-819Q Reporting

Inspectors on painting projects will make out Daily Work Reports (DWRs) and the following special reports:

- **Structural Deficiency Report.** It is shown in Figure 2-8.14. Structural deficiencies noted during the inspection of the work, not included in the scope of the contract requirements, are reported by phone to the Bridge Safety and Evaluation Section and then followed with the formal submission of a completed Deficiency Report.

- **Daily Containment Inspection Report.** See Figures 2-8.15a and b. The report is completed each day and at each bridge site where the contractor is performing surface preparation. The Inspector covering the cleaning operations prepares the form and attaches it to the daily IR. In addition, the Project Engineer should both review the painting operations at least two times per month to verify compliance and use the form to prepare a report on the findings. The District Environmental Coordinator, whenever visiting a project with an active painting operation, reviews the operation and prepares a report using the form. The Project Engineer and District Records Examiner, when reviewing the project records, monitor the form's completion and use.

- **Daily Bridge Painting Quality Control Inspection Report.** The Report is shown in Figure 2-8.16. The report is completed daily as a supplement to the Inspector's Daily Report.

- **Bridge Paint Inspection Checklist.** The Report is shown in Figures 2-8.17a and b. The report is completed daily as a supplement to the Inspector's Daily Work Report.
Figure 2-8.14 Structural Deficiency Report

Structural Deficiency Report

Location:

Bridge Number:

Span:

Girder / Beam / Diaphragm affected (circle one)

Problem and Location:

Prepared By: ____________________________ Date: ____________
Figure 2-8.15a Daily Containment Inspection Report

Daily Containment Inspection Report

Town: __________________________ Date: __________________________

Project No.: __________________________ Weather: __________________________

Painting Contractor/Subcontractor: __________________________ Temperature: __________________________

Bridge Number: __________________________ Wind Condition: __________________________

Bridge Location: __________________________ None _____ Light (0-16) _____

Specified Containment Level: __________________________ Moderate (16-32) _____ Strong (>32) _____

Crossing Feature: Secondary Roadway _____ Expressway _____

Wetland _____ Watercourse _____

Containment Parameters

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Plans Approved</td>
<td>Date</td>
</tr>
<tr>
<td>Impervious Tarps</td>
<td></td>
</tr>
<tr>
<td>Seam Lap</td>
<td></td>
</tr>
<tr>
<td>300 mm Max. Tie-offs</td>
<td></td>
</tr>
<tr>
<td>Bulkheads Between Beams</td>
<td></td>
</tr>
<tr>
<td>Parapet Attachment</td>
<td></td>
</tr>
<tr>
<td>Continuously Sealed</td>
<td></td>
</tr>
<tr>
<td>Impervious floor/deck</td>
<td></td>
</tr>
<tr>
<td>Holes in Containment</td>
<td></td>
</tr>
<tr>
<td>Sealed Entryway</td>
<td>Airlock Overlap Open Seam</td>
</tr>
<tr>
<td>Support Type</td>
<td>Rigid Cable Other (describe)</td>
</tr>
<tr>
<td>Ventilation</td>
<td>Visual Measured Pressure Differential</td>
</tr>
<tr>
<td>Exhaust Dust Filtration</td>
<td>Manufacturer Model</td>
</tr>
<tr>
<td>Visual Emissions</td>
<td>None <10 min/day</td>
</tr>
<tr>
<td>10-15 min/day</td>
<td>>15 min/day</td>
</tr>
</tbody>
</table>
Daily Containment Inspection Report

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Collection Available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recyclable Shot Used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debris Collected Daily</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containers Staged on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impervious Surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containers Covered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containers Properly Labeled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Debris Outside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was It Cleaned Up?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Containers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directives issued to Contractor:

Compliance:

Remarks:

--

Page 2
Figure 2-8.16 Daily Bridge Painting Quality Control Inspection Report

Daily Bridge Painting Quality Control Inspection Report

Date: ___________________ Project No.: ___________________ Bridge No.: ________________
Location of Work: __
Time Started: ___________________ Time Completed: _________________________________
Contractor: ___________________ Inspector: __

Method of Verification
Ambient Conditions and Time Taken
Dry Bulb: __
Wet Bulb: __
Relative Humidity: ___________________ Dew Point: _____________________________
Surface Temperature: ___

Surface Preparation
Degree of Cleaning Specified: ___
Degree of Cleaning Achieved: ___
Method: __
Type of Abrasive: ___
Coating Materials: ___
Batch No.: ______________ Mfg. Date: ____________ Shelf Life: _______________
Thinner Type: ___________________ Amount: _________________________________
Application: ___________________ Type of Equipment: ____________________________
Wet Film Thickness: __
Location of Reading: __
Dry Film Thickness: __
Location of Reading: __

Hazardous/Contaminated Debris
Drums/Containers: ___________________ Labeled: Yes ____ No _____
Comment: __
__
Figure 2-8.17a Bridge Paint Inspection Checklist

Bridge Paint Inspection Checklist

Date: __________________________ Inspectors: __________________________

Bridge No.: __________________________

1. Specified Coating System:
 Coating Manufacturer | Supplied Material | Specified D. F. T.
 ______________________ | ___________________ | ___________________
 Primer (i.e. Organic Zinc) | ___________________ | ___________________
 Intermediate (i.e. Epoxy Mastic) | ___________________ | ___________________
 Finish (i.e. Aliphatic Urethane) | ___________________ | ___________________

2. Required Reference Material at the site, 1 copy each: Coating Manufacturer’s Product Data Sheet, Bridge Paint Specification, Surface Preparation Specification

3. Environmental Conditions: To be obtained a minimum of every three (3) hours. When a reading is close to the minimum or maximum specified condition, then readings must be obtained every twenty minutes until that particular condition improves or fails.

<table>
<thead>
<tr>
<th>Specified</th>
<th>Actual</th>
</tr>
</thead>
</table>
 Air Temperature | _________ | _________ |
 Steel Surface Temperature | _________ | _________ |
 Coating Material Temperature | _________ | _________ |
 Dry Bulb Thermometer Temp | _________ | _________ |
 Wet Bulb Thermometer Temp | _________ | _________ |
 Relative Humidity | _________ | _________ |
 Dew Point | _________ | _________ |

4. Surface Preparation: Cleaning Specified (i.e. SSPC-SP-10): __________________________
 Adjacent Surfaces Protected: Yes ____ No ____
 Containment Enclosure: Yes ____ No ____
 Cleaning Achieved: __________________________
 If blast cleaning, type of abrasive used and size: __________________________
 Dust and residue removed prior to coating application: Yes ____ No ____
Figure 2-8.17b Bridge Paint Inspection Checklist (continued)

Bridge Paint Inspection Checklist

5. Application: Method Utilized (Spray, Brush, Roller): ____________________________

Volatile Organic Compounds (V.O.C.) Content as supplied: ____________________________ kg/L

If thinned, how much thinner in liters of thinner per liter of paint? ______________________

V.O.C. Content after thinning: ____________________________________ kg/L

Note: Coating Manufacturers Technical Service Department can assist.
V.O.C. content is determined by ASTM D3960.

Wet Film Thickness = W.F.T. 1 µm = 0.000 001 m
Dry Film Thickness = D.F.T.
Percent of Solids by Volume of Coating = V.S. (i.e. 53% = 0.53)
Volume percent of thinner added = T (i.e. 0.25 liters per 4 liters = 0.25/4 = 0.0625)

\[
\text{Required W.F.T.} = \frac{\text{Specified D.F.T.} \times (1.0 + T)}{V.S.}
\]

\[
\text{Sample: } 150 \, \mu m = \frac{75 \, \mu m \times (1.0 + 0.0625)}{0.53}
\]

Coating Induction Time if required: __

Time between coats: ___

Primed before rust back: Yes ____ No ____

6. Semi-Final Inspection:

Coating System D.F.T.: Specified ________ Actual ________

Defects for Correction—Low D.F.T., Sags, Runs, Splatters: __________________________

Corrective Action: __

7. Final Inspection: Review Check List
Visual Inspection
Acceptance/Rejection

Page 2
Chapter 9 - Construction Traffic

2-900 General

This chapter covers control and safety related to construction traffic. It includes information about public relations, specifications, detours, construction signs, channelizing devices, traffic control person, etc. It does not cover permanent traffic control, such as placing new signs or signals, and does not cover general work safety, such as incident reporting or the use of personal safety equipment. Incident reporting is covered in Volume 1, Chapter Fourteen, “Project Incidents and Complaints”. Personal safety is covered throughout the Manual. The Manual does not currently include the construction or installation of permanent traffic controls.

2-901 Public Relations

2-902 Press Releases

The Department must make every effort to keep the traveling public aware of the infrastructure program and inform them of lane and road closures, detours, etc., well in advance of planned activities. The Department informs the public through press releases distributed through the media.

The Department prepares a press release at the beginning of a project and at least one week prior to any significant traffic change, such as a major stage shift. Contract specifications generally require that a contractor provide a minimum of seven days notice for major changes to traffic operations, such as lane or road closures, traffic shifts, detours, etc. The Chief Inspector informs the Project Engineer of significant traffic changes.

The press release includes the location of the project, project cost, a brief description of the work and how it will affect the traveling public. It should include the duration the roadway will be affected, as well as any pertinent information that may help alleviate possible delays. If the media should be notified, the preparation of the press release should become a top priority of the project staff. If a detour is involved, the Project Engineer should provide sketches of it. The Project Engineer sends the press release to the Manager of Construction Operations such that it is received at least one week before the planned activity.

If the project cannot provide written notification seven days prior to the event, District supervisory personnel should telephone the Office of Construction with an explanation of the circumstances.

2-903 Daily Traffic Reports

The District provides a daily traffic report that is sent to the Department's Operations Center and to Public Relations so that radio announcements can be made. The Chief Inspector telephones the District by 8 A.M. so that the information can be compiled and distributed by 8:15 A.M. for the day's work.
2-904 Weekly Traffic Reports

The Public Relations Office publishes a statewide Weekly Traffic Report for internal use that lists allowable, temporary lane closures. Project Engineers must submit update information to the District Traffic Report Coordinator. The Coordinator gathers information from all District projects and forwards it to the Public Relations Office.

2-905 Specifications

2-906 Maintenance and Protection of Traffic

“Maintenance and protection of traffic” may refer to Article 9.71 of the Standard Specifications, titled “Maintenance and Protection of Traffic,” or to the scheme for maintaining and protecting traffic in the contract plans and special provisions.

2-906A General

Traffic control is governed by the scheme for maintaining and protecting traffic in the plans and special provisions or, if there is no scheme, by the provisions in Article 9.71 of the Specifications. The contractor may request to deviate from either the scheme or Specifications. If a scheme exists, the contractor may offer an alternative that involves no additional cost to the Department and is acceptable to the Engineer. If the contractor wishes to deviate from the Specifications, a schedule may be submitted showing a proposed sequence of operations and a compatible method of maintaining traffic. The submission must be in writing, with suitable documentation to delineate cost savings or safety-effective measures that will be accomplished by the change.

Any request for a deviation in the specification for maintenance and protection of traffic must be approved by the Office of Construction prior to implementation. A copy of the written request from the contractor (and any other pertinent information) is faxed to the District Liaison Engineer and, if appropriate, to the Office of Traffic for review. The Office of Construction contacts the assigned traffic engineer for assistance in reviewing the request, and the District is contacted once the review is complete.

The contractor supplies a list of employees who will be responsible for performing necessary corrective work during and after normal working hours. This list should be made available to local or State police so the contractor can be contacted in emergency situations.

When a District reviews construction plans, consideration should be given to whether solid lane lines would be beneficial to traffic flow during stage construction operations. If the District feels solid lane lines would be beneficial, it should be brought to the attention of the responsible designer so that appropriate plans can be provided.

Approval from the State Traffic Commission (STC) is needed for most reduced speed limits. STC approval may be needed for signalization and other temporary traffic control measures if they are not directly related to the construction activities.

2-906B Payment

Inspectors’ Daily Reports should list all items chargeable to the Maintenance and Protection of Traffic item.

The contract item Maintenance and Protection of Traffic is paid for as a lump sum. Generally, the item covers operational costs for material and devices furnished by the contractor under other contract items. Specifically, the price includes all costs for labor, equipment and services involved in the erection, maintenance, moving, adjusting, cleaning,
relocating, and storing of signs, barricades, drums, traffic cones, and delineators furnished by the contractor, as well as all costs involved in the maintenance of traffic lanes and detours.

The item Maintenance and Protection of Traffic does not include the costs for furnishing and placing pavement markings; furnishing signs, drums, barricades, traffic cones, and delineators; or furnishing and placing borrow, gravel fill, crushed stone, bituminous concrete for patching, and pipe. These items are paid for under the appropriate contract items. If contract items necessary for maintenance and protection of traffic are not included in the contract, plans, or special provisions, then the necessary items are paid for as extra work.

The standard policy for proportional payments paid monthly under the contract item is to divide the number of contract days into the lump-sum dollar amount of the item and multiply the result by the number of contract days in the month. The monthly payment should be adjusted up or down based on the following.

- The contractor does not perform during the winter shutdown period and no maintenance and protection of traffic work is performed.
- It is foreseeable that the contractor will not complete the contract within the allowable days, and the delay is the result of contractor operations.

2-906C Contractor Nonperformance

The District Office should be notified immediately if the contractor will not correct a deficiency in the maintenance and protection of traffic. A meeting is held with the Project or Supervising Engineer, the Inspector, and the contractor to determine the corrections required. The provisions of Articles 1.07.07 and 9.71.01 of the Standard Specifications are reviewed with the contractor.

A time frame is given to the contractor to perform the work. If the contractor fails to perform the work within the required period, the State may perform or arrange for others to perform the work. The cost of the work performed by the State or others is deducted from the contractor's payment estimates.

2-907 Public Safety

Unless otherwise provided for under the contract, the roadway and its appurtenances must be kept open to traffic from the beginning of construction operations until final acceptance of the project. The contractor is responsible for keeping the portion of roadway under construction in such condition that traffic will be adequately accommodated, except for the removal of snow and ice, which is the responsibility of the Department.

The contractor is responsible for keeping the section of road being used by the general public free of irregularities and obstructions of any character that present a hazard or annoyance to them. Unless otherwise provided for under the contract, the contractor must incur all costs associated with maintenance work until relieved of responsibility. However, if a section of the project has not been disturbed by the contractor, the contractor is not held responsible for any incurred costs for repair of the undisturbed section. Payment in this case is as extra work.

2-908 Potholes

All necessary precautions must be taken to protect the traveling public during patching operations. The Chief Inspector must keep proper documentation of the location of the pothole, amount of labor and equipment hours and total quantity of material placed.
2-909 Roadway Trenches

Any section of roadway under construction that is being used by the traveling public must be maintained free of potholes, ruts, trenches, bumps or ridges. At the end of the work day any closed section of roadway returned to the traveling public must be brought back to its proper grade. The final 2 in. (50 mm) must be completed with temporary cold patch material or hot bituminous concrete mix.

2-910 Low Bridge Clearance

The Bridge Safety Unit inspects bridges for vertical clearances. Both bridges within the project limits and bridges on project detours need to be inspected. Signage must be posted in advance of a structure that does not meet clearance standards, to forewarn traffic of the overhead clearance.

2-911 Storage of Equipment and Material

The contractor is required to store or place equipment and materials in locations that are not hazardous to the traveling public. The contractor must place or store material and equipment 30 ft. (10 m) or more from the edge of the travelway. An alternative is to locate the material and equipment behind a barrier system. If the alternative is used, the equipment and material must be a minimum of 3 ft. (1 m) farther away from the barrier than the barrier's maximum deflection. Figures 2-9.7 and 2-9.8 provide characteristics of operating guide rail and median barriers, respectively.

The storage requirements apply to construction signs, traffic drums, cones, etc., if not in use for lane or shoulder closures. These devices should be broken down and stored as described above. They should not be stored by leaning them against the traffic side of bridge parapets, rails or concrete barriers. It is not acceptable to place signs in a grassy area, turn them backwards or sideways, and not break them down.

At the end of each work day, all temporary construction signs must be picked up and removed to a safe storage area. If a signing pattern is to be reinstalled daily, suitable temporary marks should be placed on the roadway surface to ensure the repeated placement of the proper sign at the proper location.

2-912 Removal and Reinstallation of Rail Systems

Contract items for removing and resetting existing rail systems must be completed at the end of each work day for every linear foot (meter) run where a hazardous situation exists. Situations that could present a hazard are offsets less than 30 ft. (9 m) from the edge of a travel lane, steep or vertical drop-offs, or fixed structures.

2-913 Limitation of Operations

A construction project on existing highways affects the traveling public. The Department has committed to the public to perform the work with minimum impact. Thus, limits are placed on the period the contractor can interfere with traffic. Limitations are based on the traffic volumes on a section of highway.

“Limitation of Operations” is the title of Article 1.08.04 of the Standard Specifications, concerned with conducting the work so as to produce the least interference with traffic. Specific limits on contractor operations, such as permissible hours of operation, are described in the contract's special provisions.

If called for by the contract, the contractor develops contingency plans for unanticipated problems such as equipment breakdowns, lack of material, etc. The plans must be approved by the District Office.
2-913A Requests for Changes

Requests to change the limitation of operations specifications for a project must be submitted in writing, through the District Office, to the Office of Construction. A request must follow the guidelines below.

- The request must include a description of the work to be performed, the reasons for the change, and any pertinent information regarding dates, times, and duration.
- The request must be submitted with enough time for it to be reviewed and a press release issued.
- The contractor must attach a copy of the pertinent specifications and indicate the sections that are proposed to be changed.
- The District must include a copy of the most recent hourly traffic counts by week and include any comments concerning the request. The District can request the traffic counts from Traffic and should maintain a file of the counts in the District for reference.
- The District must attach any previous press release that approved the same request as the current one.
- The District must include the detour route, if a detour is required. If a local road is to be detoured or used as part of the detour route, the District must attach the concurrence of the towns affected. The concurrence must be in writing.
- The District shall consider taking credit from the contractor when the change in specifications would allow the contractor an advantage in completing contract work under less restrictive terms (fewer days, fewer stages, day instead of night work, etc.).

The checklist shown in Figure 2-9.9, Request for Change to Contract Traffic Specifications, is used for compiling the information needed for a request. Approved requests are only for the dates and times specified in the approval.

2-913B Expressway Projects

All lanes must be open on expressway projects during the peak hours of 6:00 A.M. to 9:00 A.M. and 3:00 P.M. to 6:00 P.M., Monday through Friday. In addition, expressway projects include holiday restrictions. Contract special provisions list the holidays.

2-913C Inspection

As construction progresses, project personnel should monitor all activities that may affect traffic operations. The Chief Inspector must review the contractor's plans daily to ensure that scheduled work can be completed and that the roadway can be opened to traffic within the period allowed by the contract.

The inspection staff must monitor the contractor's production rate to assure completion within the allowable time limits. If it becomes apparent that the contractor will not be able to open the roadway as required, the inspection staff must notify the contractor in writing to modify operations so that the roadway can be reopened on time. In addition, the inspection staff must notify the District Office of the problems encountered and actions being taken by the contractor, so that further action and direction may be taken if needed.

For example, a contractor may have a six-hour period in which to pave two lanes of a roadway. The Inspector should act, if at the end of two hours and 45 minutes, it is apparent that the contractor will not reach his planned ending station for the day's paving, and the contractor shows no sign of ending the first pass and beginning the second pass. The...
Inspector should give written directions to the contractor to end the first pass, begin the second and be off the road by the time stipulated in the contract. At the same time, the Inspector should notify the District of the problem.

When notified of a potential problem, the District must evaluate the actions being taken and determine if other action is required. District supervisory personnel (Project Engineer or Supervising Engineer) should be dispatched to the site to ensure all possible corrective actions are being taken. The District must determine whether the actions are sufficient to clear the roadway in time and, if they are not, immediately notify the Office of Construction. The notification should be made by telephone to the Supervising Engineer for the respective District or, if not available, any Supervising Engineer in the office. If the District feels the actions are adequate, no notification is necessary, but the project should be closely monitored to ensure further problems do not develop.

2-913D Liquidated Damages

If the contractor violates the limitation of operations provisions of the contract, the District must immediately investigate the facts surrounding the violation. At a minimum, the investigation should consider the following.

- Did the contractor (and Inspector) adequately plan the work?
- Was progress monitored and were adjustments made during the day to ensure timely completion?
- Was the contractor directed to alter the work to ensure timely completion? Was it in writing? Did the contractor comply?
- Were there any mitigating circumstances (equipment breakdowns, accidents, etc.)?
- Could anything different have been done to avoid interference with the traffic during restricted periods?
- What was the duration of the violation of the limitation of operations provisions? What was the impact of the violation (length of backup, amount of congestion, etc.)?

On completion of the investigation, the District must submit a complete report to the Office of Construction. The report should include all details relevant to the incident and a recommendation on whether a sanction should be applied. Sanctions include daily liquidated damage charges, if applicable. Administrative actions may be taken as deemed appropriate. The District must substantiate the reasons for its recommendation. The report and recommendation must be submitted within three working days of the incident.

It is not the intention of the Department to penalize contractors for minor infringements of the contract limitations or for incidents that do not adversely affect the motoring public. The procedures must be followed, however, when the contractor's operations violate the contract provisions and cause a significant impact on the flow of traffic.

2-914 Speed Limits

If a reduced speed limit is desirable over an extended period, the Division of Traffic Engineering prepares a report for the approval of the State Traffic Commission (STC). If it is approved, the reduced speed limit becomes effective when the signs are posted. The signs are the standard black-on-white speed limit signs. For long-term activities, the signs for the normal speed limit should be removed.

STC approval is not needed for activities extending over a portion of a day. Orange-and-black speed limit signs are used for posting the reduced speed limit.

The Office of Construction can request the STC to grant immediate approval of a reduced speed limit for an unforeseen situation. A special meeting will be held to approve the new temporary speed limit. The signs used are the standard black-on-white signs.
2-915 Business Access

Construction projects can significantly affect access to businesses. Project personnel must be proactive in mitigating business disruptions.

- Several days before construction affects a business, the Chief Inspector or Project Engineer should meet with the businesses that will be affected and explain what will be done, how long it will take, how business access will be maintained, etc.

- If detours or street closures will be implemented, signs stating, “Business Open—Local Access Maintained,” must be provided.

- In all cases, access is maintained to all business properties. If necessary, temporary driveways are constructed. Temporary access is paved if it is in use for more than five days or through a weekend.

The Inspector should give special attention to ensuring business access is signed properly. Signs should be Code D-7 signs (“Business Access” signs) for both temporary and permanent access in construction areas. The signs should be installed on posts at heights that allow the signs to be visible but that prevent the signs from interfering with sight distances. In areas of two-way traffic, the signs should be mounted back to back so that one is visible from each direction.

2-916 Traffic Control Patterns

Traffic control patterns are used for the following:

- to divert traffic on all types of roadways away from a specific work zone,

- to protect work crews and inspection personnel from motorists entering a work zone,

- to maintain traffic at reasonable speeds around or through a work zone, and

- to alert or warn motorists of a work zone and to lead them through it.

Project plans and special provisions may contain both standard and custom traffic control patterns. The details spell out types and locations of signs and other channelizing devices. Some standard traffic control patterns are shown in Figures 2-9.12 through 2-9.40. They illustrate typical situations. Figure 2-9.1 illustrates terms that apply to work zone traffic control patterns.

Actual field conditions must be considered before applying the patterns. Adjustments may be made by the Engineer before placing a pattern, as explained later in this section. During placement, any existing signs that are in conflict with the traffic control pattern should be removed, covered or turned so that traffic can not read them. After placement, the Inspector should review the pattern from a motorist's standpoint and direct the contractor to make any required adjustments to achieve a safe working pattern.
A temporary traffic control pattern normally is in effect for the period allowed within the limitation of operations for daily traffic, typically 6 to 12 hours. The contractor must schedule operations and equipment to set up, maintain, and remove a temporary traffic control pattern within the allowed period. A temporary traffic control pattern consists of a combination of the following:

- construction signs mounted on legs
- trailer-mounted arrow boards
- trailer-mounted changeable message signs
- traffic cones
- traffic drums
- portable impact attenuation systems located at the work site

Custom signs may be required and effective under specific conditions or locations. After a temporary pattern is in effect, it should be checked periodically by both the contractor and inspection personnel for corrections or replacements.

2-916B Permanent Patterns

Permanent traffic control patterns are those that are not taken down on a daily basis. They are in place 24 hours a day. Permanent patterns consist of the same combination of channelizing devices as for temporary patterns, together with post-mounted construction signs and secured arrow boards or changeable message signs.

Typical lead-in post-mounted signs must be installed prior to implementation of a stage shift or extended closure. The signs should be covered until the pattern is affected. Cones, drums and leg-mounted signs should be properly weighted for extended use.

Permanent sign patterns can include barricade warning lights on post-mounted signs and channelizing devices at the discretion of the Inspector.

Permanent sign patterns must be monitored at least weekly for any repairs or alterations. Arrow boards and changeable message signs must be protected by either portable concrete barrier curb or sand barrels.
2-916C Detours

Traffic control patterns for detours often are customized for the location and geometry of the detour. Detour plans usually are included in the contract specifications and drawings. It is important that detour signing and delineation is explicit, and it must guide the motorist back to the original route without confusion. Post-mounted signs should be large enough, contain minimal wording, and be placed at locations so that the motorist can be prepared to follow the prescribed detour.

2-916D Night Patterns

Traffic control patterns for standard lane closures are essentially the same for day and night operations. It may be necessary to adjust the spacing between channelizing devices at night to compensate for reduced visibility. It may be advisable to use additional arrow boards or changeable message signs and portable impact attenuation systems at night if the highway geometry and conditions warrant use. During nighttime operations, the contractor's vehicles are prohibited from traveling against traffic when their headlights are on and they are within a traffic control pattern.

2-916E Adjustments

The standard traffic control plans and patterns indicate the locations and spacings of signs and devices under ideal conditions. It is desirable to have signs and devices installed as shown on the standard plans and patterns, but sometimes adjustments are needed.

Adjustments to the standard signing plans and patterns can be made only at the direction of the Engineer. Installations should consider abutting properties, driveways, side roads, and the vertical and horizontal curvature of the roadway. If adjustments are made to the standard patterns, the adjustments should be to improve the visibility of the signing and devices and to control traffic better.

The Engineer may require that a traffic control pattern be located significantly in advance of the construction work site to provide better sight line to the signing and safer traffic operations through the work zone. The Engineer may order the spacing between signs and devices to be increased or decreased as conditions dictate.

Any adjustments in the traffic control patterns are done by the contractor’s forces and are at no extra cost to the State. Additional signs or devices required by the Engineer are paid at the contract unit prices for the items involved.
2-917 Tapers

A taper intended to shift traffic should be installed on a tangent section of roadway. Taper lengths may be reduced by the Engineer to a minimum of:

For speed limits greater than 40 mph (65 km/h)

\[L = \frac{W \times S}{1.6} \ (L = W \times S) \]

and, for speed limits of 40 mph (65 km/h) or less, to a minimum of:

\[L = \frac{S \times S \times W}{155} \ (L = \frac{S \times S \times W}{60}) \]

where:
- \(L \) = taper length in feet (meters)
- \(S \) = speed limit in miles per hour (kilometers per hour)
- \(W \) = lateral shift (width of lane or offset) in feet (meters)

2-918 Buffer Space

A buffer space should be provided between the transition taper and the work area. It should be free of equipment, workers, material and parked vehicles. On multilane highways with posted speeds of 45 mph (72 km/h) or more, the length of the buffer space should be at least 350 ft. (110 m).

2-919 Sign Placement

Signs usually are placed on the right side of the roadway. However, if a traffic lane is impeded on a multilane highway, signs should be installed on both sides of the roadway, if the median width is sufficient. On one-way roads, such as off ramps, the same sign may be installed on both sides of the road, if the sight distance to the sign on the right side is restricted.

2-920 Inspection Responsibilities

The contractor furnishes signs, barricades, traffic cones, and traffic delineators to forewarn traffic of the construction. The State or the contractor provides the pavement markings, warning devices, and signs needed to safeguard and guide the traveling public through detours ordered by the Engineer or included in the approved scheme for maintenance of traffic. The contractor erects, maintains, moves, adjusts, relocates and stores the signs, barricades, traffic cones and delineators when, where and as directed by the Engineer.
The safe and proper handling of traffic is the contractor's responsibility. It is the responsibility of the State inspection forces to see that the contractor provides for the safe movement of traffic. However, inspection forces should be careful not to issue instructions that shift the burden of responsibility to themselves or the State. State inspection forces must enforce the requirements of the contract and call the contractor's attention to any dangerous situations that may arise.

The Chief Inspector supervises the handling of traffic when traffic is maintained over all or a portion of the project. The Inspector's goal should be to ensure safety and minimize delays and inconvenience to the traveling public and to adjacent property owners and businesses consistent with the prosecution of the work. The Inspector sees that the traveled roadways are of sufficient width, drained, reasonably smooth, and in suitable condition at all times.

The Chief Inspector must maintain good records of installed traffic control patterns. The records should include dates and times of day that inspections are made, statements of conditions found, a complete list of the types, sizes and locations of devices, orders to the contractor to make changes or corrections, the times and dates devices are removed or modified, photographs of installed patterns that are expected to remain for long periods, and comments explaining variations from standard procedures. The records are maintained in the Inspector's Daily Report. Traffic control is a contractual responsibility of the contractor, but the State could also become liable due to its actions or inactions.

2-920A General Inspection

The items below are part of the overall inspection responsibilities for construction traffic.

- The Inspector must review the contract plans and special provisions relating to maintenance and protection of traffic. The Inspector must review the construction site for problem areas so that needed adjustments or improvements are identified.

- The project must be reviewed before erecting signs. The Chief Inspector should make suggestions, through the Project Engineer to the Assistant District Engineer, for special conditions not anticipated in design needed to improve the safety of the work force or the traveling public. The Engineer should direct special attention to signing for business access. All changes in the contract requirements must be approved by the Division of Traffic or the consultant designer.

- Throughout construction the Inspector must monitor the signs, flashers, drums, cones, pavement markings, delineators, etc., and direct the contractor to repair and maintain the devices as necessary. The Inspector should ensure that all devices are properly spaced, clean, the correct color, and as reflective as required. Periodic inspections should be made during both the day and night.

- The Inspector ensures that the traveling public is treated in a courteous manner by the trafficperson, inspection forces, and contractor's forces.

- Special attention must be paid to the construction area and its approaches after winter storms. If traffic devices are displaced, damaged, or dirtied by snow removal operations, they must be made serviceable as soon as possible.

2-920B Traffic Flow

Traffic flow should receive special attention from project personnel because of its importance and because of the Department's commitment to minimize interference with traffic. The Inspector must, at a minimum, follow the guidelines below:

- review signing patterns when they are established;

- periodically inspect signing and the resulting traffic queues during the work day;
• adjust or add signs to improve traffic flows and to reduce impacts;

• notify the District Office of significant problems; and

• review the use of trafficperson and add trafficperson if needed, such as at signalized intersections.

If significant traffic backups occur, the Inspector should consider ordering the contractor to reopen closed lanes to allow traffic to pass, but only if the lanes can be reopened safely. If practicable, adjustments should be made to the construction process to minimize effects on the traveling public and on the adjacent property owners and businesses.

If significant problems occur, the Inspector should notify supervisory personnel or the District Office. If additional help is needed, the District Office should request it from the Office of Traffic.

2-920C Lane Closures

A traffic control pattern must be installed before starting any contract operation that interferes or conflicts with any travel lane or shoulder. To provide for traffic control during lane closures, the guidelines below should be followed.

• The contractor must inspect all traffic control devices daily and correct any deficiencies.

• Existing pavement markings and signs must be removed, covered, or turned so that traffic cannot read them, if they conflict with the traffic control plans or contract drawings. At the completion of the project, the existing striping and signage must be reestablished as directed by the Engineer.

• Traffic control devices that are not needed for current work must be removed or covered from the sight of motorists.

• The contractor is required to install and remove all temporary pavement markings during and between construction stages, as indicated on the plans or as ordered by the Engineer.

• The contractor is responsible for maintaining a clear and safe travelway for vehicles. Storage of material, equipment, or debris outside of the designated work area is not permitted.

• If work on adjacent projects is occurring simultaneously, the contractor must maintain coordination for proper traffic flow.

2-921 Detours

The Contract provides a detour when a portion of a State highway is closed because of construction or reconstruction.

2-921A Detour of a State Highway to a Town Road

The procedure below is for a detour of a State highway to a town road.

• The need for a detour is determined during the preliminary review of the plans for the proposed construction. The Manager of Traffic Engineering selects the layout of the detour.

• The Manager of Traffic Engineering informs the appropriate town official of the pending detour. (Additional information is provided to the town officials later in the process.)
The Manager of Traffic Engineering arranges a meeting with the town official and the District Maintenance Manager to select, inspect, and agree on local roads to be used for the detour.

The designer, in conjunction with the Office of Construction, decides on including the detour signing and temporary roadway improvements in the contract or having them performed by the Office of Maintenance.

The District Engineer sends correspondence about the detour schedule to the principal administrative town official and the local fire and police departments. In addition, the District Engineer notifies the District Maintenance Manager and notifies the public transportation companies and ambulance services operating within the area that may be affected by the detour. The District Engineer keeps these parties informed of any changes concerning the detour during its use, as well as notifying them of the detour's termination.

After the detour is no longer required, the town road is restored to a condition comparable to that existing before the detour was established. Preliminary and final condition reports of the roadway are performed.

2-921B Detour of a State Highway to Another State Highway

The same procedure is used for a detour of a State highway to a State highway as is used for a detour of a State highway to a town road (see above), except that it is not necessary to consult the town officials.

2-921C Detour of a Town Road to Another Town Road

The same procedure is used for a detour of a town road to a town road as is used for a detour of a State highway to a town road (see above), except for the following:

- The principal administrative town official requests the Commissioner, in writing, to establish a detour diverting traffic from the town road.

- It is not necessary to consult with the town official concerning maintenance or other work on the road used as a detour.

“Principal administrative town official,” as used here, refers to the Mayor or City Manager of a city, Board of Selectmen or Town Manager of a town, or Warden of a borough.

2-921D Temporary Detours

The District Engineer, with the concurrence of the Office of Construction, may establish temporary detours that do not exceed 48 hours duration. The District Engineer determines the sign requirements for temporary detours and is responsible for placing and removing the signs. After a detour, the District Engineer ensures that the local roads are restored to conditions at least as good as those prevailing before the detour.

On establishing a temporary detour, the District Engineer notifies the appropriate town officials, who in turn, inform the local fire and police departments. In addition, the District Engineer provides the dates and hours that the detour will be in operation to the Manager of Traffic Engineering and the public transportation companies and ambulance services operating in the area.
2-921E Detour Operations

A detour can be made operational after all required agreements are executed; traffic control signing is installed; local officials, fire, police, etc., are notified; and the contractor is ready to start work. The Chief Inspector on each project must:

- inspect the location of all construction, warning and detour signs erected to ensure that they are properly installed; and
- arrange for the maintenance of the detour to safeguard the public against any hazards arising out of its use.

2-922 Construction Signs

2-922A Signs

Construction warning signs are furnished and erected by the contractor. The number, size and type of signs are set forth in the plans and special provisions.

The sheeting for signs used on expressway projects must be wide-angle reflective sheeting. The sheeting for other signs is encapsulated-lens reflective sheeting. One type of sheeting must be used throughout a project. If a project is predominantly an expressway project, with some work at ramp terminals or over at-grade roads, the wide-angle sheeting is used.

The use of unauthorized or unapproved signs is not to be permitted. All signs in any one signing pattern are mounted the same height above the roadway. Care should be taken so that weeds, shrubbery, construction materials, or equipment is not allowed to obscure any sign, light or barricade. Signs that do not apply to existing conditions should be removed or adjusted so that the legends are not visible to approaching traffic.

All legal signs closing the roadway to traffic, as shown on the plans or directed by the Engineer, must be erected before starting any work on the project. The signs remain in place until the final inspection has been held and all corrective work has been completed.

When construction warning signs are no longer required, the Assistant District Engineer or a representative directs the contractor to remove the signs. The contractor must remove them promptly.

2-922B Ordering

The Inspector should review the plans and specifications to determine if the types and quantities of signs are sufficient to do the work and are included in the contract. The Inspector should address any special conditions not addressed in the plans.

The Inspector should conduct a field review of all sign locations for possible conflicts and advise the contractor of changes. The Inspector should consult with the Engineer if changes are made to the signing and the effectiveness of the signing is questionable.

2-922C Placement

In determining the locations of the signs, the horizontal clearances should be checked to ensure that the signs will not be obstructed by other objects. Placement of the signs should be in accordance with traffic standards.
A field review of the signs should be made by both day and night to ensure that the project site is properly signed and that signs are legible and in good condition. Damaged or missing signs should be replaced as needed in a timely manner.

Review contract specifications for details of measurement and payment. Make necessary measurements for payment to the contractor.

2-922D 16-Series Signs

16-Series ("Construction Ahead") signs must be installed on all projects. They should be installed on all roadways that enter the project limits. The signs should be installed in advance of traffic control patterns and, if practicable, at locations that allow the traveling public to exit the roadway before entering the project work limits. The sizes of the signs are as shown in the contract documents. The signs must be installed before any work can commence on the project and must not be removed until the contractor is relieved of physical responsibility for the project. Additional information about 16-Series signs is in Figure 2-9.10.

There are several types of construction projects that require legal blocking of the highway during the time the contractor is actively engaging in the work. The activities move quite rapidly along the highway, and there is no need for the semi permanent erection of 16-Series signs at both ends of the projects. For example, on joint sealing contracts the 16-Series signs are erected each morning and taken down at the end of the day's activities. The signs are erected the following working day and again taken down at the end of the working day. The location of the signs moves day to day as the contractor progresses in the work.

2-922E Inspection

Some important inspection guidelines about contractor-furnished signs are:

- The signs installed should be used in the position and for the purpose designed. Field changes should be made only after consultation with the District Office and the Division of Traffic.

- Individual signs should be used only if the wording is appropriate. Indiscriminate use of signs can be dangerous and confusing.

- Frequent checks by field forces should be made to ensure signs are in place, are legible, are lighted as needed, and are used only as authorized.

- If signing is needed for a detour or other specific situation, check with the District Office for plans from the Division of Traffic.

- There should be no delay in signing or re-signing situations as they develop.

- Advance detour signs used during intermittent periods of construction should be removed when they are no longer appropriate.

- Signs, barricades, and other channelizing devices used to control and direct traffic at temporary connections to sections of completed construction must be sufficient to provide for safe, continuous traffic movement at a reasonable speed.

- Partially completed sections of highway that are not officially open to traffic should be effectively closed with barricades.
The Chief Inspector ensures that all traffic directional signs are preserved. If they are disturbed by construction, the Inspector should have them reset as often as needed, so that they are visible and of use to traffic.

2-923 Barricade Warning Lights

In addition to what is required in the contract, the Engineer determines if any changes of barricade warning lights are needed. Temporary highway illumination should be a major consideration on detours, stage construction of structures, ramps, and local roads during construction. Traffic or the consultant designer should approve any changes.

The contractor furnishes and securely fastens the units to signs, barricades, and other objects in the numbers and for the lengths of time ordered by the Engineer. The contractor maintains and relocates the units and, upon final removal, disposes of them. Traffic devices should be kept clean and replaced if damaged.

2-924 Extended Shutdowns

If a contractor plans an extended shutdown (over 30 days) on projects such as signing, illumination, planting, etc., the District Engineer notifies the Manager of Construction Operations, who advises the Manager of Traffic Engineering. With the written concurrences of the contractor's insurance carrier, the Manager of Traffic Engineering may recommend the temporary removal of the construction signs. If the Manager of Construction Operations approves the recommendation, the District Engineer responsible for the project is directed to remove the construction signs as soon as possible after the temporary shutdown has been granted by the Office of Construction.

2-925 Changeable Message Signs

2-925A Portable Signs

Portable changeable message signs (PCMS) can display a variety of messages. They are used most frequently in high-density urban freeways but may be used on any road if highway alignment, traffic routing, or other conditions require advanced warning and information.

PCMSs typically are used in temporary traffic control to advise drivers of the following:

- ramp, lane or roadway closure;
- substantial drops in traffic speed;
- significant queuing and delays;
- adverse environmental conditions;
- changes in alignment or surface conditions; and
- accidents or incidents.

The contractor furnishes and maintains a trailer-mounted changeable message sign at the locations indicated by the plans or by the Engineer. The Inspector should direct the contractor to place the sign so that it is visible at least ½ mi. (0.8 km) in advance of the work zone. Other guidelines for placement are below.

- PCMSs typically should be placed in advance of any other traffic control signing and should not replace any required signing.
If a PCMS is used for route diversion, it should be placed far enough in advance of the work site to allow traffic ample opportunity to exit the highway.

PCMSs normally are placed on the shoulder. If practicable, they should be placed farther from the traveled lane.

If two PCMSs are needed to communicate multiple messages, they should be placed on the same side of the road, separated by at least 1000 feet (300 meters).

The Inspector should refer to the traffic control plans included in the contract for the message that should be displayed. The Inspector may order the contractor to change the message as deemed necessary. PCMS messages should be readily understood by drivers and, thus, allow them adequate time to react. Guidelines for PCMS messages are:

- No more than two displays should be used within any message cycle.
- Each display should convey a single thought.
- Messages should be as brief as possible.
- Any abbreviations used should be readily understood.
- The entire message cycle should be readable at least twice at the posted speed, 85th percentile speed prior to starting work, or the anticipated operating speed.
- Messages must not scroll horizontally or vertically across the face of the sign.

A changeable message sign should not be used to provide a static message that can be as effectively communicated with a standard construction sign. For example, a changeable message sign should not be used to display “Road Construction Ahead” continuously. A changeable message sign should be discontinued as soon as the condition requiring the message is removed from the travelway.

The Inspector establishes a log of the message that is being displayed, the time, and the duration. The log should be included in Volume IV. The Department pays for the sign at the contract unit price per day that the sign is in operation. If a sign is in operation for part of a day, payment is for a full day.

2-925B Permanent Signs

There are permanent changeable message signs throughout the State. The signs may be used to forewarn drivers of work site activities. The Project Engineer should contact Traffic Operations in Newington to determine whether one of the signs should be used.

2-926 Arrow Boards

Arrow boards may be used in either the chevron mode or the caution mode. In the chevron mode, the arrow board displays a series of moving chevrons. The mode may be used for stationary or moving lane closures. In the caution mode, the four corner bulbs of the arrow board are set to flash. The mode should be used only for shoulder work, blocking the shoulder, or roadside work near the shoulder.

For a stationary lane closure, the arrow board should be located on the shoulder at the beginning of the taper. If the shoulder is too narrow for the arrow board to be completely off of the closed lane, it should be placed to use as much of the shoulder as practicable.
Arrow boards must not be used on a two-lane roadway for temporary one-lane operations. They must not be used on a multilane roadway to shift all lanes of traffic because unnecessary lane changing may result.

2-927 Channelizing Devices

2-927A Barricades

Type III barricades generally are used for the following:

- to temporarily block and secure a construction site from traffic during on and off peak hours,
- to delineate a road or bridge closure in conjunction with signing and flashers, or
- to temporarily close ramps.

Type III barricades should not be used as physical barriers to stop traffic completely. If a road or bridge closure or project contains a hazard where vehicles may enter the work zone, a solid concrete barrier system should be used. The number and position of Type III barricades may be varied by the Engineer to best suit field conditions.

2-927B Temporary Precast Concrete Barrier Curb

Temporary precast concrete barrier curb (TPCBC) is used for the following:

- to channelize traffic through a work zone,
- to protect a work site from adjacent traffic,
- for extended road or bridge closures, and
- to protect a temporary installation of an arrow board or changeable message sign.

Figure 2-9.2 shows a section of TPCBC.
2-927C Installation

A typical TPCBC installation is shown in Figure 2-9.3.

2-927D Taper Length

Taper length is important when installing TPCBC. A rule of thumb is that barrier curb placed on an expressway or major highway is placed with a taper, or flare, of 1:10, a lateral offset of 24 in. (600 mm) for every 20 ft. (6 m) section of barrier curb. The taper should be changed to a larger offset per length only with the approval of the Engineer. Section 2-916E, “Adjustments”, includes more information about modifying a taper. The Inspector, with the contractor, should review the field conditions and discuss placement of TPCBC prior to either a standard installation or one as described by the contract drawings.
2-927E Delineation

It is important that temporary barrier curb be delineated properly for nighttime traffic. Field conditions generally dictate placement of DE-7, DE-7A and DE-7C delineators. If a shifted lane with barrier curb extends for a long distance, the required delineators may be reduced to 1 per 0.1 mi. (0.16 km). As a closure is reduced in length, the installations may be adjusted up to 1 per 20 ft. (6 m) length of barrier. Type DE-7C delineators must be used if a temporary barrier separates lanes with traffic moving in opposite directions.

All temporary barriers installed to separate opposing traffic lanes and traffic lanes from the work site should have delineators installed on them as follows:

- if the barrier is placed anywhere on the paved roadway surface, including shoulders; or
- if the barrier is off the paved surface but within 12 ft. (3.5 m) of the edge of a travel lane.

Highway or street illumination does not negate the need for the delineators.

The delineators must be Type DE-7, DE-7A, DE-7B or DE-7C, depending on the location at which they are installed. Silver delineators must be used to delineate the right-hand edge of the roadway, and yellow delineators must be used to delineate the left-hand edge of the roadway. If barrier is relocated, the type of delineator may need to be changed. The delineator change must be made the same day the barrier is relocated.
2-927F Attachment

TPCBC bridge sections must be affixed to a bridge deck by drilling and grouting dowels. Details for the attachment are in the contract drawings. It is imperative that both PCBC bridge and roadway sections be connected end to end to prevent movement of sections of barrier. The condition of the delineators must be monitored by the Inspector for replacement by the contractor. The Inspector should ensure that all temporary pavement markings are installed prior to using temporary barrier for shifting lanes.

2-927G End Treatments

There are various end treatments for TPCBC, including physical connection to an existing barrier, burying in a backslope, protecting by crash cushions, burying in a berm, or using a tapered or ramped concrete end section. Ends of barriers must be adequately treated using one of the prescribed systems.

2-927H Component Inspection for TPCBC

The following components should be inspected regularly.

- **Connection Rods.** Inspect for missing or misaligned rods. Ensure that the rods are not damaged. For older installations, ensure that the cotter pins are installed through the lower end of the connection rod. Figure 2-9.4 shows a TPCBC connection assembly with a threaded connection rod.

- **Connection Loops.** Inspect all connection loops at the end of TPCBC for breaks, cracks, and excessive deformation that prevents proper connection to the adjacent TPCBC section. Replace sections that have loop deficiencies. All barriers must be connected.

- **Concrete.** Inspect concrete for serious damage. Replace damaged sections as needed.

2-927I Payment for TPCBC

There are two possible pay items for TPCBC used for construction traffic control:

- Temporary Precast Concrete Barrier Curb, and
- Relocated Temporary Precast Concrete Barrier Curb.

The original installation and final removal of barriers from the work site do not qualify for payment under Relocated Temporary Precast Concrete Barrier Curb. Payment for the work is under Temporary Precast Concrete Barrier Curb.

Payment under Relocated Temporary Precast Concrete Barrier Curb applies to the work listed below.

- Each barrier relocation at the work site for stage construction or maintenance and protection of traffic.
- Each removal of the barrier from the work site to a temporary storage area.
- Each retrieval of the barrier from a temporary storage area and installation at a project work site. The work site may be anywhere on the project (or projects for multiple contract projects).

There is no payment for costs associated with the temporary storage of barrier, such as for rental of storage space, rental or lease of concrete barrier, cost of security or insurance, etc.
2-928 Impact Attenuation Modules (Sand Barrels)

Sand barrels with DE-9 delineators are used for the following:

- to protect blunt ends of temporary PCBC,
- to protect arrow boards and changeable message signs adjacent to travelways, and
- to protect incomplete portions of work.

If sand-barrel arrays are not proposed on the contract drawings but the field conditions warrant the installation, the item will be initiated immediately. Additional barrels can be authorized by the Chief Inspector. There must be no blunt ends at any time in the work zone. Type DE-9 delineators must be installed on the lead sand barrel in any sand-barrel array.

If an unprotected PCBC installation, arrow board, or changeable message sign is within 30 ft. (10 m) of the travelway, a sand-barrel array is required at the blunt or exposed end. The location of the blunt end (expressway, highway or secondary road) and the speed limit determine the number and size of the sand barrels. Guidelines for sand-barrel installations are available in the District. The guidelines use speed limits and lateral offsets for proper placement.

It may be necessary to install a sand-barrel array at a completed bridge parapet or median barrier curb during stage construction until the proposed metal beam rail systems can be completed.
2-929 42 Inch Traffic Cones

42 inch (one-meter) traffic cones are used for the following:

- within any lane closure on an expressway if the pattern extends for a long distance, and
- any nighttime lane closure on any State road.

Figure 2-9.5 shows a traffic cone.

Traffic cones, 42 inches (1 meter) in height should be reflectorized in a manner similar to the current traffic drums. The standard spacing can and should be adjusted to adapt to field conditions. Conditions that may warrant a decrease in the spacing length are poor sight line or localized work areas within a lane closure. It always is best to review a sign pattern and make the proper adjustments to cone spacing for maximum work zone safety for both traffic and personnel on site.

2-930 Traffic Drums

Traffic drums are used for the following:

- to channelize or delineate traffic flow through shorter patterns, generally on secondary roads, and
- to delineate a specific hazard or work zone.

Figure 2-9.6 shows a traffic drum.

Drums are used in conjunction with advance warning signs and intermediate arrow signs in a lane or partial road closure. They should not be weighed down with materials that make them hazardous to motorists, pedestrians, or workers. Drums should be weighted at the base, not on the top. All drums should have drain holes to avoid water accumulation and freezing. The reflective sheeting must be kept clean, which is a responsibility of the contractor. Any drums that no longer perform as specified are to be replaced by the contractor at no cost to the State.

Barricade warning lights should not be used on plastic reflectorized drums. Type C steady-burn lights usually are ineffective and overpowered by the highly reflective sheeting required on plastic traffic drums. The District may review with the Office of Traffic special instances in which warning lights may be desirable.
2-931 Pavement Markings

The Chief Inspector should review the striping plans, any special requirements, and standard details prior to the beginning of work. He should compare field conditions with the striping and marking plans for conflicts and to ensure the compatibility with existing traffic patterns.

2-931A Painted Markings

Painted pavement markings are used as temporary markings on temporary pavement or on existing pavement that will be resurfaced or removed. The markings should be installed in accordance with traffic plans and specifications.

2-931B Temporary Plastic Markings

Temporary plastic pavement tape is used on permanent pavement when the interim markings do not coincide with the final markings or in temporary transition areas. It should not be used if painted pavement markings are acceptable. For example, paint is used for temporary markings when resurfacing limited access highway—tape is unacceptable. Preformed black line-mask tape is used temporarily to cover existing markings that are to remain after construction.

Temporary plastic pavement markings should be installed in accordance with traffic plans, specifications and current manufacturers' recommendations. They must be installed on a dry, clean pavement and within the correct temperature ranges.

Prior to the placement of plastic tape, the Inspector should identify the product that the contractor will use and verify that it is acceptable. The product can be identified by looking at the markings on the tape box or on the back of the tape. The Inspector should notify the contractor of any tape that becomes displaced or is not effective. The contractor must replace it within 24 hours.

2-931C Marking Removal

Removal should be in accordance with current standards and should not damage the existing pavement. Grinding is not permitted.

2-932 Portable Impact Attenuation Systems (Crash Trucks)

2-932A Use

The contractor indicates on the bid proposal the type of system proposed for use. The contractor must use the system as directed by the Inspector. The system is used instead of the item Trafficperson. The general guidelines for use are below.

- Only one system is authorized per critical sign pattern, such as sign patterns for left-lane closures, closures without shoulders, high-volume areas, and interchanges.
- Shoulder closures and right-lane closures generally can be implemented without use of an impact attenuation system.
Crash trucks should be used in the following situations:

- left-lane closures with minimal median widths for setting up advance warning signs and staging;
- lane and shoulder closures on turning roadways or ramps or on mainlines if sight distances are minimal; and
- closures where extensive turning movements or traffic congestion occurs.

The Inspector reviews the need for a portable impact attenuation system with the contractor. The Inspector directs the contractor to place the system in advance of the work zone where it is most visible to approaching traffic and effective in protecting workers.

2-932B Inspection

The Inspector makes a visual inspection of the system to ensure that it meets the requirements of the specifications. If the system is not new, the contractor must document or demonstrate that the system conforms to the requirements. A Material Certificate is required for each new system.

The system is mounted on a truck. The Inspector should inspect the truck for the following:

- the correct gross vehicle weight for the type of attenuation system,
- two flashing strobe lights mounted high enough to be fully visible from the rear, and
- an internally illuminated flashing arrow.

The flashing arrow must be a Type C arrow panel with a minimum size of 48 in. × 96 in. (1.2 m × 2.4 m), at least 15 panel lamps, mounted at least 7 ft. (2 m) above the pavement. It must have a minimum lighting distance of 1 mi. (1.6 km).

The attenuation system must have a DE-9 delineator attached to the front module with bolts or vandal-resistant hardware.

The Department pays for the system at the contract unit price per hour of use.

2-933 Trafficperson

2-933A General

Current contracts provide for the services of uniformed trafficperson as a contract item at the locations and for the periods ordered by the Engineer. Trafficperson are used for the control and direction of vehicular traffic and pedestrians. There are three types of Trafficperson.

- **Uniformed Flagger.** These trafficperson are clothed or equipped (including headgear) so as to be readily distinguishable as trafficperson, per the specification requirements. With the exception of emergency situations, these flaggers are to have successfully completed a flagger training program approved by the Department.

- **Town or City Police Officers.** These trafficperson are uniformed town or city police officers from the town or city police department in which the project is located. (If uniformed police officers are not available, a town constable may be used.)

- **State Police Officers.** These are uniformed, off-duty, sworn Connecticut State Police officers used to control traffic operations and promote increased safety to motorists on expressway construction sites. Services include the use of an official State Police vehicle and associated equipment.
Authorized trafficpersons normally render service within limits of the construction, within the right-of-way for the project, on detours stipulated in the contract, and on detours ordered by the Engineer. Trafficpersons are not authorized if they are furnished by the contractor beyond the period for which the Engineer deems necessary or at locations where traffic is unnecessarily restricted by the contractor's method of operation.

2-933B State Police Officers

State Police officers are the only type of trafficpersons that can be used on limited access highways.

- Only one State Police officer is authorized per critical sign pattern, such as sign patterns for left-lane closures, lane closures without shoulders, high volume areas, and interchanges.

- Shoulder closures and right-lane closures generally can be implemented without State Police presence. Likewise, in areas with moderate traffic and wide, unobstructed medians, left-lane closures can be implemented without trooper presence during daylight hours. General exceptions to this policy are:
 - Left-lane closures with minimal median width for setting up advance signs and staging.
 - Lane and shoulder closures on turning roadways, turning ramps, or mainlines where sight distances are minimal.
 - Closures where extensive turning movements or traffic congestion occurs.

- Any lane closures at night generally require a portable impact attenuation system and a State Police officer to install the sign pattern.

- If there is doubt that a trafficperson is required, the District Office should be contacted.

After the sign pattern is in place, the State Police officer should be stationed at the beginning of the pattern. If traffic starts backing up, the officer should move to the beginning of the waiting line of vehicles or at the work site, whichever location is more effective. The trafficperson should be out of the cruiser and assisting to control traffic.

2-933C Town or City Police Officers or Uniformed Trafficpersons

Town or city police officers and uniformed trafficpersons are restricted to roads without limited access.

2-933D Prior Approval

Project personnel will inform the contractor once a week in writing of the operations requiring trafficpersons. The District maintains copies of the communications. The State does not pay for trafficpersons deployed by contractors for their own convenience.

2-933E Work Control

Meetings should be held with the contractor to review the contract requirements and procedures for trafficperson services. All trafficpersons employed on the project must be authorized by the Chief Inspector or Project Engineer.

Trafficpersons are guided only by directions from the Chief Inspector, or a designated assistant, and shall not accept orders from the contractor or contractor's representative while assigned to traffic duty, even though they may be
furnished by the contractor. Trafficpersons shall be instructed in the manner of directing traffic and shall never leave the posts to which they are assigned without arranging for relief for the full periods of their absences.

A meeting is held at the beginning of each day or shift to coordinate trafficperson services. The contractor, the Inspector, and the trafficpersons who are on duty that day attend meeting. The contractor's operations and the allowable traffic restrictions in the contract are reviewed. The Inspector advises the trafficpersons of the times of allowable lane closures and the specifications stating that the contractor will provide the services as the Engineer may order.

If at the daily or shift meeting, or during the course of the work, the trafficpersons feel there is a hazard to traffic, they should inform the Inspector immediately so adjustments can be made. The Inspector reviews the problem, and with the District's approval, adjusts the restrictions in the contract for the operation. If the contractor is working on a ramp or turning roadway, the review should be done a minimum of two days in advance. If, in the opinion of the trafficpersons, the work can not be done safely without closing the ramp or turning roadway, the Inspector notifies the District so that the allowable hours for closure can be established. It is not acceptable for the trafficpersons to shut down ramps, etc., for the contractor's convenience. All changes must be approved by the District prior to implementation.

2-933F Operations

Trafficpersons who are ordered by the Engineer for a particular operation that is deferred because of inclement weather or other unforeseen circumstances are retained at their duty station for the minimum service period.

Chief Inspectors see that trafficpersons are equipped and instructed in accordance with the following regulations:

- Stop-slow paddles are be used instead of flags. The standard procedure for using paddles to direct traffic is in Figure 2-9.24.

- Only persons who are physically and mentally qualified and who understand their duties and realize their responsibility should be used as a trafficperson. They must be even tempered, decisive, and reliable.

- Trafficpersons should not be allowed to mingle with the workers while on duty or leave their posts without permission.

- The trafficpersons must stand just outside the approaching traffic lane, facing traffic, should be positioned so that the paddle is visible in the traffic lane for a distance of at least 500 ft. (150 m), and should be near enough to the work area so that there can be no doubt as to the purpose. The trafficpersons should not jeopardize personal safety and must be ready to stand clear and warn the workers in case an approaching vehicle does not stop.

- Trafficpersons should always be courteous, but firm, giving explanations about the hazards or delays in a few words. They must not lose their tempers or argue with the traveling public.

2-933G Documentation

See Volume 1, Chapter 20 for guidance on payment protocols for the Trafficperson item. State Police are to be paid by force account as outlined in Section 1-2005. All trafficpersons rendering services authorized or not, should be recorded in the project records. The following information should be documented:

- date,
- name,
- badge number,
- ordered by the Engineer or contractor,
- reason for services,
- duty station,
- function performed,
- arrival and departure times, and
- hours worked.

Reasons for unusual events should be recorded as well.

- If a traffic person works through the lunch break, record the reason.
- If a traffic person works outside the contractor's normal working hours, record the reason.
- If, during a day, a traffic person works on another project before working on your project, record the project from which the traffic person was transferred.

At least once a month, Project Engineers will check each project under their jurisdiction to verify that records are kept properly.

2-933H Payment

On each project, one inspector is designated to ensure proper payment of the Traffic person item. The inspector reviews the Daily Reports for accuracy.

Payment is based on the documentation kept by project personnel. The contractor's log is not used. Differences between the Inspector's Reports and the monthly statement or receipted bill for traffic person services must be investigated fully. Only Traffic person services approved by the Engineer will be measured by the Engineer.

Refer to Volume 1, Chapter 20 for further guidance.
Figure 2-9.7 Characteristics of Operating Guide Rail

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>Three-Cable Guide Rail (I-Beam Posts)</th>
<th>Metal Beam Rail (Type R-B)</th>
<th>Metal Beam Rail 200 x 160 Box Beam</th>
<th>Concrete Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFORMATION*</td>
<td>3.66 m</td>
<td>1.25 m</td>
<td>1.25 m</td>
<td>0</td>
</tr>
<tr>
<td>POST SPACING</td>
<td>4900 mm</td>
<td>1905 mm</td>
<td>1830 mm</td>
<td>NA</td>
</tr>
<tr>
<td>TYPICAL POST</td>
<td>S75 x 8</td>
<td>W150 x 13</td>
<td>S75 x 8</td>
<td>NA</td>
</tr>
<tr>
<td>BEAM</td>
<td>Three 19 mm dia. Steel Cables</td>
<td>Steel "W" Section</td>
<td>TS203 x 152 x 6.4 Steel Tube</td>
<td>NA</td>
</tr>
<tr>
<td>OFFSET BRACKETS</td>
<td>None</td>
<td>W150 x 13</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>MOUNTINGS</td>
<td>8 mm dia. Steel Hook Bolt</td>
<td>19 mm dia. Steel Bolt</td>
<td>Steel Paddles</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Based on an impact of 97 km/h and an impact angle of 25°.

Figure 2-9.8 Characteristics of Median Barriers

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>Metal Beam Rail (Type MD-B)</th>
<th>Concrete Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFORMATION</td>
<td>1.26 m</td>
<td>0</td>
</tr>
<tr>
<td>POST SPACING</td>
<td>1905 mm</td>
<td></td>
</tr>
<tr>
<td>POST</td>
<td>W150 x 13</td>
<td></td>
</tr>
<tr>
<td>BEAM</td>
<td>Two Steel "W" Sections</td>
<td></td>
</tr>
<tr>
<td>OFFSET BRACKETS</td>
<td>Two W150 x 13</td>
<td></td>
</tr>
<tr>
<td>MOUNTINGS</td>
<td>19 mm dia. Steel bolts</td>
<td></td>
</tr>
</tbody>
</table>
REQUEST FOR CHANGE TO CONTRACT TRAFFIC SPECIFICATIONS

Contract Number: ____________________ Project Engineer: ____________________

Contractor: ________________________ Field Office Number: ____________________

Contact Person: _____________________ Route Number: ________________________

Lane configuration, including shoulders:

Existing (available): __

Proposed: __

The following are attached:

1) Location (including direction, lanes, ramps and exits, if applicable) ________

2) Dates, times, duration of change ________

3) Type of work to be done ________

4) Reason for the change ________

5) Description of detour (if applicable) ________

6) Traffic counts with comments ________

7) Map showing detour (if applicable) ________

8) Current specification, highlighting proposed changes ________

9) Previous press release with similar request ________

10) Written town approval (if applicable) ________

11) Should credit apply? ________

OOC Comment Section:
2-934 Traffic Control During Construction Operations

2-934A General

The following guidelines will assist field personnel in determining when and what type of traffic control patterns to use for various situations. These guidelines provide for the safe and efficient movement of traffic through work zones and enhance the safety of work forces in the work area.

2-934B Traffic Control Patterns

Traffic control patterns shall be used when a work operation requires that all or part of any vehicle or work area protrudes onto any part of a travel lane or shoulder. For each situation, the installation of traffic control devices shall be based on the following:

- Speed and volume of traffic
- Duration of operation
- Exposure to hazards

Traffic control patterns shall be uniform, neat and orderly so as to command respect from the motorist.

In the case of a horizontal or vertical sight restriction in advance of the work area, the traffic control pattern shall be extended to provide adequate sight distance for approaching traffic.

If a lane reduction taper is required to shift traffic, the entire length of the taper should be installed on a tangent section of roadway so that the entire taper area can be seen by the motorist.

Any existing signs that are in conflict with the traffic control patterns shall be removed, covered, or turned so that they are not readable by oncoming traffic.

When installing a traffic control pattern, a Buffer Area should be provided and this area shall be free of equipment, workers, materials and parked vehicles.

Typical traffic control plans 20 through 25 (Figures 2-9.31 through 2-9.36) may be used for moving operations such as line striping, pot hole patching, mowing, or sweeping when it is necessary for equipment to occupy a travel lane.

Traffic control patterns will not be required when vehicles are on an emergency patrol type activity or when a short duration stop is made and the equipment can be contained within the shoulder. Flashing lights and appropriate trafficperson shall be used when required.

Although each situation must be dealt with individually, conformity with the typical traffic control plans contained herein is required. In a situation not adequately covered by the typical traffic control plans, the Contractor must contact the Engineer for assistance prior to setting up a traffic control pattern.

2-934C Placement of Signs

Signs must be placed in such a position to allow motorists the opportunity to reduce their speed prior to the work area. Signs shall be installed on the same side of the roadway as the work area. On multi-lane divided highways,
Advance warning signs may be installed on both sides of the highway. On directional roadways (on-ramps, off-ramps, one-way roads), where the sight distance to signs is restricted, these signs should be installed on both sides of the roadway.

2-934D Allowable Adjustment of Signs and Devices Shown on the Traffic Control Plans

The traffic control plans contained herein show the location and spacing of signs and devices under ideal conditions. Signs and devices should be installed as shown on these plans whenever possible.

The proper application of the traffic control plans and installation of traffic control devices depends on actual field conditions.

Adjustments to the traffic control plans shall be made only at the direction of the Engineer to improve the visibility of the signs and devices and to better control traffic operations. Adjustments to the traffic control plans shall be based on safety of work forces and motorists, abutting property requirements, driveways, side roads, and the vertical and horizontal curvature of the roadway.

The Engineer may require that the traffic control pattern be located significantly in advance of the work area to provide better sight line to the signing and safer traffic operations through the work zone.

Table I indicates the minimum taper length required for a lane closure based on the posted speed limit of the roadway. These taper lengths shall only be used when the recommended taper lengths shown on the traffic control plans cannot be achieved.

<table>
<thead>
<tr>
<th>POSTED SPEED LIMIT MILES PER HOUR</th>
<th>MINIMUM TAPER LENGTH IN FEET FOR A SINGLE LANE CLOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 OR LESS</td>
<td>180</td>
</tr>
<tr>
<td>35</td>
<td>250</td>
</tr>
<tr>
<td>40</td>
<td>320</td>
</tr>
<tr>
<td>45</td>
<td>540</td>
</tr>
<tr>
<td>50</td>
<td>600</td>
</tr>
<tr>
<td>55</td>
<td>660</td>
</tr>
<tr>
<td>65</td>
<td>780</td>
</tr>
</tbody>
</table>

2-934E Work Zone Safety Meetings

Prior to the commencement of work, a work zone safety meeting will be conducted with representatives of DOT Construction, Connecticut State Police (Local Barracks), Municipal Police, the Contractor (Project Superintendent) and the Traffic Control Subcontractor (if different than the prime Contractor) to review the contract requirements and discuss the Department’s procedures. Other work zone safety meetings during the course of the project should be scheduled as needed.

A Work Zone Safety Meeting Agenda, (see Section 2-934N), shall be developed and used at the meeting to outline the anticipated traffic control issues during the construction of this project. Any issues that can’t be resolved at these meetings will be brought to the attention of the District Engineer and the Office of Construction.
2-934F Installing and Removing Traffic Control Patterns

Lane Closures shall be installed beginning with the advanced warning signs and proceeding forward toward the work area.

Lane Closures shall be removed in the reverse order, beginning at the work area, or end of the traffic control pattern, and proceeding back toward the advanced warning signs.

Stopping traffic may be allowed:

- As per the contract for such activities as blasting, steel erection, etc.
- During paving, milling operations, etc. where, in the middle of the operation, it is necessary to flip the pattern to complete the operation on the other half of the roadway and traffic should not travel across the longitudinal joint or difference in roadway elevation.
- To move slow moving equipment across live traffic lanes into the work area.

Under certain situations when the safety of the traveling public and/or that of the workers may be compromised due to conditions such as traffic volume, speed, roadside obstructions, or sight line deficiencies, as determined by the Engineer and/or State Police, traffic may be briefly impeded while installing and/or removing the advanced warning signs and the first ten traffic cones/drums only. Appropriate measures shall be taken to safely slow traffic. If required, State Police may use traffic slowing techniques, including the use of Truck Mounted Impact Attenuators (TMAs) as appropriate, for a minimum of one mile in advance of the pattern starting point. Once the advanced warning signs and the first ten traffic cones/drums are installed and/or removed, the two TMAs and sign crew should continue to install or remove the pattern as described in Section 2-934B and traffic shall be allowed to resume their normal travel.

The Contractor must adhere to using the proper signs, placing the signs correctly, and ensuring the proper spacing of signs.

Additional devices are required on entrance ramps, exit ramps, and intersecting roads to warn and/or move traffic into the proper travel path prior to merging/exiting with/from the main line traffic. This shall be completed before installing the mainline pattern past the ramp or intersecting roadway.

Prior to installing a pattern, any conflicting existing signs shall be covered with an opaque material. Once the pattern is removed, the existing signs shall be uncovered.

On limited access roadways, workers are prohibited from crossing the travel lanes to install and remove signs or other devices on the opposite side of the roadway. Any signs or devices on the opposite side of the roadway shall be installed and removed separately.

2-934G Use of High Mounted Internally Illuminated Flashing Arrow

On limited access roadways, one Flashing Arrow shall be used for each lane that is closed. The Flashing Arrow shall be installed concurrently with the installation of the traffic control pattern and its placement shall be as shown on the traffic control plan. For multiple lane closures, one Flashing Arrow is required for each lane closed. If conditions warrant, additional Flashing Arrows should be employed (i.e.: curves, major ramps, etc.).
On non-limited access roadways, the use of a Flashing Arrow for lane closures is optional. The roadway geometry, sight line distance, and traffic volume should be considered in the decision to use the Flashing Arrow.

The Flashing Arrow shall not be used on two lane, two-way roadways for temporary alternating one-way traffic operations.

The Flashing Arrow board display shall be in the “arrow” mode for lane closure tapers and in the “caution” mode (four corners) for shoulder work, blocking the shoulder, or roadside work near the shoulder. The Flashing Arrow shall be in the “caution” mode when it is positioned in the closed lane.

The Flashing Arrow shall not be used on a multi-lane roadway to laterally shift all lanes of traffic, because unnecessary lane changing may result.

If the required number of Flashing Arrows is not available, the traffic control pattern shall not be installed.

2-934H Use of Truck Mounted Impact Attenuator Vehicles (TMAs)

For lane closures on limited access roadways, a minimum of two TMAs shall be used to install and remove traffic control patterns. If two TMAs are not available, the pattern shall not be installed.

On non-limited access roadways, the use of TMAs to install and remove patterns closing a lane(s) is optional. The roadway geometry, sight line distance, and traffic volume should be considered in the decision to utilize the TMAs.

Generally, to establish the advance and transition signing, one TMA shall be placed on the shoulder and the second TMA shall be approximately 1,000 feet ahead blocking the lane. The flashing arrow board mounted on the TMA should be in the “flashing arrow” mode when taking the lane. The sign truck and workers should be immediately ahead of the second TMA. In no case shall the TMA be used as the sign truck or a work truck. Once the transition is in place, both TMAs shall travel in the closed lane until all Changeable Message Signs, signs, Flashing Arrows, and cones/drumms are installed. The flashing arrow board mounted on the TMA should be in the “caution” mode when traveling in the closed lane.

A TMA shall be placed prior to the first work area in the pattern. If there are multiple work areas within the same pattern, then additional TMAs may be positioned at each additional work area as needed. The flashing arrow board mounted on the TMA should be in the “caution” mode when in the closed lane.

TMAs shall be positioned a sufficient distance prior to the workers or equipment being protected to allow for appropriate vehicle roll-ahead in the event that the TMA is hit, but not so far that an errant vehicle could travel around the TMA and into the work area. For additional placement and use details, refer to the specification entitled “Type ‘D’ Portable Impact Attenuation System”. Some operations, such as paving and concrete repairs, do not allow for placement of the TMA(s) within the specified distances. In these situations, the TMA(s) should be placed at the beginning of the work area and shall be advanced as the paving or concrete operations proceed.

TMAs should be paid in accordance with how the unit is utilized. When it is used as a TMA and is in the proper location as specified, then it should be paid at the specified hourly rate for “Type ‘D’ Portable Impact Attenuation System”. When the TMA is used as a Flashing Arrow, it should be paid at the daily rate for “High Mounted Internally Illuminated Flashing Arrow”. If a TMA is used to install and remove a pattern and then is used as a Flashing Arrow, the unit should be paid as a “Type ‘D’ Portable Impact Attenuation System” for the hours used to install and remove the pattern, typically 2 hours (1 hour to install and 1 hour to remove), and is also paid for the day as a “High Mounted Internally Illuminated Flashing Arrow”.

If the required number of TMAs is not available, the pattern shall not be installed.
2-934I Use of State Police Officers

State Police may be utilized only on limited access highways and secondary roadways under their primary jurisdiction. At least one Officer should be used per critical sign pattern. Shoulder closures and right lane closures can generally be implemented without the presence of a State Police Officer. Likewise in areas with moderate traffic and wide, unobstructed medians, left lane closures can be implemented without State Police presence. Certain situations may require State Police presence, if one is available, even though the general guidelines above indicate otherwise. Examples of this include: nighttime lane closures; left lane closures with minimal width for setting up advance signs and staging; lane and shoulder closures on turning roadways/ramps or mainline where sight distance is minimal; and closures where extensive turning movements or traffic congestion regularly occur.

Once the pattern is in place, the State Police Officer should be positioned in a nonhazardous location at the beginning of the pattern or at one of the work areas not protected by a TMA. If traffic backs up beyond the beginning of the pattern, then the State Police Officer should be repositioned prior to the backup to give warning to the oncoming motorists. Where State Police Officer and TMA are in close proximity to each other, the TMA should be placed to protect the State Police Officer’s vehicle from oncoming traffic.

Other functions of the State Police Officer(s) shall include:

- *Assisting entering/exiting construction vehicles within the work area.
- *Enhancing worker visibility/safety for workers in close proximity to the open travel lane(s).
- Speed control of traffic within the work area.
- Enforcement of speed and other motor vehicle laws within the work area.

Typically, the State Police Officer should be out of the vehicle for the functions marked with an asterisk (*).

2-934J Use of (Remote Controlled) Changeable Message Signs

For lane closures on limited access roadways, one Changeable Message Sign shall be used in advance of the traffic control pattern. Prior to installing the pattern, the Changeable Message Sign shall be installed and in operation, displaying the appropriate lane closure information (i.e.: Left Lane Closed - Merge Right). The Changeable Message Sign shall be positioned ½ - 1 mile ahead of the lane closure taper. If the nearest Exit ramp is greater than the specified ½ - 1 mile distance, than an additional Changeable Message Sign shall be positioned a sufficient distance ahead of the Exit ramp to alert motorists to the work and therefore offer them an opportunity to take the exit.

On non-limited access roadways, the use of Changeable Message Signs for lane closures is optional. The roadway geometry, sight line distance, and traffic volume should be considered in the decision to use the Changeable Message Sign.

The advance Changeable Message Sign is typically placed off the right shoulder, 5 feet from the edge of pavement. In areas where the Changeable Message Sign cannot be placed beyond the edge of pavement, it may be placed on the paved shoulder with a minimum of five (5) traffic drums placed in a taper in front of it to delineate its position. The advance Changeable Message Sign shall be adequately protected if it is used for a continuous duration of 36 hours or more.
When the Changeable Message Signs are no longer required, they should be removed from the clear zone and have the display screen cleared and turned 90° away from the roadway.

The Changeable Message Sign generally should not be used for generic messages (ex: Road Work Ahead, Bump Ahead, Gravel Road, etc.).

The Changeable Message Sign should be used for specific situations that need to command the motorist’s attention which cannot be conveyed with standard construction signs (Examples include: Exit 34 Closed Sat/Sun - Use Exit 35, All Lanes Closed - Use Shoulder, Workers on Road - Slow Down).

Messages that need to be displayed for long periods of time, such as during stage construction, should be displayed with construction signs. For special signs, please coordinate with the Office of Construction and the Division of Traffic Engineering for the proper layout/dimensions required.

Section 2-934O contains the messages that are allowed on the Changeable Message Sign. For any other message(s), approval must be received from the Office of Construction prior to their use. No more than two (2) displays shall be used within any message cycle.

If the required number of Changeable Message Signs is not available, the pattern shall not be installed.

2-934K Use of (Remote Control) Changeable Message Signs With Radar

(Remote Control) Changeable Message Signs with Radar shall be used when specified, or as directed by the Engineer.

The typical placement of a (Remote Control) Changeable Message Sign with Radar is in the work zone portion of the traffic control pattern.

The typical usage of the (Remote Control) Changeable Message Sign with Radar is to display a message when a preset speed is exceeded. The sign will blank when no vehicles are present.

The preset speed for activating the message should be set 5-10 MPH above the posted, or desired, speed.

Section 2-934O contains the messages that are allowed on the (Remote Controlled) Changeable Message Sign with Radar. For any other message(s), approval must be received from the Office of Construction prior to their use. No more than two (2) displays shall be used within any message cycle.

2-934L Use of Traffic Drums and Traffic Cones

Traffic drums shall be used for taper channelization on limited-access roadways, ramps, and turning roadways and to delineate raised catch basins and other hazards.

Traffic drums shall be used in place of traffic cones in traffic control patterns that are in effect for more than a 72-hour duration.

Traffic Cones less than 42 inches in height shall not be used on limited-access roadways or on non-limited access roadways with a posted speed limit of 45 mph and above.

Typical spacing of traffic drums and/or cones shown on the Traffic Control Plans in the Contract are maximum...
spacings and may be reduced to meet actual field conditions as required.

2-934M General Requirements for Traffic Control

If the required minimum number of signs and equipment (i.e. one High Mounted Internally Illuminated Flashing Arrow for each lane closed, two TMAs, Changeable Message Sign, etc.) are not available, the traffic control pattern shall not be installed.

The Contractor shall have back-up equipment (TMAs, High Mounted Internally Illuminated Flashing Arrow, Changeable Message Sign, construction signs, cones/drums, etc.) available at all times in case of mechanical failures, etc. The only exception to this is in the case of sudden equipment breakdowns in which the pattern may be installed but the Contractor must provide replacement equipment within 24 hours.

Failure of the Contractor to have the required minimum number of signs and equipment, which results in their not being installed, shall not be a reason for a time extension.

In cases of legitimate differences of opinion between the Contractor and the Inspection staff, the Inspection staff shall err on the side of safety. The matter shall be brought to the District Office for resolution immediately or, in the case of work after regular business hours, on the next business day.

2-934N Work Zone Safety Meeting Agenda

1) Review Project scope of work and time.

2) Review Article 1.08, Prosecution and Progress of the Special Provisions.

3) Review Article 9.70, Trafficperson of the Specifications.

4) Review Article 9.71, Maintenance and Protection of Traffic of the Special Provisions, including “Work Zone Safety Procedures”.

5) Review Contractor’s schedule and method of operations.

6) Review areas of special concern: ramps, turning roadways, medians, lane drops, etc.

7) Open discussion of work zone questions and issues.

8) Discussion of review and approval process for changes in contract requirements as they relate to work zone areas.
<table>
<thead>
<tr>
<th>Message No.</th>
<th>Frame 1</th>
<th>Frame 2</th>
<th>Message No.</th>
<th>Frame 1</th>
<th>Frame 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LEFT LANE CLOSED</td>
<td>MERGE RIGHT</td>
<td>9</td>
<td>LANES CLOSED AHEAD</td>
<td>REDUCE SPEED</td>
</tr>
<tr>
<td>2</td>
<td>2 LEFT LANES CLOSED</td>
<td>MERGE RIGHT</td>
<td>10</td>
<td>LANES CLOSED AHEAD</td>
<td>USE CAUTION</td>
</tr>
<tr>
<td>3</td>
<td>LEFT LANE CLOSED</td>
<td>REDUCE SPEED</td>
<td>11</td>
<td>WORKERS ON ROAD</td>
<td>REDUCE SPEED</td>
</tr>
<tr>
<td>4</td>
<td>2 LEFT LANES CLOSED</td>
<td>REDUCE SPEED</td>
<td>12</td>
<td>WORKERS ON ROAD</td>
<td>SLOW DOWN</td>
</tr>
<tr>
<td>5</td>
<td>RIGHT LANE CLOSED</td>
<td>MERGE LEFT</td>
<td>13</td>
<td>EXIT XX CLOSED</td>
<td>USE EXIT YY</td>
</tr>
<tr>
<td>6</td>
<td>2 RIGHT LANES CLOSED</td>
<td>MERGE LEFT</td>
<td>14</td>
<td>EXIT XX CLOSED USE YY</td>
<td>FOLLOW DETOUR</td>
</tr>
<tr>
<td>7</td>
<td>RIGHT LANE CLOSED</td>
<td>REDUCE SPEED</td>
<td>15</td>
<td>2 LANES SHIFT AHEAD</td>
<td>USE CAUTION</td>
</tr>
<tr>
<td>8</td>
<td>2 RIGHT LANES CLOSED</td>
<td>REDUCE SPEED</td>
<td>16</td>
<td>3 LANES SHIFT AHEAD</td>
<td>USE CAUTION</td>
</tr>
</tbody>
</table>
Figure 2-9.10 Traffic Control Plan
Series 16 Signs

SERIES 16 SIGNS

<table>
<thead>
<tr>
<th>Style</th>
<th>Code</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2</td>
<td>16-E</td>
<td>44" x 50"</td>
</tr>
<tr>
<td>2-2</td>
<td>16-H</td>
<td>50" x 24"</td>
</tr>
</tbody>
</table>

The 16-S sign shall be used on all projects that require sidewalk reconstruction or restrict pedestrian travel on an existing sidewalk.

Series 16 signs shall be installed in advance of the traffic control patterns to allow motorists the opportunity to avoid a work zone. Series 16 signs shall be installed on any major intersecting roadways that approach the work zone. On limited-access highways, these signs shall be located in advance of the nearest upstream exit ramp and on any entrance ramps prior to or within the work zone limits.

The location of series 16 signs can be found elsewhere in the plans or installed as directed by the Engineer.

Signs 16-E and 16-H shall be post mounted.

Sign 16-H shall be used on all ramps, other state roadways, and major town/city roadways.

Sign 16-H shall be used on other town roadways.

REGULATORY SIGN "ROAD WORK AHEAD, FINES DOUBLED"

The regulatory sign "ROAD WORK AHEAD, FINES DOUBLED" shall be installed for all work zones that occur on any state highway in Connecticut when there are workers on the highway or when there is other than existing traffic operations.

The "ROAD WORK AHEAD, FINES DOUBLED" regulatory signs shall not be installed on town roads.

The "ROAD WORK AHEAD FINES DOUBLED" regulatory sign shall be placed after the series 16 sign and in advance of the "ROAD WORK AHEAD" sign.

"END ROAD WORK" SIGN

The last sign in the pattern must be the "END ROAD WORK" sign.
NOTES FOR TRAFFIC CONTROL PLANS

1. If a traffic stoppage occurs in advance of sign A, then an additional sign A shall be installed in advance of the stoppage.

2. Signs A, B, and C should be omitted when these signs have already been installed to designate a larger work zone than the work zone that is encompassed on this plan.

3. See Table #1 for adjustment of tapers if necessary.

4. A changeable message sign may be utilized one half to one mile in advance of the lane closure taper.

5. If this plan remains in continuous operation for more than 72 hours, then traffic drums shall be used in place of traffic cones.

6. Any legal speed limit signs within the limits of a roadway / lane closure area will be covered with an opaque material while the closure is in effect and uncovered when the roadway / lane closure is reopened to all lanes of traffic.

7. If this plan remains in continuous operation for more than 36 hours, then the existing conflicting pavement markings shall be eradicated or covered and temporary pavement markings that depict the proper travel paths shall be installed.

8. Distances between signs in the advance warning area may be reduced to 200' on low speed urban roads (speed limit < 40 MPH).

9. For lane closures one mile or longer, a "Reduce Speed to 45 MPH" sign shall be placed at the one mile point and at each mile thereafter.

10. If this plan is to remain in operation during the hours of darkness, install barricade warning lights – high intensity on all post-mounted diamond signs in the advance warning area.

11. A changeable message sign shall be installed one half to one mile in advance of the lane closure taper.
Figures 2-9.12 Traffic Control Plan 1
Work in Right Lane—Multilane Highway

* DENOTES OPTIONAL
● DENOTES TRAFFIC CONES OR TRAFFIC DRUMS
□ HIGH MOUNTED INTERNALLY ILLUMINATED FLASHING ARROW
★ DENOTES PORTABLE SIGN SUPPORT
● TRAFFIC DRUM

SEE NOTES 1, 2, 3, 5, 6, 7, 9, 10 & 11
Figure 2-9.13 Traffic Control Plan 2
Work in Right Two Lanes—Multilane Highway

WORK IN RIGHT TWO LANES - MULTILANE HIGHWAY

SIGN FACE
134 SQ. FT (MIN)

WORK AREA
TERMINATION AREA
ACTIVITY AREA
SUFFER AREA
LANE CLOSURE
MEDIAN
ADVANCE WARNING AREA

INSTALL EVERY 100' IN CLOSED LANE
INSTALL TRAFFIC CONES/DRUMS 60' SPACING

320' (55 mph SPEED LIMIT) OR
480' (65 mph SPEED LIMIT)

INSTALL 31 TRAFFIC DRUMS 60' SPACING
INSTALL 16 TRAFFIC DRUMS 90' SPACING

REDUCE SPEED TO 40 MPH
LANE ENDS MERGE LEFT

ROAD WORK AHEAD FINES DOUBLED
31-1908

FOOTNOTE
DEPARTMENT OF TRANSPORTATION
DEPARTMENT OF TRANSPORTATION
HIGHWAY OPERATIONS
CONSTRUCTION
TRAFFIC CONTROL PLAN
PLAN 2

Principal Engineer

Volume 2
ver. 2.2 (Jan 2011) Construction Traffic
Figure 2-9.14 Traffic Control Plan 3
Work in Left Lane—Multilane Highway

WORK IN LEFT LANE - MULTILANE HIGHWAY

SIGN FACE
118 SQ. FT (MIN.)

INSTALL every 1000' in closed lane
INSTALL TRAFFIC CONES/DRUMS
1000' (55 mph SPEED LIMIT)

LANCE CLOSE AREA

BUFFER AREA

ACTIVITY AREA

TERMINATION AREA

WORK AREA

LANE CLOSURE TAPER AREA

SHOULDER

SHOULDER

MIDIAN

MEDIAN

ADVANCE WARNING AREA

DENOTES PORTABLE SIGN SUPPORT

DENOTES TRAFFIC CONE OR TRAFFIC DRUM

HIGH MOUNTED INTERNALLY ILLUMINATED FLASHING ARROW

TRAFFIC DRUM

OPTIONAL

SEE NOTES 1, 2, 3, 5, 6, 7, 9, 10 & 11

REV'D 1-02

CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING & HIGHWAY OPERATIONS
DIVISION OF TRAFFIC ENGINEERING
CONSTRUCTION TRAFFIC CONTROL PLAN
PLAN 3

SCALE: "X"

SIGNED: JCP
PRINCIPAL ENGINEER

DATE: 12-02

SEE NOTES 1, 2, 3, 5, 6, 7, 9, 10 & 11

TRAFFIC CONE OR TRAFFIC DRUM

HIGH MOUNTED INTERNALLY ILLUMINATED FLASHING ARROW

TRAFFIC DRUM

OPTIONAL
Figure 2-9.15 Traffic Control Plan 4
Work in Left Two Lanes—Multilane Highway

WORK IN LEFT TWO LANES - MULTILANE HIGHWAY

SIGN FACE
154 SQ FT (MN)

INSTALL 10' IN CLOSED LANE
INSTALL TRAFFIC CONES/DRUMS 80' SPACING

-320' (55 mph SPEED LIMIT)
-480' (65 mph SPEED LIMIT)

INSTALL 31 TRAFFIC DRUMS @ 40' SPACING

LANE ENDS MERGE RIGHT

LEFT LANES CLOSED

REDUCE SPEED 10 45 MPH

ROAD WORK AHEAD

LEFT TWO LANES CLOSED AHEAD

ROAD WORK AHEAD

FINES DOUBLED

31-1906

REVD 102

CONSTRUCTION
DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING & HIGHWAY OPERATIONS
DIVISION OF TRAFFIC ENGINEERING

CONSTRUCTION PLAN
PLAN 4

TRAFFIC CONTROL PLAN

TRAFFIC DRUM

OPTIONAL

SEE NOTES 1, 2, 3, 5, 6, 7, 9, 10 & 11

DENOTES PORTABLE SIGN SUPPORT

DENOTES TRAFFIC CONE OR TRAFFIC DRUM

HIGH MOUNTED INTERNALLY ILLUMINATED FLASHING ARROW

J. Corey PRINCIPAL ENGINEER DATE 1-02

APPROVED
Figure 2-9.16 Traffic Control Plan 5
Work in Left and Center Lane—Multilane Highway (Utilizing Shoulder)

WORK IN LEFT AND CENTER LANE
MULTILANE HIGHWAY (UTILIZING SHOULDER)

SIGN FACE
252 SQ. FT (MIN)

TERMINATION AREA
WORK AREA
ACTIVITY AREA
BUFFER AREA
LANE CLOSURE TAPER AREA
MEDIAN
SHOULDER
SHOULDER

NOT REQUIRED IF PAVEMENT MARKINGS ARE CHANGED TO REFLECT THE NEW TRAVELPATH.

O DENOTES TRAFFIC CONE OR TRAFFIC DRUM
[HIGH MOUNTED INTERNALLY ILLUMINATED FLASHING ARROW

SEE NOTES 1, 2, 3, 5, 6, 7, 9, 10 & 11

DENOTES PORTABLE SIGN SUPPORT

OPTIONAL \ TRAFFIC DRUM

REV'D 1-02

CONSTRUCTION TRAFFIC
PLAN 5

SCALE 1" = 100'

APPROVED
PRINCIPAL ENGINEER
DATE 1-02

Volume 2
Construction Traffic ver 2.2 (Jan 2011)

2-9.45
Figure 2-9.17 Traffic Control Plan 6
Work in Shoulder Area—Multilane Highway

- \(\text{SIGN FACE} \)
- \(86 \text{ SQ. FT (MIN)} \)
- \(\text{WORK IN SHOULDER AREA - MULTILANE HIGHWAY} \)

- \(\text{INSTALL (N) SIGN EVERY 1000 FT WORK AREA} \)
- \(200' \text{ BUFFER AREA} \)
- \(200' \text{ INSTALL 8 TRAFFIC DRUMS @ 40' SPACING} \)

\(\text{STATIONARY OPERATION} \)
- \(\text{DENOTES TRAFFIC DRUM} \)
- \(\text{DENOTES TRAFFIC CONE OR TRAFFIC DRUM} \)
- \(\text{DENOTES PORTABLE SIGN SUPPORT} \)

\(\text{SEE NOTES 1, 2, 5 & 10} \)

\(\text{MOVING OPERATION} \)
- \(\text{REVD 1-02} \)
- \(1600' \text{ ROAD WORK AHEAD} \)
- \(3.5' \text{ FINES DOUBLED} \)

\(4' \text{ SHOULDER CLOSED AHEAD} \)

\(500' \text{ (MIN) 80-9957} \)

\(750' \text{ 80-9504} \)

\(500' \)

\(750' \)

\(80' \text{ TYP.} \)

\((D) \text{ END ROAD WORK} \)

\(80-9612 \)
Figure 2-9.18 Traffic Control Plan 7
Work in Ramp Gore Area

- TERMINATION AREA
- WORK AREA
- ADVANCE WARNING AREA
- WORK AREA

SIGN FACE
62 SQ. FT (MIN)

END ROAD WORK
80-9612

EXIT
51-647

ROAD WORK AHEAD
80-9604

DENOTES TRAFFIC CONE OR TRAFFIC DRUM
DENOTES PORTABLE SIGN SUPPORT
SEE NOTES 2 & 5

REVD 1-02

CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING & HIGHWAY OPERATIONS
DIVISION OF TRAFFIC ENGINEERING
CONSTRUCTION TRAFFIC CONTROL PLAN
PLAN 7

SCALE 0.375"/FT

APPROVED: J. Cory
PRINCIPAL ENGINEER
DATE: 4-02

Volume 2
Construction Traffic ver 2.2 (Jan 2011)
Figure 2-9.19 Traffic Control Plan 8
Typical Ramp Treatments for Mainline Lane Closure—Multilane Highway

Typical Ramp Treatments for Mainline Lane Closure - Multilane Highway

- **Taper 400' MIN.**
- **Acceleration Section 320' MIN**

ON - RAMP TREATMENT

- **500'**
- **40'**
- **80'**

OFF - RAMP TREATMENT

- **300'**
- **40'**
- **80'**

SIGN FACE

SQ. FT Varies

- **END ROAD WORK**
- **80-9612**

ROAD WORK AHEAD

- **80-9604**

RIGHT LANE CLOSED AHEAD

- **80-9648**

EXIT

- **51-9647**

NOTES: 1, 2, 5, 6, 7, 9, 10, 11

- **TRAFFIC DRUM**

- **DENOTES PORTABLE SIGN SUPPORT**

- **DENOTES TRAFFIC CONE OR TRAFFIC DRUM**

REV/01 02

CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING & HIGHWAY OPERATIONS
DIVISION OF TRAFFIC ENGINEERING

CONSTRUCTION TRAFFIC CONTROL PLAN PLAN 8

SCALE HERE

APPROVED

PRINCIPAL ENGINEER

DATE

2-9.48

ver. 2.2 (Jan 2011) Construction Traffic
Figure 2-9.20 Traffic Control Plan 9
Work on Turning Roadways/Ramps

WORK ON TURNING ROADWAYS/RAMPS

SIGN FACE
54 SQ FT (MIN)

WORK AREA

TERMINATION AREA

BUFFER AREA

SHOULDER LANE CLOSURE TAPER AREA

INSTALL 8 TRAFFIC DRUMS @ 10' SPACING

ADVANCE WARNING AREA

ONE LANE

TWO LANE

TRAFFIC LANE DRUM

DENOTES PORTABLE SIGN SUPPORT

DENOTES TRAFFIC CONE OR TRAFFIC DRUM

HIGH MOUNTED INTERNALLY ILLUMINATED FLASHING ARROW

SEE NOTES 1, 2, 3, 4, 5, 7 & 10 * OPTIONAL

REV'D 102

J. Corra

APPROVED

PRINCIPAL ENGINEER

SCALE HERE

CONNECTICUT
DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING & HIGHWAY OPERATIONS
DIVISION OF TRAFFIC ENGINEERING

CONSTRUCTION TRAFFIC CONTROL PLAN
PLAN 9

31-1006

ROAD WORK AHEAD
FINES DdUBLED
Figure 2-9.21 Traffic Control Plan 10
Work in Right Lane—Four-Lane Undivided Highway

WORK IN RIGHT LANE
4 LANE UNDIVIDED HIGHWAY

END ROAD WORK

WORK AREA

INSTALL CONES / DRUMS

SPEED LIMIT SPACING
< 40 MPH 40'
> 40 MPH 80'

BUFFER AREA

200'

TERMINATION AREA

300'

SHOULDER

SHOULDER

HIGH MOUNTED INTERNALLY ILLUMINATED FLASHING ARROW

CEMENT BLOCKS

DENOTES PORTABLE SIGN SUPPORT

* DENOTES OPTIONAL

O DENOTES TRAFFIC CONES OR TRAFFIC DRUMS

SCALE - 1/2" = 1'-0"

CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUR. OF ENGINEERING & HWY, OPERATIONS
DIVISION OF TRAFFIC ENGINEERING

CONSTRUCTION

TRAFFIC CONTROL PLAN

PLAN 10

APPROVED J. Corey DATE 1-02
PRINCIPAL ENGINEER
Figure 2-9.22 Traffic Control Plan 11
Work in Left Lane—Four-Lane Undivided Highway

NOTE:
PLACE THE FIRST TWO TRAFFIC CONES / DRUMS ON THE CENTERLINE.
ORDER TRAFFIC CONE OR TRAFFIC DRUM
MARKS TRAFFIC CONE OR TRAFFIC DRUM
DENOTES PORTABLE SIGN SUPPORT
SEE NOTES 1, 2, 3, 4, 5, 7, 8 & 10
Figure 2-9.23 Traffic Control Plan 12
Work in Both Lanes—Four-Lane Undivided Highway

- Work in Both Lanes
- Four Lane Undivided Highway
- Sign Face
 172 SQ. FT (MIN)
- Advance Warning Area
- Lane Closure Taper Area
- Buffer Area
- Work Area
- Shoulder
- Termination Area

- Rev. D 102
- Connecticut Department of Transportation
 Bureau of Engineering & Highway Operations
 Division of Traffic Engineering

- Construction Traffic Control Plan
 Plan 12

Scale: 1" = 500'

DENOTES PORTABLE SIGN SUPPORT
H. MOUNTED INTERNALLY ILLUMINATED FLASHING
C. DENOTES TRAFFIC CONE OR TRAFFIC DRUM

SEE NOTES 1, 2, 3, 4, 5, 7, 8 & 10

* OPTIONAL

Approved: J. Corey
Principal Engineer
Date: 2/02
Figure 2-9.24 Traffic Control Plan 13
Work in Travel Lane and Shoulder—Two-Lane Highway
Alternating One-Way Traffic Operations

WORK IN TRAVEL LANE AND SHOULDER
TWO LANE HIGHWAY
ALTERNATING ONE-WAY TRAFFIC OPERATIONS

SEE NOTES 1, 2, 5, 7, 8 & 10
WORK IN TRAVEL LANE AND SHOULDER
TWO LANE HIGHWAY
ALTERNATING ONE-WAY TRAFFIC OPERATIONS

HAND SIGNAL METHODS TO BE USED BY UNIFORMED FLAGGERS

THE FOLLOWING METHODS FROM SECTION 6E.04 FLAGGER PROCEDURES IN THE "MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES" SHALL BE USED BY UNIFORMED FLAGGERS WHEN DIRECTING TRAFFIC THROUGH A WORK AREA. THE STOP/SLOW SIGN PADDLE (SIGN NO. 80-9950) SHOWN ON THE TYPICAL DETAIL SHEET ENTITLED "SIGNS FOR CONSTRUCTION AND PERMIT OPERATIONS" SHALL BE USED.

A. TO STOP TRAFFIC.
TO STOP ROAD USERS, THE FLAGGER SHALL FACE ROAD USERS AND AIM THE STOP PADDLE FACE TOWARD ROAD USERS IN A STATIONARY POSITION WITH THE ARM EXTENDED HORIZONTALLY AWAY FROM THE BODY. THE FREE ARM SHALL BE HELD WITH THE PALM OF THE HAND ABOVE SHOULDER LEVEL TOWARD APPROACHING TRAFFIC.

B. TO DIRECT TRAFFIC TO PROCEED.
TO DIRECT STOPPED ROAD USERS TO PROCEED, THE FLAGGER SHALL FACE ROAD USERS WITH THE SLOW PADDLE FACE AIMED TOWARD ROAD USERS IN A STATIONARY POSITION WITH THE ARM EXTENDED HORIZONTALLY AWAY FROM THE BODY. THE FLAGGER SHALL NOTION WITH THE FREE HAND FOR ROAD USERS TO PROCEED.

C. TO ALERT OR SLOW TRAFFIC.
TO ALERT OR SLOW TRAFFIC, THE FLAGGER SHALL FACE ROAD USERS WITH THE SLOW PADDLE FACE AIMED TOWARD ROAD USERS IN A STATIONARY POSITION WITH THE ARM EXTENDED HORIZONTALLY AWAY FROM THE BODY. TO FURTHER ALERT OR SLOW TRAFFIC, THE FLAGGER HOLDING THE SLOW PADDLE FACE TOWARD ROAD USERS MAY MOTION UP AND DOWN WITH THE FREE HAND, PALM DOWN.

SEE NOTES 1, 2, 5, 7, 8 & 10
Figure 2-9.25 Traffic Control Plan 14
Work in Shoulder—Two-Lane Highway

WORK IN SHOULDER - TWO LANE HIGHWAY

<table>
<thead>
<tr>
<th>SPEED LIMIT</th>
<th>CONE / DRUM SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 40 MPH</td>
<td>40'</td>
</tr>
<tr>
<td>> 40 MPH</td>
<td>80'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED LIMIT</th>
<th>TAPER LENGTH</th>
<th>CONE / DRUM SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 40 MPH</td>
<td>100'</td>
<td>20'</td>
</tr>
<tr>
<td>> 40 MPH</td>
<td>200'</td>
<td>40'</td>
</tr>
</tbody>
</table>

- Denotes portable sign support
- Denotes traffic cone or traffic drum

See notes 1, 2, 5, 8, & 10

Scale 1/4" = 1' (MIN)

Approved: J. Corbin
Principal Engineer

DATE 1-02

CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING & HIGHWAY OPERATIONS
DIVISION OF TRAFFIC ENGINEERING
CONSTRUCTION TRAFFIC CONTROL PLAN
PLAN 14

31-1006
Figure 2-9.26 Traffic Control Plan 15
Work in Travel Lane and Shoulder—Two-Lane Highway
Figure 2-9.27 Traffic Control Plan 16
Work in Middle of Roadway—Two-Lane Highway

[Diagram showing traffic control plan for work in the middle of a two-lane highway, including advance warning area, taper area, buffer area, termination area, work area, and sign face area.]

Volume 2
Construction Traffic ver 2.2 (Jan 2011)
2-9.57
Figure 2-9.28 Traffic Control Plan 17
Work in Middle of Roadway at Intersection

WORK IN MIDDLE OF ROADWAY AT INTERSECTION

SIGN FACE
148 SQ. FT (MIN)

WORK AREA

ROAD WORK AHEAD

O DENOTES TRAFFIC CONE OR TRAFFIC DRUM
<> DENOTES PORTABLE SIGN SUPPORT

SEE NOTES 1, 2, 5, 7 & 10

CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING & INFRASTRUCTURE
DIVISION OF TRAFFIC ENGINEERING
CONSTRUCTION
TRAFFIC CONTROL PLAN
PLAN 17

REV'D 102

APPROVED
J. Corp
PRINCIPAL ENGINEER
DATE 1-02

SCALE 1:200

ROAD WORK AHEAD
FINES DOUBLED
31-1006

ROAD WORK AHEAD
80-9612

TAPER AREA

<40 MPH
180'
20'

RE: CONSTRUCTION TRAFFIC CONTROL PLAN
PLAN 17

80-9603

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'
Figure 2-9.29 Traffic Control Plan 18
Work in Travel Lane and Shoulder—Two-Lane Highway
Alternating One-Way Traffic Operation—Stop Sign Control

See Notes 1, 2, 4, 5, 8 & 10
Figure 2-9.30 Traffic Control Plan 19
Moving Operation on Right Shoulder—Multilane Highway and Secondary Roadways
Figure 2-9.31 Traffic Control Plan 20
Moving Operation in Right Lane and Outside Shoulder at the Same Time—Multilane Highway

MOVING OPERATION IN RIGHT LANE
AND OUTSIDE SHOULDERS AT THE SAME TIME
MULTILANE HIGHWAY

WORK VEHICLES(S)

TRUCK MOUNTED ATTENUATOR UNIT

DISTANCE VARIES ACCORDING TO OPERATION

TRUCK MOUNTED ATTENUATOR UNIT

TRUCK MOUNTED ATTENUATOR UNIT

ADVANCE WARNING VEHICLE

SIGN MOUNTED ON TRUCKS 2, 3, & 4

DEPARTMENT APPROVED ARROW BOARD

SIGN MOUNTED ON VEHICLE 1

60-9815 THIS SIGN SHOULD BE COVERED WHEN NOT IN USE.

60-9914 USE APPROPRIATE MESSAGE FOR OPERATION.

SIGN MOUNTED ON VEHICLE 2

REVD 1-02

CONSTRUCTION DEPARTMENT OF TRANSPORTATION
BUREAU OF ENGINEERING & HIGHWAY OPERATIONS
DIVISION OF TRAFFIC ENGINEERING
CONSTRUCTION TRAFFIC CONTROL PLAN
PLAN 20

SCALE HERE

APPROVED JOHN D. HOAG
PRINCIPAL ENGINEER DATE 1-30-02

3-1-106

ROAD WORK AHEAD FINES DOUBLED

3-1-106
Figure 2-9.32 Traffic Control Plan 21
Moving Operation in Left Lane and Inside Shoulder at the Same Time—Multilane Highway

When the left shoulder width cannot accommodate a vehicle, then advance warning vehicle 1 may drive partially in the lane.
Figure 2-9.33 Traffic Control Plan 22
Moving Operation in Center Lane—Multilane Highway
Moving Operation in Center Lane—Multilane Highway

When the left shoulder width cannot accommodate a vehicle, then advance warning vehicle may drive partially in the lane.
Figure 2-9.35 Traffic Control Plan 24
Moving Operation—Two-Lane Highway
MOWING OPERATION - MULTILANE HIGHWAY

FOR EQUIPMENT ON THE ROADWAY, ROADSIDE
OR ON THE MEDIAN COMPLETELY OFF THE ROADWAY

MOWING IN MEDIAN
INSTALL "MOWING" SIGNS ON OPPOSITE
TRAVELWAY MEDIAN SHOULDER AS SHOWN ABOVE.

MOWING RIGHT OF TRAVELWAY

EXPECT "MOWING" SIGNS AT 1 MILE
INTERVAL AND IMMEDIATELY
BEYOND THE ENTRANCE RAMPS.

WHEN MOWING FROM A TRAVEL LANE, USE BACK UP VEHICLES 1, 2 & 3 AS SHOWN
ON PLANS 20 & 21 TO PROTECT MOWING OPERATIONS. WHEN MOWING EQUIPMENT
MUST USE THE TRAVELWAY TO GET AROUND AN OBSTACLE, USE BACKUP VEHICLES
2 & 3 ONLY. THE BACKUP VEHICLES MUST REMAIN OFF THE ROADWAY UNTIL
MOWING EQUIPMENT IS READY TO GET OUT ONTO THE TRAVELWAY. THE DISTANCE
BETWEEN VEHICLE 3 AND THE MOWING EQUIPMENT IS TO BE 200 FEET.
Figure 2-9.37 Traffic Control Plan—H.O.V. Plan 1
Work in Restricted Lane (Stationary Closure)
Figure 2-9.38 Traffic Control Plan—H.O.V. Plan 2
Work in Separator of Restricted Lane (Stationary Closure)

WORK IN SEPARATOR OF RESTRICTED LANE
(STATIONARY CLOSURE)

END ROAD WORK

INSTALL TRAFFIC CONES/DRUMS
 Ø 80' SPACING

INSTALL EVERY 1000' IN WORK AREA

BUFFER AREA

SHOULDER CLOSED AHEAD

ADVERSE SIGNING AREA

ROAD WORK AHEAD

ROAD WORK AHEAD
 FINES DOUBLED

31-1906

DENOTES TRAFFIC DRUM

 DENOTES TRAFFIC CONE OR TRAFFIC DRUM

 DENOTES PORTABLE SIGN SUPPORT

SEE NOTES 1, 2, 3, 4, 5, 6 & 10

SIGN FACE
86 SQ. FT (MIN)
Figure 2-9.39 Traffic Control Plan—H.O.V. Plan 3
Work in Left Shoulder of Restricted Lane (Stationary Closure)

- End Road Work
- Shoulder Closed
- Install Traffic Cones / Drums @ 80' Spacing
- Advance Signing Area
- Install 8 Traffic Drums @ 40' Spacing
- Buffer Area
- Termination Area
- Sign Face 86 Sq. Ft (Min)

@ denotes traffic drum
○ denotes traffic cone or traffic drum
--- denotes portable sign support

See Notes 1, 2, 3, 4, 5, 6 & 10

Approved by: J. Carey
Principal Engineer
Date: 1-02

Connecticut Department of Transportation
Bureau of Engineering & Highway Operations
Division of Traffic Engineering
Construction
Traffic Control Plan
H.O.V. Plan 3
Figure 2-9.40 Traffic Control Plan—H.O.V. Plan 4
Moving Operation in Restricted Lane
Chapter 10 - Miscellaneous Construction

2-1001 Riprap

Riprap consists of angular stones used to protect foundations of piers, abutments, walls, slopes of embankments, and waterways from damage. Riprap is covered in Article 7.03 of the *Standard Specifications*.

The area to be protected by riprap is shaped. If bedding material is called for in the plans, the bedding material is placed and compacted to the plan line and grade. Riprap is placed to its full-course thickness in one operation. Placement should not displace the underlying material. The finished surface should be free of small stones and clusters of large stones. Rearranging the stones may be required to produce a reasonably well-graded distribution of the specified stone sizes.

2-1002 Gabions

Gabions consist of wire baskets filled with aggregate. They are covered in Article 7.04 of the *Standard Specifications*.

The wire baskets can be made of either galvanized steel or galvanized steel coated with polyvinyl chloride (PVC). The contractor must furnish a certified test report or materials certificate and certificate of compliance. The maximum dimension of the mesh opening must not exceed 4.5 in. (115 mm), and the area of the mesh opening must not exceed 8 sq. in. (9,500 mm²).

The baskets must be fabricated so that they can be assembled at the site. The front, back, base and lid must be woven at the factory in a single unit. All perimeter edges of the mesh must be securely selvaged. Lacing wire must be supplied in quantities sufficient to fasten all of the edges of the baskets and diaphragms and to provide for the internal connecting wires in each cell.

Each side of the aggregate for filling the baskets must be between 4 in. (100 mm) and 13 in. (330 mm) or 0.7 of the basket's smallest dimension, whichever is less. It should be reasonably well graded between the limiting sizes.

The baskets are assembled by binding together all vertical edges with lacing wire on 5 in. (125 mm) spacing, as shown in Figure 2-10.1, or by looping a single wire around the vertical edges, with a coil every 5 in. (125 mm). The empty baskets are set to line and grade. Adjacent baskets are laced together along the perimeter of their contact surfaces as shown in Figure 2-10.2. The empty baskets that form the upper tier of the construction are laced to the tops of the ones beneath them. A fence stretcher or other approved device must be used to remove any kinks and to hold the proper alignment of the units.

The aggregate must be placed carefully to assure alignment, avoid bulges, and produce a minimum of voids. The aggregate is placed up to the level of the first connecting wires. The sets of connecting wires are placed perpendicular to each other and tied around two meshes of each gabion wall. Figure 2-10.3 shows typical positions of the connecting wires. Then the aggregate is placed up to the level of the next connecting wires or to the top of the basket. The lid of the basket is stretched tightly over the aggregate until it meets the edges of the front and end panels. The lid is laced tightly along the edges, sides and diaphragms.
Figure 2-10.1 Gabion Field Assembly

![Diagram of Gabion Field Assembly]

Figure 2-10.2 Gabion Placement

![Diagram of Gabion Placement with Lacing]

Lace at 5 in. spacing along the vertical edges.
2-1003 Wire Fence

Wire fence consists of galvanized, chain link, or aluminum fence fabric supported by wood or metal posts. It is covered in Article 9.06 of the Standard Specifications. Fencing materials are covered in Article M.10.04.

2-1003A Wood Posts

For wire fence with wood line posts set in earth, the posts are set 10 ft. (3 m) apart and 3 ft. (1 m) in the ground and to the lines and grades given. For line posts set in rock, metal posts must be used.

The wire fabric normally is placed on the side facing the highway. The bottom of the fabric is placed 6 in. (150 mm) above the ground or as ordered by the Engineer. The fence is attached to the posts with galvanized staples 1½ in. (38 mm) long. A sufficient number of braces must be added to the posts to hold them firmly when the wire is stretched. Untreated posts are cut off 3 in. (75 mm) above the top wire on a bevel or as directed by the Engineer.

2-1003B Metal Posts

Line post spacing is the same as for the wood line posts above. Care must be taken to ensure the metal posts are plumb and the anchor plate is down. The posts should not be damaged when they are driven. When driving the posts, the tops must be protected by driving caps, or a suitable maul may be used.

When exposed ledge rock is encountered, the anchor plate is omitted from the metal post, and a hole is drilled into the rock at least 12 in. (300 mm) deep. The post is set in the hole using grout.

The Engineer directs on which side of the posts the wire fencing is placed. The fabric usually is placed 6 in. (150 mm) above the ground. It is attached to the posts using standard approved means, such as aluminum bands, zinc-coated steel bands, or spring-wire clips. Braced pull posts are installed as needed.

2-1003C End, Corner and Pull Posts

All end, corner and pull posts are set in concrete footings. The footings are constructed of Class A concrete, which may be hand mixed. The footings are a minimum of 3 ft. (1 m) deep and not less than 8 in. × 8 in. (200 mm × 200 mm) at the top and 10 in. × 10 in. (250 mm × 250 mm) at the bottom. Figure 2-10.4 shows a pull post.

Braces are attached about 18 in. (450 mm) from the top of the post. They must be long enough to be set in the ground and form an angle of not less than 45 degrees with the post. The braces can be set in concrete bases or attached to metal brace plates. The concrete base must be not less than 1 cu. ft. (0.03 m³). The brace plate must have a face area of not less than 1 sq. ft. (0.1 m²) and a thickness not less than 3/16 in. (5 mm).
2-1004 Metal Beam Rail

Metal beam rail consists of a single or double line of rail elements fastened to galvanized steel posts, with or without rub rail. End treatments are as shown on the plans. The rail is erected at the locations and fabricated in accordance with the locations, designation, dimensions and details shown on the plans or ordered by the Engineer. Metal beam rail is covered in Article 9.10 of the Standard Specifications. Article 9.11 covers metal beam rail anchorages.

2-1004A Material Inspection

The posts, rail, rub rail, hardware, anchorage elements, etc., must be sampled at the project site in accordance with the “Schedule of Minimum Requirements for Sampling Materials for Test,” published by the Materials Testing Division.

Before erecting the rail or anchorages, the Inspector should check galvanized elements. Any that have been cut or worked so as to destroy the galvanized coating and expose the base metal must be cleaned and painted with one coat of zinc dust–zinc oxide paint and a finish coat of aluminum paint.
2-1004B Posts

Posts are located in accordance with the plans, set plumb and in alignment with the rail or rail treatments. The contractor must provide extra-length posts at transitions or where field conditions warrant. The long posts must be long enough to maintain the minimum depth under the ground, as shown on the plans.

The steel posts are driven, except for the end-anchor posts. If rock or boulders are encountered, they are removed and the hole is backfilled and compacted before driving the posts. The contractor must provide suitable driving caps and equipment to prevent battering or injury to the posts and to prevent injuring the galvanized coating of the posts above ground line. End-anchor posts are set in dug holes. After the posts are set, the holes are backfilled and compacted. Surplus material must be removed.

The contractor should be cautious of buried cable for illumination or utilities located within the right-of-way. The cables may be “live.”

2-1004C Rail

If required, the brackets, rub rails, backup rails and rail elements must be erected to produce a smooth, continuous rail. If possible, the terminal sections, rub rails, and rail elements should be lapped in the direction of traffic.

If the rail installation is along a road with traffic, the contractor should complete the installation, including the end treatment, at the end of each day’s work to avoid creating a hazard caused by leaving an exposed end of the beam or rub rail. If this is not practicable, the contractor must provide a temporary end treatment by lowering the rail to the ground and anchoring it by bolting, weighting, burying, etc. The contractor must submit to the Engineer a detailed plan for the temporary end treatment. No work is allowed until the plan is approved.

2-1004D Welding

In welding steel plates to steel posts, the welds will be the same size and shape as shown on the plans and must conform to the requirements of the current Specifications for Welded Highway and Railway Bridges of the American Welding Society, with two exceptions:

- Only a visual inspection of the welds is required.
- The Engineer will make the visual inspection. All welds must have no visual cracks or be defective in any way. All must be formed in a neat and workmanlike manner. Any welds found unacceptable will be corrected by the contractor at no additional cost.
2-1004E Anchorages

The work involves the installation of concrete end anchors, fittings, rail elements, terminal sections, and posts. An example anchorage is shown in Figure 2-10.5. The excavation for the anchorage is backfilled with suitable material and compacted in 6 in. (150 mm) layers. Surplus material must be removed by the contractor.

If the rail is to be attached to rock, the rock is shaped as needed, and holes are drilled in the rock. The diameter of the holes is great enough to permit placing the bolts but must not exceed twice the diameter of the bolts. The bolts are installed in the holes, and the holes are filled with non-shrink grout. After the steel plate is installed, it and any spalled areas are filled with non-shrink grout. The same method is used for rail attached to concrete.

2-1005 Turf Establishment

The work consists of providing a uniform stand of established perennial turf grasses. It includes furnishing and placing fertilizer, seed and mulch as shown on the plans or ordered by the Engineer. Turf establishment is covered in Article 9.50 of the Standard Specifications. Materials for turf establishment are covered in Article M.13.

2-1005A Seedbed Preparation

Level areas, medians, interchanges and lawns are made friable and receptive to seeding by diskng, tracking, or other methods approved by the Engineer. The final prepared and seeded soil must meet the lines and grades on the plans. Slopes and embankment areas are prepared by approved methods that do not disturb the line and grade of the slope surface. Seeding is never permitted on hard or crusted soil surfaces.

All areas to be seeded must be relatively free from weeds taller than 3 in. (75 mm). The weed growth can be mowed by hand or reduced with other approved methods that do not disturb the slope line or grade. Seeding on level areas is not permitted until essentially all of the weed growth is removed.

Slopes are to be seeded within 7 days after reaching final grade. Areas to be left more than 30 days without being worked are to be seeded or mulched as per Article 1.10.03-11 of the Standard Specifications.
2-1005B Seeding and Fertilizing

The calendar dates for seeding are:

- March 15 to June 15 for spring seeding and
- August 15 to October 15 for fall seeding.

Areas at final grade can be seeded within season. Other disturbed areas receive out-of-season seeding, although the contractor is still responsible for establishing the turf as described in “Establishment and Cleanup” below. During out-of-season periods, unseeded disturbed areas must receive water pollution control treatments, as in Article 2.10 of the Specifications. The treatments must be removed prior to seeding unless the Engineer allows them to remain.

Fertilizer initially is applied at 320 lb./A (360 kg/ha). When the permanent grass seeding growth reaches 6 in. (150 mm), the grass is mowed to 3 in. (75 mm), and another 320 lb./A (360 kg/ha) is applied. The second application must be hydraulically placed.

2-1005C Establishment and Cleanup

The contractor must maintain a uniform, established stand of the turf grass species. The height must be 6 in. (150 mm), and the stand must consist of no less than 100 plants/sq. ft. (1100 plants/m²). The contractor must maintain the established turf until the entire project is accepted.

The contractor must keep all equipment, vehicles and pedestrians off seeded areas to prevent excessive compaction and damage to young plants. If an area is compacted excessively, the contractor must rework the soil to form a seedbed, then reseed and mulch the area.

The contractor must keep all seeded areas free of weeds and debris. When the permanent grass growth reaches 6 in. (150 mm), the contractor must mow all slopes 4:1 or flatter to a height of 3 in. (75 mm). The mowing is done on a one-time-only basis. The contractor must clean up all debris from the turf establishment operation on the shoulders, pavement, and adjacent private or public property.

2-1006 Erosion Control Matting

Erosion control matting is installed following seeding, where called for on the plans or directed by the Engineer. Staples are placed according to the manufacturer's recommendations. Where two lengths of netting overlap, the end of the up-grade strip should overlap the down-grade strip. The contractor must maintain and protect the erosion control matting until the turf is established and must repair any damaged areas. No mowing is required where erosion control matting is installed.

2-1007 Sodding

Sodding consists of preparing a sodbed of 4 in. (100 mm) of tamped topsoil and furnishing and placing live sod. The work is covered under Article 9.53 of the Standard Specifications.

The work can be done at any time of year, but the sod cannot be frozen or placed on frozen earth. The contractor must notify the Engineer 48 hours before starting to work and cannot proceed until the Engineer grants permission. If seeding and sodding are to be done in the same general area, the sodding must be done prior to the seeding.
The contractor must take care to retain native soil on the roots of the sod during the process of transplanting it. Dumping the sod from trucks is not permitted. The sod should be placed within 24 hours after harvesting it unless it is tightly rolled roots to roots, kept moist, and protected from the sun and from freezing.

2-1007A Ground Preparation

There must be not less than 4 in. (100 mm) of tamped topsoil under the sod unless otherwise specified. Excavations or trenches must be made below the finished grade deep enough to accommodate the topsoil and sod.

If fertilizer was not applied to the topsoil during another operation, it is spread to provide 100 pounds of nitrogen per acre (110 kilograms of nitrogen per hectare). It must be incorporated in the topsoil to a depth of at least 2 in. (50 mm). It can be incorporated by disk ing, harrowing, drilling, raking, etc. Lime is not required but is permitted if applied in a previous operation.

2-1007B Planting

The soil on which the sod is laid must be reasonably moist and must be watered if needed. The sod is laid smoothly edge to edge. Any open areas are plugged with sod.

In drainage ways and areas requiring continuous or solid sodding, the sod is laid with its longest dimension parallel to the contours of the ground. The sod is placed first at the base of a slope, and work progresses up the slope parallel to the contour lines. Vertical joints are staggered from one course to the next.

After the sod is laid, it is immediately pressed into the sodbed by tamping, rolling, etc. to eliminate air pockets, provide smooth surfaces, ensure knitting, and protect exposed sod edges. It is watered at 5 gal./sq. yd. (20 L/m²).

2-1007C Pegging

Sod must be held in place with stakes in all drainage ways, on slopes steeper than 4:1, and where directed. Pegging is done immediately after tamping. At least one stake is driven through each sod, but not less than 2 ft. (600 mm) apart. The stakes are driven flush with their flat sides against the slope.

2-1007D Finishing and Maintenance

The contractor must dispose of extra soil and sod in an approved manner. Soil should not be ridged next to the sod. Excess or rejected sod will not be paid for.

The contractor must maintain the sodded area until all work on the contract is accepted. This may involve:

- protecting the sodded area with signs or barricades,
- mowing grass to a height of 2 in. (50 mm) when it reaches 4 in. (100 mm),
- watering the sod as directed by the Engineer, and
- repairing damaged areas of the sod.