ALTERNATIVES EVALUATION MEMORANDUM FOR VACANT LOT NORTH OF RADIALL

TO:

Mr. Michael Piscitelli/City of New Haven

FROM:

Mr. David Arpin/RTG

Mr. Jim Russell/RTG

COPY:

Ms. Helen Rosenberg/ City of New Haven Ms. Dawn Henning/ City of New Haven

Mr. Bill Neale/Radiall New Haven

DATE:

December 16, 2016

RE:

Flood Protection Alternative Selection Mill River District Shoreline Analysis

City of New Haven

CNH Project No. 15-195-21 RTG Project No. 15103.02

Introduction

RT Group, Inc. (RTG) recently completed a Geotechnical Investigation at the vacant lot located north of Radiall on John Murphy Drive (Figures 1 and 2). The investigation was performed in order to evaluate which of the flood protection alternatives presented in the *Alternatives Evaluation Report* for the Mill River District (RTG, September 6, 2016) would be the most appropriate based on the actual subsurface conditions encountered.

The two (2) alternatives being considered for the subject property include (1) Raising Grade and (2) constructing an Elevated Development. Under the Raising Grade Alternative, granular backfill would be imported to the site in order to raise grade to the Design Flood Elevation (DFE). Under the Elevated Development Alternative, a pile supported foundation would be installed so that the finish floor elevation of the development could be elevated above the DFE.

Purpose and Scope

This Memorandum was prepared to summarize the results of the geotechnical investigation that was performed at the vacant lot located north of radial and provide recommendations with respect to which flood protection alternative (Raising Grade or Elevated Development) would be the most appropriate based on the actual subsurface conditions encountered. Following the selection of an alternative, RTG will prepare 50% Plans for the City's review.

Geotechnical Investigation

Between October 25 and 28, 2016, New England Boring Contractors of Glastonbury, CT completed a total of three (3) soil borings (RTG-SB-1, RTG-OW-2, and RTG-SB-3) (Figure 2). The soil borings were advanced to depths of between about 62 and 122 feet, depending on their location. Bedrock was not encountered in any of the soil borings during the investigation. Following the investigation, RTG prepared soil boring logs which are provided in Appendix A.

A groundwater observation well was installed in soil boring RTG-OW-2 as part of the geotechnical investigation (Figure 2). The well consisted of a 2-inch-diameter slotted Sch. 40 PVC screen installed from about 15 to 25 feet below the existing ground surface. The observation well was topped with a 6-inch-diameter bolting road box installed at grade. Water elevation data is provided in the Observation Well Log included in Appendix B.

Representative soil samples were obtained during the Geotechnical Investigation. Of these samples, three (3) undisturbed Shelby tube samples and five (5) split spoon samples were selected by RTG and submitted to Thielsch Engineering (THIELSCH) of Cranston, Rhode Island for analysis. The laboratory testing performed on the selected samples included the following:

- Moisture Content
- USCS Classification
- □ Grain Size Analyses
- Atterberg Limits
- Dry Unit Weight Determination

- Pocket Penetrometer
- □ Torvane
- CIU Shear Strength Testing
- Consolidation Testing

The laboratory testing results are provided in Appendix C and are summarized in Table 1.

Site and Subsurface Conditions

The subject property consists of a relatively flat 1.9 \pm acre lot (Figure 2). The western third of the subject property is clear and grassed. The remainder of the property is vegetated with trees and brush.

The soil boring logs from the Geotechnical Investigation (Appendix A) were simplified and combined to develop an understanding of the general stratigraphy at the subject property. This general stratigraphy, from top to bottom, consists of the following strata (Figure 3):

- □ Stratum 1 Fill consisting of Sand and Silt
- □ Stratum 2 Organic Elastic Silt
- ☐ Stratum 3 Sand and Silt

Stratum 1 is fill that generally consists of loose to medium dense sand with silt and very stiff to hard sandy silt. This stratum was observed in all of the soil borings completed. It extends from existing grade to a depth of about 10 to 15 feet below the existing ground surface.

Stratum 2 generally consists of very soft organic elastic silt. This stratum was observed in all of the soil borings completed. It is about 15 to 17 feet thick and extends from below Stratum 1 to a depth of about 30 feet below the existing ground surface.

(3)

Stratum 3 generally consists of medium dense sand with silt to very stiff sandy silt. This stratum was observed in all of the soil borings completed. It extends from below Stratum 2 to a depth of at least 62 to 122 feet below the existing ground surface (i.e., the depth of the completed soil borings).

Groundwater Conditions

Groundwater was observed to be about 7.5 feet below the existing ground surface in RTG-OW-2 about one week following the completion of the soil borings (i.e., after groundwater had stabilized). Groundwater levels may fluctuate due to season, temperature, local construction activities, and other factors, and could be different at the time of construction.

Flood Protection Alternatives

As mentioned, two (2) flood protection alternatives are being considered for the preparation of 50% Plans. Both alternatives are discussed in more detail below.

Raising Grade

Under this alternative, vegetation would be cleared and existing topsoil stripped from within the limits of the proposed development. Following this work, the subgrade would be compacted and then backfilled with imported granular backfill up to the DFE. For this alternative, it was assumed that the DFE was equal to elevation 15.0 feet (NAVD 88) (12.0 feet Base Flood Elevation + 1.5 feet Sea Level Rise + 1.0 foot Freeboard).

It was assumed that after raising grade to the DFE, the new development would be constructed on the raised grade utilizing conventional spread footings. Following construction, the exposed side slopes would be protected from scour/erosion using riprap. Accordingly, the area of the proposed development would be located entirely above the FEMA Base Flood Elevation (BFE) and would be protected from flooding during the 100-year storm event.

Should this alternative be implemented, compensatory flood storage would need to be provided so that the water holding capacity of the floodplain was not reduced. Given the size of the assumed development (20,000 SF), this storage would need to be provided off-site and would need to be approved by the City.

Elevated Development

Under this alternative, the new development would be designed to provide a Finish Floor Elevation (FFE) equal to or above the DFE. For this alternative, it was assumed that the DFE was equal to elevation 15.0 feet, similar to the Raising Grade Alternative.

It was assumed that the final configuration of the new development would consist of an elevated finish floor supported on a pile foundation system. Accordingly, during the 100-year storm event, flooding would be allowed to occur in the area below the finish floor, but would not extend above the finish floor elevation. As such, the area below the finish floor elevation would be designed to resist erosion and scour from the flooding.

Should this alternative be implemented, compensatory flood storage would need to be provided so that the water holding capacity of the floodplain was not reduced. However, given the minimal size of the theoretical development below the DFE, this storage could potentially be provided on-site and would need to be approved by the City.

Challenges Due to Subsurface Conditions Encountered

Based on the subsurface conditions that were encountered, there will be some challenges associated with the implementation of both alternatives. This is due to the presence of the very soft organic silt layer (Stratum 2) (Figure 3).

Raising Grade

About 6.5 feet of granular fill would need to be imported to the site in order to raise grade to the DFE of 15.0 feet. Based on RTG's preliminary analyses, raising grade will induce about 20 inches of immediate settlement, consolidation settlement, and long-term secondary compression. It is estimated that it would take about 10 months for the consolidation settlement and another 30 years for the secondary compression to occur within the very soft organic silt.

The magnitude of the estimated settlement and its duration would be detrimental to any new buildings that were constructed at this site. To mitigate this issue, an additional surcharge load (i.e., pre-load) would need to be installed at the site to induce the estimated immediate settlement, consolidation settlement, and long-term secondary compression under the proposed fill and building service loads. Based on our preliminary analyses, this would require that grade be raised an additional 6 feet (about 12.5 feet total), and that the surcharge load be stripped and removed from the site after it had induced the required settlement.

The fill and the surcharge loads would need to be placed in lifts in order to minimize the likelihood for a general bearing capacity failure within the very soft organic silt layer. In addition, prefabricated vertical wick drains would need to be installed at about 6 feet on center in order to accelerate the consolidation process and allow the site to be prepared for construction in a reasonable amount of time. The vertical wick drains would be installed about 1 to 2 feet into the sand and silt layer (Stratum 3) and would terminate about 1 foot above existing grade.

A conceptual plan and section of the Raising Grade alternative is presented in Figures 4 and 5.

Elevated Development

Due to the presence of the very soft organic silt layer, about 45 pile supported concrete caps would need to be installed in order to allow the finish floor elevation of the proposed building to be raised above the DFE. Based on RTG's preliminary analyses, HP12x63 piles (or pipe piles) driven about 30 feet + into the sand and silt layer (Stratum 3) should be sufficient to support the estimated building loads (office use assumed). Assuming 4 piles per concrete pile cap, a total of 180 piles would need to be driven and installed.

The final concrete cap layout and pile lengths will vary based on the actual building configuration, use, and loads. For the purposes of our evaluation, we assumed a maximum vertical column reaction at each concrete pile cap of about 205 tons (un-factored) and a maximum horizontal reaction of 5 tons (un-factored). This results in an allowable vertical design load of about 50 tons and an allowable horizontal design load of 1.25 tons (per pile).

A conceptual plan and section of the Elevated Development alternative is presented in Figures 6 and 7.

Budget-Level Cost Estimates

Budget-level cost estimates (2016 USD) were prepared for each flood protection alternative to help allow an informed decision to be made based on funding limitations/other constraints. The cost estimates include construction as well as design, permitting, bidding phase, and construction phase services (e.g., Submittal Review, Responding to RFI's, and Construction Observation). It should be noted that the estimates have been prepared without the benefit of final plans and specifications.

Based on the above, the cost estimates are considered "order of magnitude" level and include a 25% Scope & Budget Contingency. Final costs are expected to vary from the estimates presented based on actual labor and material costs, competitive market conditions, final agreed to project scope, final implementation schedule, and other variable factors. A breakdown of the budget level costs for each flood protection alternative is presented in Tables D-1 and D-2 of Appendix D. A summary of estimated project costs follows:

□ Raising Grade (20,000 SF Development): \$ 90/SF

■ Elevated Development (20,000 SF Development): \$115/SF

The budget-level cost estimates represent the cost for flood proofing only. The cost of the development itself (e.g., buildings, utilities, roads, parking, and site restoration) would be in addition to the budget-level cost estimates presented above.

Alternatives Evaluation

For the purposes of preparing this Memorandum, RTG established six (6) criteria to help rank each alternative. These criteria include (1) Project Cost, (2) Long-Term Building Performance (e.g., potential for additional settlement), (3) Design Life, (4) Constructability, (5) Risk

During Construction, and (6) Permitting Ease. Each of these criteria were ranked on a scale of 1 (least favorable) to 10 (most favorable) and the results are presented in Table 2.

Conclusions and Recommendations

Based on the alternative ranking (Table 2), the Elevated Development Alternative ranks slightly higher than the Raising Grade Alternative, despite it being about \$25/SF more expensive to implement, and is the recommended alternative for the vacant lot and for preparing 50% Design Plans.

R:\Projects\15103.02 - Flood Resiliency Improvements\REPORTS\NH Alternatives Evaluation Memo.docx

Table 1

Laboratory Test Results for Shelby Tube and Split Spoon Soil Samples Alternatives Evaluation Memorandum

Flood Protection Alternative Selection - Vacant Lot North of Radiall

Haven.	

										Pocke		Torvane	CIU ³	Consolidation ³							
							Atter	berg L	imits ³	Sieve	Hydrometer	Y _{dry} (pcf) ³	Shear Strength, C _u	Shear Strength,	Undrained Shear Strength,				σ _{vo} '	σ _p '	
Boring No.	Sample No.	Depth (ft) ¹	Sample Stratum	Soil Description ²	USCS ³	w (%) ³	LL	PL	PI	(-200) (%) ³	(-1.5 Microns) (%) ³	(pci)	(psf) ³	C _u (psf) ³	C _u (psf)	C _c	C_r	e _o	(psf) ⁴ (psf) O($C_{\rm u}/\sigma_{\rm p}^{5}$
RTG-SB-01	ST-2	22-24	ORGANIC ELASTIC SILT	ORGANIC ELASTIC SILT, (OH), dark gray, wet, very soft	ОН	77.6	89	44	45	97.7	15.1 (-1.3 microns)	54.2	600	250	See Laboratory Data	0.740	0.1700	1.629	2,246 2	,200 N	C 0.27
	SS-12	45-47	SAND AND SILT	SILTY SAND, (SM), red-brown, wet, stiff, fine sand	SM	26.7				48.7	3.5										
RTG-OW-02	ST-2	19-21	ORGANIC ELASTIC SILT	ORGANIC ELASTIC SILT, (OH), gray, wet, very soft	ОН	66.6	60	35	25	75.4	9.4 (-1.4 microns)	64.2	500	200	See Laboratory Data	0.840	0.1800	2.306	1,901 1	,000 N	C 0.50
	SS-8	30-32	SAND AND SILT	SILTY SAND, (SM), black, wet, soft, medium to fine sand	SM	33.1				43.5	3.1										
	SS-12	50-52	SAND AND SILT	SILT WITH SAND, (ML), red-brown, wet, very stiff, fine sand	ML	27.3				81.7	4.6										
	SS-24	110-112	SAND AND SILT	SILTY SAND, (SM), red-brown, wet, medium dense, fine to medium sand	SM	19.1				12.9	2.1										
RTG-SB-03	ST-1	17-19	ORGANIC ELASTIC SILT	ORGANIC ELASTIC SILT, (OH), gray, wet, very soft	ОН	78.1	74	45	29	88.6	11.8 (-1.4 microns)	53.6	100	150	See Laboratory Data	0.760	0.1700	2.334	1,670 1	,200 N	C 0.08
	SS-12	45-47	SILT AND SAND	SILT WITH SAND, (ML), red-brown, wet, stiff, fine sand	ML	28.1				82.0	3.4										

|--|

LL = Liquid Limit

PL = Plastic Limit
PI = Plasticity Index

NP = Non Plastic

CIU = Consolidated Isotopically Undrained

NC = Normally Consolidated Assumed

Symbols:

w = Water Content

γ_{dry} = Insitu Dry Density

C_u = Undrained Shear Strength

C_c = Compression Index

 C_r = Recompression Index

 e_0 = Initial Void Ratio σ_{V0} ' = Existing Effective Overburden Pressure

 σ_p' = Preconsolidation Pressure OCR = Over Consolidation Ratio

Footnotes:

¹Depth below existing grade.

²Soil descriptions are per the soils testing performed by Thielsch Engineering.

³Testing results shown are as provided by Thielsch Engineering.

⁴Value shown is the estimated effective vertical stress at the sample interval at the time of the Geotechnical Investigation.

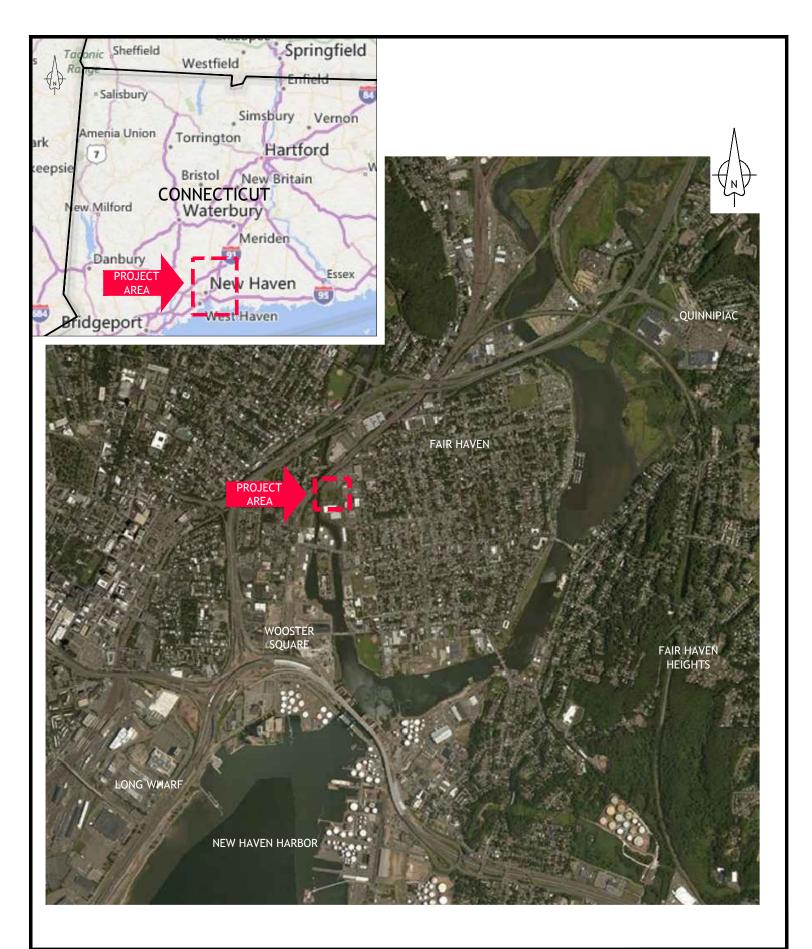
 5 The ratio of C_u/σ_p ' was estimated using the pocket penetrometer results, which are considered most representive of the very soft organic silt.

Table 2

Alternative Evaluation Matrix¹

Alternatives Evaluation Memorandum

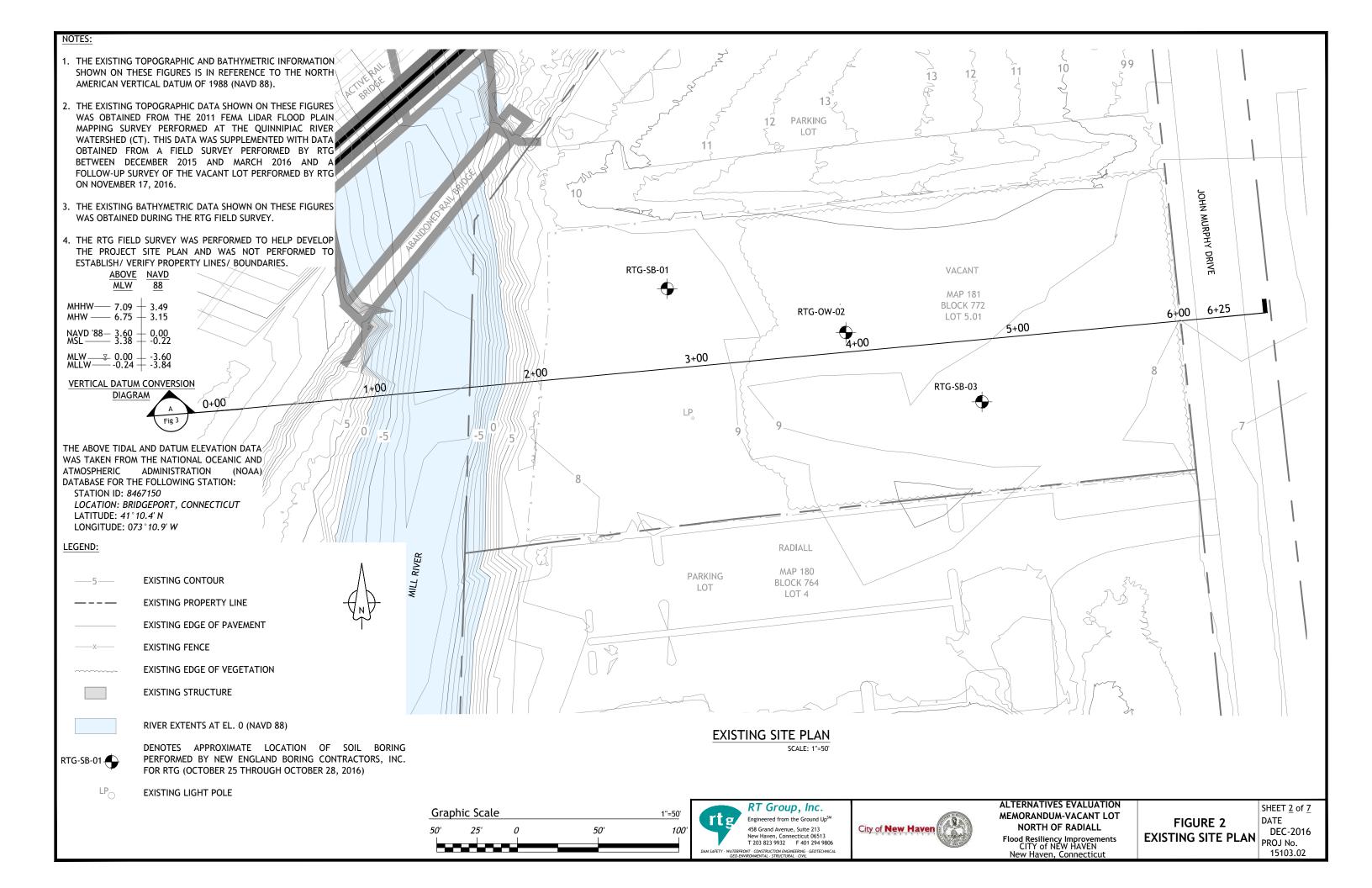
Flood Protection Alternative Selection - Vacant Lot North of Radiall

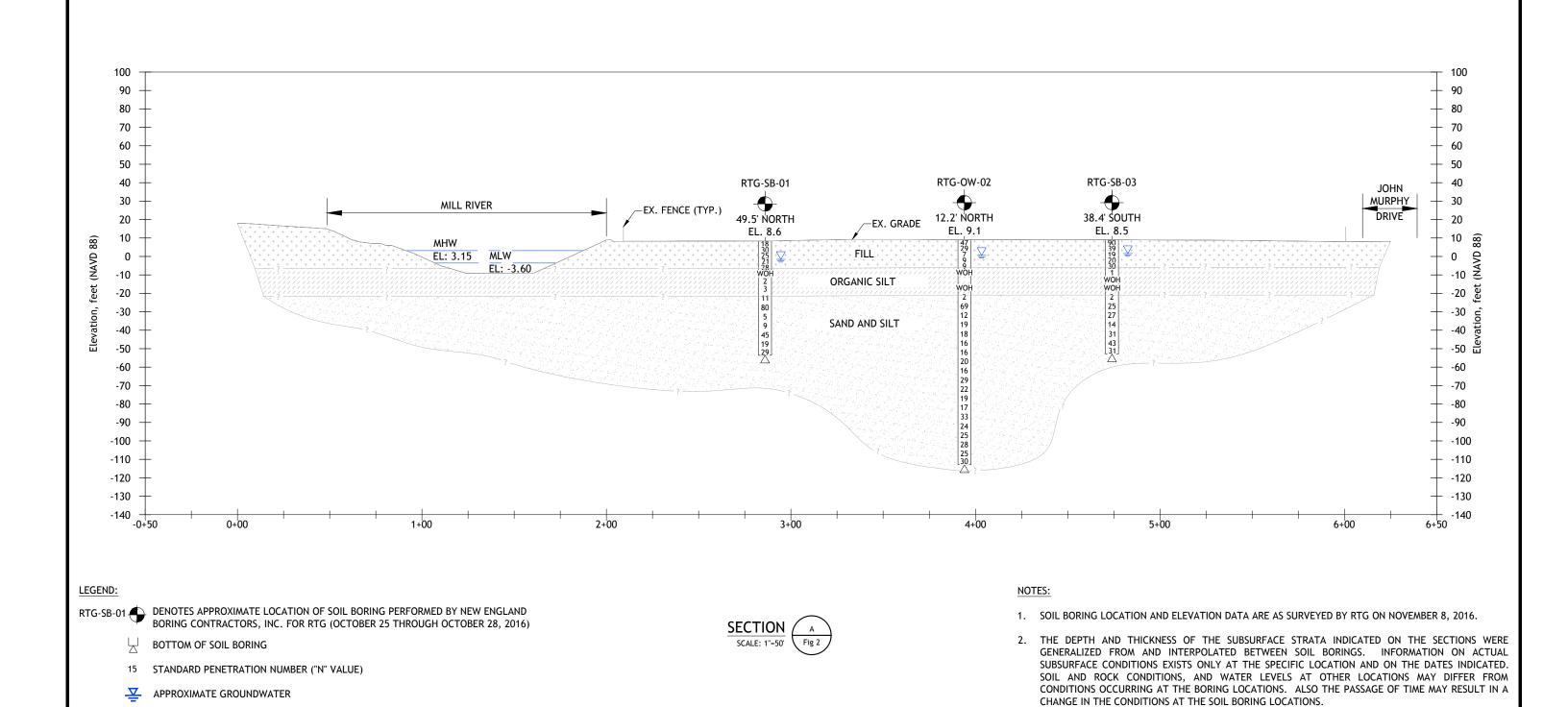

New Haven, CT

Alternative	Project Cost	Long-Term Building Performance	Design Life	Constructability	Risk During Construction	Permitting Ease	Total Points				
Flood Protection Alternatives											
Raising Grade	10	7	10	8	7	7	49				
Elevated Development	8	9	9	8	9	9	52				

Footnotes:

¹Rating: 1-10, least favorable to most favorable.


The above criteria were established by RTG and are considered arbitrary. Prior to final design, these criteria should be reviewed and modified by the Owner as required based on their established success and/or risk factors.



ALTERNATIVES EVALUATION MEMORANDUM-VACANT LOT NORTH OF RADIALL

1"=50'

100

RT Group, Inc.

Engineered from the Ground Up^SM

458 Grand Avenue, Suite 213 New Haven, Connecticut 06513 T 203 823 9932 F 401 294 9806 City of New Haven

ALTERNATIVES EVALUATION

MEMORANDUM-VACANT LOT

NORTH OF RADIALL

Flood Resiliency Improvements CITY of NEW HAVEN

New Haven, Connecticut

FIGURE 3

EXISTING

SUBSURFACE

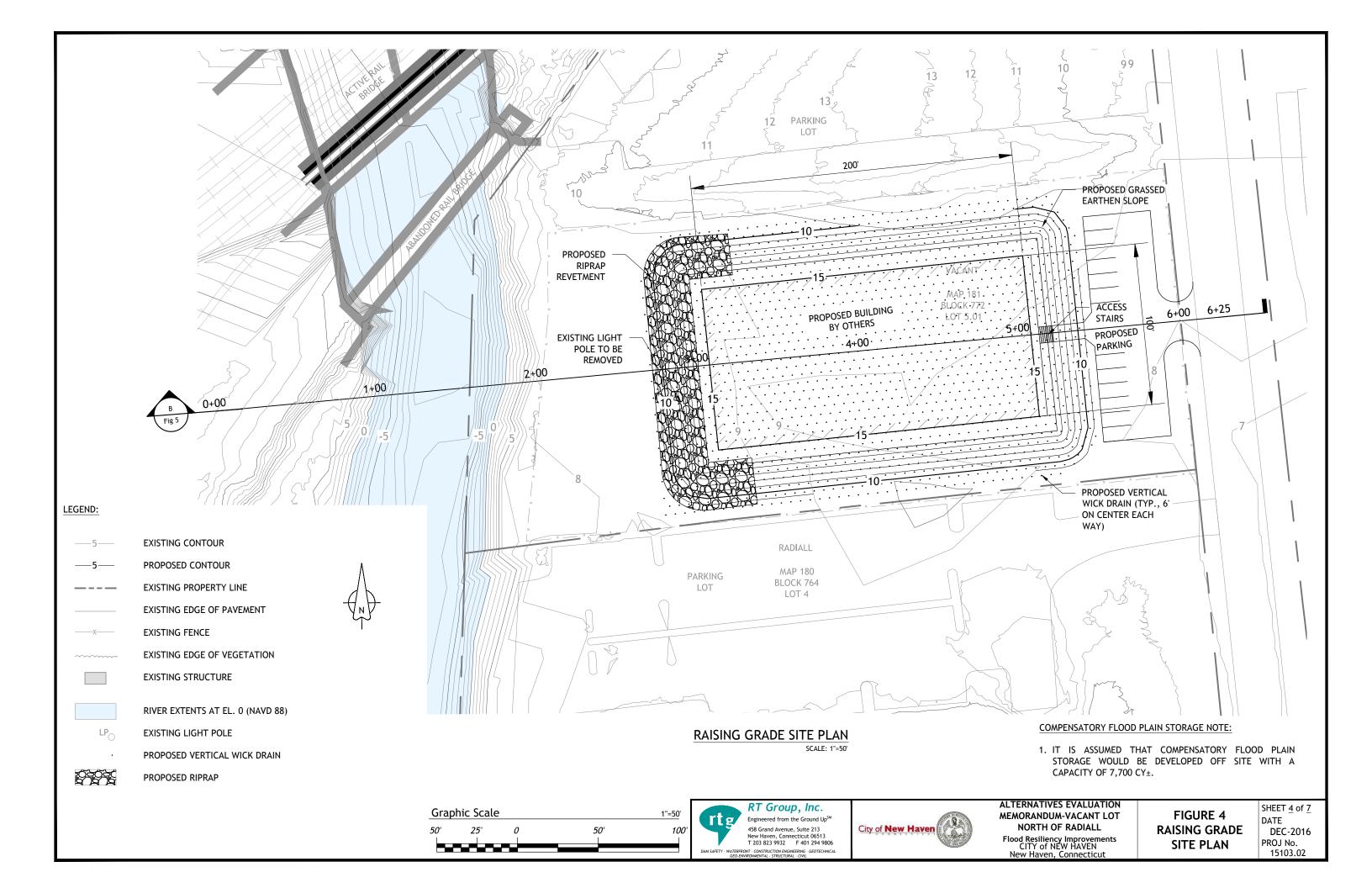
CONDITIONS

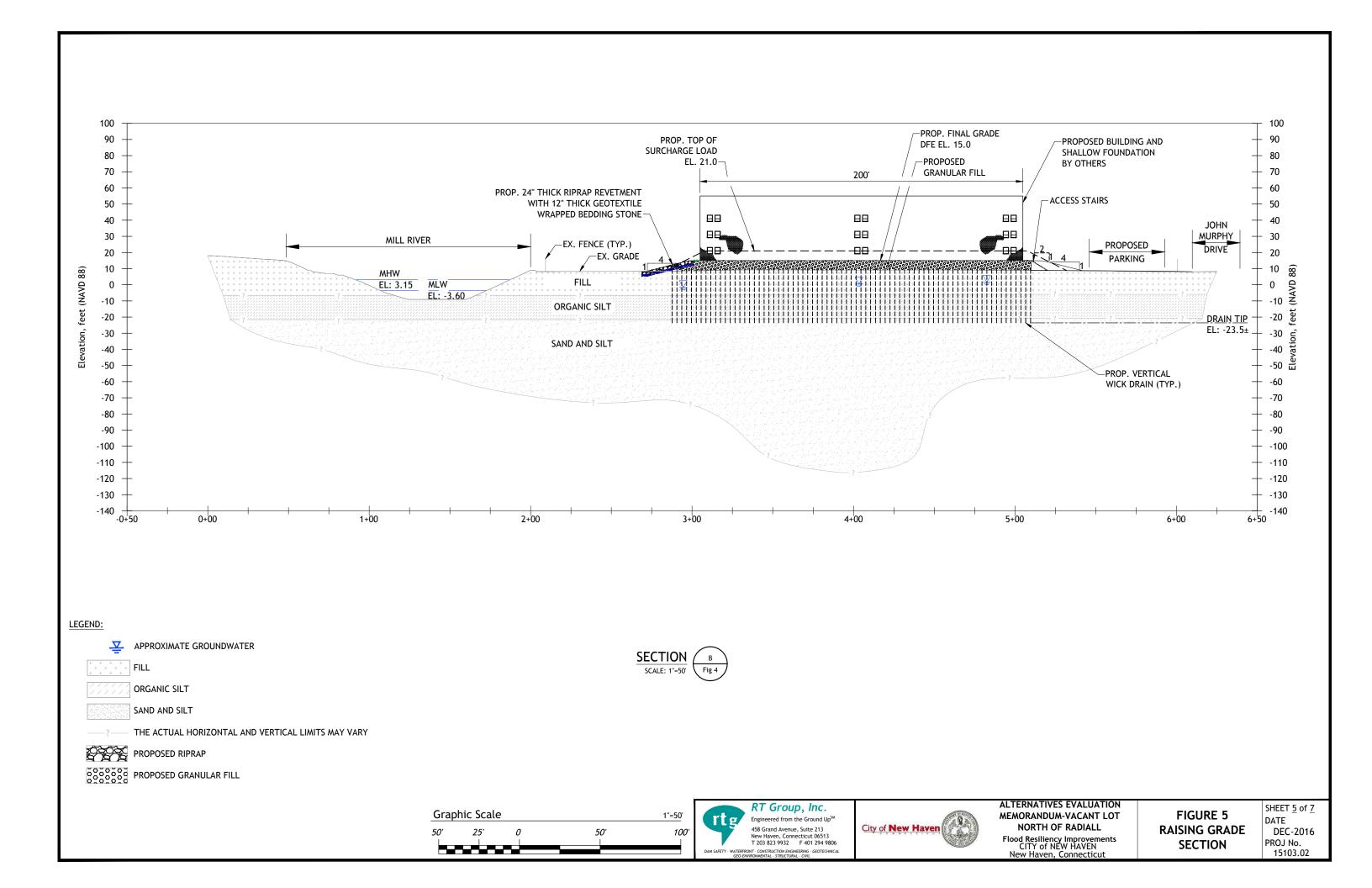
SHEET <u>3</u> of <u>7</u>

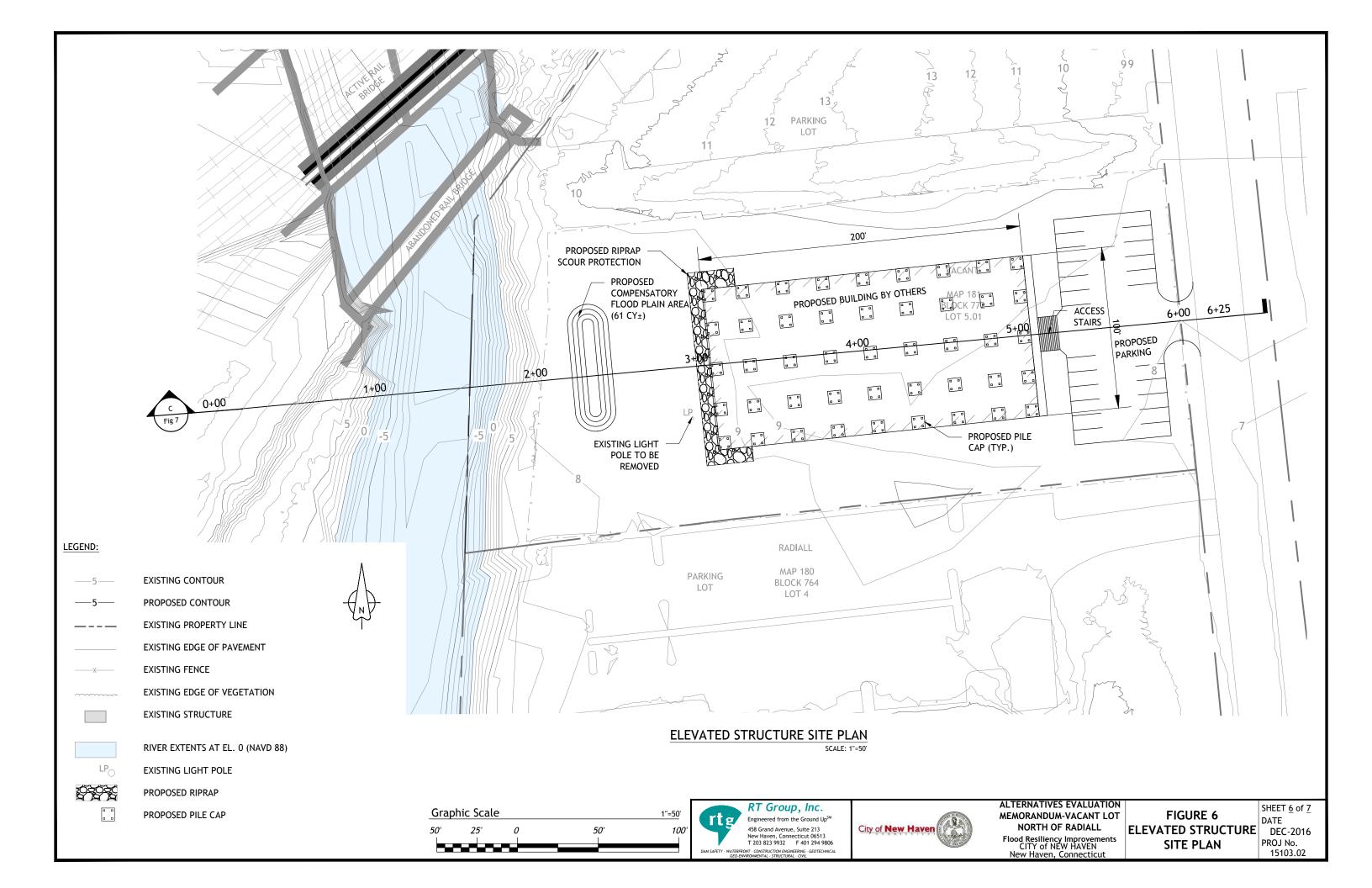
DEC-2016

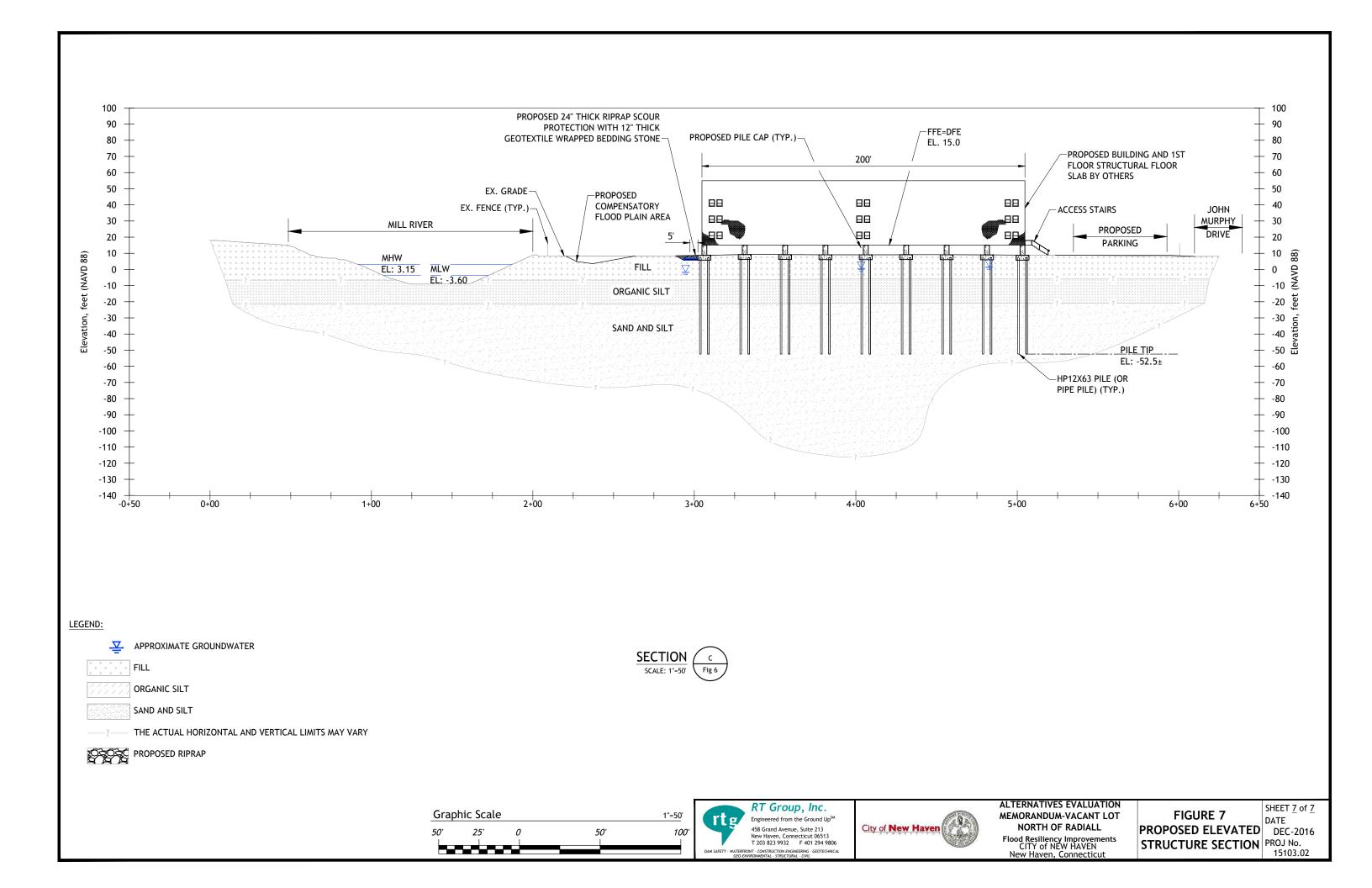
15103.02

DATE


PROJ No.


ORGANIC SILT


SAND AND SILT


THE ACTUAL HORIZONTAL AND VERTICAL LIMITS MAY VARY

Graphic Scale

RT Group, Inc. Engineered from the Ground Up^{5M} 70 Romano Vineyard Way, Suite 134 North Kingstown, Rhode Island 02852 T 401 438 3100 F 401 294 9806

DAM SAFETY · WATERFRONT · CONSTRUCTION ENGINEERING · GEOTECHNICAL GEO-ENVIRONMENTAL · STRUCTURAL · CIVIL

SOIL BORING LOG

BORING NUMBER: RTG-SB-01

DATE(S): 10/28/2016

PROJECT NUMBER: 15103.02

PROJECT: Mill River District Flood Resiliency Improvements	LOCATION: NW corner of lot north of 104 Murphy Dr. New Haven, CT			
ELEVATION: 8.63 ft (NAVD 88)	DRILLING CONTRACTOR: New England Boring Contractors			

	DRILLING METHOD AND EQUIPMENT: Rotary Wash and Driven Casing with Truck Mounted "Mobile Drill" Rig										
					START: 8:00 AM, 10/28/2016 FINISH:11:45 AM, 10/28/2016 LOGGER: T. Alpaio						
	EVEL AND	DATE) PM, 10/28/2016	START: 8:00 AM, 10/28/2016 FINISH: 11:45 A	M, 10/28/2016 LOGGER: T. Alpaio					
DEPTH BELOW SURFACE (FT)	, L	4D	:RY (FT)	STANDARD PENETRATION TEST	SOIL DESCRIPTION SOIL NAME, USCS GROUP SYMBOL,	COMMENTS					
PTH E	INTERVAL	TYPE AND NUMBER	RECOVERY	RESULTS	COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION					
SU	Z	ΤΝ	RE	6"- 6"- 6"- 6"	STRUCTURE, MINERALOGY						
0.0					CANDY OF TWITH CDAVEL (ML) brown dry	Begin drilling at 8:00 AM					
_	0-2	SS-1	1.2	12-10-8-24	SANDY SILT WITH GRAVEL, (ML), brown, dry, very stiff						
_	2-4	SS-2	1.1	14-16-14-13	SANDY SILT, (ML), red-brown, dry, very stiff	Fractured rock present					
<u>5.0</u>	4-6	SS-3	1.8	15-17-8-6	SANDY SILT, (ML), black, moist, very stiff						
_	6-8	SS-4	1.2	12-11-10-3	SILTY SAND, (SM), gray-black, wet, medium dense, fine to coarse grained						
	8-10	SS-5	1.5	5-6-22-37	SILTY SAND. (SM), gray-black, wet, medium dense, fine grained	Organics present (shells)					
_											
<u>15.0</u>						Casing driven to 15'					
_	15-17	SS-6	0.2	W.O.H.	ORGANIC ELASTIC SILT, (OH), gray, wet, very soft						
_	17-19	ST-1	2.3	Shelby Tube	ORGANIC ELASTIC SILT, (OH), dark gray, wet	Organics present (wood and shells)					
20.0											
_	20-22	SS-7	2.0	1-1-1-1	ORGANIC ELASTIC SILT, (OH), gray, wet, very soft	Organics present (wood and shells)					
	22-24	ST-2	2.3	Shelby Tube	ORGANIC ELASTIC SILT, (OH), dark gray, wet						
25.0											
	25-27	SS-8	2.0	1-1-2-2	ORGANIC ELASTIC SILT, (OH), gray, wet, very soft	Organics present (wood and shells)					
_											
<u>30.0</u>											
_	30-32	SS-9	1.3	7-6-5-24	WELL GRADED SAND WITH SILT, (SW-SM), red-gray, wet, medium dense	Rounded gravel in tip					
_											
<u>35.0</u>						Casing driven to 35'					
	35-37	SS-10	2.0	18-44-36-73	WELL GRADED SAND WITH SILT AND GRAVEL, (SW-SM), red-brown, wet, very dense						
40. <u>0</u>											

RT Group, Inc. Engineered from the Ground Up^{5M} 70 Romano Vineyard Way, Suite 134 North Kingstown, Rhode Island 02852 T 401 438 3100 F 401 294 9806 DAM SAFETY · WATERFRONT · CONSTRUCTION ENGINEERING · GEOTECHNICAL GEO-ENVIRONMENTAL · STRUCTURAL · CIVIL

SOIL BORING LOG

BORING NUMBER: RTG-SB-01

DATE(S): 10/28/2016

PROJECT NUMBER: 15103.02

PROJECT: Mill River District Flood Resiliency Improvements

LOCATION: NW corner of lot north of 104 Murphy Dr. New Haven, CT

ELEVATION: 8.63 ft (NAVD 88)

DRILLING CONTRACTOR: New England Boring Contractors

	DRILLING METHOD AND EQUIPMENT: Rotary Wash and Driven Casing with Truck Mounted "Mobile Drill" Rig										
) PM, 10/28/2016		START: 8:00 AM, 10/28/2016 FINISH:11:45 AM, 10/28/2016 LOGGER: T. Alpaio					
	LVLL AND		(FT)	STANDARD	SOIL DESCRIPTION	COMMENTS					
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY	PENETRATION TEST RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND					
DEI	Ā	Ϋ́	RE	6"- 6"- 6"- 6"	STRUCTURE, MINERALOGY	INSTRUMENTATION					
<u>40.0</u>					OUTTY OAND (OA)	Casing driven to 40'					
_	40-42	SS-11	1.4	2-2-3-4	SILTY SAND, (SM), red-brown, wet, loose, fine grained						
<u>45.0</u>					CILTY CAND (CM) and brown wet loose fine	Casing driven to 45'					
_	45-47	SS-12	1.7	5-4-5-7	SILTY SAND, (SM), red-brown, wet, loose, fine grained						
<u>50.0</u>					POORLY GRADED SAND, (SP), red, wet,	Casing driven to 50'					
	50-52	SS-13	1.4	13-20-25-22	dense, fine grained						
						Casing driven to 55'					
<u>55.0</u>					SILT WITH SAND, (ML), red, wet, very stiff	Casing driver to 55					
	55-57	SS-14	2.0	8-8-11-12	. , , , ,						
_											
60.0						Casing driven to 60'					
	60-62	SS-15	1.9	8-12-17-16	SILTY SAND, (SM), red, wet, medium dense,	Ü					
_	00-02	33-13	1.9	0-12-17-10	fine grained						
_					END BORING AT 62 FEET.	End drilling at 11:45 AM. Boring backfilled with bentonite chips.					
<u>65.0</u>											
_											
_											
<u>70.0</u>											
_											
_											
<u>75.0</u>											
_											
80.0											

RT Group, Inc. Engineered from the Ground Up SM 70 Romano Vineyard Way, Suite 134 North Kingstown, Rhode Island 02852 T 401 438 3100 F 401 294 9806

40.0

DAM SAFETY · WATERFRONT · CONSTRUCTION ENGINEERING · GEOTECHNICAL GEO-ENVIRONMENTAL · STRUCTURAL · CIVIL

SOIL BORING LOG

BORING NUMBER: RTG-OW-02

PROJECT NUMBER: 15103.02

DATE(S): 10/25/16-10/27/16

PROJECT: Mill River District Flood Resiliency Improvements

LOCATION: Center of lot north of 104 Murphy Dr. New Haven, CT

ELEVATION: 9.10' (NAVD 88) DRILLING CONTRACTOR: New England Boring Contractors DRILLING METHOD AND EQUIPMENT: Rotary Wash and Driven Casing with Truck Mounted "Mobile Drill" Rig WATER LEVEL AND DATE: 8.5' at 10:00 AM, 10/26/16 **START:** 1:00 PM, 10/25/16 FINISH: 11:45 AM, 10/27/16 LOGGER: T. Alpaio DEPTH BELOW SURFACE (FT) Ē SOIL DESCRIPTION COMMENTS **STANDARD** RECOVERY PENETRATION TEST TYPE AND NUMBER SOIL NAME, USCS GROUP SYMBOL. NTERVAL **RESULTS** DEPTH OF CASING, DRILLING RATE. COLOR, MOISTURE CONTENT, RELATIVE **DRILLING FLUID LOSS, TESTS AND DENSITY OR CONSISTENCY, SOIL** INSTRUMENTATION 6"- 6"- 6"- 6" STRUCTURE, MINERALOGY 0.0 Begin drilling at 1:00 PM. SANDY SILT, (ML), red-brown, dry, hard 0-2 SS-1 1.4 9-17-30-67 SANDY SILT, (ML), red-brown, dry, very stiff SS-2 2-4 1.0 10-10-19-7 SANDY SILT, (ML), black-brown, dry, firm Red fractured rock in tip 5.0 4-6 SS-3 1.1 9-4-3-15 POORLY GRADED SAND WITH SILT AND GRAVEL, (SP-SM), black-red, dry, loose, fine to 6-8 SS-4 0.7 9-5-4-5 medium grained SILT WITH SAND AND GRAVEL, (ML), black, SS-5 8-10 1.2 3-5-4-3 wet, stiff 10.0 15.0 Casing driven to 15' ORGANIC ELASTIC SILT, (OH), gray, wet, very 15-17 SS-6 2.0 W.O.H. ORGANIC ELASTIC SILT, (OH), dark gray, wet ST-1 17-19 Shelby Tube 1.8 20.0 ORGANIC ELASTIC SILT, (OH), dark gray, wet 19-21 ST-2 2.3 Shelby Tube ORGANIC ELASTIC SILT, (OH), dark gray, wet 21-23 ST-3 2.3 Shelby Tube <u>25.</u>0 ORGANIC ELASTIC SILT, (OH), gray, wet, very Organics present (shells), sulfer odor SS-7 W.O.H. 25-27 2.0 30.0 SILTY SAND, (SM), black, wet, very loose, fine Organics present (shells), sulfur odor SS-8 30-32 1.8 1-1-1-1 grained <u>3</u>5.0 WELL GRADED SAND WITH SILT AND Drilling fluid loss 35-37 SS-9 1.0 26-40-29-20 GRAVEL, (SW-SM), gray-brown, wet, very dense

RT Group, Inc. Engineered from the Ground UpSM 70 Romano Vineyard Way, Suite 13

70 Romano Vineyard Way, Suite 134 North Kingstown, Rhode Island 02852 T 401 438 3100 F 401 294 9806

DAM SAFETY · WATERFRONT · CONSTRUCTION ENGINEERING · GEOTECHNICAL GEO-ENVIRONMENTAL · STRUCTURAL · CIVIL

SOIL BORING LOG

BORING NUMBER: RTG-OW-02

DATE(S): 10/25/16-10/27/16

PROJECT NUMBER: 15103.02

PROJEC1	Γ: Mill Rive	r Distric	t Flood Re	siliency Improvements		LOCATION:	: Center of lot nort	th of 104 Murp	hy Dr. New Haven, CT				
	ON: 9.10' (l						CONTRACTOR: N		·				
DRILLING	METHOD	AND EC	UIPMENT:	Rotary Wash and Driven (Casing with Truck Mo	ounted "Mob	ile Drill" Rig	-	-				
WATER L	EVEL AND	DATE:	8.5' at 10:0	0 AM, 10/26/16	START: 1:00 PM,	10/25/16	FINISH: 11:45 A	AM, 10/27/16 LOGGER: T. Alpaio					
LOW (FT)			Y (FT)	STANDARD PENETRATION TEST		DESCRIPT			COMMENTS				
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	OVERY	COVER	COVER	RECOVERY (FT)	COVERY	RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL				CASING, DRILLING RATE, FLUID LOSS, TESTS AND
DEF	Z	T N	REC	6"- 6"- 6"- 6"		JRE, MINER	,	INS	TRUMENTATION				
<u>40.0</u>								Casing driver	n to 40'				
_	40-42	SS-10	1.5	5-5-7-8	SANDY SILT, (ML)	, red-brown,	wet, stiff						
-													
_ 45.0								Casing driver	n to 45'				
<u>-1010</u>	45-47	SS-11	1.8	6-6-13-30	SANDY SILT, (ML)	, red-brown,	wet, very stiff	Ŭ					
_		100 11		0 0 10 00									
_													
<u>50.0</u>								Casing driver	n to 50'				
_	50-52	SS-12	1.5	7-9-9-12	SILT WITH SAND, stiff	(ML), red-bi	rown, wet, very						
_													
_ 55.0								Casing driver	n to 55'				
<u>55.0</u> –	55-57	SS-13	2.0	6-7-9-15	SILT, (ML), brown, wet, very stiff		gaoing ann oi	. 10 00					
_	33-31	00-13	2.0	0-7-0-10	_								
_													
<u>60.0</u>								Casing driver	n to 60'				
_	60-62	SS-14	2.0	5-6-10-16	SILT WITH SAND,	(ML), brown	i, wet, very stiff						
_					_								
_ 65.0								Casing driver	o to 65'				
<u>65.0</u>	05.07	00.45	4.7	5.0.40.40	POORLY GRADED	SAND WIT	H SILT, (SP-	Casing unvei	110 03				
_	65-67	SS-15	1.7	5-8-12-13	SM), brown, wet, m	edium dens	e, fine grained						
_													
<u>70.0</u>								Casing driver	n to 70'				
_	70-72	SS-16	2.0	4-6-10-18	SILTY SAND, (SM) fine grained	, red, wet, n	nedium dense,						
_		+			1								
									. 75				
<u>75.0</u>		+			SILTY SAND, (SM)	. brown. wet	t. medium dense	Casing driver	n to 75'				
	75-77	SS-17	1.2	9-11-18-20	fine grained	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,						
_	_												
80.0													
<u> </u>					i .			I					

RT Group, Inc. Engineered from the Ground UpSM 70 Romano Vineyard Way, Suite 134 North Kingstown, Rhode Island 02852 T 401 438 3100 F 401 294 9806

120.0

DAM SAFETY · WATERFRONT · CONSTRUCTION ENGINEERING · GEOTECHNICAL GEO-ENVIRONMENTAL · STRUCTURAL · CIVIL

SOIL BORING LOG

BORING NUMBER: RTG-OW-02

DATE(S): 10/25/16-10/27/16

PROJECT NUMBER: 15103.02

PROJECT: Mill River District Flood Resiliency Improvements

LOCATION: Center of lot north of 104 Murphy Dr. New Haven, CT

ELEVATION: 9.10' (NAVD 88)

DRILLING CONTRACTOR: New England Boring Contractors

ELEVATION	ELEVATION: 9.10' (NAVD 88) DRILLING CONTRACTOR: New England Boring Contractors									
DRILLING	METHOD	AND E	QUIPMENT:	Rotary Wash and Driven C	Casing with Truck Mounted "Mobile Drill" Rig					
	EVEL AND	DATE:	8.5' at 10:00	AM, 10/26/16	START: 1:00 PM, 10/25/16 FINISH: 11:45	AM, 10/27/16 LOGGER: T. Alpaio				
% E €			(FT)	STANDARD	SOIL DESCRIPTION	COMMENTS				
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS 6"- 6"- 6"- 6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION				
<u>8</u>		ĹΣ	교	0-0-0-0	STRUCTURE, MINERALOGY	Casing driven to 80'				
<u>80.0</u> –	80-82	SS-18	0.0	6-8-14-16	No Recovery	Trace of soil in tip				
<u>85.0</u> –	85-87	SS-19	1.1	4-7-12-20	POORLY GRADED SAND, (SP), brown, wet, medium dense, fine to medium grained	Casing driven to 85'				
					modalin dense, line to medium grained					
90.0	90-92	SS-20	0.8	6-7-10-12	POORLY GRADED SAND, (SP), brown, wet, medium dense, fine to medium grained	Casing driven to 90'				
95.0 - - - -	95-97	SS-21	1.3	12-14-19-20	WELL GRADED SAND, (SW), brown, wet, dense	Casing driven to 95'				
100.0 -	100-102	SS-22	2.0	6-9-15-22	<u>WELL GRADED SAND.</u> (SW), red, wet, mediur dense	Casing driven to 100'				
105.0	105-107	SS-23	2.0	5-8-17-17	<u>WELL GRADED SAND.</u> (SW), red, wet, mediur dense	Casing driven to 105'				
110.0 - -	110-112	SS-24	2.0	9-12-16-22	SILTY SAND. (SM), red-brown, wet, medium dense, fine to medium grained	Casing driven to 110' Top 18"				
					SANDY SILT, (ML), red, wet, very stiff	Bottom 6"				
115.0 -	115-117	SS-25	1.8	7-9-16-25	<u>SILT,</u> (ML), brown, wet, very stiff	Casing driven to 115'				
-										

RT Group, Inc. Engineered from the Ground Up^{5M} 70 Romano Vineyard Way, Suite 134 North Kingstown, Rhode Island 02852 T 401 438 3100 F 401 294 9806

DAM SAFETY · WATERFRONT · CONSTRUCTION ENGINEERING · GEOTECHNICAL GEO-ENVIRONMENTAL · STRUCTURAL · CIVIL

SOIL BORING LOG

BORING NUMBER: RTG-OW-02

DATE(S): 10/25/16-10/27/16

PROJECT NUMBER: 15103.02

PROJECT: Mill River District Flood Resiliency Improvements

LOCATION: Center of lot north of 104 Murphy Dr. New Haven, CT

ELEVATION: 9.10' (NAVD 88)

DRILLING CONTRACTOR: New England Boring Contractors

	ELEVATION: 9.10' (NAVD 88) DRILLING CONTRACTOR: New England Boring Contractors DRILLING METHOD AND EQUIPMENT: Rotary Wash and Driven Casing with Truck Mounted "Mobile Drill" Rig									
	_EVEL AND	DATE:		AM, 10/26/16	START: 1:00 PM, 10/25/16	FINISH: 11:45 A	M, 10/27/16	LOGGER: T. Alpaio		
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	STANDARD PENETRATION TEST RESULTS	SOIL NAME, USCS GROU COLOR, MOISTURE CONTE	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DEPTH OF CAS		COMMENTS CASING, DRILLING RATE, FLUID LOSS, TESTS AND		
DEP.		TY PE	REC	6"- 6"- 6"- 6"	DENSITY OR CONSISTE STRUCTURE, MINER	INSTRUMENTATION				
<u>120.0</u>					DOOD! V OD ADED OAND (OF	2)	Casing driver	n to 118'		
_	120-122	SS-26	2.0	7-13-17-28	POORLY GRADED SAND, (SF medium dense, fine grained	2), rea, wet,				
125.0 - 130.0 - 135.0 - 140.0 - 145.0 - 150.0		SS-26	2.0	7-13-17-28			Boring backfi from 122 feet 25-foot-long of comprised of size PVC screand 2-inch dia upper 15 feet pack was inst feet, followed feet. The well diameter bolt	t 11:30 AM, 10/27/16. Illed with bentonite chips to 27 feet. Disservation Well installed, 2-inch diameter, 0.01" slot een in the lower 10 feet, ameter PVC casing for the . A Holliston 00N sand filter talled around the well to 4 by bentonite chips to 2 was topped by a 6-inching road box installed at a 2-foot-thick concrete		
155.0 -										
<u>160.0</u>										

RT Group, Inc. Engineered from the Ground UpSM

70 Romano Vineyard Way, Suite 134 North Kingstown, Rhode Island 02852 T 401 438 3100 F 401 294 9806

DAM SAFETY · WATERFRONT · CONSTRUCTION ENGINEERING · GEOTECHNICAL GEO-ENVIRONMENTAL · STRUCTURAL · CIVIL

SOIL BORING LOG

BORING NUMBER: RTG-SB-03

DATE(S): 10/25/2016

PROJECT NUMBER: 15103.02

PROJECT: Mill River District Flood Resiliency Improvements	LOCATION: SE corner of lot north of 104 Murphy Dr. New Haven, CT
ELEVATION: 8.54' (NAVD 88)	DRILLING CONTRACTOR: New England Boring Contractors

DRILLING	DRILLING METHOD AND EQUIPMENT: Rotary Wash and Driven Casing with Truck Mounted "Mobile Drill" Rig										
WATER L	EVEL AND	DATE:	7.5 feet at 8:	30 AM, 10/25/16	START: 8:00 AM, 10/28/16 FINISH: 1:00 PM	I, 10/25/16 LOGGER : T. Alpaio					
LOW (FT)			Y (FT)	STANDARD PENETRATION TEST	SOIL DESCRIPTION	COMMENTS					
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND					
DEF	INI	TYP	REC	6"- 6"- 6"- 6"	STRUCTURE, MINERALOGY	INSTRUMENTATION					
0.0						Begin drilling at 8:00 AM					
_	0-1.5	SS-1	1.5	13-30-60	SANDY SILT, (ML), brown, dry, hard	Fractured rock present					
_	2-4	SS-2	1.4	7-23-16-10	SANDY SILT WITH GRAVEL, (ML), brown, dry, hard	Glass throughout lower 6"					
<u>5.0</u>	4-6	SS-3	0.9	11-10-9-7	SANDY SILT WITH GRAVEL, (ML), brown, dry, very stiff						
_	6-8	SS-4	1.3	9-5-15-19	SILTY SAND WITH GRAVEL, (SM), brown, moist, medium dense, fine to coarse grained	Petroleum odor					
10.0	8-10	SS-5	1.5	10-9-21-20	SILTY SAND, (SM), black, wet, medium dense, fine to coarse grained	Petroleum odor					
_											
_											
15. <u>0</u>						Casing driven to 15'					
_	15-17	SS-6	1.7	1-1-W.O.H.	ORGANIC ELASTIC SILT, (OH), gray, wet, very soft	Organics present (shells)					
_	17-19	ST-1	2.0	Shelby Tube	ORGANIC ELASTIC SILT, (OH), dark gray, wet						
20.0											
_	20-22	SS-7	1.5	W.O.H.	ORGANIC ELASTIC SILT, (OH), gray, wet, very soft	Organics present (shells)					
_											
<u>25.0</u>											
_	25-27	SS-8	1.7	W.O.H.	ORGANIC ELASTIC SILT, (OH), gray, wet, very soft	wood present					
_											
30. <u>0</u>											
_	30-32	SS-9	1.2	W.O.HW.O.H2-1	SANDY SILT, (ML), gray, wet, very soft						
_											
<u>35.0</u>											
_	35-37	SS-10	1.2	4-11-14-18	SANDY SILT, (ML), gray, wet, very stiff	Top 9"					
_					SILTY SAND WITH GRAVEL, (SM), gray-brown, wet, medium dense, fine to coarse grained	Bottom 5"					
40.0											
+0.0											

RT Group, Inc. Engineered from the Ground Up SM 70 Page 20 Wag and Wag Suite 13

70 Romano Vineyard Way, Suite 134 North Kingstown, Rhode Island 02852 T 401 438 3100 F 401 294 9806

DAM SAFETY · WATERFRONT · CONSTRUCTION ENGINEERING · GEOTECHNICAL GEO-ENVIRONMENTAL · STRUCTURAL · CIVIL

SOIL BORING LOG

BORING NUMBER: RTG-SB-03

PROJECT NUMBER: 15103.02

DATE(S): 10/25/2016

PROJECT: Mill River District Flood Resiliency Improvements

LOCATION: SE corner of lot north of 104 Murphy Dr. New Haven, CT

ELEVATION: 8.54' (NAVD 88)

DRILLING CONTRACTOR: New England Boring Contractors

DRILLING METHOD AND EQUIPMENT: Rotary Wash and Driven Casing with Truck Mounted "Mobile Drill" Rig						ew England Boning Contractors	
					START: 8:00 AM, 10/28/16 FINISH: 1:00 PM	M, 10/25/16 LOGGER: T. Alpaio	
	EVEL AND		_	30 AM, 10/25/16 STANDARD	SOIL DESCRIPTION	COMMENTS	
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND	
DEF	K	TYP	REC	6"- 6"- 6"- 6"	STRUCTURE, MINERALOGY	INSTRUMENTATION	
40.0						Casing driven to 40'	
_	40-42	SS-11	0.5	14-17-10-12	WELL GRADED GRAVEL WITH SAND, (GW), red-brown, wet, medium dense		
_							
<u>45.0</u>						Casing driven to 45'	
	45-47	SS-12	1.6	5-7-7-9	SILT WITH SAND, (ML), red-brown, wet, stiff		
50.0						Casing driven to 50'	
_	50-52	SS-13	1.7	11-14-17-19	SILT WITH SAND, (ML), red-brown, wet, hard		
55.0						Casing driven to 55'	
	55-57	SS-14	1.8	10-20-23-25	SILTY SAND, (SM), red-brown, wet, dense, fine grained	-	
_							
60. <u>0</u>						Casing driven to 60'	
_	60-62	SS-15	1.7	10-15-16-22	SILT WITH SAND, (ML), red-brown, wet, hard		
_					END BORING AT 62 FEET.	End drilling at 1:00 PM.	
65.0						Boring backfilled with Portland cement grout.	
_							
_							
<u>70.0</u>							
_							
75.0							
<u>70.0</u>							
_							
80.0							

Observation Well Log Alternatives Evaluation Memorandum Flood Protection Alternative Selection - Vacant Lot North of Radiall New Haven, CT

Doto	RTG	-OW-2	Notes	
Date	Depth (ft)	Elevation (ft)	Notes	
November 8, 2016	7.50	1.60		

Footnotes:

For reference, the top of the road box is at El. 9.10 feet (NAVD 88).

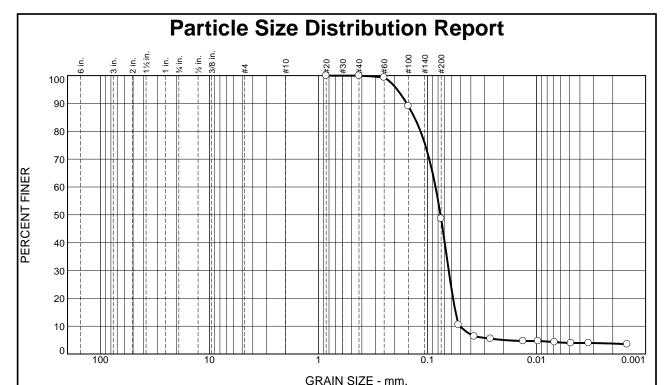
Depth measured from the top of road box.

195 Frances Avenue Cranston RI, 02910 Phone: (401)-467-6454 Fax: (401)-467-2398 http://www.thielsch.com Client Information: RT Group

70 Romano Vineyard Way #134 North Kingstown, RI 02852 PM: David Arpin, P.E.

Assigned By: D. Arpin

Laboratory Information
Mill River District
Flood Resiliency Improvements
New Haven, CT


TEI Project Number: 74-16-0002.09

Report Date: 12.5.16

LABORATORY TESTING DATA SHEET

							Identific	ation To	ests					Corrosivit	y Suite	_	
Boring No.	Sample No.	Depth (ft)	Laboratory No.	Water Content %	LL %	PL %	Gravel %	Sand %	Silt %	Clay %	G_s	As Received Resistance (Mohm-cm)	(ppm)	Eh (ORP) (mV)	Sulfate (ppm)	Chloride (ppm)	Laboratory Log and Soil Description
RTG-SB-01	ST-2	22-24	16-S-1567														See Tube Summary Sheet
	SS-12	45-47	16-S-1568	26.7			0.0	51.3	44.7	4.0							Red-Brown silty sand (SM)
RTG-OW-02	ST-2	19-21	16-S-1569														See Tube Summary Sheet
	SS-8	30-32	16-S-1570	33.1			1.3	55.2	38.9	4.6							Black silty sand (SM)
	SS-12	50-52	16-S-1571	27.3			0.0	18.3	76.4	5.3							Red-Brown silt with sand (ML)
	SS-24	110-112	16-S-1572	19.1			0.2	86.9	10.6	2.3							Red-Brown silty sand (ML)
RTG-SB-03	ST-1	17-19	16-S-1573														See Tube Summary Sheet
	SS-12	45-47	16-S-1574	28.1			0.0	18.0	78.2	3.8							Red-Brown silt with sand (ML)

	Mithal Colm			
Reviewed By	I more of heart	Dat	te Revised	<i>12.14.16</i>

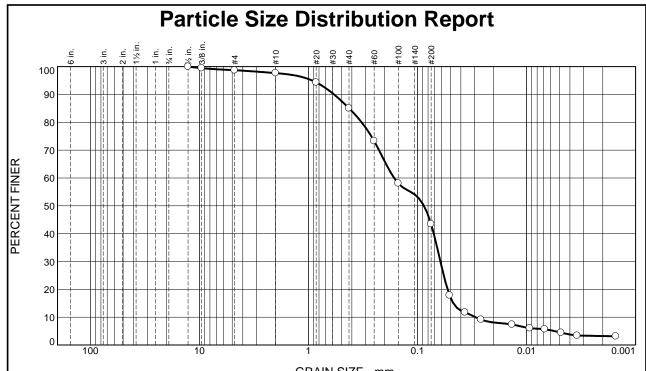
	0.0									
% +3"	% Gı	ravel	% Sand			% Fines				
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
0.0	0.0	0.0	0.0	0.0	51.3	44.7	4.0			

TEST RESULTS (D7928)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
#20	100.0						
#40	100.0						
#60	99.4						
#100	89.1						
#200	48.7						
0.0521 mm.	10.5						
0.0373 mm.	6.4						
0.0265 mm.	5.5						
0.0133 mm.	4.7						
0.0097 mm.	4.7						
0.0069 mm.	4.3						
0.0048 mm.	4.0						
0.0033 mm.	4.0						
0.0015 mm.	3.5						

Material Description Red-Brown silty sand (SM) **Atterberg Limits (ASTM D 4318) PL=** 0 **LL=** 0 **Classification** USCS (D 2487)= SM **AASHTO** (M 145)= A-4(0)Coefficients D₆₀= 0.0843 D₁₅= 0.0553 C_c= 0.96 $\begin{array}{l} \textbf{D90=} \ 0.1550 \\ \textbf{D50=} \ 0.0760 \\ \textbf{D10=} \ 0.0504 \end{array}$ D₈₅= 0.1317 D₃₀= 0.0639 C_u= 1.67 Remarks Date Received: 11.10.16 **Date Tested:** 11.14.16 Tested By: IA Checked By: MJC Title: Laboratory Manager

* (no specification provided)

Source of Sample: Borings Sample Number: RTG-SB-01 **Depth:** 45-47


Thielsch Engineering Inc.

Client: RT GROUP Project: Mill River Dist

Cranston, RI

Project No: 74-16-0002.09

Figure SH-1568

				GRAIN SI	∠E - mm.			
0/ .3"	% Gı	ravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	1.3	1.0	12.6	41.6	38.9	4.6	

PL= 0

Black silty sand (SM)

USCS (D 2487)= SM

TEST RESULTS (D7928)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
0.5	100.0					
0.375	99.4					
#4	98.7					
#10	97.7					
#20	94.3					
#40	85.1					
#60	73.3					
#100	58.1					
#200	43.5					
0.0508 mm.	17.9					
0.0366 mm.	11.7					
0.0261 mm.	9.1					
0.0136 mm.	7.4					
0.0093 mm.	6.1					
0.0068 mm.	5.7					
0.0048 mm.	4.4					
0.0034 mm.	3.4					
0.0015 mm.	3.1					
* .						

D ₉₀ = 0.5825 D ₅₀ = 0.0873 D ₁₀ = 0.0295	D ₈₅ = 0.4 D ₃₀ = 0.0 C _u = 5.56	235 616	D₆₀= 0.1638 D₁₅= 0.0469 C_c= 0.79
	Re	marks	
Date Received: Tested By:		Date T	Tested: 11.14.16
Checked By:	MJC		
Title:	Laboratory 1	Manager	

Material Description

Atterberg Limits (ASTM D 4318)

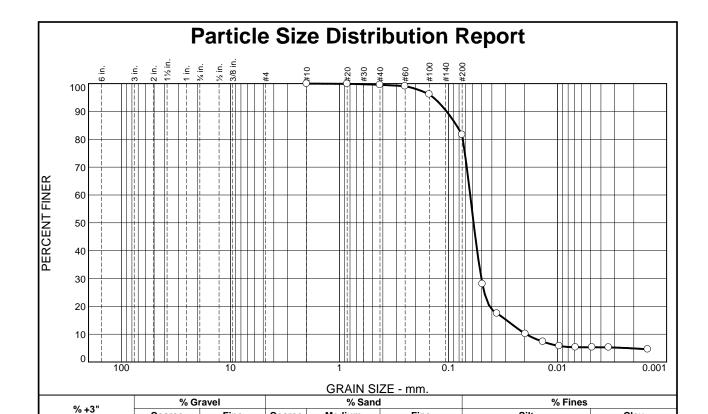
Coefficients **D₈₅=** 0.4235

Classification
AASHTO (M 145)= A-4(0)

LL= 0

* (no specification provided)

Source of Sample: Borings Depth: 30-32 Sample Number: RTG-OW-02 / SS-8 **Date Sampled:** 11.10.16


Thielsch Engineering Inc.

Cranston, RI

Client: RT GROUP Project: Mill River Dist

Project No: 74-16-0002.09

Figure SH-1570

Medium

0.4

Fine

17.9

	TEST RESULTS (D7928)							
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
#10	100.0							
#20	99.9							
#40	99.6							
#60	99.1							
#100	96.1							
#200	81.7							
0.0489 mm.	28.0							
0.0360 mm.	17.5							
0.0197 mm.	10.2							
0.0136 mm.	7.3							
0.0097 mm.	5.8							
0.0068 mm.	5.3							
0.0048 mm.	5.3							
0.0034 mm.	5.3							
0.0015 mm.	4.6							
* (no spe	ecification provide	ad)						

Coarse

0.0

0.0

Fine

0.0

Coarse

0.0

	Material D	escription	<u>on</u>	
Red-Brown silt v	vith sand (MI			
red Brown sin v	vitti saiia (ivii	• •		
•		/ A O = 3 A	D 4040)	
	rberg Limits	S (ASTM		
PL= 0	LL= 0		PI= 0	
	Classif	ication		
USCS (D 2487)=			M 145)= A-	4(0)
, ,	C#:	-!		
D 0 1040		<u>cients</u>	D 0.063	12
D₉₀= 0.1040	D₈₅= 0.08 D₃₀= 0.05	44 00	D₆₀= 0.063 D₁₅= 0.029	
D₅₀= 0.0589 D₁₀= 0.0194	$C_{IJ} = 3.26$	00	$C_{c} = 2.03$,3
- 10 *****	u		-6	
	Rem	arks		
Date Received:	11 10 16	Date T	ested: 11.1	4 16
		Date	csicu. 11.1	4.10
Tested By:	IA			
Checked By:	MJC			
Title	I ahamatam: M	[omogan		
i itie:	Laboratory M	lanager		

Silt

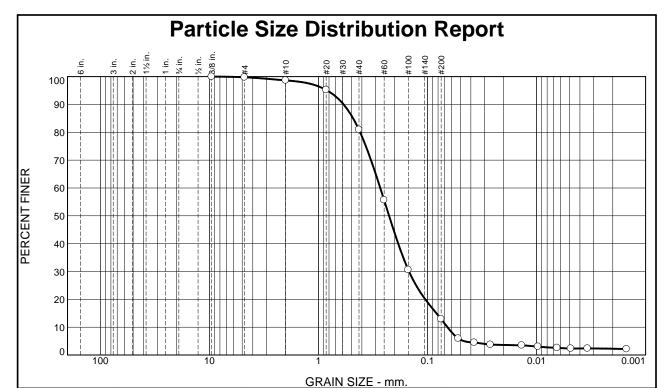
76.4

Clay

5.3

(no specification provided)

Source of Sample: Borings Depth: 50-52 Sample Number: RTG-OW-02 / SS-12


Thielsch Engineering Inc.

Client: RT GROUP Project: Mill River Dist

Cranston, RI

Project No: 74-16-0002.09

Figure SH-1571

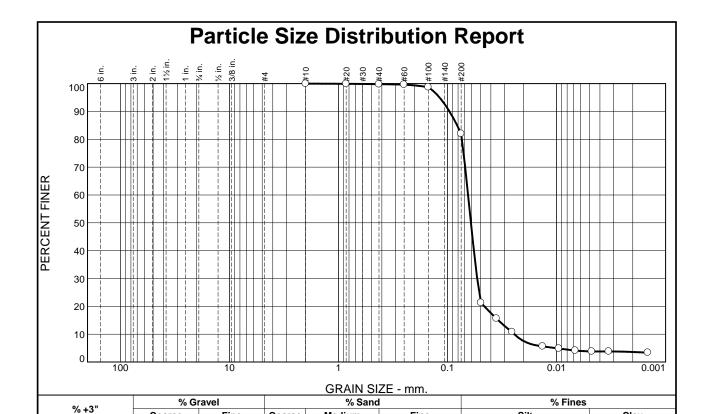
0/ - 21	% Gı	ravel	% Sand			% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
0.0	0.0	0.2	1.2	17.7	68.0	10.6	2.3		

TEST RESULTS (D7928)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
0.375	100.0								
#4	99.8								
#10	98.6								
#20	95.2								
#40	80.9								
#60	55.7								
#100	30.6								
#200	12.9								
0.0522 mm.	5.9								
0.0372 mm.	4.5								
0.0264 mm.	3.7								
0.0137 mm.	3.5								
0.0097 mm.	3.0								
0.0065 mm.	2.6								
0.0048 mm.	2.3								
0.0034 mm.	2.4								
0.0015 mm.	2.1								

Material Description Red-Brown silty sand (SM) **Atterberg Limits (ASTM D 4318) PL=** 0 **LL=** 0 **Classification** USCS (D 2487)= SM **AASHTO (M 145)=** A-2-4(0) Coefficients D₆₀= 0.2712 D₁₅= 0.0828 C_c= 1.23 **D₉₀=** 0.5878 **D₅₀=** 0.2250 **D₁₀=** 0.0657 D₈₅= 0.4806 D₃₀= 0.1477 C_u= 4.13 Remarks Date Received: 11.10.16 **Date Tested:** 11.14.16 Tested By: IA Checked By: MJC Title: Laboratory Manager

(no specification provided)

Source of Sample: Borings Depth: 110-112 Sample Number: RTG-OW-02 / SS-24


Thielsch Engineering Inc.

Cranston, RI

Client: RT GROUP Project: Mill River Dist

Project No: 74-16-0002.09

Figure SH-1572

Medium

0.2

Fine

17.8

TEST RESULTS (D7928)										
Opening	Percent	Spec.*	Pass?							
Size	Finer	(Percent)	(X=Fail)							
#10	100.0									
#20	99.9									
#40	99.8									
#60	99.7									
#100	98.7									
#200	82.0									
0.0493 mm.	21.3									
0.0356 mm.	15.6									
0.0256 mm.	10.8									
0.0134 mm.	5.6									
0.0095 mm.	4.9									
0.0067 mm.	4.1									
0.0048 mm.	3.8									
0.0033 mm.	3.8									
0.0015 mm.	3.4									

Coarse

Fine

Coarse

M	laterial Descript	ion									
Red-Brown silt wiht sand (ML)											
Red Brown she white	Sund (IVIL)										
Attacha	ra l imita /ACTA	4 D 4240)									
PL= NP	erg Limits (ASTN LL= NV	PI= NP									
	LL- IVV	1 1- 111									
	Classification										
USCS (D 2487)=	USCS (D 2487)= AASHTO (M 145)= A-4(0)										
	Coefficients										
D ₉₀ = 0.0959	D ₈₅ = 0.0815	D₆₀= 0.0648									
D₅₀= 0.0610 I D₁₀= 0.0244	D₃₀= 0.0534	D₁₅= 0.0342									
D ₁₀ = 0.0244	C _u = 2.65	C _c = 1.81									
	Remarks										
Date Received: 11.	10.16 Date	Tested: 11.14.16									
	10.10 Date	16316u. 11.14.10									
Tested By: IA											
Checked By: MJ	C										
Title: Laboratory Manager											
Lac	oratory manager										

Silt

78.2

Clay

3.8

(no specification provided)

Source of Sample: Borings Depth: 45-47 Sample Number: RTG-SB-03 / SS-12

Thielsch Engineering Inc.

Cranston, RI

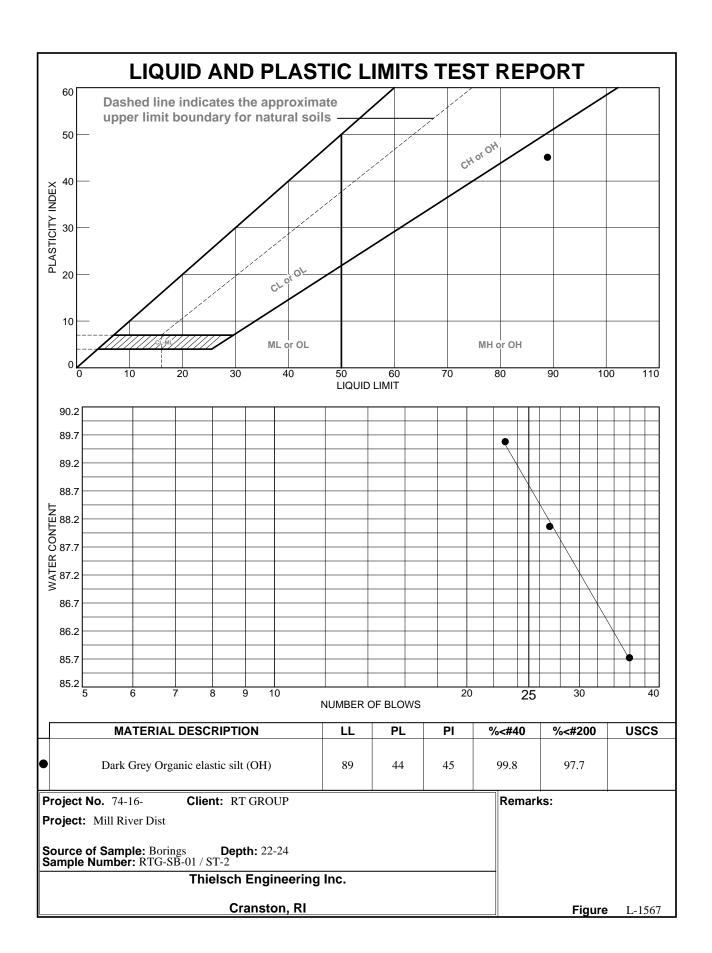
Client: RT GROUP

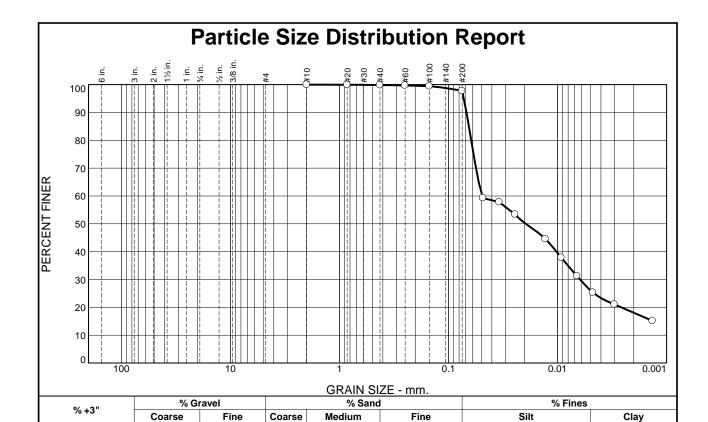
Project: Mill River Dist

Project No: 74-16-0002.09

Figure SH-1574

LABORATORY TUBE SUMMARY SHEET


Project Name Mill River District Flood Resiliency Improvements
Project No. 74-16-0002.09


Project Manager David Arpin, P.E.

Project Location New Haven, CT
Assigned By D. Arpin
Date Reviewed 12.6.16

Client RT Group

					Ide	entific	ation Te	sts				Strength Tests					Consol.	
Boring/ Test Pit No.	Sample No.	Depth ft.	Laboratory No.	Water Content %	LL %	PL %	Gravel %	Sand %	Silt %	Clay %	Dry unit wt. pcf	Torvane or Type Test	$\sigma_{\rm c}$ psf	Failure Criteria	$\sigma_1 - \sigma_3$ or τ psf	Strain %	$\frac{C_{c}}{1+e_0}$	Laboratory Log and Soil Description
RTG-SB-01	ST-2	22-24	16-S-1567		Aver	age 7	Γotal Un	it Wei	ght (22.	0-24.0)') = 96.	1 pcf						
		22'-0" to 24'-0"																(22'-0" - 24'-0") Dark Grey Organic SILT
																		(22'-0" to 22'-7") highly disturbed with shells and wood
		22'-9"		70.1								Tv = .075 tsf						
		22'-10"		75.3	89	44						Pen = 0.60 tsf						Dark Grey Organic elastic silt (OH)
		22'-11"		91.8			0.0	2.3	71.6	26.1								Dark Grey Organic elastic silt (OH)
		23'-0" to 23'-6"		83.3							54.2	CIU	2246	σ ₁ -σ ₃ Max	2033	7.3		
		23'-6" to 23'-10"																Consolidation (See Test Summary Page)
		23'-11"		67.6								Tv = .125 tsf						Sand content and mica flakes increasing with depth

0.2

2.1

TEST RESULTS (D6913)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
#10	100.0						
#20	100.0						
#40	99.8						
#60	99.7						
#100	99.4						
#200	97.7						
0.0484 mm.	59.3						
0.0343 mm.	57.8						
0.0245 mm.	53.4						
0.0129 mm.	44.5						
0.0092 mm.	37.9						
0.0066 mm.	31.2						
0.0047 mm.	25.3						
0.0030 mm.	21.0						
0.0013 mm.	15.1						
* (no ene	ecification provide	ad)	I				

0.0

0.0

0.0

Material Description									
Dark Grey Organic elastic silt (OH)									
Dark Grey Orga	Dark Grey Organic erastic sitt (OH)								
A 44.	whore Limite (ACT	M D 4349)							
PI = 44	erberg Limits (AST LL= 89	PI= 45							
PL= 44	LL= 09	FI= 43							
	Classification								
USCS (D 2487):	= AASHTO	O (M 145)=							
	Coefficients								
D₉₀= 0.0684	D ₈₅ = 0.0650	D₆₀= 0.0491							
D₅₀= 0.0196	D₃₀= 0.0062	D ₁₅ =							
D ₁₀ =	C _u =	C _C =							
	Remarks								
Data Bassinadı	11 10 16 Pote	Tantada 11 01 16							
Date Received:		Tested: 11.21.16							
Tested By:	IA								
Checked By:	MJC								
Title:	Laboratory Manager								
Title.	Laboratory Wallager								

71.6

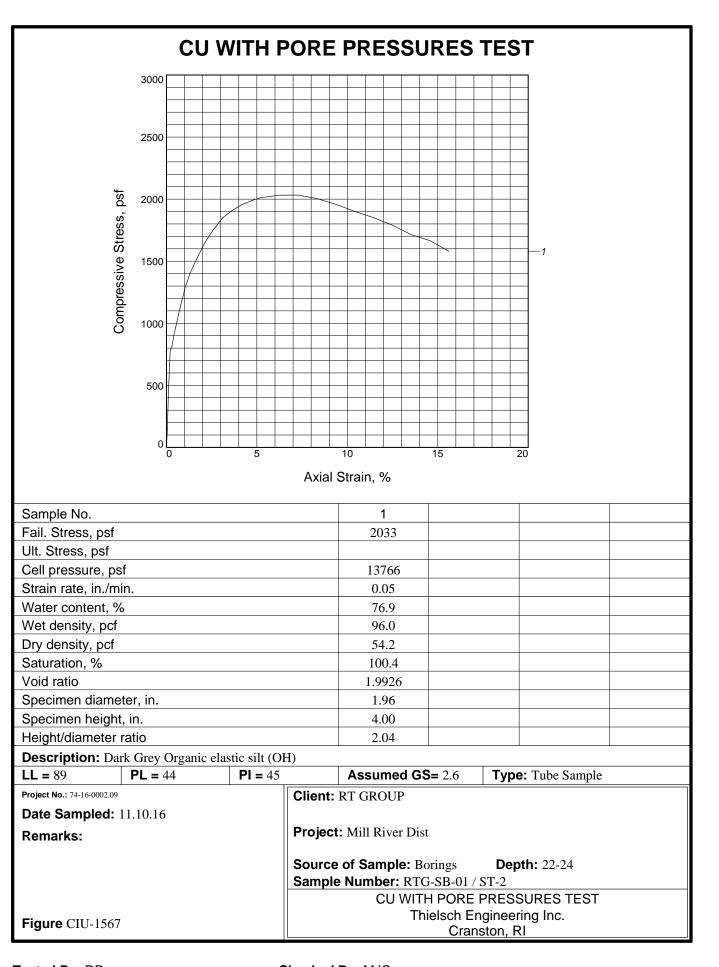
26.1

(no specification provided)

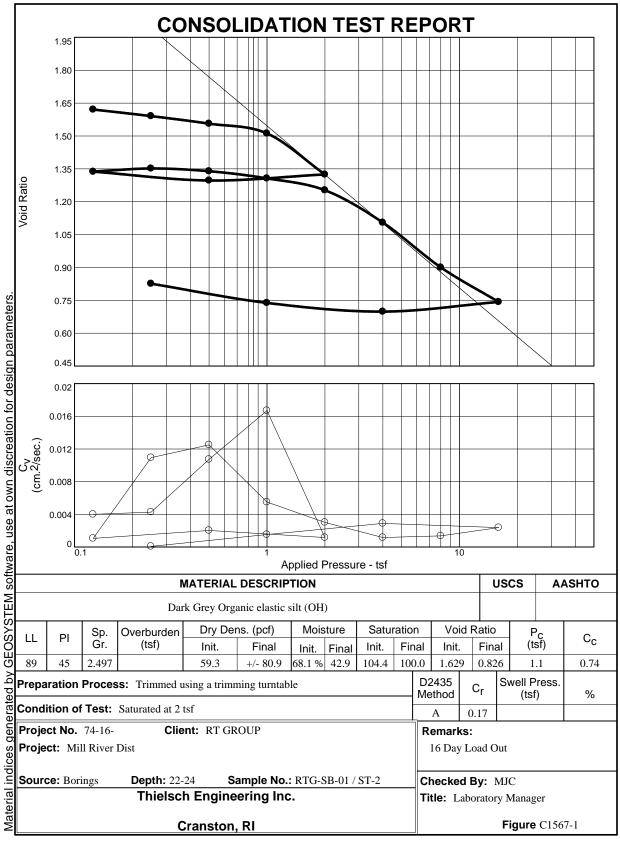
0.0

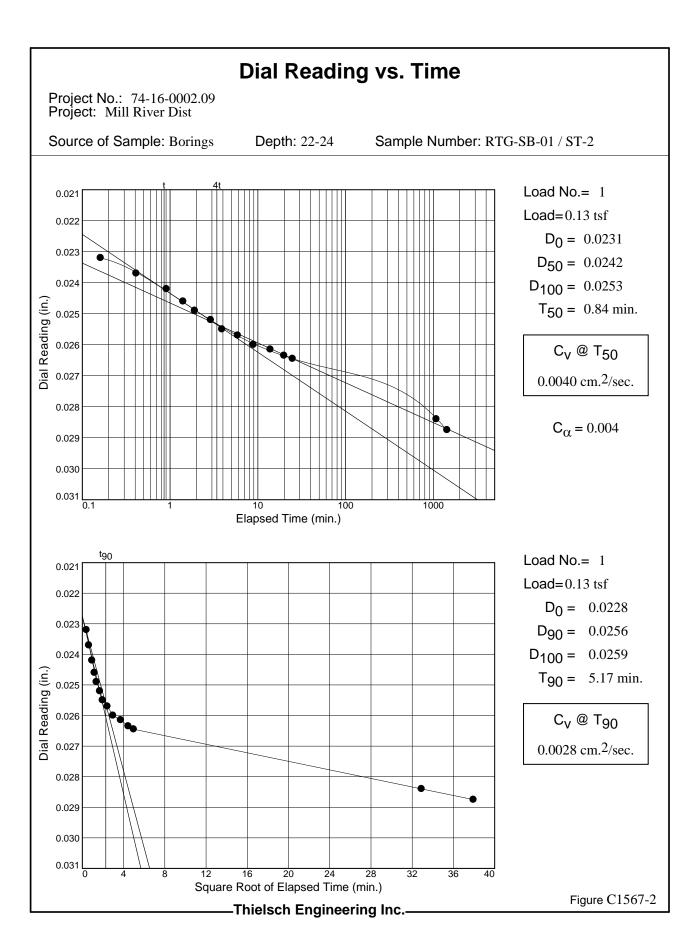
Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Thielsch Engineering Inc.

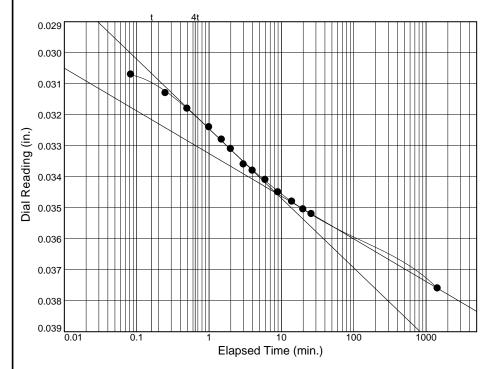

Client: RT GROUP Project: Mill River Dist

Cranston, RI


Project No: 74-16-0002.09


Figure SH-1567

Date Sampled: 11.10.16


Tested By: RR Checked By: MJC

Project No.: 74-16-0002.09 Project: Mill River Dist

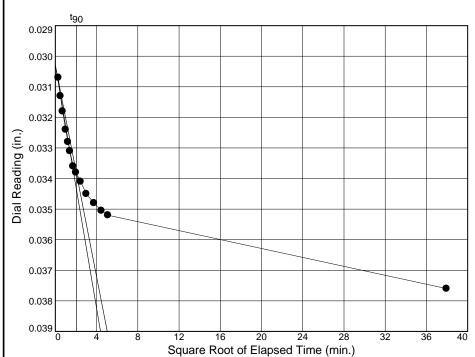
Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 2

Load=0.25 tsf

 $D_0 = 0.0299$

 $D_{50} = 0.0322$


 $D_{100} = 0.0345$

 $T_{50} = 0.77 \text{ min.}$

C_v @ T₅₀

0.0043 cm.²/sec.

 $C_{\alpha} = 0.005$

-Thielsch Engineering Inc.-

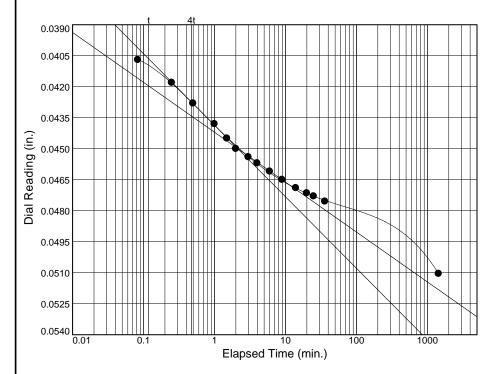
Load No.= 2

Load=0.25 tsf

 $D_0 = 0.0303$

 $D_{90} = 0.0338$

 $D_{100} = 0.0342$


 $T_{90} = 4.20 \text{ min.}$

C_V @ T₉₀

0.0034 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

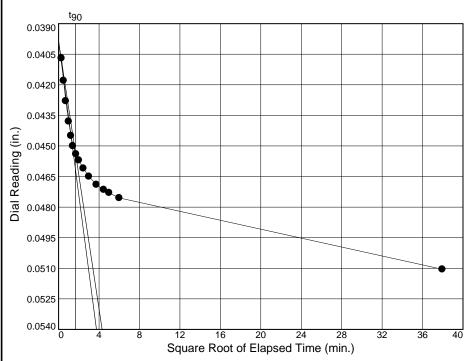
Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 3

Load=0.50 tsf

 $D_0 = 0.0392$

 $D_{50} = 0.0421$


 $D_{100} = 0.0450$

 $T_{50} = 0.30 \text{ min.}$

C_v @ T₅₀

0.0107 cm.2/sec.

 $C_{\alpha} = 0.008$

-Thielsch Engineering Inc.-

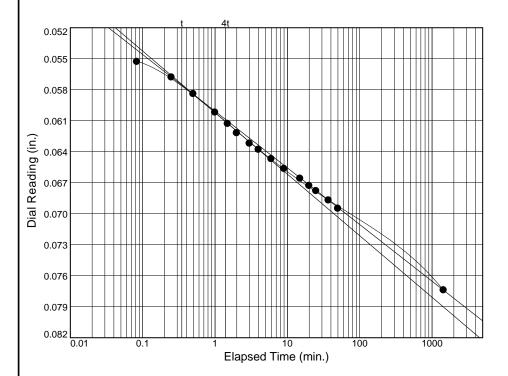
Load No.= 3

Load=0.50 tsf

 $D_0 = 0.0399$

 $D_{90} = 0.0453$

 $D_{100} = 0.0459$


 $T_{90} = 2.74 \text{ min.}$

C_V @ T₉₀

0.0051 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

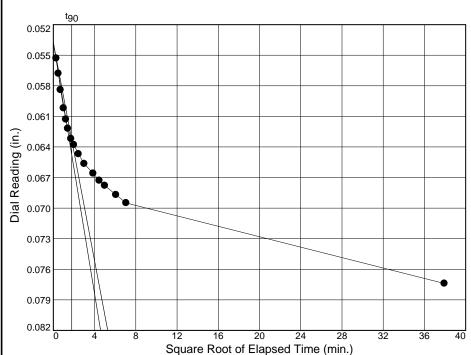
Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 4

Load=1.00 tsf

 $D_0 = 0.0542$

 $D_{50} = 0.0564$


 $D_{100} = 0.0585$

 $T_{50} = 0.19 \text{ min.}$

C_v @ T₅₀

0.0167 cm.²/sec.

 $C_{\alpha} = 0.018$

-Thielsch Engineering Inc.-

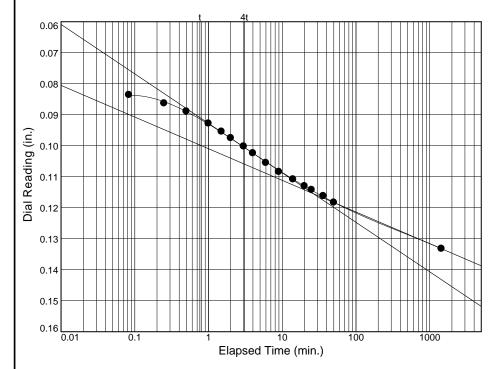
Load No.= 4

Load=1.00 tsf

 $D_0 = 0.0538$

 $D_{90} = 0.0633$

 $D_{100} = 0.0644$


 $T_{90} = 3.19 \text{ min.}$

C_V @ T₉₀

0.0042 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

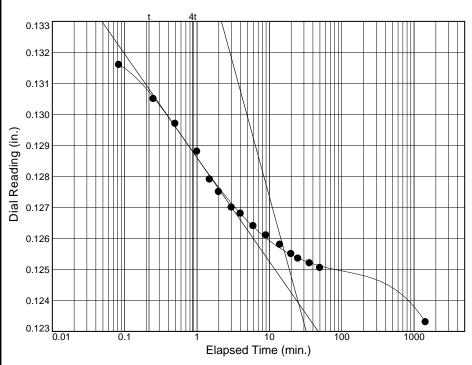
Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 5

Load=2.00 tsf

 $D_0 = 0.0822$

 $D_{50} = 0.0988$


 $D_{100} = 0.1155$

 $T_{50} = 2.39 \text{ min.}$

C_v @ T₅₀

0.0012 cm.²/sec.

 $C_{\alpha} = 0.034$

Thielsch Engineering Inc.

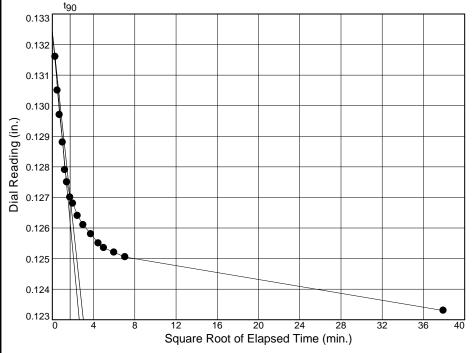
Load No.= 6

Load=0.50 tsf

 $D_0 = 0.1326$

 $D_{50} = 0.1283$

 $D_{100} = 0.1239$


 $T_{50} = 1.26 \text{ min.}$

C_V @ T₅₀

0.0020 cm.²/sec.

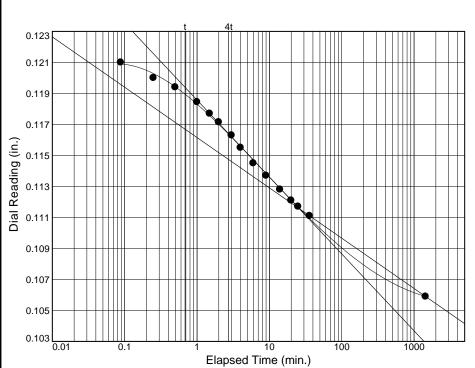
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 6

Load=0.50 tsf

 $D_0 = 0.1324$


 $D_{90} = 0.1270$

 $D_{100} = 0.1264$

 $T_{90} = 2.98 \text{ min.}$

C_v @ T₉₀

0.0037 cm.2/sec.

Thielsch Engineering Inc.

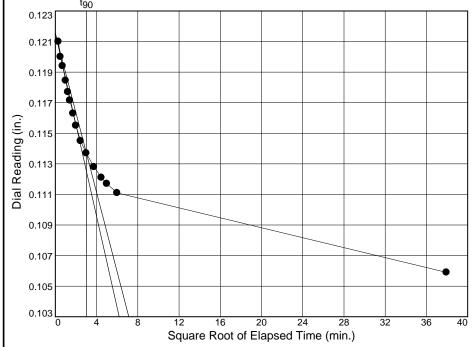
Load No.= 7

Load=0.13 tsf

 $D_0 = 0.1215$

 $D_{50} = 0.1166$

 $D_{100} = 0.1116$


 $T_{50} = 2.49 \text{ min.}$

C_V @ T₅₀

0.0011 cm.²/sec.

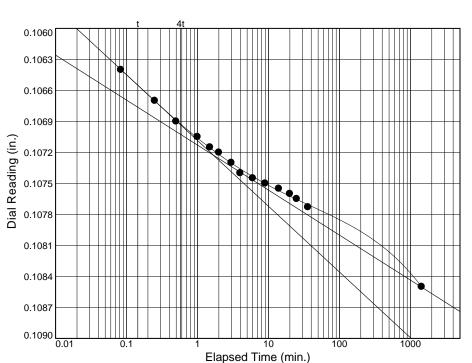
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 7

Load=0.13 tsf

 $D_0 = 0.1215$


 $D_{90} = 0.1137$

 $D_{100} = 0.1128$

 $T_{90} = 9.15 \text{ min.}$

C_v @ T₉₀

0.0012 cm.2/sec.

Thielsch Engineering Inc.

Load No.= 8

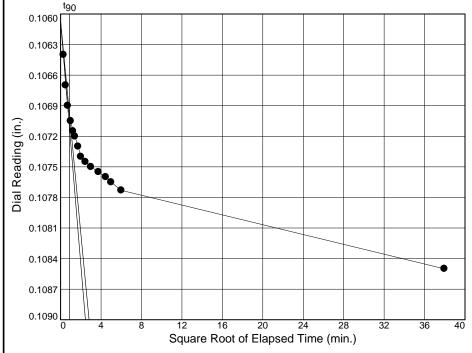
Load=0.25 tsf

 $D_0 = 0.1062$

 $D_{50} = 0.1067$

 $D_{100} = 0.1072$

 $T_{50} = 0.25 \text{ min.}$


C_V @ T₅₀

0.0109 cm.²/sec.

 $C_{\alpha} = 0.001$

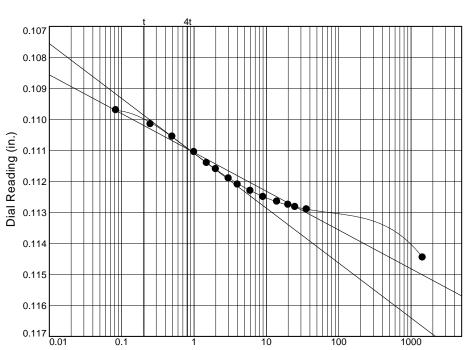
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 8

Load=0.25 tsf

 $D_0 = 0.1061$


 $D_{90} = 0.1070$

 $D_{100} = 0.1071$

 $T_{90} = 0.79 \text{ min.}$

C_v @ T₉₀

0.0149 cm.2/sec.

Elapsed Time (min.)

Thielsch Engineering Inc.

Load No.= 9

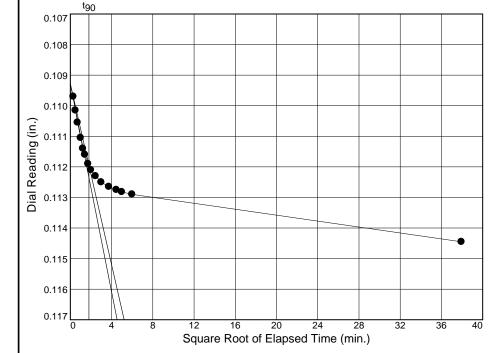
Load=0.50 tsf

 $D_0 = 0.1090$

 $D_{50} = 0.1100$

 $D_{100} = 0.1110$

 $T_{50} = 0.22 \text{ min.}$


C_V @ T₅₀

0.0125 cm.²/sec.

 $C_{\alpha} = 0.004$

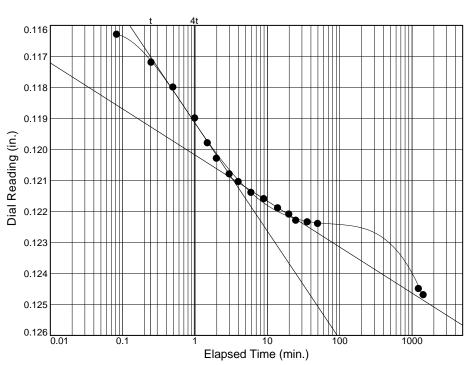
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 9

Load=0.50 tsf

 $D_0 = 0.1093$


 $D_{90} = 0.1120$

 $D_{100} = 0.1123$

 $T_{90} = 3.26 \text{ min.}$

C_v @ T₉₀

0.0035 cm.2/sec.

Thielsch Engineering Inc.

Load No.= 10

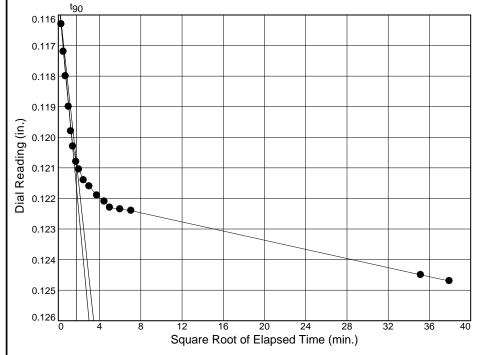
Load=1.00 tsf

 $D_0 = 0.1151$

 $D_{50} = 0.1180$

 $D_{100} = 0.1209$

 $T_{50} = 0.48 \text{ min.}$


C_V @ T₅₀

0.0055 cm.²/sec.

 $C_{\alpha} = 0.005$

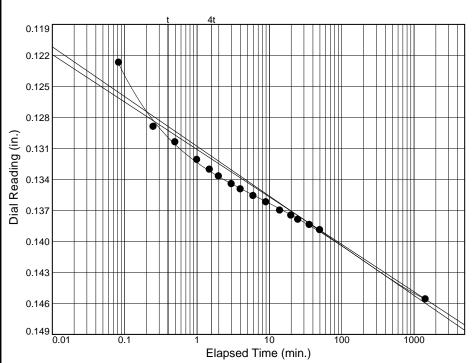
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 10

Load=1.00 tsf

 $D_0 = 0.1154$


 $D_{90} = 0.1208$

 $D_{100} = 0.1214$

 $T_{90} = 3.08 \text{ min.}$

C_v @ T₉₀

0.0037 cm.2/sec.

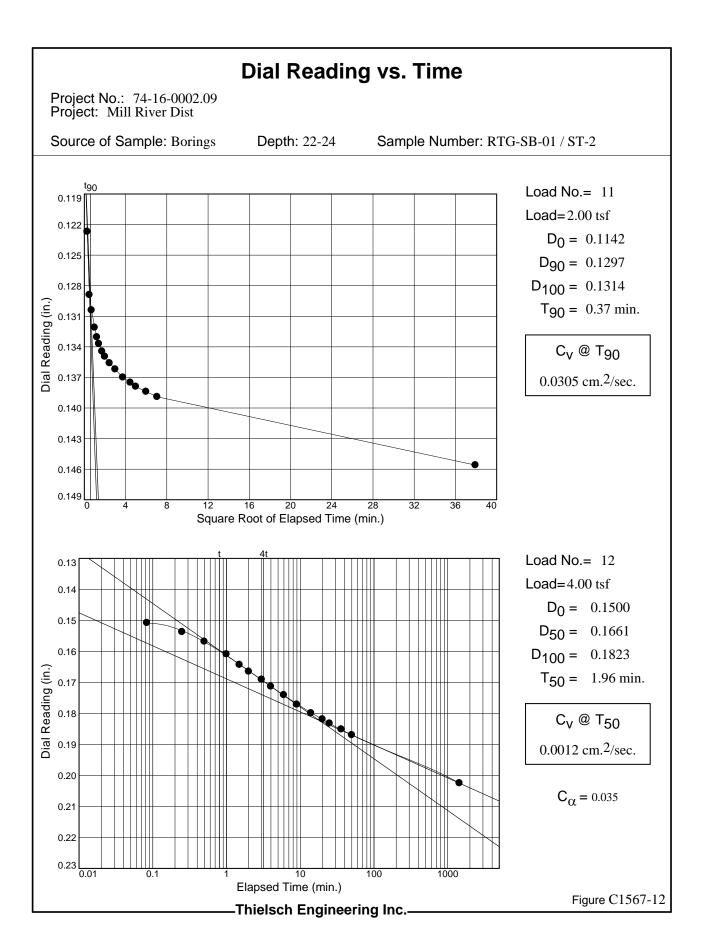
Thielsch Engineering Inc.

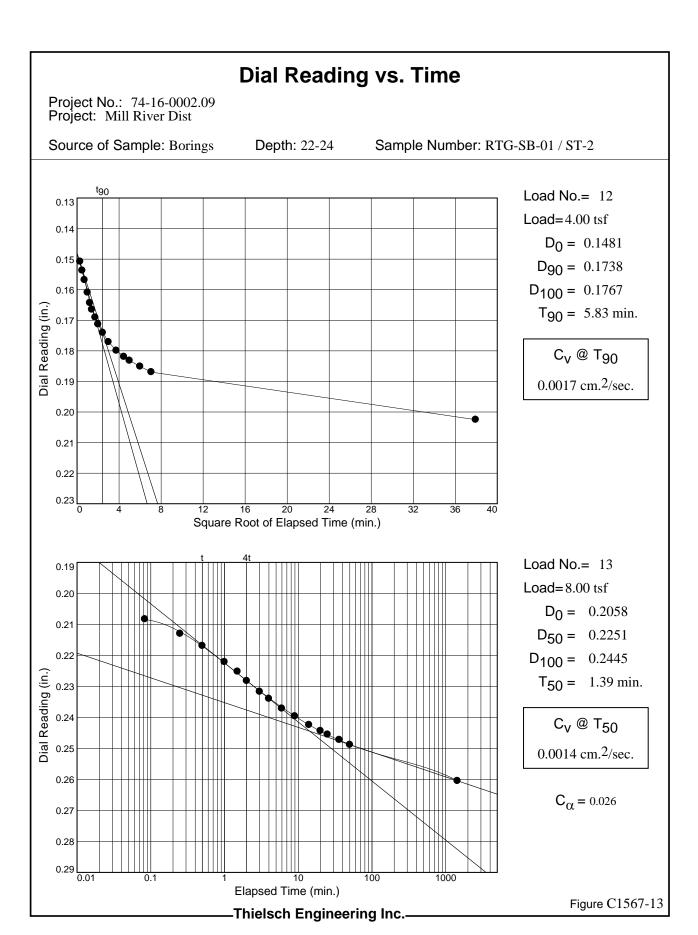
Load No.= 11

Load=2.00 tsf

 $D_0 = 0.1265$

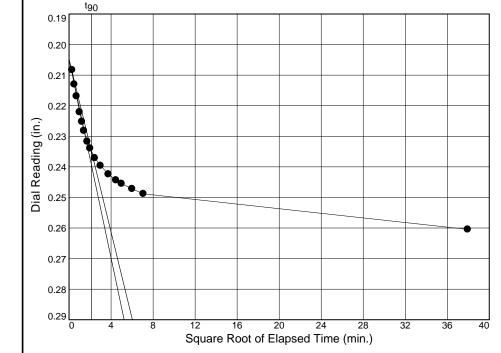
 $D_{50} = 0.1320$


 $D_{100} = 0.1374$


 $T_{50} = 0.84 \text{ min.}$

C_v @ T₅₀

0.0030 cm.²/sec.


 $C_{\alpha} = 0.015$

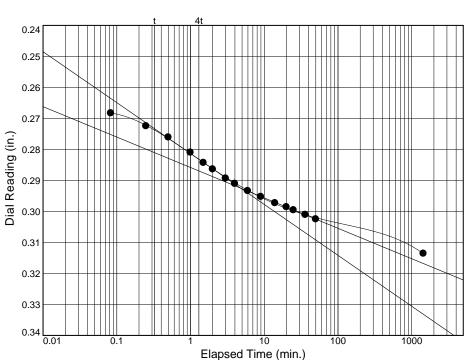
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 13

Load=8.00 tsf

 $D_0 = 0.2048$


 $D_{90} = 0.2348$

 $D_{100} = 0.2381$

 $T_{90} = 4.49 \text{ min.}$

C_v @ T₉₀

0.0018 cm.2/sec.

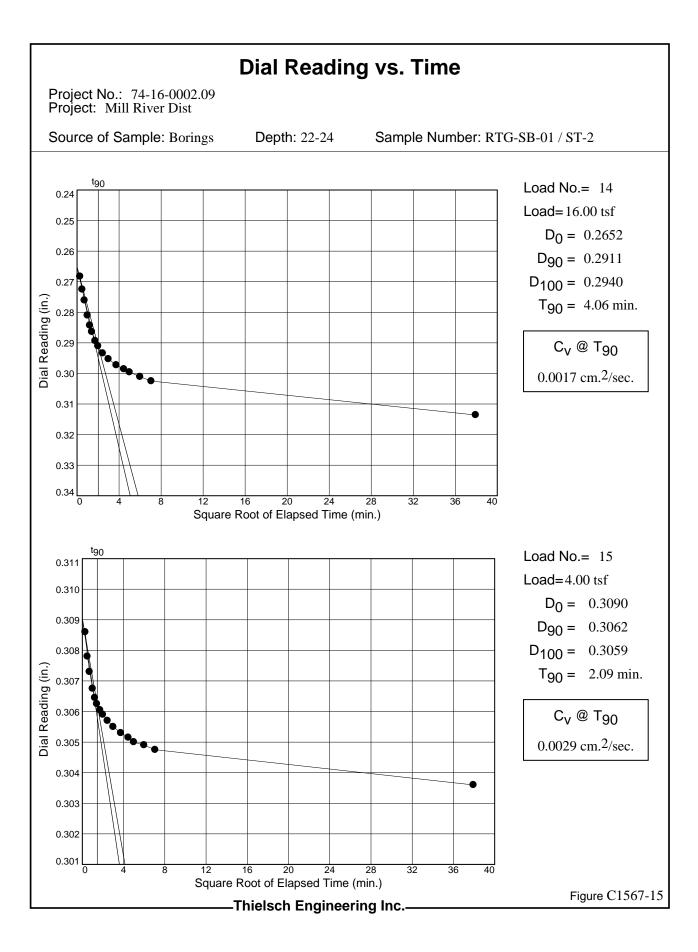
Thielsch Engineering Inc.

Load No.= 14

Load=16.00 tsf

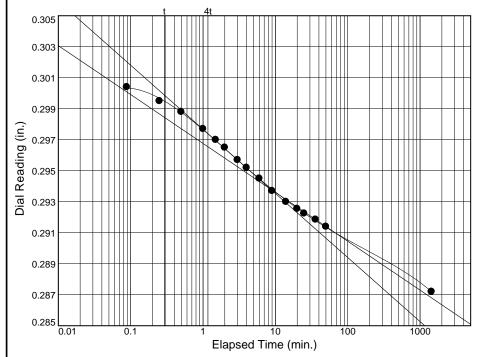
 $D_0 = 0.2643$

 $D_{50} = 0.2784$


 $D_{100} = 0.2925$

 $T_{50} = 0.66 \text{ min.}$

C_V @ T₅₀


0.0024 cm.²/sec.

 $C_{\alpha} = 0.032$

Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 16

Load=1.00 tsf

 $D_0 = 0.3016$

 $D_{50} = 0.2977$

 $D_{100} = 0.2938$

 $T_{50} = 0.96 \text{ min.}$

C_v @ T₅₀

0.0015 cm.2/sec.

Load No.= 16

Load=1.00 tsf

 $D_0 = 0.3012$

 $D_{90} = 0.2949$

 $D_{100} = 0.2942$

 $T_{90} = 4.83 \text{ min.}$

C_V @ T₉₀

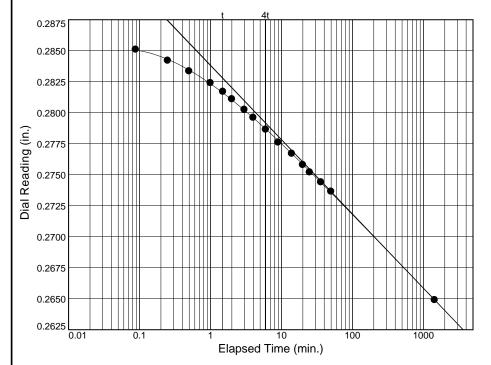

0.0013 cm.²/sec.

Figure C1567-16

-Thielsch Engineering Inc.-

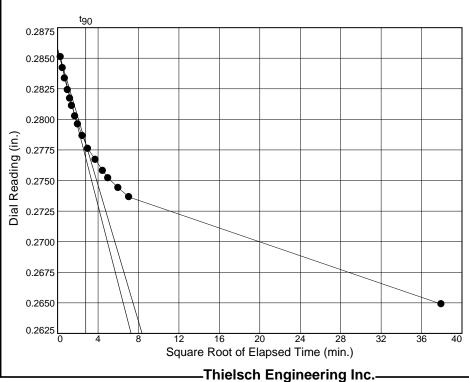
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 22-24 Sample Number: RTG-SB-01 / ST-2

Load No.= 17

Load=0.25 tsf

 $D_0 = 0.2845$


 $D_{50} = 0.2758$

 $D_{100} = 0.2671$

 $T_{50} = 20.07 \text{ min.}$

C_v @ T₅₀

0.0001 cm.2/sec.

Load No.= 17

Load=0.25 tsf

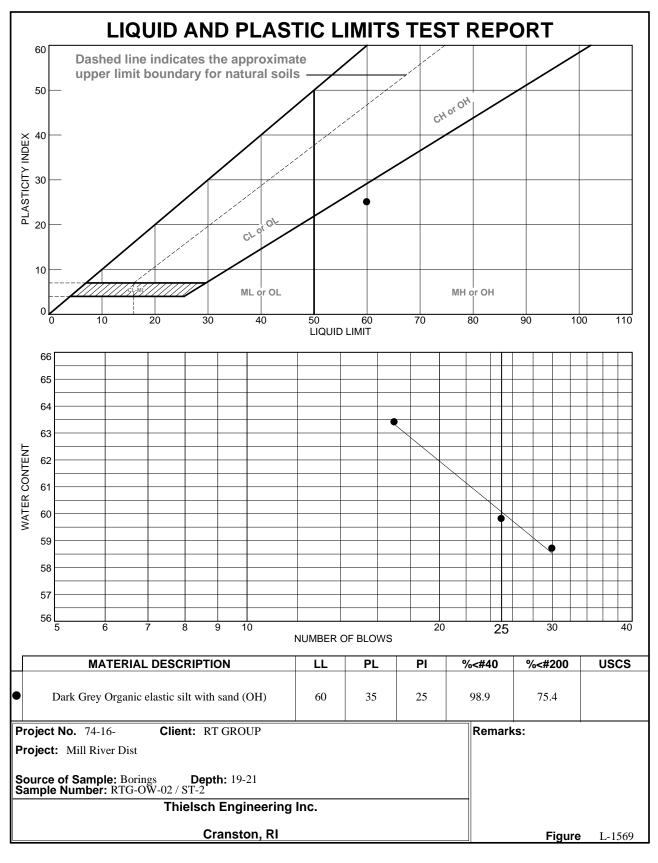
 $D_0 = 0.2858$

 $D_{90} = 0.2780$

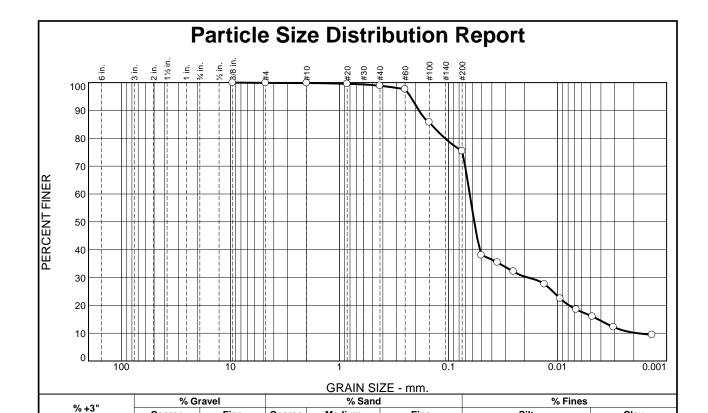
 $D_{100} = 0.2772$

 $T_{90} = 7.75 \text{ min.}$

C_V @ T₉₀


0.0009 cm.2/sec.

LABORATORY TUBE SUMMARY SHEET


Project Name Mill River District Flood Resiliency Improvements	Project Location New Haven, CT	Reviewed By	Patting Colin		
Project No. 74-16-0002.09	Assigned By D. Arpin	Date Reviewed	12.6.16		
Project Manager David Arpin, P.E.	Date 12.6.16	Client RT	Group		

					Ider	ntifica	tion Test	ts					Stre	ngth Test	S		Consol.	
Boring/ Test Pit No.	Sample No.	Depth ft.	Laboratory No.	Water Content %	LL %	PL %	Gravel %	Sand %	Silt %	Clay %	Dry unit wt. pcf	Torvane or Type Test	σ_{c} psf	Failure Criteria	$\sigma_1 - \sigma_3$ or τ psf	Strain %	$\frac{C_c}{1+e_0}$	Laboratory Log and Soil Description
RTG-OW-02	ST-2	19-21	16-S-1569		Aver	rage ⁻	Total Un	nit Wei	ght (1	9.0 - 2	1.0') = 9	8.6 pcf						
																		(19'-0" - 21'-0") Dark Grey Organic SILT
																		some shells and reeds
		19'-4"		77.3								Tv = .050 tsf						
		19'-5" to 19'-6"		58.2	60	35												Dark Grey Organic SILT with sand (OH)
		19'-6" to 19'-8"		65.0			0.1	24.5	59.1	16.3								Dark Grey Organic SILT with sand (OH)
		19'-9" to 19'-11"																large shells
		19'-11"										Pen = 0.50 tsf						
		20'-0" to 20'-5"		59.4							64.2	CIU	1901	σ_1 - σ_3 Max	1556	11.8		Dark Grey Organic SILT with sand (OH)
		20'-5" to 20'-9"																Consolidation (See Test Summary Page)
		20'-10"		72.9								Tv = .100 tsf						
		20'-11"										Pen = 0.25 tsf						

Tested By: RR Checked By: MJC

Medium

0.9

Fine

23.5

TEST RESULTS (D6913)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
0.375	100.0						
#4	99.9						
#10	99.8						
#20	99.5						
#40	98.9						
#60	97.6						
#100	85.8						
#200	75.4						
0.0500 mm.	38.0						
0.0355 mm.	35.4						
0.0253 mm.	32.2						
0.0132 mm.	27.6						
0.0095 mm.	22.4						
0.0067 mm.	18.5						
0.0048 mm.	16.0						
0.0031 mm.	12.2						
0.0014 mm.	9.4						
* (no spe	cification provid	led)	I				

Coarse

0.0

0.0

Fine

0.1

Coarse

0.1

	Material Descr	iption								
Dark Grey Organic elastic silt with sand (OH)										
Δtterk	perg Limits (AS	TM D 4318)								
PL= 35	LL= 60	PI= 25								
	Classificati	<u>on</u>								
USCS (D 2487)=										
	Coefficien									
D₉₀= 0.1866 D₅₀= 0.0581	D ₈₅ = 0.1441	D₆₀= 0.0639 D₁₅= 0.0043								
D ₁₀ = 0.0019	D₃₀= 0.0187 C_u= 34.19	C _c = 2.94								
Remarks										
Date Received: 1	1 10 16 D ot	te Tested: 11.21.16								
		le rested. 11.21.10								
Tested By: IA										
Checked By: MJC										
Title: Laboratory Manager										

Silt

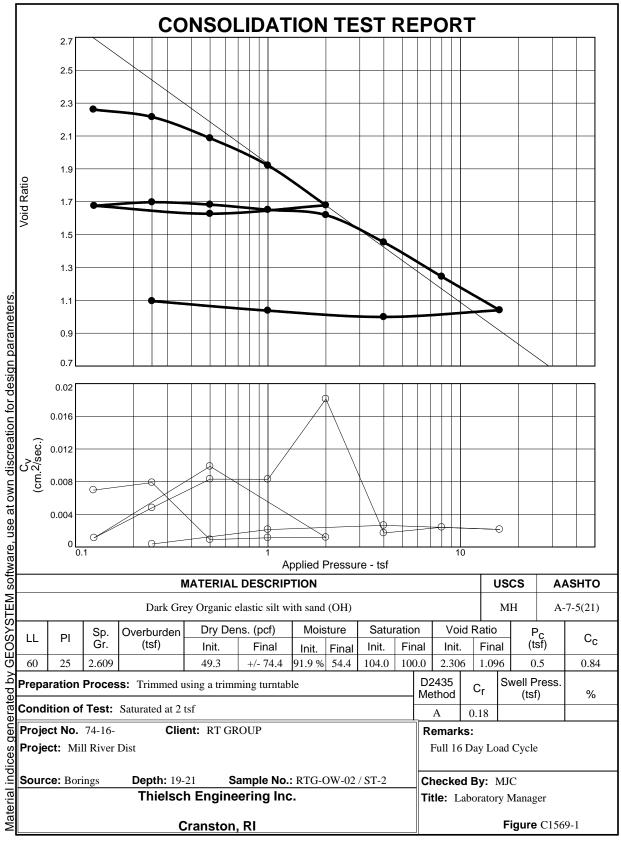
59.1

Clay

16.3

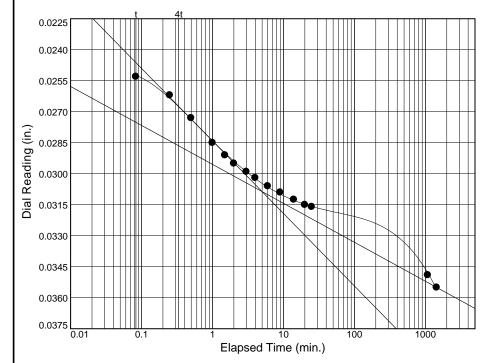

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2 **Date Sampled:** 11.10.16

Thielsch Engineering Inc.


Client: RT GROUP Project: Mill River Dist

Cranston, RI **Project No:** 74-16-0002.09

Figure SH-1569



Tested By: RR Checked By: MJC

Project No.: 74-16-0002.09 Project: Mill River Dist

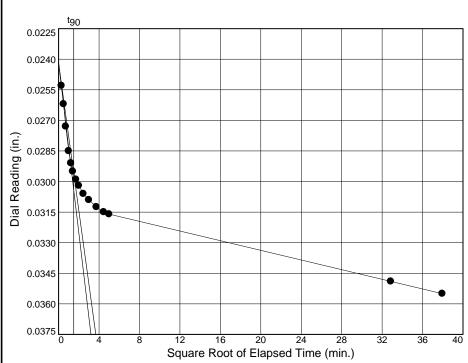
Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 1

Load=0.12 tsf

 $D_0 = 0.0237$

 $D_{50} = 0.0273$


 $D_{100} = 0.0309$

 $T_{50} = 0.48 \text{ min.}$

C_v @ T₅₀

0.0070 cm.2/sec.

 $C_{\alpha} = 0.008$

-Thielsch Engineering Inc.-

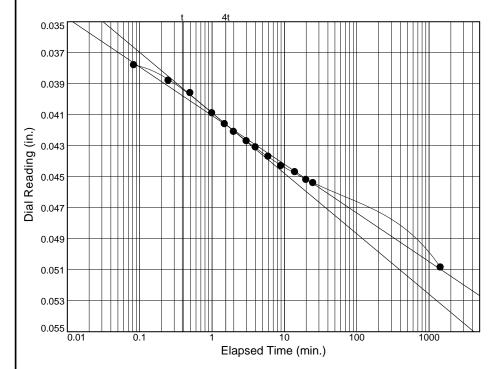
Load No.= 1

Load=0.12 tsf

 $D_0 = 0.0242$

 $D_{90} = 0.0296$

 $D_{100} = 0.0302$


 $T_{90} = 2.24 \text{ min.}$

C_V @ T₉₀

0.0064 cm.2/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

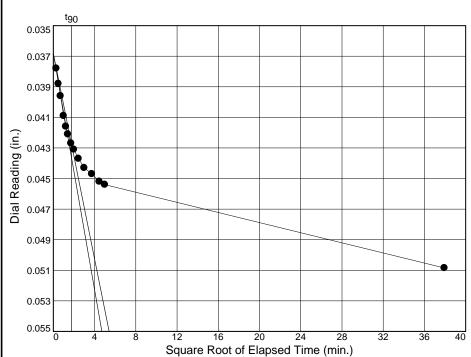
Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 2

Load=0.25 tsf

 $D_0 = 0.0371$

 $D_{50} = 0.0394$


 $D_{100} = 0.0418$

 $T_{50} = 0.41 \text{ min.}$

C_v @ T₅₀

0.0079 cm.2/sec.

 $C_{\alpha} = 0.013$

-Thielsch Engineering Inc.-

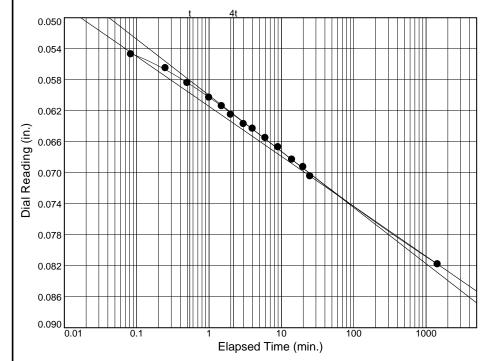
Load No.= 2

Load=0.25 tsf

 $D_0 = 0.0368$

 $D_{90} = 0.0427$

 $D_{100} = 0.0434$


 $T_{90} = 3.10 \text{ min.}$

C_V @ T₉₀

0.0045 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

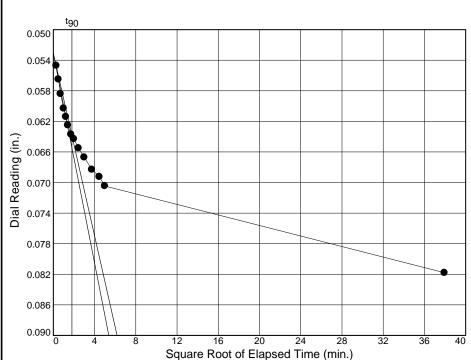
Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 3

Load=0.50 tsf

 $D_0 = 0.0547$

 $D_{50} = 0.0638$


 $D_{100} = 0.0730$

 $T_{50} = 3.33 \text{ min.}$

C_v @ T₅₀

0.0009 cm.2/sec.

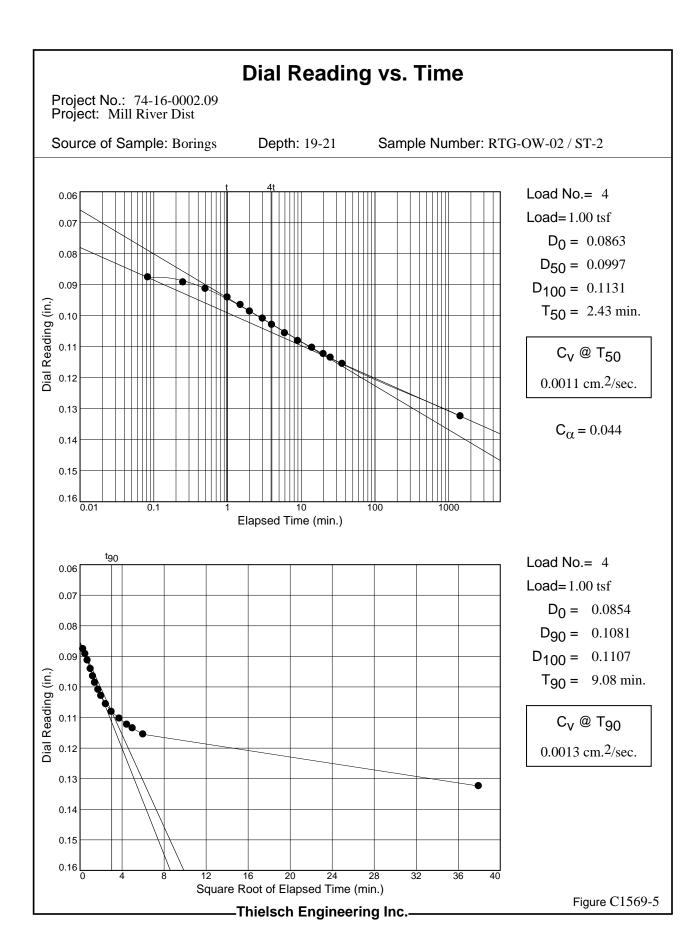
 $C_{\alpha} = 0.027$

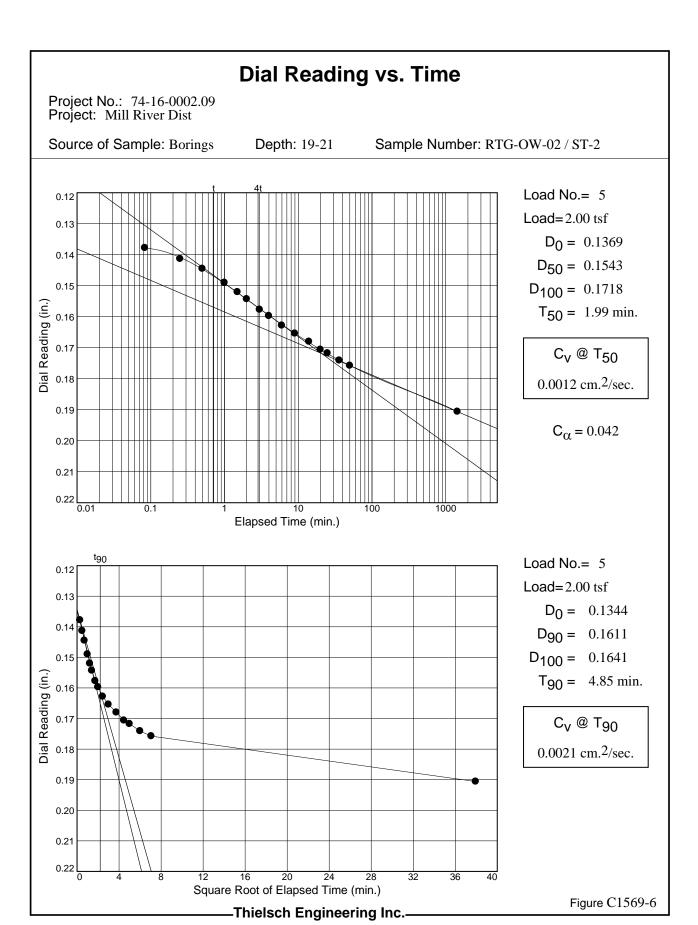
-Thielsch Engineering Inc.-

Load No.= 3

Load=0.50 tsf

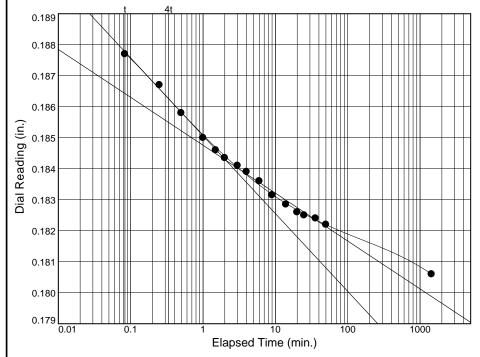
 $D_0 = 0.0531$


 $D_{90} = 0.0639$


 $D_{100} = 0.0651$

 $T_{90} = 3.26 \text{ min.}$

C_V @ T₉₀


0.0041 cm.²/sec.

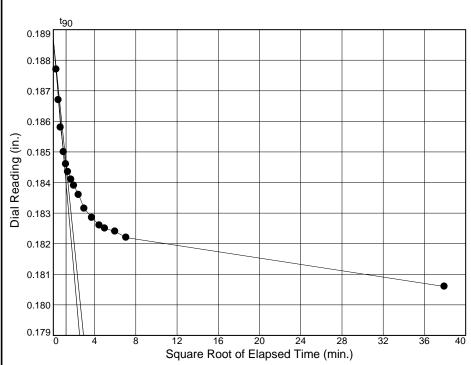
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 6

Load=0.50 tsf

 $D_0 = 0.1892$


 $D_{50} = 0.1867$

 $D_{100} = 0.1843$

 $T_{50} = 0.22 \text{ min.}$

C_v @ T₅₀

0.0099 cm.2/sec.

-Thielsch Engineering Inc.-

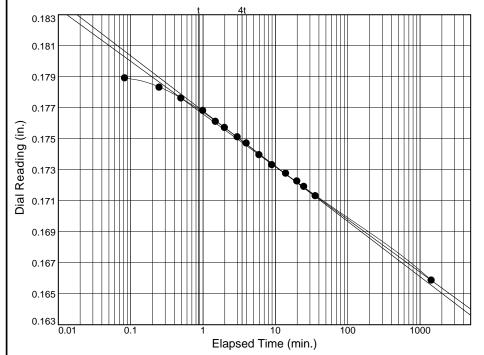
Load No.= 6

Load=0.50 tsf

 $D_0 = 0.1887$

 $D_{90} = 0.1846$

 $D_{100} = 0.1841$


 $T_{90} = 1.53 \text{ min.}$

C_V @ T₉₀

0.0060 cm.2/sec.

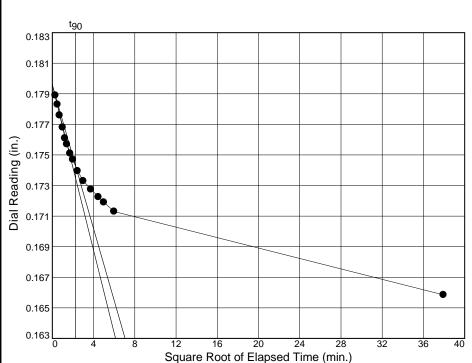
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 7

Load=0.13 tsf

 $D_0 = 0.1790$


 $D_{50} = 0.1757$

 $D_{100} = 0.1725$

 $T_{50} = 1.96 \text{ min.}$

C_v @ T₅₀

0.0011 cm.2/sec.

-Thielsch Engineering Inc.-

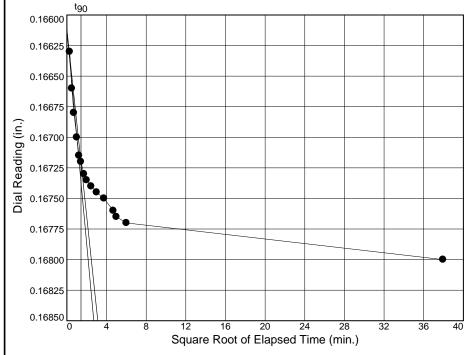
Load No.= 7

Load=0.13 tsf

 $D_0 = 0.1796$

 $D_{90} = 0.1743$

 $D_{100} = 0.1737$


 $T_{90} = 5.11 \text{ min.}$

C_V @ T₉₀

0.0018 cm.2/sec.

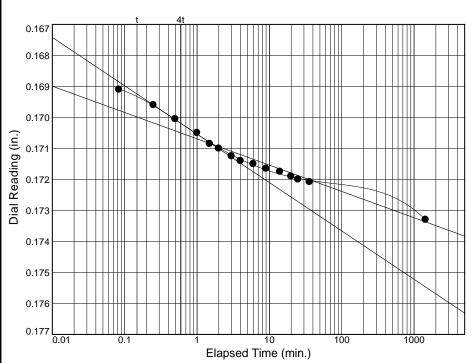
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 8

Load=0.25 tsf

 $D_0 = 0.1661$


 $D_{90} = 0.1672$

 $D_{100} = 0.1673$

 $T_{90} = 2.03 \text{ min.}$

C_v @ T₉₀

0.0048 cm.2/sec.

Thielsch Engineering Inc.

Load No.= 9

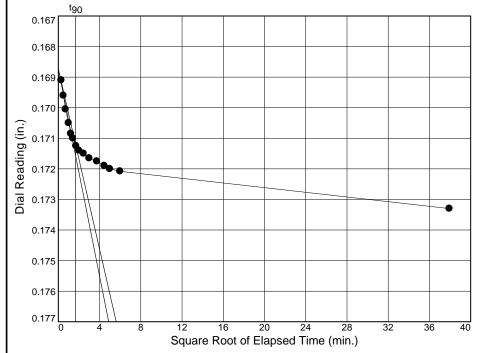
Load=0.50 tsf

 $D_0 = 0.1685$

 $D_{50} = 0.1697$

 $D_{100} = 0.1709$

 $T_{50} = 0.27 \text{ min.}$


C_V @ T₅₀

0.0083 cm.²/sec.

 $C_{\alpha} = 0.004$

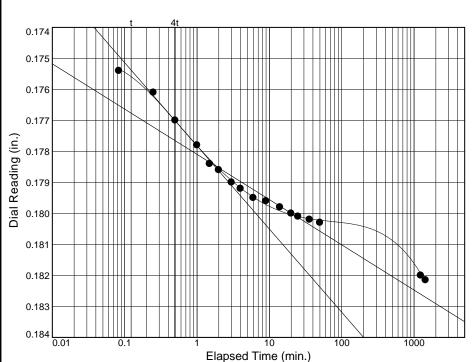
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 9

Load=0.50 tsf

 $D_0 = 0.1687$


 $D_{90} = 0.1712$

 $D_{100} = 0.1715$

 $T_{90} = 2.83 \text{ min.}$

C_v @ T₉₀

0.0034 cm.2/sec.

Thielsch Engineering Inc.

Load No.= 10

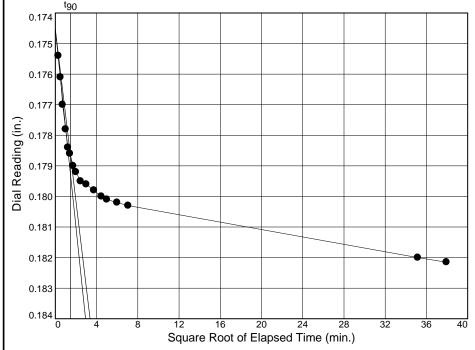
Load=1.00 tsf

 $D_0 = 0.1742$

 $D_{50} = 0.1763$

 $D_{100} = 0.1784$

 $T_{50} = 0.26 \text{ min.}$


C_V @ T₅₀

0.0083 cm.²/sec.

 $C_{\alpha} = 0.006$

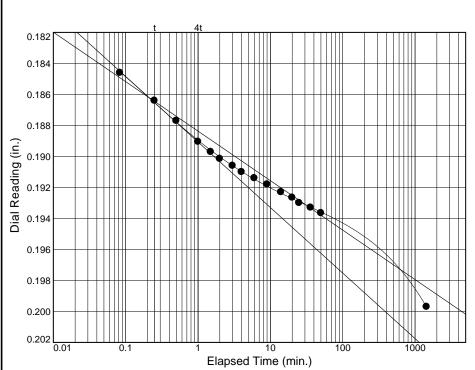
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 10

Load=1.00 tsf

 $D_0 = 0.1745$


 $D_{90} = 0.1787$

 $D_{100} = 0.1791$

 $T_{90} = 2.17 \text{ min.}$

C_v @ T₉₀

0.0043 cm.2/sec.

Thielsch Engineering Inc.

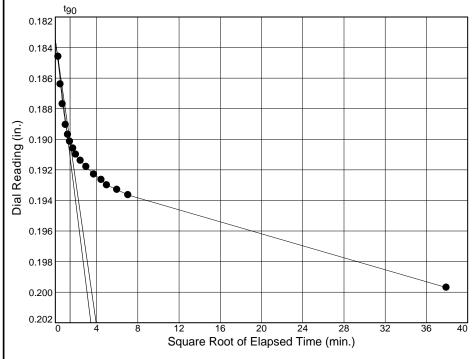
Load No.= 11

Load=2.00 tsf

 $D_0 = 0.1841$

 $D_{50} = 0.1852$

 $D_{100} = 0.1862$


 $T_{50} = 0.12 \text{ min.}$

C_v @ T₅₀

0.0181 cm.²/sec.

 $C_{\alpha} = 0.013$

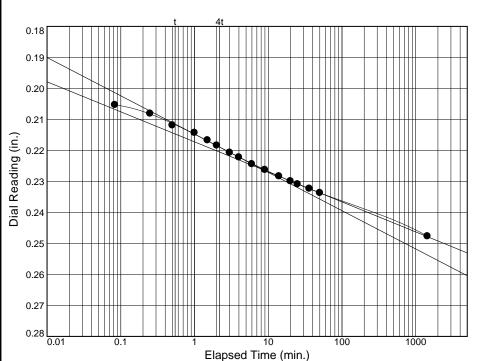
Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Project No.: 74-16-0002.09 Project: Mill River Dist

Load No.= 11

Load=2.00 tsf

 $D_0 = 0.1835$


 $D_{90} = 0.1902$

 $D_{100} = 0.1909$

 $T_{90} = 2.04 \text{ min.}$

C_v @ T₉₀

0.0045 cm.2/sec.

Thielsch Engineering Inc.

Load No.= 12

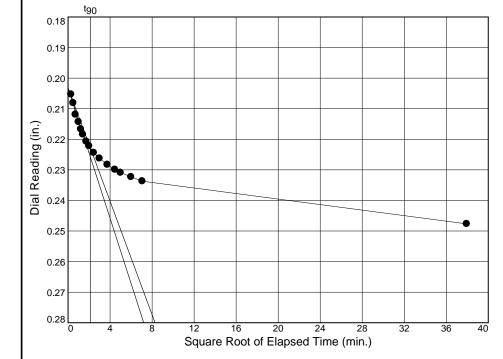
Load=4.00 tsf

 $D_0 = 0.2045$

 $D_{50} = 0.2154$

 $D_{100} = 0.2263$

 $T_{50} = 1.13 \text{ min.}$


C_V @ T₅₀

0.0017 cm.²/sec.

 $C_{\alpha} = 0.040$

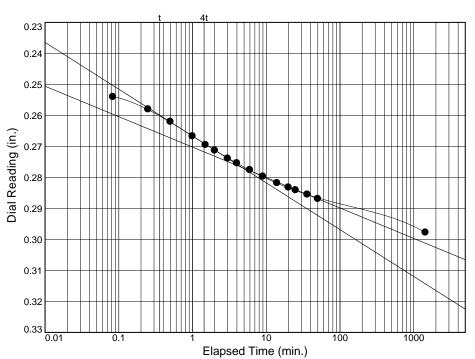
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 12

Load=4.00 tsf

 $D_0 = 0.2032$


 $D_{90} = 0.2227$

 $D_{100} = 0.2249$

 $T_{90} = 4.45 \text{ min.}$

C_v @ T₉₀

0.0019 cm.2/sec.

Thielsch Engineering Inc.

Load No.= 13

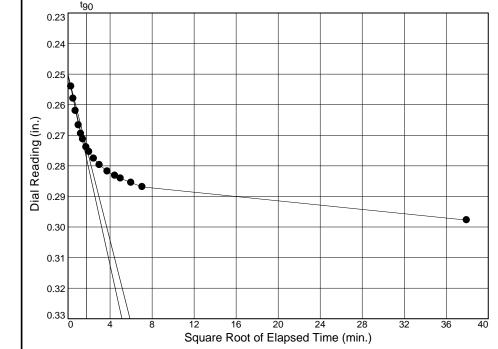
Load=8.00 tsf

 $D_0 = 0.2513$

 $D_{50} = 0.2641$

 $D_{100} = 0.2769$

 $T_{50} = 0.68 \text{ min.}$


C_V @ T₅₀

0.0024 cm.²/sec.

 $C_{\alpha} = 0.041$

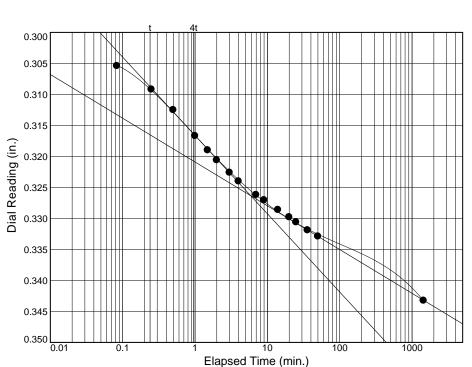
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 13

Load=8.00 tsf

 $D_0 = 0.2503$


 $D_{90} = 0.2740$

 $D_{100} = 0.2767$

 $T_{90} = 3.09 \text{ min.}$

C_v @ T₉₀

0.0023 cm.2/sec.

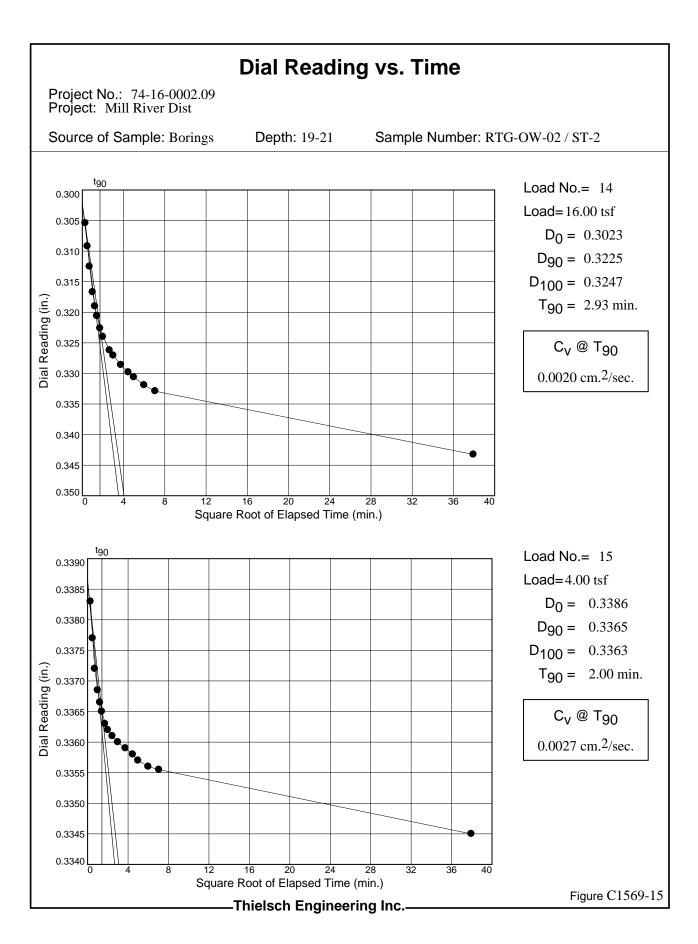
Thielsch Engineering Inc.

Load No.= 14

Load=16.00 tsf

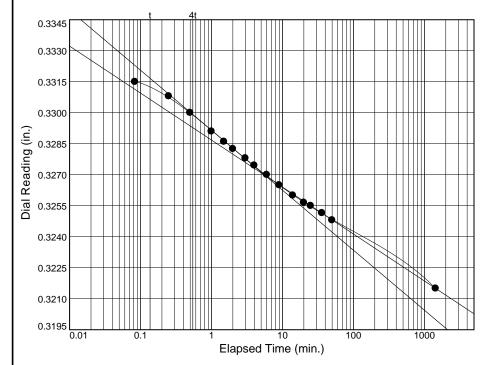
 $D_0 = 0.3019$

 $D_{50} = 0.3141$


 $D_{100} = 0.3263$

 $T_{50} = 0.63 \text{ min.}$

C_V @ T₅₀


0.0021 cm.²/sec.

 $C_{\alpha} = 0.029$

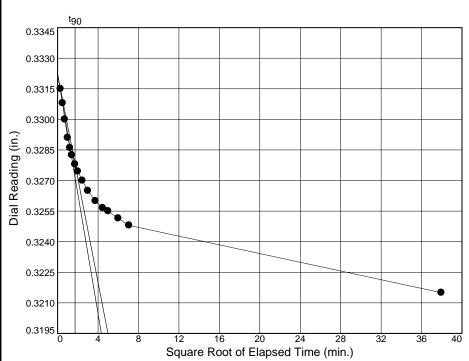
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 16

Load=1.00 tsf

 $D_0 = 0.3326$


 $D_{50} = 0.3298$

 $D_{100} = 0.3270$

 $T_{50} = 0.60 \text{ min.}$

C_V @ T₅₀

0.0021 cm.2/sec.

-Thielsch Engineering Inc.-

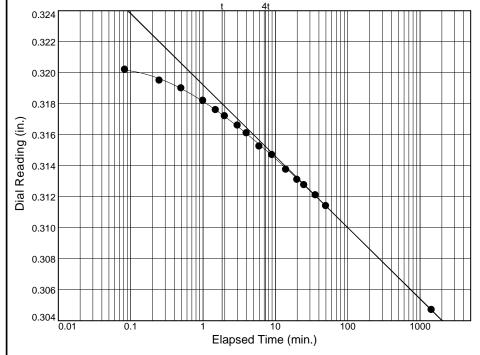
Load No.= 16

Load=1.00 tsf

 $D_0 = 0.3322$

 $D_{90} = 0.3278$

 $D_{100} = 0.3273$


 $T_{90} = 2.99 \text{ min.}$

C_V @ T₉₀

0.0018 cm.²/sec.

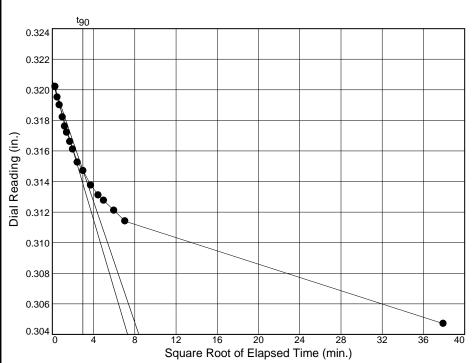
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 19-21 Sample Number: RTG-OW-02 / ST-2

Load No.= 17

Load=0.25 tsf

 $D_0 = 0.3196$


 $D_{50} = 0.3162$

 $D_{100} = 0.3129$

 $T_{50} = 3.65 \text{ min.}$

C_V @ T₅₀

0.0004 cm.2/sec.

-Thielsch Engineering Inc.-

Load No.= 17

Load=0.25 tsf

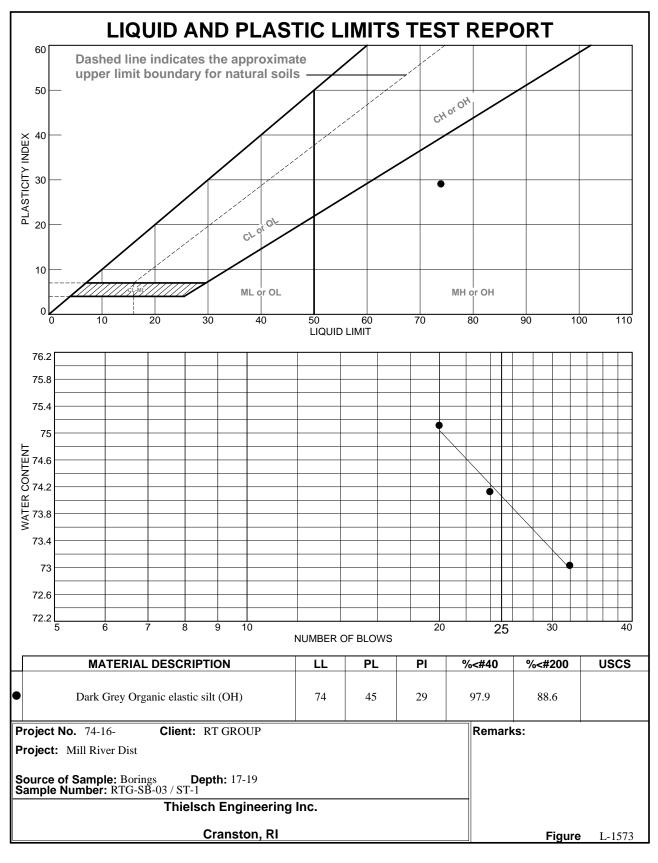
 $D_0 = 0.3206$

 $D_{90} = 0.3147$

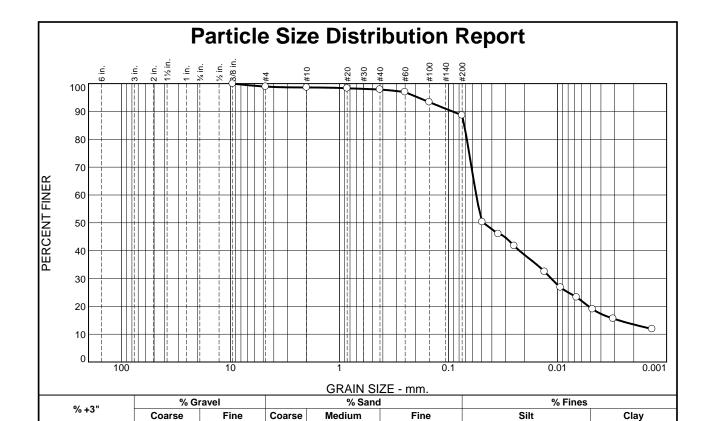
 $D_{100} = 0.3141$

 $T_{90} = 8.78 \text{ min.}$

C_V @ T₉₀


0.0007 cm.²/sec.

LABORATORY TUBE SUMMARY SHEET


Project Name Mill River District Flood Resiliency Improvements	Project Location New Haven, CT	Reviewed By	Matthof dolum
Project No. 74-16-0002.09	Assigned By D. Arpin	Date Reviewed	12.6.16
Project Manager David Arpin, P.E.	Date 12.6.16	Client RT	Group

					Ide	ntifica	tion Tes	ts					Stre	ngth Test	ts		Consol.	
Boring/ Test Pit No.	Sample No.	Depth ft.	Laboratory No.	Water Content %	LL %	PL %	Gravel %	Sand %	Silt %	Clay %	Dry unit wt. pcf	Torvane or Type Test	σ_{c} psf	Failure Criteria	$\sigma_1 - \sigma_3$ or τ psf	Strain %	$\frac{C_{c}}{1+e_0}$	Laboratory Log and Soil Description
RTG-SB-03	ST-1	17-19	16-S-1573		Avei	rage T	Γotal Un	it Wei	ght (1	7.0-19	9.0') = 9	5.4 pcf						
		17.0 - 19.0																(17.0 - 19.0) Dark Grey Organic SILT (OH)
		17'-0" to 17'-3"																very soft consistency
		17'-5"										Pen = 0.1 tsf						stiffer consistency
		17'-6"		83.0								Tv = .075 tsf						
		17'-7"		79.2			1.1	10.3	69.1	19.5								Dark Grey Organic elastic silt (OH)
		17'-8" to 18'-1"		78.1							53.6	CIU	1670	σ_1 - σ_3 Max	631	21.6		with shells
		18'-1" to 18'-3"		74.7	74	45												more reeds, less shells
		18'-3" to 18'-7"																Consolidation (See Test Summary Page)
		18'-8"		75.6								Tv = .075 tsf	Pen = 0.1 tsf					
																_		

Tested By: RR Checked By: MJC

0.7

9.3

	TEST RESULTS (D6913)										
Opening	Percent	Spec.*	Pass?								
Size	Finer	(Percent)	(X=Fail)								
0.375	100.0										
#4	98.9										
#10	98.6										
#20	98.3										
#40	97.9										
#60	97.0										
#100	93.4										
#200	88.6										
0.0490 mm.	50.3										
0.0350 mm.	46.0										
0.0250 mm.	41.7										
0.0132 mm.	32.5										
0.0094 mm.	26.8										
0.0067 mm.	23.3										
0.0048 mm.	19.0										
0.0031 mm.	15.6										
0.0014 mm.	11.8										
* (no spec	cification provid	led)									

0.0

1.1

0.3

Material Description											
Dark Grey Orga	Dark Grey Organic elastic silt (OH)										
Atterberg Limits (ASTM D 4318) PI = 45 II = 74 PI = 29											
PL= 45	LL= /4	PI= 29									
	Classification										
USCS (D 2487)=	USCS (D 2487)= AASHTO (M 145)=										
	Coefficients										
D₉₀= 0.0918	D₈₅= 0.0716	D₆₀= 0.0557									
D₅₀= 0.0479 D₁₀=	D ₃₀ = 0.0114 C ₁₁ =	D ₁₅ = 0.0028 C _c =									
D ₁₀ -	o _u -	OC-									
	Remarks										
Date Received:	11.10.16 Date	Tested: 11.21.16									
Tested By:	IA										
Checked By:	MJC										
Title:	Laboratory Manager										
11110.	<u>Lacoratory</u> Wanager										

69.1

19.5

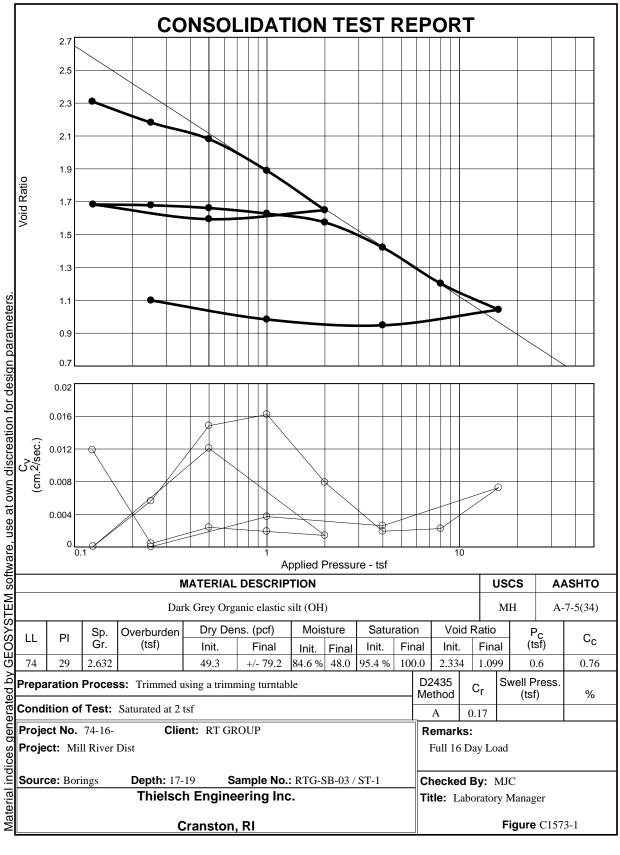
(no specification provided)

0.0

Source of Sample: Borings Depth: 17-19 Date Sampled: 11.10.16

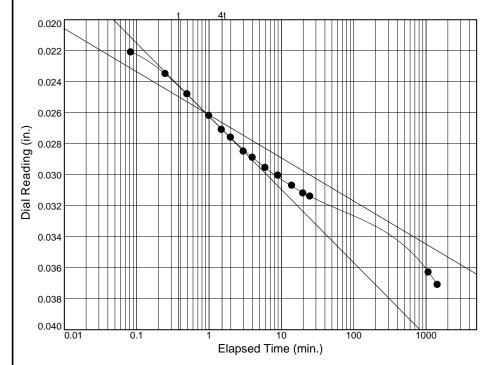
Thielsch Engineering Inc.

Client: RT GROUP
Project: Mill River Dist


Cranston, RI

Project No: 74-16-0002.09

Figure SH-1573


CU WITH PORE PRESSURES TEST 900 750 psf 600 Compressive Stress, 450 300 150 Axial Strain, % Sample No. 1 Fail. Stress, psf 631 Ult. Stress, psf Cell pressure, psf 13190 Strain rate, in./min. 0.01 Water content, % 78.1 Wet density, pcf 95.4 Dry density, pcf 53.6 Saturation, % 100.0 Void ratio 2.0301 Specimen diameter, in. 2.02 Specimen height, in. 3.99 Height/diameter ratio 1.98 **Description:** Dark Grey Organic elastic silt (OH) LL = 74**PL** = 45 **PI** = 29 Assumed GS= 2.6Type: Tube Sample Project No.: 74-16-0002.09 Client: RT GROUP **Date Sampled:** 11.10.16 Project: Mill River Dist Remarks: **Source of Sample:** Borings **Depth:** 17-19 Sample Number: RTG-SB-03 / ST-1 CU WITH PORE PRESSURES TEST Thielsch Engineering Inc. Figure CIU-1573 Cranston, RI

Tested By: RR Checked By: MJC

Project No.: 74-16-0002.09 Project: Mill River Dist

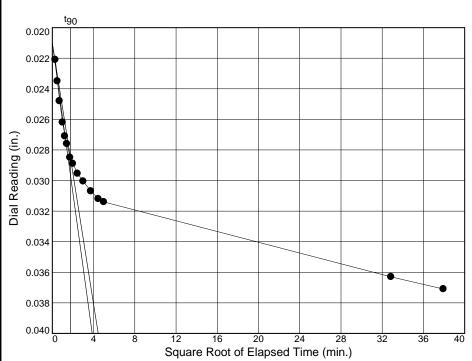
Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 1

Load=0.12 tsf

 $D_0 = 0.0215$

 $D_{50} = 0.0237$


 $D_{100} = 0.0260$

 $T_{50} = 0.28 \text{ min.}$

C_v @ T₅₀

0.0119 cm.²/sec.

 $C_{\alpha} = 0.012$

-Thielsch Engineering Inc.-

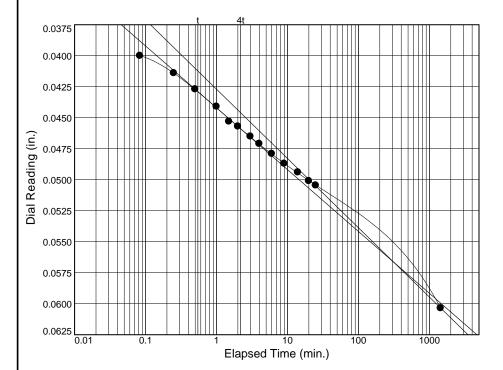
Load No.= 1

Load=0.12 tsf

 $D_0 = 0.0210$

 $D_{90} = 0.0285$

 $D_{100} = 0.0294$


 $T_{90} = 3.12 \text{ min.}$

C_v @ T₉₀

0.0046 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

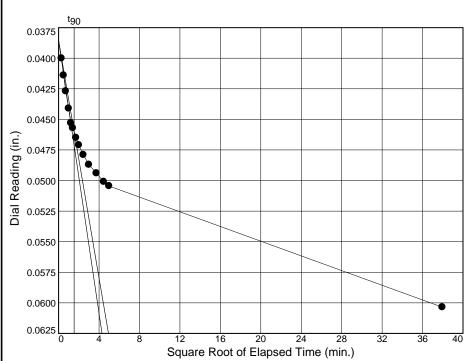
Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 2

Load=0.25 tsf

 $D_0 = 0.0399$

 $D_{50} = 0.0483$


 $D_{100} = 0.0567$

 $T_{50} = 7.31 \text{ min.}$

C_v @ T₅₀

0.0004 cm.2/sec.

 $C_{\alpha} = 0.023$

-Thielsch Engineering Inc.-

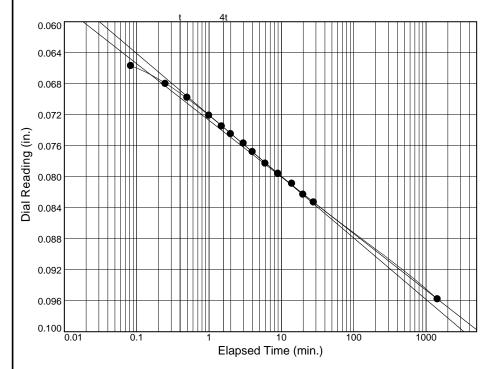
Load No.= 2

Load=0.25 tsf

 $D_0 = 0.0385$

 $D_{90} = 0.0460$

 $D_{100} = 0.0468$


 $T_{90} = 2.36 \text{ min.}$

C_V @ T₉₀

0.0058 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

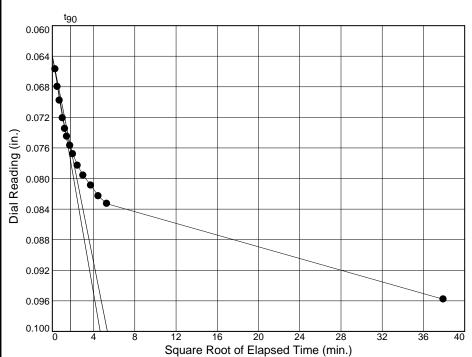
Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 3

Load=0.50 tsf

 $D_0 = 0.0648$

 $D_{50} = 0.0728$


 $D_{100} = 0.0808$

 $T_{50} = 1.23 \text{ min.}$

C_v @ T₅₀

0.0024 cm.2/sec.

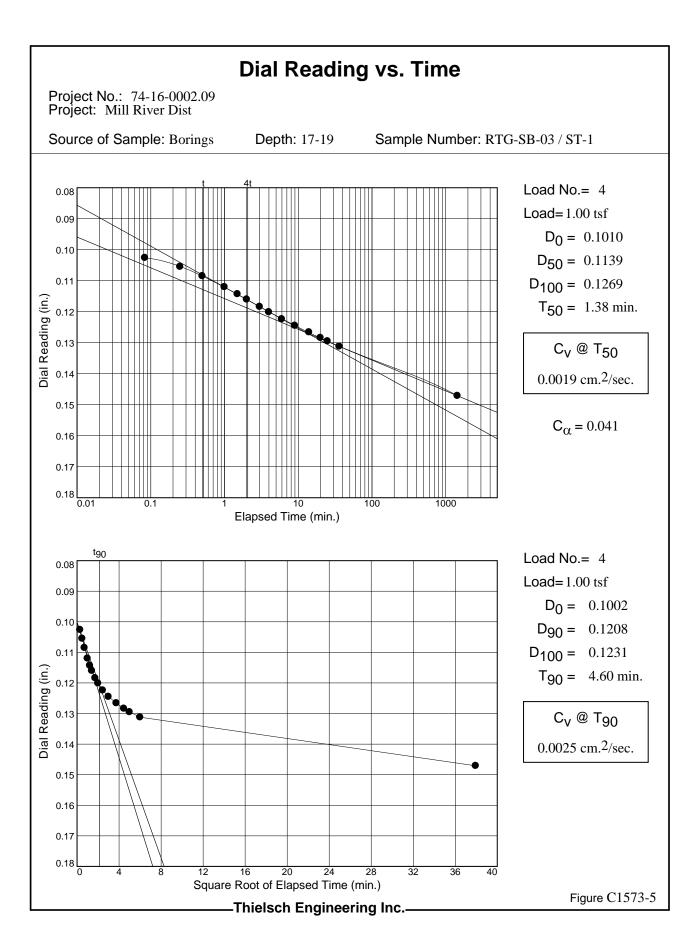
 $C_{\alpha} = 0.030$

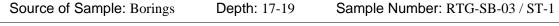
-Thielsch Engineering Inc.-

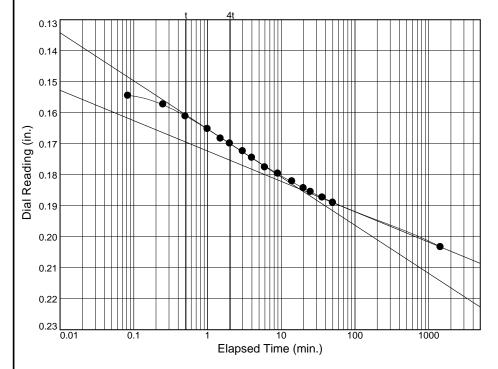
Load No.= 3

Load=0.50 tsf

 $D_0 = 0.0640$


 $D_{90} = 0.0758$


 $D_{100} = 0.0771$


 $T_{90} = 3.07 \text{ min.}$

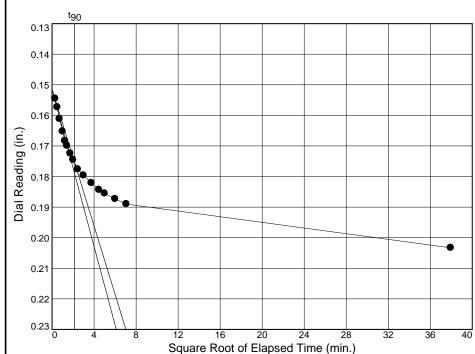
C_V @ T₉₀

0.0042 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

> Load No.= 5 Load=2.00 tsf

> > $D_0 = 0.1522$


 $D_{50} = 0.1684$

 $D_{100} = 0.1845$

 $T_{50} = 1.59 \text{ min.}$

C_V @ T₅₀ 0.0014 cm.²/sec.

 $C_{\alpha} = 0.041$

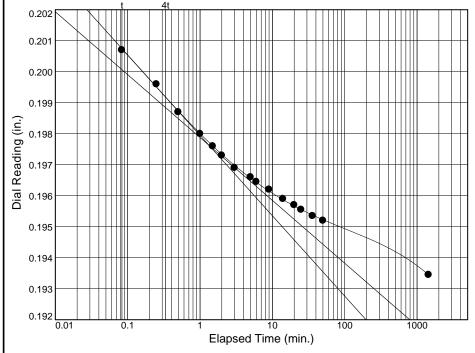
-Thielsch Engineering Inc.-

Load No.= 5 Load=2.00 tsf

 $D_0 = 0.1515$

 $D_{90} = 0.1756$

 $D_{100} = 0.1782$


 $T_{90} = 4.64 \text{ min.}$

C_V @ T₉₀

0.0021 cm.²/sec.

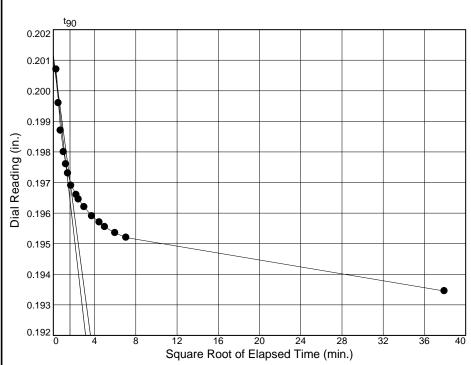
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 6

Load=0.50 tsf

 $D_0 = 0.2023$


 $D_{50} = 0.2000$

 $D_{100} = 0.1976$

 $T_{50} = 0.17 \text{ min.}$

C_V @ T₅₀

0.0121 cm.2/sec.

-Thielsch Engineering Inc.-

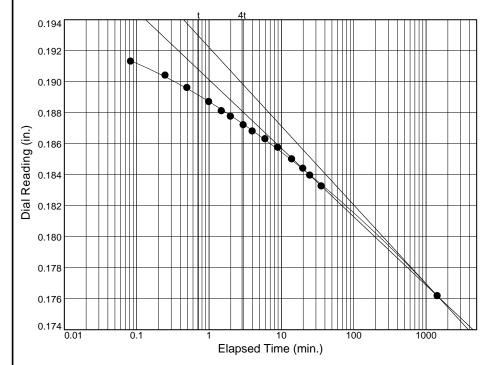
Load No.= 6

Load=0.50 tsf

 $D_0 = 0.2011$

 $D_{90} = 0.1970$

 $D_{100} = 0.1966$


 $T_{90} = 2.61 \text{ min.}$

C_V @ T₉₀

0.0034 cm.²/sec.

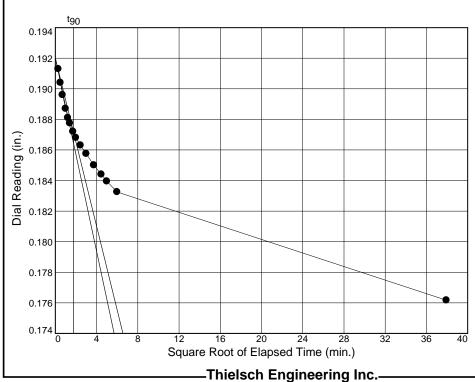
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 7

Load=0.13 tsf

 $D_0 = 0.1909$


 $D_{50} = 0.1836$

 $D_{100} = 0.1762$

 $T_{50} = 31.86 \text{ min.}$

C_v @ T₅₀

0.0001 cm.2/sec.

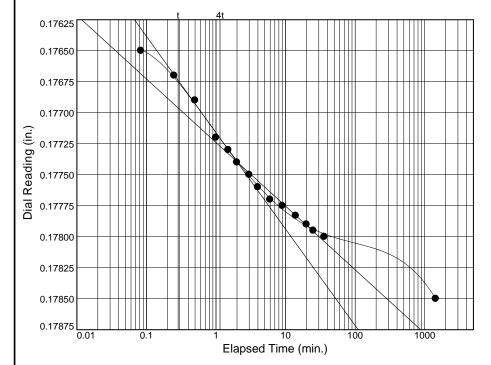
Load No.= 7

Load=0.13 tsf

 $D_0 = 0.1920$

 $D_{90} = 0.1871$

 $D_{100} = 0.1866$


 $T_{90} = 3.15 \text{ min.}$

C_v @ T₉₀

0.0029 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

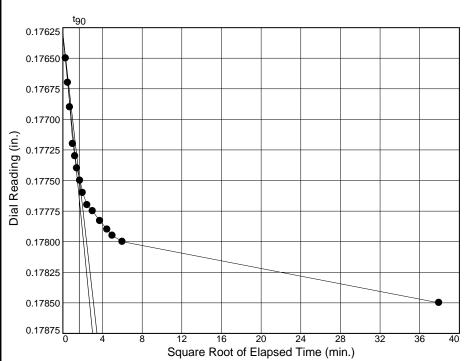
Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 8

Load=0.25 tsf

 $D_0 = 0.1763$

 $D_{50} = 0.1768$


 $D_{100} = 0.1774$

 $T_{50} = 0.39 \text{ min.}$

C_v @ T₅₀

0.0056 cm.2/sec.

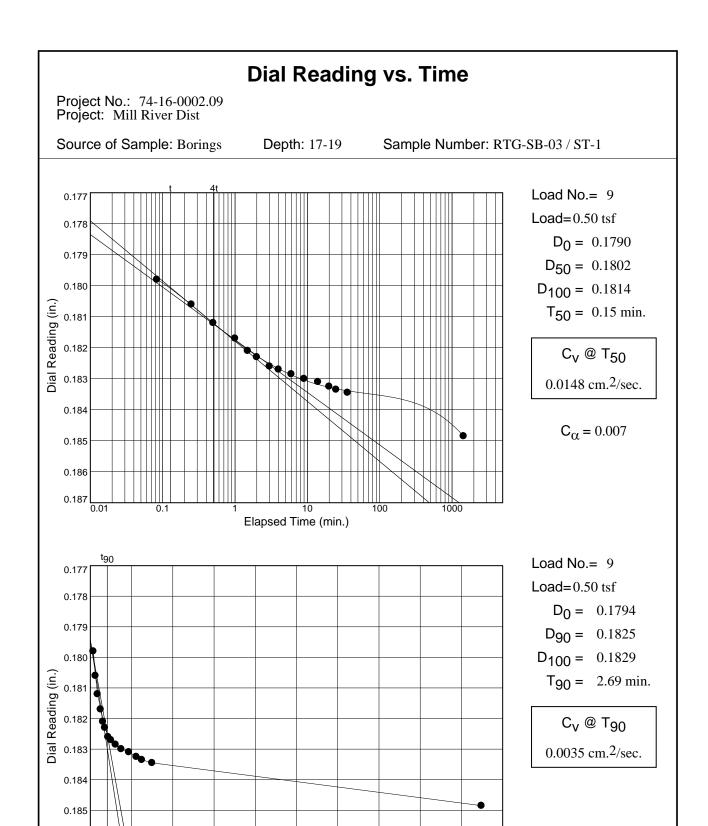
 $C_{\alpha} = 0.002$

-Thielsch Engineering Inc.-

Load No.= 8

Load=0.25 tsf

 $D_0 = 0.1763$


 $D_{90} = 0.1775$

 $D_{100} = 0.1776$

 $T_{90} = 2.73 \text{ min.}$

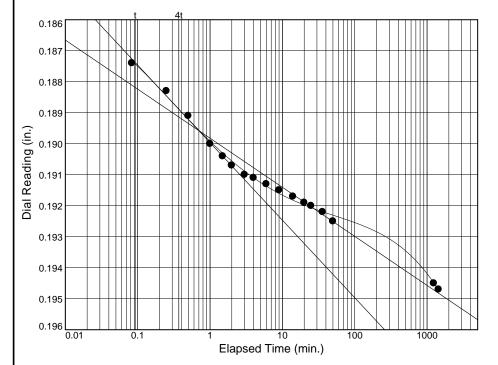
C_v @ T₉₀

0.0035 cm.2/sec.

20

24

0.186


Square Root of Elapsed Time (min.)

——Thielsch Engineering Inc.

Figure C1573-10

Project No.: 74-16-0002.09 Project: Mill River Dist

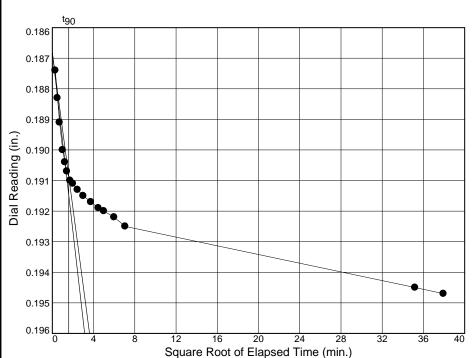
Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 10

Load=1.00 tsf

 $D_0 = 0.1860$

 $D_{50} = 0.1878$


 $D_{100} = 0.1896$

 $T_{50} = 0.13 \text{ min.}$

C_v @ T₅₀

0.0162 cm.²/sec.

 $C_{\alpha} = 0.007$

-Thielsch Engineering Inc.-

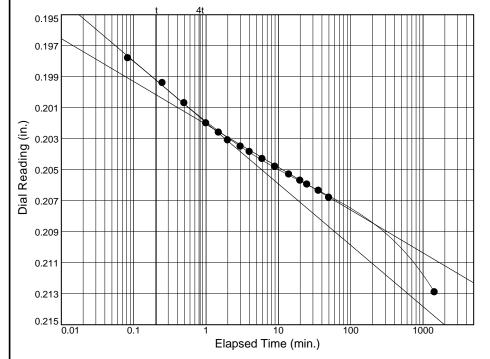
Load No.= 10

Load=1.00 tsf

 $D_0 = 0.1868$

 $D_{90} = 0.1909$

 $D_{100} = 0.1913$


 $T_{90} = 2.54 \text{ min.}$

C_V @ T₉₀

0.0036 cm.²/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

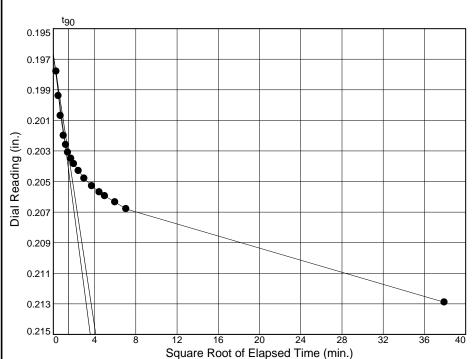
Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 11

Load=2.00 tsf

 $D_0 = 0.1969$

 $D_{50} = 0.1996$


 $D_{100} = 0.2023$

 $T_{50} = 0.26 \text{ min.}$

C_v @ T₅₀

0.0079 cm.2/sec.

 $C_{\alpha} = 0.012$

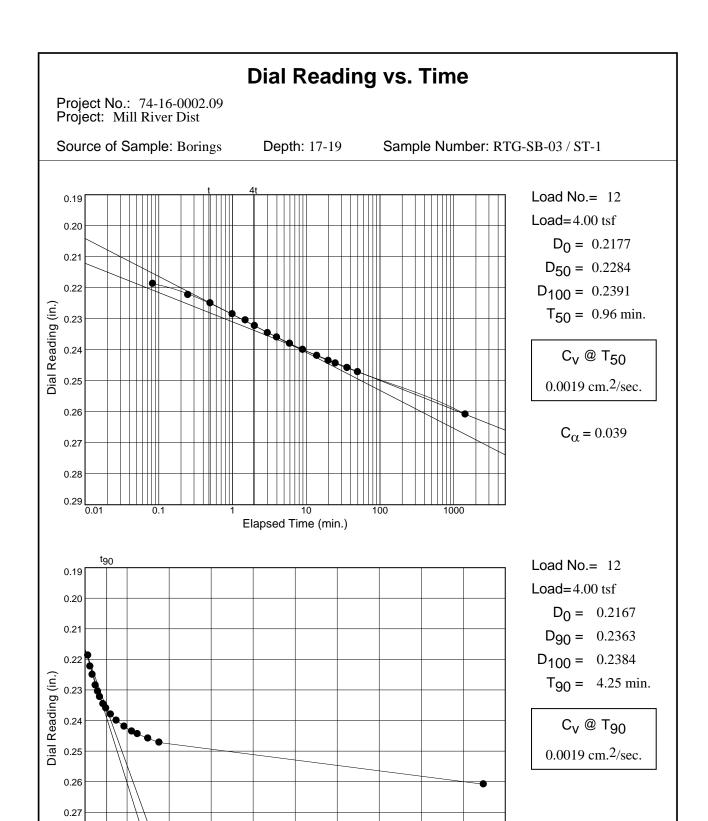
Load No.= 11

Load=2.00 tsf

 $D_0 = 0.1967$

 $D_{90} = 0.2031$

 $D_{100} = 0.2039$


 $T_{90} = 2.11 \text{ min.}$

C_V @ T₉₀

0.0042 cm.²/sec.

Figure C1573-12

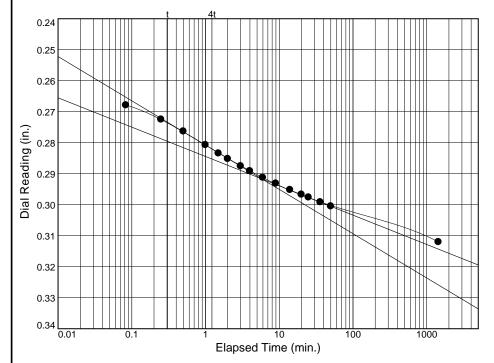
-Thielsch Engineering Inc.-

20

24

0.28

0.29


Square Root of Elapsed Time (min.)

Thielsch Engineering Inc.

Figure C1573-13

Project No.: 74-16-0002.09 Project: Mill River Dist

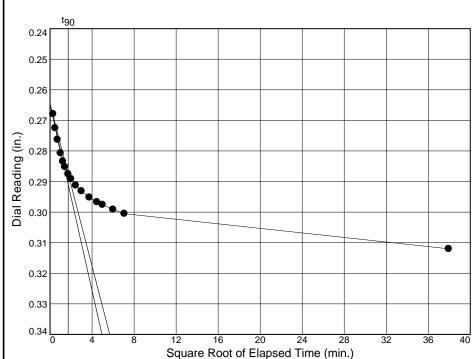
Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 13

Load=8.00 tsf

 $D_0 = 0.2653$

 $D_{50} = 0.2784$


 $D_{100} = 0.2916$

 $T_{50} = 0.69 \text{ min.}$

C_v @ T₅₀

0.0023 cm.²/sec.

 $C_{\alpha} = 0.039$

Load No.= 13

Load=8.00 tsf

 $D_0 = 0.2646$

 $D_{90} = 0.2875$

 $D_{100} = 0.2900$

 $T_{90} = 2.97 \text{ min.}$

C_V @ T₉₀

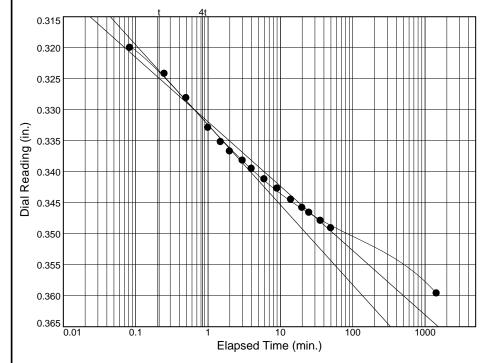

0.0023 cm.²/sec.

Figure C1573-14

-Thielsch Engineering Inc.-

Project No.: 74-16-0002.09 Project: Mill River Dist

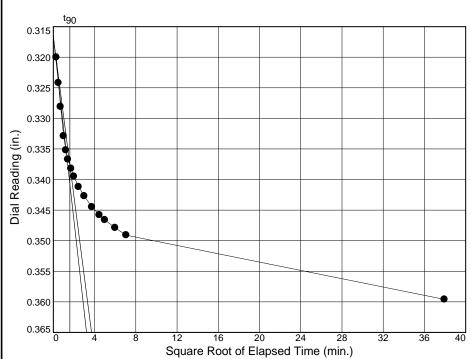
Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 14

Load=16.00 tsf

 $D_0 = 0.3163$

 $D_{50} = 0.3231$


 $D_{100} = 0.3299$

 $T_{50} = 0.18 \text{ min.}$

C_v @ T₅₀

0.0073 cm.2/sec.

 $C_{\alpha} = 0.043$

Load No.= 14

Load=16.00 tsf

 $D_0 = 0.3167$

 $D_{90} = 0.3376$

 $D_{100} = 0.3399$

 $T_{90} = 2.57 \text{ min.}$

C_V @ T₉₀

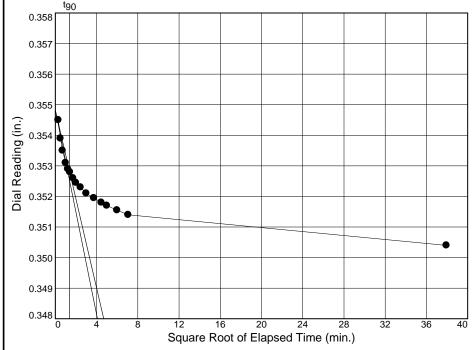

0.0021 cm.²/sec.

Figure C1573-15

-Thielsch Engineering Inc.-

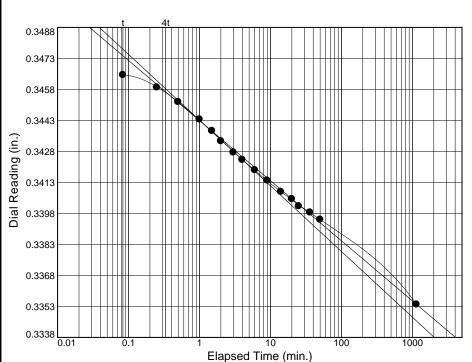
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 15

Load=4.00 tsf

 $D_0 = 0.3548$


 $D_{90} = 0.3528$

 $D_{100} = 0.3526$

 $T_{90} = 1.90 \text{ min.}$

C_v @ T₉₀

0.0026 cm.2/sec.

Thielsch Engineering Inc.

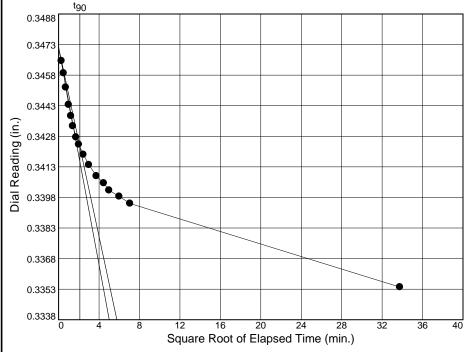
Load No.= 16

Load=1.00 tsf

 $D_0 = 0.3473$

 $D_{50} = 0.3457$

 $D_{100} = 0.3440$


 $T_{50} = 0.32 \text{ min.}$

C_V @ T₅₀

0.0037 cm.2/sec.

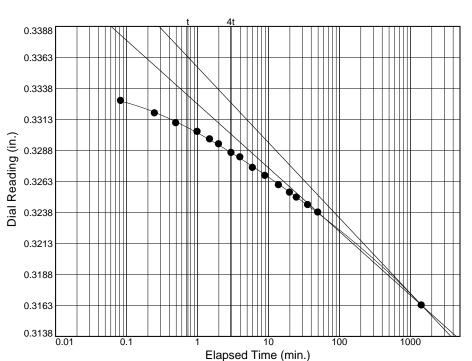
Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 16

Load=1.00 tsf

 $D_0 = 0.3472$


 $D_{90} = 0.3423$

 $D_{100} = 0.3417$

 $T_{90} = 4.42 \text{ min.}$

C_v @ T₉₀

0.0012 cm.2/sec.

Thielsch Engineering Inc.

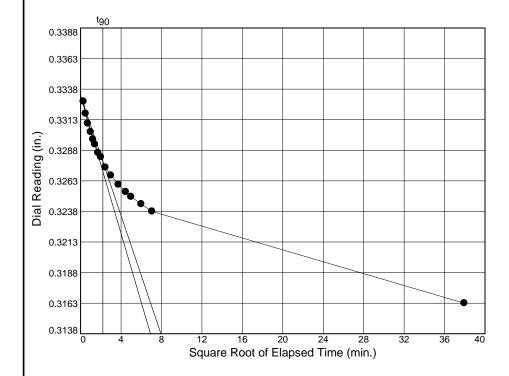
Load No.= 17

Load=0.25 tsf

 $D_0 = 0.3326$

 $D_{50} = 0.3244$

 $D_{100} = 0.3163$


 $T_{50} = 34.39 \text{ min.}$

C_V @ T₅₀

0.0000 cm.2/sec.

Project No.: 74-16-0002.09 Project: Mill River Dist

Source of Sample: Borings Depth: 17-19 Sample Number: RTG-SB-03 / ST-1

Load No.= 17 Load=0.25 tsf $D_0 = 0.3333$ $D_{90} = 0.3279$ $D_{100} = 0.3273$

 $T_{90} = 4.86 \text{ min.}$

C_V @ T₉₀ 0.0011 cm.²/sec.

-Thielsch Engineering Inc. Figure C1573-18

Table D-1 Budget-Level Cost Estimate Raising Grade, Vacant Lot North of Radiall Alternatives Evaluation Memorandum

City of New Haven, CT

	Description	Unit of	Estimated	Unit	Extended	Comments
tem	Description Constal Requirements	rayment	Quantity	Price	Total	Comments
1	General Requirements	1.0	1	#0.500.00	#0.500.00	Estimated Independent Deleted to Flood Proofing Alternative Only
	Earth Material Submittals	LS	· ·	\$2,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Concrete Submittals	LS	1	\$0.00		Assume part of overall Project Development Costs
	Steel Submittals	LS	1	\$0.00		Assume part of overall Project Development Costs
	Electrical, Mechanical, and HVAC Submittals	LS	1	\$0.00		Assume part of overall Project Development Costs
	Site Restoration Submittals	LS	1	\$1,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Safety Activity Plan	LS	1	\$0.00		Assume part of overall Project Development Costs
	Quality Control (QC) Plan	LS	1	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Meetings	EA	8	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Closeout Related Submittals	LS	1	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Performance & Payment Bonds	LS	1	\$24,215.13	\$24,215.13	Assume at 2% of Flood Proofing Alternative Costs
	Record Drawings	LS	1	\$5,000.00	\$5,000.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	3.	_		*-,	\$33,215.13	,
	Calculate Bid Unit Cost	LS	1		\$33,215.13	
2	Mobilization		<u> </u>		φοσ,210.10	
_	Mobilization (Multiple Mobilizations Assumed)	LS	1	\$50,000.00	\$50,000,00	Estimator's Judgment, Related to Flood Proofing Alternative Only
	Modifization (Maitiple Modifizations Assumed)	23	1	ψου,ουυ.ου	\$50,000.00 \$50,000.00	Louinator o dauginent, related to 1 lood 1 looming Alternative Only
	Calculate Bid Unit Cost	10	1		\$50,000.00	
2		LS	1		φου,υυυ.υυ	
3	Quality Control	- ^	_	# 00 00	0045 10	Followered Indonesia Poletical El 18 6 Al 2 C
	Grain Size through No. 200 Sieve	EA	9	\$90.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Moisture Density Relationship	EA	9	\$200.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Dry-Density and As-Placed Moisture Content	1/2 DAY	20	\$300.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
					\$8,723.10	
	Calculate Bid Unit Cost	LS	1		\$8,723.10	
4	Erosion and Sedimentation Controls					
	Silt Fence/Baled Hay Erosion Check	LF	500	\$8.00	\$4,000.00	Estimator's Judgment, Related to Flood Proofing Alternative Only
	Construction Entrance	EA	1	\$15,000.00	\$15,000.00	Estimator's Judgment, Related to Flood Proofing Alternative Only
					\$19,000.00	•
	Calculate Bid Unit Cost	LS	1		\$19,000.00	
5	Demolition, Clearing, and Removal		<u></u>		. ,	
-	Demolish and Remove Existing Structures	LS	1	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Cut Down and Remove Vegetation	DAY	2	\$0.00		Assume part of overall Project Development Costs
	Grub Out and Remove Stumps	DAT	1	\$0.00		Assume part of overall Project Development Costs
	Strip and Stockpile Topsoil	CY	900	\$0.00	\$0.00 \$0.00	Assume part of overall Project Development Costs Assume part of overall Project Development Costs
		TRK	900			
	Trucking and Disposal Allowance	ıĸĸ	90	\$0.00		Assume part of overall Project Development Costs
			,		\$0.00	
	Calculate Bid Unit Cost	LS	11		\$0.00	
6	Raising Grade					
0.4	B (1)					
6A	Prefabricated Vertical Wick Drains		,	A.= 0.0	A.= : :	
	Mobilize Modified Hydraulic Excavator	LS	1	\$15,000.00		Estimator's Judgment, Related to Flood Proofing Alternative Only
	Furnish and Install Vertical Wick Drains	LF	51,368	\$1.50		Estimator's Judgment, Related to Flood Proofing Alternative Only
					\$92,052.00	
	Calculate Bid Unit Cost	LS	1		\$92,052.00	
6B	Raise Grade to DFE					
	Prepare and Compact Subgrade	DAY	5	\$3,500.00	\$17,500.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	Furnish Granular Fill Material	TON	16,110	\$18.11		Per Tilcon Connecticut x 1.15 Mark-up
	Place and Compact Granular Backfill Material	CY	9,180	\$10.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	i lado ana dompadi Orandiai Badidiii Materiai	٠.	5,100	ψ.υ.υυ	\$401,092.38	
	Calculate Bid Unit Cost	LS	1		\$401,092.38	
6C	Surcharge Load	LO			ψ401,032.30	
UC	•	TON	0.000	Ф Е ОО	¢44 450 00	Loading and Trucking Costs Only
	Eurnich Common Borrow from Commonsten Otener					
	Furnish Common Borrow from Compensatory Storage Place and Compact Common Borrow Material	TON CY	8,230 4,690	\$5.00 \$10.00		Estimator's Judgement, Related to Flood Proofing Alternative Only

Table D-1 Budget-Level Cost Estimate Raising Grade, Vacant Lot North of Radiall Alternatives Evaluation Memorandum

City of New Haven, CT

	Unit of	Estimated	y of New Have Unit	Extended	
tem Description		Quantity	Price	Total	Comments
Description	1 ayınıcını	Quantity	11100	\$88,050.00	Comments
Calculate Bid Unit Cost	LS	1		\$88,050.00	
6D Geotechnical Instrumentation		<u> </u>		+	
Furnish and Install Settlement Plates	EA	15	\$1,500.00	\$22,500.00	Estimator's Judgment, Related to Flood Proofing Alternative Only
Furnish and Install Vibrating Wire Piezometers	EA	5	\$3,500.00		Estimator's Judgment, Related to Flood Proofing Alternative Only
Instrument Readings		24	\$500.00		Estimator's Judgment, Related to Flood Proofing Alternative Only
Data Tracking and Processing	LS	1	\$15,000.00		Estimator's Judgment, Related to Flood Proofing Alternative Only
Ç Ç				\$67,000.00	
Calculate Bid Unit Cost	LS	1		\$67,000.00	
6E Strip Surchage to DFE					
Excavate and Remove Surcharge	CY	4,690	\$10.00	\$46,900.00	Estimator's Judgment, Related to Flood Proofing Alternative Only
Load and Truck Surchage Offsite	TRK	469	\$0.00	\$0.00	Included Under Bid Item No. 8
				\$46,900.00	
Calculate Bid Unit Cost	LS	1		\$46,900.00	
7 Riprap Slope Stabilization/Protection					
Furnish and Install Geotextile Fabric		13,500	\$1.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
Furnish Riprap Bedding Stone		440	\$29.27		Per Tilcon Connecticut x 1.15 Mark-up
Install Riprap Bedding Stone	DAY	4	\$3,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
Furnish Riprap	TON	945	\$29.61		Per Tilcon Connecticut x 1.15 Mark-up
Install Riprap	DAY	8	\$3,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
				\$96,361.51	
Calculate Bid Unit Cost	LS	1		\$96,361.51	
8 Compensatory Floodplain Storage			A 40.00	^	
Excavate Floodplain Storage Basin	CY	7,705	\$10.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
Grade and Shape Basin		3	\$3,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
Trucking and Disposal Allowance (Assume Non-Contaminated)	TRK	771	\$250.00	\$192,750.00 \$280,300.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
Coloulate Pid Unit Coat	LS	1		\$280,300.00	
Calculate Bid Unit Cost Site Restoration	LS	1		\$280,300.00	
Furnish Loam	CY	700	\$20.00	¢14,000,00	Estimator's Judgement, Related to Flood Proofing Alternative Only
Place Loam	CY	700	\$5.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
Furnish and Install Seed	SF	37,555	\$5.00 \$0.50		Estimator's Judgement, Related to Flood Proofing Alternative Only
i uiiisii aliu iiistali Seeu	OI.	57,555	φυ.συ	\$36,277.50	Lamater a daugement, related to Flood Flooling Alternative Only
Calculate Bid Unit Cost	LS	1		\$36,277.50	
10 Demobilization and Clean-up				ψ50,211.50	
Demobilization and Clean-up		1	\$25,000.00	\$25,000,00	Estimator's Judgement, Related to Flood Proofing Alternative Only
Domosination and Olean up	_0		\$25,500.00	\$25,000.00	
Calculate Bid Unit Cost	LS	1		\$25,000.00	
SUBTOTAL				. ,	Sum of Items 1-10
Scope and Budget Contingencies					Scope and Budget Contingencies @ 25%
Subsurface Investigation					Subsurface Investigation Already Completed
Permitting					Assume @ 2.5%
Final Plans, Specifications, and Engineering				. ,	Assume @ 4.5%
Construction Phase Services					Assume @ 7.0% (Full-Time Construction Observation Assumed)
TOTAL ESTIMATE (2016 USD)					Rounded to the Nearest \$100,000.00
Flood Proofing Cost Per SF of Building Footprint	_				For a Hypothetical Building Footprint of 20,000 SF

Budget-Level Cost Estimates Page 2 of 2 December 2016

Table D-2 Budget-I evel Cost Estimate

Budget-Level Cost Estimate Elevated Development, Vacant Lot North of Radiall

Alternatives Evaluation Memorandum

City of New Haven, CT

		Unit of	Estimated	Unit	Extended	
Item	Description	Payment	Quantity	Price	Total	Comments
1	General Requirements					
	Earth Material Submittals	LS	1	\$2,500.00	\$2,500.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	Concrete Submittals	LS	1	\$2,500.00	\$2,500.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	Steel Submittals	LS	1	\$1,500.00	\$1,500.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	Electrical, Mechanical, and HVAC Submittals	LS	1	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Safety Activity Plan	LS	1	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Quality Control (QC) Plan	LS	1	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Meetings	EA	8	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Closeout Related Submittals	LS	1	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Performance & Payment Bonds	LS	1	\$32,283.58	\$32,283.58	Assume at 2% of Flood Proofing Alternative Costs
	Record Drawings	LS	1	\$10,000.00	\$10,000.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	•				\$48,783.58	
	Calculate Bid Unit Cost	LS	1		\$48,783.58	
2	Mobilization					
	Mobilization	LS	1	\$50,000.00	\$50,000.00	Estimator's Judgment, Related to Flood Proofing Alternative Only
					\$50,000.00	
	Calculate Bid Unit Cost	LS	1		\$50,000.00	
3	Quality Control					
	Grain Size through No. 200 Sieve	EA	2	\$90.00	\$180.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	Moisture Density Relationship	EA	2	\$200.00	\$400.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	Dry-Density and As-Placed Moisture Content	1/2 DAY	2	\$300.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Concrete Compressive Strength	EA	20	\$100.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	3.			•	\$3,180.00	
	Calculate Bid Unit Cost	LS	1		\$3,180.00	
4	Erosion and Sedimentation Controls				+-,	
	Silt Fence/Baled Hay Erosion Check	LF	500	\$8.00	\$4.000.00	Estimator's Judgment, Related to Flood Proofing Alternative Only
	Construction Entrance	EA	1	\$15,000.00		Estimator's Judgment, Related to Flood Proofing Alternative Only
			•	* · · · , · · · · · · · · · · · · · · ·	\$19,000.00	
	Calculate Bid Unit Cost	LS	1		\$19,000.00	
5	Demolition, Clearing, and Removal		•		ψ.ο,σσσ.σσ	
Ŭ	Demolish and Remove Existing Structures	LS	1	\$0.00	\$0.00	Assume part of overall Project Development Costs
	Cut Down and Remove Vegetation	DAY	2	\$0.00		Assume part of overall Project Development Costs
	Grub Out and Remove Stumps	DAY	1	\$0.00		Assume part of overall Project Development Costs
	Strip and Stockpile Topsoil	CY	400	\$0.00		Assume part of overall Project Development Costs
	Trucking and Disposal Allowance	TRK	40	\$0.00		Assume part of overall Project Development Costs
	Trucking and Disposal Allowance	TIXIX	40	Ψ0.00	\$0.00	
	Calculate Bid Unit Cost	LS	1		\$0.00	
6	Pile Supported Foundation	LO	<u> </u>		ψ0.00	
U	Excavate for Pile Caps	CY	480	\$10.00	\$4 800 00	Estimator's Judgement, Related to Flood Proofing Alternative Only
	Furnish Granular Fill Material for Leveling Pad	TON	240	\$18.11		Per Tilcon Connecticut x 1.15 Mark-up
	Place and Compact Granular Backfill Material	CY	135	\$10.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Furnish HP12x63 Piles (4 Piles/Cap x 45 Caps x 70-feet-long)	LF	12,600	\$35.75		Written Quote from Raymond Piling x 1.15 for Mark-Up
	Furnish P12x63 Piles (4 Piles/Cap x 45 Caps x 70-reet-long) Furnish Champion Splice	EA	12,600	\$115.00		Written Quote from Raymond Piling x 1.15 for Mark-Up
	Install Champion Splice	EA	0	\$400.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Install Champion Splice Install H-Piles	LF				Estimator's Judgement, Related to Flood Proofing Alternative Only
	Perform Static Pile Load Test	LS	12,600	\$50.00		
			1	\$50,000.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	PDA Testing on 10% of Production Piles	DAY	2	\$2,300.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	CAPWAPs	EA	11	\$287.50		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Form and Pour Pile Caps	CY	320	\$650.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Form and Pour Main Columns at Caps to Support Building	CY	168	\$750.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Form and Pour 1st Floor Beams and Structural Slab	CY	600	\$0.00		Assume part of overall Project Development Costs
	- -				\$1,482,708.90	
	Calculate Bid Unit Cost	LS	1		\$1,482,708.90	

Table D-2

Budget-Level Cost Estimate

Elevated Development, Vacant Lot North of Radiall **Alternatives Evaluation Memorandum**

City of New Haven, CT

om	Description	Unit of	Estimated Quantity	Unit	Extended	Comments
em	Description Riprap Scour Protection	Payment	Quantity	Price	Total	Comments
′	• •		400	#40.00	£4,000,00	Estimatoria Independent Balatad to Flood Broofing Alternative Only
	Excavate for Riprap Scour Protection		192	\$10.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Prepare and Compact Subgrade Furnish and Install Geotextile Fabric		2 400	\$3,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
		_	3,100	\$1.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Furnish Riprap Bedding Stone		95	\$29.27	. ,	Per Tilcon Connecticut x 1.15 Mark-up
	Install Riprap Bedding Stone		2	\$3,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Furnish Riprap		155	\$29.61		Per Tilcon Connecticut x 1.15 Mark-up
	Install Riprap	DAY	2	\$3,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
					\$29,890.20	
	Calculate Bid Unit Cost	LS	11		\$29,890.20	
8	Compensatory Floodplain Storage					
	Excavate Floodplain Storage Basin		90	\$10.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
	Grade and Shape Basin	DAY	1	\$3,500.00		Estimator's Judgement, Related to Flood Proofing Alternative Only
					\$4,400.00	
	Calculate Bid Unit Cost	LS	1		\$4,400.00	
9	Site Restoration					
	Furnish Loam	-	0	\$20.00		Assume part of overall Project Development Costs
	Place Loam		0	\$5.00		Assume part of overall Project Development Costs
	Furnish and Install Seed	SF	0	\$0.50	\$0.00	Assume part of overall Project Development Costs
					\$0.00	
	Calculate Bid Unit Cost	LS	1		\$0.00	
10	Demobilization and Clean-up					
	Demobilization and Clean-up	LS	1	\$25,000.00	\$25,000.00	Estimator's Judgement, Related to Flood Proofing Alternative Only
					\$25,000.00	
	Calculate Bid Unit Cost	LS	1		\$25,000.00	
	SUBTOTAL				\$1,662,962.68	Sum of Items 1-10
	Scope and Budget Contingencies				\$415,740.67	Scope and Budget Contingencies @ 25%
	Supplemental Subsurface Investigation				\$8,314.81	Supplemental Subsurface Investigation @ 0.50%
	Permitting				\$16,629.63	Assume @ 1.0%
	Final Plans, Specifications, and Engineering				\$83,148.13	Assume @ 5.0%
	Construction Phase Services				\$99,777.76	Assume @ 6.0% (Full-Time Construction Observation Assumed)
	TOTAL ESTIMATE (2016 USD)					Rounded to the Nearest \$100,000.00
	,					
	Flood Proofing Cost Per SF of Building Footprint				\$115.00	For a Hypothetical Building Footprint of 20,000 SF
	3				*	3