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On December 13, 2019, the Yale School of Public Health hosted a symposium titled “Per- and Polyfluoroalkyl
Substances (PFAS): Challenges and Opportunities” in New Haven, Connecticut. The meeting focused on the cur-
rent state of the science on these chemicals, highlighted the challenges unique to PFAS, and explored promising
opportunities for addressing them. It brought together participants from Yale University, the National Institute of
Environmental Health Sciences, the University of Massachusetts Amherst, the University of Connecticut, the
Connecticut Agricultural Experiment Station, the Connecticut Departments of Public Health and Energy and
Environmental Protection, and the public and private sectors. Presentations during the symposium centered
around several primary themes. Thefirst reviewed the current state of the science on the health effects associated
with PFAS exposure and noted key areas thatwarranted future research. As research in this field relies on special-
ized laboratory analyses, the second theme considered commercially availablemethods for PFAS analysis as well
as several emerging analytical approaches that support health studies and facilitate the investigation of a broader
range of PFAS. Since mitigation of PFAS exposure requires prevention and cleanup of contamination, the third
theme highlighted new nanotechnology-enabled PFAS remediation technologies and explored the potential of
green chemistry to develop safer alternatives to PFAS. The fourth theme covered collaborative efforts to assess
the vulnerability of in-state private wells and small public water supplies to PFAS contamination by adjacent
landfills, and the fifth focused on strategies that promote successful community engagement. This symposium
supported a unique interdisciplinary coalition established during the development of Connecticut's PFAS Action
Plan, and discussions occurring throughout the symposium revealed opportunities for collaborations among
Connecticut scientists, state and local officials, and community advocates. In doing so, it bolstered the State of
Connecticut's efforts to implement the ambitious initiatives that its PFAS Action Plan recommends.

© 2021 Published by Elsevier B.V.
1. Introduction

Per- and polyfluoroalkyl substances (PFAS), a family of >9000
synthetic organic chemicals (EPAa), have captured the attention of peo-
ple across the globe due to a growing concern about the health risks
posed by widespread PFAS contamination in drinking water sources
and other environmental media. While PFAS vary widely in their phys-
ical and chemical properties, they all contain at least one chain of carbon
atoms in which one or more of the carbon atoms is perfluorinated,
i.e., has fluorine atoms attached at all bonding sites not occupied by an-
other carbon atom (Buck et al., 2011). Since their initial introduction in
the 1940s, PFAS have become pervasive in consumer products and in-
dustrial processes because of the unique properties imparted by their
chemical structures, including stability, heat resistance, friction reduc-
tion abilities, and oil and water repellence (Buck et al., 2012). However,
as an unintended consequence of these same useful properties, many
PFAS are now persistent pollutants that spread throughout the environ-
ment, contaminate food and drinking water sources, and ultimately
bioaccumulate in animals and humans (Sunderland et al., 2019). Toxi-
cological and epidemiological research has associated exposure to cer-
tain PFAS, particularly certain long-chain perfluoroalkyl acids, with a
wide range of adverse health effects (reviewed in depth in Fenton
et al., 2020), including thyroid disruption (Andersson et al., 2019;
Ballesteros et al., 2017; Blake et al., 2018; Caron-Beaudoin et al.,
2019), ulcerative colitis (Steenland et al., 2018; Steenland et al., 2013),
high cholesterol (Lin et al., 2019; Nelson et al., 2010), pregnancy-
induced hypertension (Starling et al., 2014), decreased immune respon-
siveness (DeWitt et al., 2019), and kidney and testicular cancer (Barry
et al., 2013; Shearer et al., 2020). Measurable levels of some PFAS are
present in the blood of over 95% of U.S. residents, and PFAS contamina-
tion has been discovered in drinkingwater nationwide (Hu et al., 2016).
During the third Unregulated Contaminant Monitoring Rule (UCMR3;
2013–2015) water survey, the U.S. Environmental Protection Agency
(EPA) found that 1.3% of the nation's largest public water systems,
which provide drinking water to an estimated 5.5 million people,
contained at least one PFAS compound in concentrations exceeding its
reference concentration of 70 ng/L (ppt) (EPA, 2016).

In the absence of timely federal action to regulate PFAS or set en-
forceable drinking water standards and in response to community con-
cerns, many U.S. states have taken independent action to safeguard
their residents against the health risks posed by PFAS (reviewed in
2

Blake and Fenton, 2020 and Post, 2020). In July 2019, Connecticut
Governor Ned Lamont established the Interagency PFAS Task Force to
advise his administration and formulate an action plan containing a
comprehensive state strategy to address PFAS. The task force was led
by the Commissioners of the Connecticut Departments of Public Health
(CTDPH) and Energy and Environmental Protection (CTDEEP) and
comprised representatives from 18 state agencies and entities. To en-
able all affected stakeholders to take part in the process, the task force
established three subcommittees, each open to public participation, to
discuss strategies to (1) minimize environmental exposure of Connect-
icut residents to PFAS, (2) minimize future releases of PFAS into the en-
vironment, and (3) identify, assess, and clean up historical releases of
PFAS into the environment, respectively. This process brought together
key academic, government, and private- and public-sector stakeholders
from across the state. An action plan, developed by the Task Force and
its subcommittees, was released in draft form inOctober 2019 for public
comment. After revisions to reflect public input, the finalized PFAS Action
Plan was delivered to Governor Lamont on November 1, 2019 and re-
leased to the public soon thereafter (The Connecticut Interagency PFAS
Task Force, 2019). The plan laid out a series of actions that the State of
Connecticut could take to protect public health, identify and remediate
existing PFAS pollution, prevent future pollution, and enhance outreach
and communicationwith the general public on the adverse health effects
of PFAS exposure and strategies for mitigating exposure.

To foster continued collaboration between local scientists, govern-
ment officials, public citizens, and other parties, the Yale School of Public
Health hosted a daylong symposium on December 13, 2019 titled
“Per- and Polyfluoroalkyl Substances (PFAS): Challenges and Opportu-
nities.” This symposium drew participants from Yale, CTDEEP, CTDPH,
the Connecticut Agricultural Experiment Station, the National Institute
of Environmental Health Sciences (NIEHS), the University of Massachu-
setts Amherst, the University of Connecticut, and key stakeholders in
the public and private sectors. Presentations during the symposium
centered around several primary themes. The first reviewed the current
state of the science on the health effects of PFAS and noted key research
gaps that require further study. As research in this field relies on
specialized laboratory analyses, the second theme considered commer-
cially available methods for PFAS analysis as well as several emerging
analytical approaches that support new health studies and facilitate
the investigation of a broader range of PFAS. Since mitigation of PFAS
exposure requires prevention and cleanup of contamination, the third
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theme highlighted new nanotechnology-enabled PFAS remediation
technologies and explored the potential of green chemistry to develop
safer alternatives to PFAS. The fourth theme covered a collaboration
between Yale researchers and CTDEEP to assess the vulnerability of
private wells and small public water supplies to PFAS contamination
by adjacent landfills, and the fifth focused on strategies that promote
successful community engagement. Discussions occurring throughout
the symposium revealed opportunities for collaborations that would
support ongoing CTDEEP andCTDPH efforts to implement the initiatives
recommended in the Connecticut PFAS Action Plan. The highlights of
these sessions' presentations are summarized herein. This summary
provides a valuable snapshot of early dialogue between researchers,
government officials, and representatives of local health and nonprofit
organizations convened to share cutting-edge scientific advances and
coordinate future multisector collaborations to help the state confront
an environmental health issue of national and global importance.

2. Health effects

Decades of widespread PFAS use have led to pervasive environmen-
tal contamination and human exposure. Comprehensive research on
PFAS-related health effects is therefore necessary to inform the risk as-
sessment process used by government officials to derive health-based
guidelines and standards that protect the public from potentially unsafe
levels of exposure. As exposure occurs through various pathways, in-
cluding consumer product use and ingestion of contaminated food
and water, these officials face a daunting task. Many regulatory and re-
search efforts have initially focused on human exposure through drink-
ingwater. In recent years, a growing number of epidemiological studies
investigating populations with different levels of PFAS exposure have
identified probable links between certain PFAS and various human
health effects, which are generally supported by findings in toxicologi-
cal studies conducted in laboratory rodent models. These studies have
collectively demonstrated that pregnant mothers and developing off-
spring are the sub-populations most sensitive to low levels of PFAS ex-
posure, which highlights the need to study adverse effects on maternal
and infant health as particularly essential for risk assessment purposes
(Goeden et al., 2019). Recent research has significantly enhanced our
understanding of the health implications of PFAS exposure. However,
major remaining data gapsmake it challenging for officials to effectively
assess the risks posed by PFAS and safeguard public health (Fenton et al.,
2020). Moving forward, it is important for scientists to fill in these data
gaps by investigating additional PFAS, geographical regions, and health
effects, considering the implications of exposure to mixtures of PFAS,
and elucidating the mechanisms responsible for adverse health effects.

Environmental epidemiological studies using data-rich prospective
birth cohorts have provided valuable information on how PFAS expo-
sure influences the health of pregnant women and of children in the
earliest and most sensitive stages of development. Developing human
fetuses can be exposed to PFAS in utero through active or passive trans-
placental transfer (Eryasa et al., 2019; Mamsen et al., 2019); after birth,
infants can be exposed through breastfeeding and/or formula made
with contaminated water, and by PFAS in the home environment. Stud-
ies using the Danish National Birth Cohort have provided evidence
linking PFAS exposure to a range of pregnancy complications and
neurodevelopmental effects (Ernst et al., 2019; Liew et al., 2020; Liew
et al., 2018; Liew et al., 2014; Liew et al., 2015; Meng et al., 2018). Spe-
cifically, these studies have linked prenatal PFAS exposure with altered
maternal thyroid hormone function during early pregnancy, an in-
creased risk of cerebral palsy in male offspring (Liew et al., 2014), in-
creased risks of miscarriage and preterm birth (Liew et al., 2020;
Meng et al., 2018), and sex-specific effects on the onset of puberty
(Ernst et al., 2019). Studies using the Faroe Islands birth cohorts have
provided further evidence of associations between PFAS exposure and
a broad range of health effects in children, including decreased birth
weight (Xiao et al., 2020), impaired neurodevelopment (Oulhote et al.,
3

2016), immunosuppressive effects (Grandjean et al., 2012), altered thy-
roid hormone levels (Xiao et al., 2020), childhood behavioral problems
(Oulhote et al., 2016), andmicrobiome disruption (Oulhote et al., 2019).
However, not all epidemiological studies examine the same set of PFAS,
and the exposure levels may vary across populations. As such, it is
challenging to corroborate findings across studies. To date, research
efforts on the health risks of PFAS have predominantly focused on
perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid
(PFOS), both of which have already been largely phased out of non-
essential uses in several parts of the world but remain widely detected
in waste streams and the environment (Boiteux et al., 2016; Clara
et al., 2008; Mussabek et al., 2019). The health impacts of the many
other types of PFAS currently in use (including the shorter-chain
compounds that have been used as replacements for PFOA and PFOS)
are still poorly understood. Moreover, most studies rely on single-
pollutant models that might not adequately capture the cumulative ef-
fects of exposure to multiple PFAS, let alone other coexistent environ-
mental toxicants.

Epidemiological studies have also provided evidence of geographical
variations in PFAS exposure and the health effects associated with such
exposure. Levels of exposure varywidely on both local and global scales,
likely because the level of PFAS exposure in a given population depends
on a myriad of factors ranging from its proximity to individual point
sources of pollution to the effects of regulatory action and industry
phaseouts on PFAS levels in the marketplace. For instance, unlike
many western countries, China has yet to phase out industrial use of
PFOA and PFOS. However, epidemiological studies of PFAS exposure in
China are relatively scarce and primarily focused on birth or pregnancy-
related outcomes (Cao et al., 2018; Chen et al., 2013b; Chen et al., 2012;
Chen et al., 2018; Huang et al., 2019; Li et al., 2017; Lien et al., 2016; Shi
et al., 2017; Wang et al., 2016a; Wang et al., 2019a; Wang et al., 2018a;
Wang et al., 2016b; Wang et al., 2015a; Wang et al., 2018b; Wu et al.,
2012; Yao et al., 2019). Studiesmeasuring levels of PFAS in cord blood in-
dicate that PFOA and PFOS account for themajority of total PFAS exposure
in mainland China, whereas longer-chain (C ≥ 9) compounds are the
dominant PFAS in Taiwan (Shi et al., 2017; Wang et al., 2016a). These
studies have also revealed levels of PFAS in mainland China that are
lower than those found in many western countries (Shi et al., 2017);
this could change in the future as PFAS manufacturing shifts from the
western world to China and developing countries (Land et al., 2018).
Birth cohort studies in China have shown relatively consistent results
linking PFAS exposure to decreased birth weight (Chen et al., 2012;
Chen et al., 2018; Li et al., 2017; Wang et al., 2016b; Wu et al., 2012)
and demonstrated that the length and structure of PFAS affect their toxic-
ity. Whereas longer-chain PFAS in maternal blood were associated with
adverse effects on birth weight (Wang et al., 2015a), those in cord blood
were not (Chen et al., 2012). This may reflect size-dependent differences
in the compounds' transplacental transfer efficiency (Wang et al., 2015a).
In addition, branched PFAS were associated with stronger adverse effects
than their linear counterparts (Li et al., 2017). Other results of these stud-
ies have proven less consistent, such as the effect of PFAS on birth length
(Cao et al., 2018; Chen et al., 2018; Shi et al., 2017; Wang et al., 2019a;
Wang et al., 2015a;Wu et al., 2012) and the influence of the sex of the in-
fant on PFAS-related health effects (Cao et al., 2018; Li et al., 2017; Shi
et al., 2017; Wang et al., 2016a). A few studies have also shown PFAS to
have adverse effects on gestational hypertension disorders (Huang et al.,
2019), some neurobehavioral development endpoints (Chen et al.,
2013b; Wang et al., 2015a), and blood glucose levels (Wang et al.,
2018b). Additional studies are necessary to reliably characterize the levels
of PFAS exposure and resulting health impacts in China as well as
understudied countries and regions around the world. Information on
health effects in countries that manufacture and export PFAS-containing
goods is particularly crucial for understanding the PFAS-related health
risks of consumer products derived from globalized supply chains.

Animal-based studies are still regarded as necessary for deriving the
“toxicity values” that are foundational to government officials' risk
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assessment processes (EPA, 2002). Such studies have directly linked
PFAS exposurewith numerous health effects, and their findings are gen-
erally concordant with those of epidemiological studies (Fenton et al.,
2020). For instance, studies using the developing mouse model have
shown PFOA exposure to decrease birth weight, increase excess weight
gain in offspring and the pregnant mother, and impair lactation (Blake
et al., 2020; Hines et al., 2009; Koustas et al., 2014; White et al., 2007).
Similar effects in humans have been associated with PFOA exposure
(Ashley-Martin et al., 2016; Halldorsson et al., 2012; Johnson et al.,
2014; Karlsen et al., 2017; Romano et al., 2016; Timmermann et al.,
2017; Xiao et al., 2020). Unlike epidemiological studies, toxicological
studies in rodent laboratorymodels are able to provide evidence of cau-
sality, allow for investigation into modes of action, and enable scientists
to test the dependence of a given health outcome on individual vari-
ables, including dose magnitude, dose timing, and specific PFAS com-
pound(s). This has made it possible to establish, for example, that
developing tissues are highly sensitive to PFAS, resulting in persistent
effects (e.g., mammary gland development), and that since developing
fetuses are more susceptible than adults, effective doses of PFAS are
lower in developmental exposure situations (e.g., liver gene expres-
sion). For the few compounds whose toxicology has been extensively
studied (such as PFOA), toxicologists at state and federal agencies
have derived minimal risk levels (MRLs) using non-cancer reference
doses based on a variety of different target effects, including increased
liverweight, weakened immune response, delayedmammary gland de-
velopment, delayed bone ossification, neurobehavioral effects, and ac-
celerated male puberty (Post, 2020). It should be recognized that
choice of target effect has major policy implications. Since some devel-
opmental effectsmay result fromPFAS doses below those causing an in-
crease in liver weight, selection of certain developmental target effects
gives rise to lowerMRLs. As reviewed byPost (2020), the range of differ-
ent target effects that toxicologists at state agencies and the EPA have
used to derive reference doses for PFOA contributes to the approxi-
mately four-fold range in the values of their PFOAdrinkingwater guide-
lines. Recent toxicological studies have linked delayed mammary gland
development (a particularly sensitive effect that persists into adulthood,
affects lactation, and has a similar mode of action in mice and humans)
to both PFOA and a short-chain replacement compound known as GenX
(Fenton, personal communication). These results highlight the critical
need for more studies focused on PFAS other than PFOA and PFOS.

Although many of the individual effects of PFAS exposure identified
in toxicological and epidemiological studies reflect altered endocrine
function, our understanding of how and the extent to which PFAS
disrupt the endocrine system is far from complete (Braun, 2017).
Endocrine-disrupting chemicals (EDCs) are inherently challenging to
study due to their unique non-monotonic dose-response relationships,
transgenerational effects, organ-type- and cell-type-specific responses,
and potential for long latency periods between fetal exposure and dis-
ease onset (La Merrill et al., 2020). Studies that systematically evaluate
the ability of PFAS to disrupt the various cell and organ types within the
endocrine system are critically needed to more accurately characterize
the health impacts of PFAS exposure and elucidate the various mecha-
nisms by which endocrine disruption can occur (Burman et al., 2020;
Gore et al., 2015; White et al., 2011). Certain EDC actions of PFAS have
been well-described. For example, in silico analysis indicated the capac-
ity of PFAS to disrupt thyroid hormone signaling by competing with
thyroid hormone thyroxine for binding to thyroid transport protein
transthyretin (Weiss et al., 2009). Consistent with this mechanism,
PFAS exposure levels have been linked to changes in thyroid function
and altered serum levels of thyroid-stimulating hormone (TSH) in af-
fected communities, although the magnitude of this impact has varied
by study population and sex (Blake et al., 2018; Byrne et al., 2018;
Inoue et al., 2019; Kim et al., 2018; Preston et al., 2018; Xiao et al.,
2020; Yang et al., 2016). PFAS exposure can also affect reproductive de-
velopment and reproductive hormone production, giving rise to altered
pubertal timing, impaired ovarian function, and infertility (Bach et al.,
4

2016; Ding et al., 2020; Rappazzo et al., 2017). Exposures to PFOA,
PFOS, and perfluorohexane sulfonic acid (PFHxS) have been associated
with premature ovarian insufficiency and altered serum levels of estra-
diol (E2) and follicle-stimulating hormone (FSH) in women (Zhang
et al., 2018). In agreement with these findings in humans, rodent
models of PFOS exposure exhibit reduced serum E2 and progesterone
levels (Feng et al., 2015). Importantly, the use of in vivo rodent models
enabled investigators to attribute these alterations in hormone synthe-
sis to targeted changes in both hypothalamic neurons and chromatin
remodeling factors in the ovary regulating the expression of key
steroidogenic enzymes, ultimately leading to impaired follicular devel-
opment and ovulation. Moving forward, it is crucial to expand our un-
derstanding of how PFAS exposure can impact the endocrine system
and to employ various testing models to establish the mechanisms by
which these effects occur (Alofe et al., 2019).

3. Analytical methods

The scope and power of studies assessing PFAS exposure are inher-
ently constrained by the analytical methods they employ to detect
PFAS. Methods that pair liquid chromatography (LC) with tandem
mass spectrometry (MS/MS) are well established for PFAS analysis in
simple liquidmedia such as drinkingwater. The EPA has publishedmul-
tiple validated LC-MS/MS methods (i.e., Methods 537, 537.1, and 533)
for the analysis of PFAS in drinking water, but has yet to do so for
more complex liquid and solid matrices that are likewise important to
monitor, such as serumand soil. Accurate PFAS analysis in suchmatrices
can nevertheless be achieved by augmenting established methods with
isotope dilution, appropriately tailored extraction and sample prepara-
tion procedures, and rigorous quality assurance and control measures
to account for matrix effects. Most studies involving PFAS rely on
targeted methods that measure tens of individual PFAS at best. Collec-
tively, EPA Methods 537 (Shoemaker et al., 2008), 537.1 (Shoemaker
and Tettenhorst, 2020), and 533 (Rosenblum and Wendelken, 2019)
measure fewer than 40 compounds. Of the thousands of compounds
in the PFAS class, analytical reference standards exist for fewer than
200. While non-targeted methods can be used to study much broader
sets of PFAS, the resulting measurements are highly challenging to in-
terpret. Emerging approaches in PFAS sampling and analysis present
opportunities to use new data sources, broaden the range of PFAS that
can be reliably measured, and predict the toxicity of PFAS that have
yet to be studied in order to direct future health effects research and in-
form decision-makers working to develop health-protective policies.

PFAS analysis in newmatrices requires investigation of suitable sam-
ple preparation and extraction methods. Advances in this area have
made it possible to analyze PFAS in dried blood spots and thereby tap
into new sources of prenatal PFAS exposure data. In an initial study,
customized sampling, extraction, and analysis procedures were used
to measure PFAS levels in dried blood spots collected through a new-
born screening program in New York State between 1997 and 2010
(Spliethoff et al., 2008; Ma et al., 2013). This analytical method success-
fully quantified PFOS and PFOA concentrations in all blood spot samples
and achieved detection limits in the ng/mL (ppb) range. While this ini-
tial investigation focused on targeted analysis of two specific com-
pounds, its sampling and extraction procedures have more recently
been adapted for analysis of an expanded list of PFAS (Kato et al.,
2018; Poothong et al., 2019; Vorkamp et al., 2021) and could likely be
further adapted for future use in non-targeted analyses. Given the sen-
sitivity of the developing fetus to PFAS exposure, the ability to use ar-
chived repositories of newborn blood spots provides the opportunity
to quantify exposures at a critical window of development and effec-
tively explore the temporal relationship between PFAS exposure and
onset of disease (Bell et al., 2018). This approach is expected to provide
new opportunities for population-based PFAS epidemiological studies.

As a consequence of themultitude of PFAS used in commerce and of
the chemical transformations they undergo in the environment, humans
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are exposed to a complex mixture of PFAS that extends far beyond the
compounds measured by typical targeted analytical methods. Being
able to study the full complement of PFAS present in humans and envi-
ronmental media is crucial, particularly given that the EPA CompTox
Chemicals Dashboard contains over 9000 PFAS (EPAa) and that the
health and environmental effects of the vast majority of these com-
pounds are completely unknown. Non-targeted analyses pairing LC or
gas chromatography (GC)with high-resolution tandemmass spectrom-
etry (HRMS/MS) analyses can help meet this need and allow for more
comprehensive exploration of PFAS exposure. However, processing the
large volumes of mass spectrometry data generated in these analyses
to identify individual PFAS that have no analytical reference standards
for mass spectral matching is a challenging task that requires extensive
expertise and time. To facilitate interpretation of these data, Koelmel and
colleagues developed FluoroMatch, the first automated open-source
software for non-targeted assignment of PFAS structures (Koelmel
et al., 2020; Nason et al., 2020). This software uses PFAS libraries with
over 7000 in silicoHRMS/MS spectra to process themass spectral output
of non-targeted analyses and automatically annotate and identify PFAS.
In future updates, FluoroMatch will automate intelligent data acqui-
sition (Koelmel et al., 2017; Koelmel et al., 2020), homologous series
detection, fragment screening, and prediction of transformation
products and HRMS/MS spectra from proposed PFAS structures
(Innovative Omics). These advances will help users not only screen
for the thousands of known PFAS, but also discover new PFAS previ-
ously uncharacterized.

A publicly available, NIEHS-developed online resource addresses, at
least on a cursory level, the major challenge posed by scientists' limited
knowledge of the biological effects of most PFAS. Borrel and colleagues
developed PFASMap, a specialized application within ChemMaps.com
(https://sandbox.ntp.niehs.nih.gov/chemmaps/), to plot and visualize
>5000 PFAS from EPA databases in three-dimensional chemical space.
Within PFASMap (Fig. 1a), spatial coordinates represent chemical struc-
tural properties of the compounds, making it possible to assess their
structural similarity (Borrel et al., 2018). The platform also consolidates
available information on the physicochemical properties, regulatory
classifications, predicted activity against endocrine pathways, and
acute oral systemic toxicity data of individual PFAS, along with links to
more detailed information in the EPA CompTox Chemicals Dashboard
(https://comptox.epa.gov/dashboard). While structural similarity does
not automatically equate to similarity in toxicity, some correlations un-
doubtedly exist, and PFASMap provides the ability to visualize and ex-
plore the characteristics of chemicals clustered near PFAS of interest
(Fig. 1b). In light of the relatively small number of PFAS characterized
in toxicological and epidemiological studies and of the infeasibility of
studying the health effects of every member of this ever-expanding
class of compounds, PFASMap serves as a valuable tool that could be
used to inform risk assessment and prioritize PFAS for further study.

In the future, it would be highly beneficial to supplement complex
laboratory techniques with technologies capable of rapid, sensitive
PFAS detection in the field. Chromatographic techniques coupled with
mass spectrometry (e.g., LC-MS/MS, GC-MS/MS) are accurate, sensitive,
and increasingly powerful due to advances such as those discussed
above. However, the accessibility of these technologies is limited by
their high cost, and laboratory turnaround times give rise to an inevita-
ble delay between the collection of samples and receipt of results. Field-
deployable PFAS sensors that provide real-time results would enable
environmental and public health professionals to immediately inform
at-risk residents and thereby prevent ongoing exposures. While such
sensorsmay notmatch the precision of the rigorous laboratory analyses
used to investigate samples from PFAS-contaminated sites, they could
be used as a screening tool to determine whether sites warrant addi-
tional, more in-depth studies. This would provide both time and cost
savings. While several preliminary studies have successfully employed
optical and electrochemical techniques to detect PFAS without the use
of LC-MS/MS or GC-MS/MS systems (Cennamo et al., 2018; Chen et al.,
5

2013a; Cheng et al., 2019; Li et al., 2019; Niu et al., 2014; Ranaweera
et al., 2019), the utility of these techniques is constrained by their insuf-
ficiently low limits of detection and/or their inability to detect a wide
range of PFAS, i.e., beyond PFOA and PFOS. Further research is necessary
to advance such technologies for timely, in-field applications.

4. Remediation and pollution prevention

Tominimize human exposure, it is necessary to remediate the PFAS-
contaminated media that contribute to exposure (such as soil and
drinking water sources) and concurrently act to prevent future pollu-
tion. Due to the energy input required to break their carbon–fluorine
bonds (Sabater et al., 2013), PFAS are resistant to many traditional deg-
radation treatments (Dickenson andHiggins, 2016b). As such, remedia-
tion of PFAS-contaminatedwater currently relies onPFAS removal using
established filtration technologies, i.e., granular activated carbon, ion
exchange resins, and reverse osmosis (RO; CDM Smith, Inc., 2018;
Dickenson and Higgins, 2016a; Flores et al., 2013; Tang et al., 2006).
These approaches, although effective, generate concentrated waste in
the formof spent sorbentmaterials, RO concentrate, and the backwashing
liquid used to clean ROmembranes and regenerable ion exchange resins.
Without further treatment, these PFAS-rich waste streams pose a poten-
tial threat to the environment surrounding their disposal sites. Responsi-
blewastemanagement poses a considerable challenge for environmental
officials in states where PFAS contamination requires extensive drinking
water treatment and/or environmental remediation. Connecticut officials
have already begun grapple with this challenge, and their wastemanage-
ment needswill only increase as they carry out thewidespread PFAS test-
ing recommended in the PFAS Action Plan.

Researchers have recently leveraged advances inmaterials science to
develop new state-of-the-art technologies for PFAS removal and de-
struction (Duan et al., 2020; Zhang et al., 2020; Huang et al., 2020; Le
et al., 2019). For example, surface-tuned nanoscale composites have
shown high potential for targeted PFAS separations (Saleh et al., 2019).
Their high sorption capacities, a function of their specific surface area
and tunable surface chemistries, present a distinct advantage over the
larger granular activated carbon and ion exchange resin sorbents cur-
rently in use. Integrating superparamagnetic properties allows for low-
energy recovery from complicated environmentalmatrices using amag-
netic field (Li et al., 2016a; Li and Fortner, 2020). Specifically, nanoscale
ferrite particles (diameter 8–20 nm) can be precisely synthesized using
thermal decomposition processes, which provides precise control over
their size and composition and thus over their magnetic susceptibility
and (super)paramagnetic properties (Li et al., 2016b). These magnetic
core particles can then be surface-functionalized with specific organic
surfactants that have high selectivity and sorption capacity for PFAS. In
a different approach also reliant on nanoscale engineering, Huang et al.
have developed a method for fabricating cost-effective single-atom cat-
alysts designed for PFAS destruction (Huang et al., 2018). The resulting
catalysts, composed of single platinum atoms anchored onto silicon car-
bide substrates, photocatalytically hydrodefluorinate PFOA by breaking
its carbon–fluorine bonds and immobilizing the resulting fluorine
through covalent bonding to the substrate. More recently, Huang et al.
developed a palladium-single-atom-loaded titanium oxide (Ti4O7) elec-
trode that anodically oxidizes PFOA through an electrocatalytic process
(Huang et al., 2020). These new materials not only outperform bench-
mark performance nanomaterials, but also enable selective destruction
of carbon–fluorine bonds, and could eventually provide a new treatment
option for the concentrated liquid waste streams generated during PFAS
filtration. Further research is required to test the effectiveness of this
method for degrading additional PFAS.

Mitigation would not be necessary if PFAS were prevented from
being released into the environment in the first place. Although many
industrial users and manufacturers have voluntarily phased out PFOS
and PFOA, most have simply replaced these compounds with shorter-
chain PFAS (Wang et al., 2015b; Wang et al., 2013; Zhou et al., 2013;

http://ChemMaps.com
https://sandbox.ntp.niehs.nih.gov/chemmaps/
https://comptox.epa.gov/dashboard


Fig. 1. PFASMap (https://sandbox.ntp.niehs.nih.gov/chemmaps/PFASMap). (a) PFASMap contains >5000 PFAS plotted in three-dimensional chemical space. For a selected compound
(e.g., perfluorooctanoic acid, PFOA) in the map, the chemical information box (bottom right) provides a two-dimensional structure representation of the compound and user-selectable
property/toxicity information. The local chemical neighborhood of the selected compound is shown in the white-outlined box (yellow arrow). (b) White-outlined box displays the 20
nearest neighbors of the selected compound, which can each be extracted and downloaded. Individual compounds within the box can be selected (e.g., red sphere, a structural analogue
of PFOA) to display their basic information (bottom right). Further chemical-specific details are provided via the DTXSID link to the EPA CompTox Chemicals Dashboard (https://comptox.
epa.gov/dashboard/). The navigation pane (upper right corner) and search bar (upper left) are also shown. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Sun et al., 2016; Wang et al., 2019b; Brendel et al., 2018; Hopkins et al.,
2018) whose health risks have not been comprehensively studied
(Cheng and Ng, 2018). These replacement compounds are generally
less bioaccumulative than their long-chain legacy predecessors but just
as persistent and even more difficult to remediate (Gagliano et al.,
2020), making their continued release into the environment difficult to
reverse. Green chemistry provides a framework for designing chemicals
that fulfill the function and match the performance of PFAS while elim-
inatingorminimizinghazards throughout their life cycle. This design ap-
proach aims to address the hazards associatedwith PFAS at each stage of
their life cycle, i.e., from feedstocks and manufacturing through use and
end-of-life disposal concerns (Fig. 2). Theprocesses used tomanufacture
6

PFAS typically rely on hydrofluoric acid, a highly hazardous chemical
(Bertolini, 1992), to serve as either the direct fluorinating agent or the
precursor to the fluorinating agent (Hekster et al., 2003). Hydrofluoric
acid, in turn, is manufactured using sulfuric acid, another known hazard
(Agency for Toxic Substances and Disease Registry, 1998). As such, its
use as a feedstock poses serious risks to worker safety (Park, 2013).
Moreover, PFAS themselves pose occupational safety risks. For example,
in the early 2000s, the Centers for Disease Control and Prevention (CDC)
found that the PFOS and PFOA blood levels of workers in PFAS
manufacturing facilities were orders of magnitude higher than those of
the general U.S. population (Agency for Toxic Substances and Disease
Registry, 2017). These facilities have since shifted away from PFOA and

https://sandbox.ntp.niehs.nih.gov/chemmaps/PFASMap
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Fig. 2. Examples of the hazard reduction goals of green chemistry PFAS alternatives at each stage of the chemical life cycle. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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PFOS, but their workers (and the consumers of the products theymanu-
facture) may now be exposed instead to shorter-chain replacement
PFAS with potential health impacts that are poorly understood and per-
sistence that is similarly problematic (Wang et al., 2019b).

Many green chemistry design approaches already show promise
for the production of viable alternatives to PFAS. A variety of bio-
based monomers, including stearic acid (Sharif et al., 2020), maleic
acid (Yao and Tang, 2013), lactic acid (Zhang et al., 2017), and
amines (Froidevaux et al., 2016), have been used as renewable feed-
stocks for fluorine-free polymers that could replace PFAS in flame-
retardant coatings (Bourbigot and Fontaine, 2010) and in oil- and
water-repellent coatings for fabric and paper (Hamdani et al.,
2020; Kansal et al., 2020; Rabia et al., 2020). Ceramic-type coatings
that create a barrier between a substrate and the surrounding envi-
ronment (Lazar et al., 2020), typically based on silicates and alumina
(Malucelli, 2016), have been demonstrated to be effective in similar
coating applications (Colleoni et al., 2017; Hu et al., 2011; Liang et al.,
2013; Shen et al., 2017). Biomimetic surface morphologies have been
used to develop superhydrophobic surfaces that are non-fluorinated,
inexpensive, mechanically strong, resistant to corrosion, and main-
tain water repellence despite weathering (Bhushan et al., 2009;
Koch and Barthlott, 2009; Latthe et al., 2014; Lin et al., 2018; Sarkar
and Saleema, 2010; Skoulas et al., 2017; Song et al., 2019; Xiu et al.,
2010; Zorba et al., 2008). As many of the problems associated with
PFAS stem from their persistence, degradable polymers such as
biodegradable starch-based polymers are also being explored as
potential replacements in water-repellence and flame-retardance
applications (Albertsson and Hakkarainen, 2017; Chandra and
Rustgi, 1998; Lu et al., 2009; Ma and Webster, 2018; Scott, 2002;
Wu et al., 2009).

To mitigate current and future PFAS hazards, both approaches are
clearly vital, i.e., to develop additional remediation technologies (espe-
cially destructive technologies) and to replace PFASwith safe and effec-
tive non-fluorinated green chemistry alternatives.
7

5. Fate and transport for local vulnerability assessment

In public health initiatives designed to minimize PFAS exposure, the
testing of drinking water sources is a top priority. Detection of elevated
PFAS concentrations in potable water enables further exposure to be
prevented through remedial actions that remove PFAS or through pro-
vision of alternative water sources. However, the extent to which resi-
dents in Connecticut (and in many other states and nations) have
been exposed to PFAS through drinking water ingestion is largely un-
known. Public drinkingwater is regularly tested for numerous naturally
occurring and anthropogenic contaminants, and this information is pro-
vided to CTDPH, the agency responsible for regulating the state's public
drinking water systems. Between 2013 and 2015, as part of UCMR3
monitoring under the federal Safe DrinkingWater Act, the EPA required
large public water systems serving>10,000 people to test their finished
drinking water for PFOA, PFOS, PFHxS, perfluorobutane sulfonic acid
(PFBS), perfluoroheptanoic acid (PFHpA), and perfluorononanoic acid
(PFNA). Of the 42 Connecticut public water systems in this category
(which collectively provide drinking water to >2.3 million customers),
none detected PFAS concentrations over the EPA reporting limits
(EPAb). However, reporting limits at the time (20, 40, 30, 90, 10 and
20 ppt for PFOA, PFOS, PFHxS, PFBS, PFHpA, and PFNA, respectively)
were higher than levels currently of concern to health officials in a num-
ber of states. In Connecticut, the current Action Level, an advisory level
set by CTDPH in 2016 (CTDPHa), is 70 ppt for the summed concentra-
tions of PFOA, PFOS, PFHxS, PFHpA, and PFNA. Continued monitoring
of these large public water systems, as well as many smaller ones, is
necessary to ensure that drinking water statewide is safe for human
consumption. In 2018, CTDPH used its statutory authority to require
(1) PFAS testing in all new sources of public drinkingwater and (2) pub-
lic water systems serving >1000 people to evaluate their sources' vul-
nerability to PFAS contamination. CTDPH has also requested those
water systems to test their finished drinking water for PFAS. While
these initiatives made significant progress, many of the state's 2500
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public drinkingwater systems (Fig. 3), which obtain their supplies from
approximately 150 reservoir systems and 4000 groundwater sources,
have not been assessed for PFAS vulnerability and have never been
tested for PFAS. Moreover, nearly one quarter of Connecticut residents
rely on water from an estimated 325,000 private wells (CTDPHb). This
large quantity of wells presents amajor challenge, and research assessing
local PFAS sources and hydrogeology is necessary to prioritize the wells
most vulnerable to PFAS contamination for initial rounds of testing.

Researchers at Yale are planning to study PFAS fate and transport
near local landfills with the intention of developing vulnerabilitymodels
for local drinking water resources and helping state officials assess the
levels of PFAS exposure faced by residents. Investigation of landfills
that pose potential threats to nearby residentswas identified as a crucial
need by regulators and researchers during the deliberations of the Inter-
agency PFAS Task Force and highlighted in the resulting Action Plan.
PFAS have alreadybeen detected in groundwater near two large landfills
in Connecticut (Hladky, 2019), and although other landfills throughout
the state are considered potential sources of PFAS contamination, few
of these sites have been tested for groundwater contamination. Focusing
on landfill sites prioritized by CTDEEP, Yale researchers intend to quan-
tify the vulnerability of nearby wells using hydrologic models that sim-
ulate groundwater flowpatterns and physicochemical factors governing
PFAS migration away from a source. Drinking water from households
with wells identified as vulnerable will be analyzed for concentrations
of PFAS to enable evaluation of the models while providing immediate
benefits to impacted residents through targeted interventions and fo-
cused monitoring. This work will provide a valuable model for further
collaborations between university researchers and state officials to im-
plement Action Plan recommendations and safeguard the health of
Connecticut residents.

6. Community engagement

As testing for PFAS contamination in drinking water and the envi-
ronment becomes more widespread, individual and community-based
health concerns will require extensive research translation and risk
communication by state and local leaders. Local health departments
and municipal officials are often the first resources that concerned res-
idents turn to with their questions about environmental health risks.
During the development of the PFAS Action Plan, one of the primary
Fig. 3. Areas in Connecticut that are served by public drinking water supplies. It is presumed t
either private wells or the small public drinking water wells shown in gold. (For interpreta
version of this article.)
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topics raised by stakeholders was the importance of effective communi-
cation on PFAS by state agencies. This requires officials to stay abreast of
the ever-evolving science of PFAS health effects, exposure pathways,
analytical methods, treatment technologies, and the impacts of these
scientific advances on their communities. Because PFAS have only re-
cently begun to gain public attention in Connecticut, residents often
hear about these chemicals for the first time when they learn that con-
tamination has been discovered locally and their households have po-
tentially been exposed. When this occurs, it is crucial for state and
local officials to be able to communicate the health risks of PFAS expo-
sure quickly, accessibly (i.e., using culturally and linguistically appropri-
ate formats and outreach platforms), and in a manner that does not
cause unnecessary panic.

Officials' PFAS communication strategies should leverage the expertise
of local health officials and community organizers to engage Connecticut
communities in active partnerships that facilitate effective science trans-
lation and risk communication. These local experts understand the
needs and backgrounds of their individual communities and will be able
to draw upon their experience with a range of community organization
techniques to actively engage residents. For example, community forums
enable state and local officials to share information and learn about their
constituents' understanding of the science, exposure, and risk of PFAS,
which enables the officials to better tailor their science communication
moving forward. Community advisory groups encourage continual edu-
cation, engage a variety of stakeholders (e.g., community members, envi-
ronmental advocates, research scientists, and state and local officials), and
give participants a collective voice that allows their opinions to be heard.
Identifying and utilizing opportunities to connect community members
and environmental advocates to local scientists and to engage them in
the design and implementationof research studies offers them the agency
to help generate data and contribute to solutions in their own communi-
ties. Such efforts are underway in thehandful of Connecticut communities
that have already had to grapple with the discovery of PFAS contamina-
tion in their local environment and/or drinking water. As the State
works to carry out the extensive PFAS testing recommended in the
PFAS Action Plan, these isolated PFAS engagement efforts will need to
be extended statewide. Implementing PFAS-focused community engage-
ment initiatives will enhance residents' understanding of the health risks
posed by PFAS and encourage their participation in the development and
implementation of policies to address PFAS at the local and state levels.
hat outside of the service areas shown in dark blue, residents obtain drinking water from
tion of the references to colour in this figure legend, the reader is referred to the web
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Government researchers at the Connecticut Agricultural Experiment
Station are currently collaborating with community member scientists
to assess the potential of phytoremediation for removing PFAS from
contaminated soil. The group is piloting this strategy at the former
Loring Airforce Base, a former Superfund site in northern Maine where
decades of firefighting drills and training with Class B firefighting
foam (i.e., aqueous film-forming foam) contaminated the land in the vi-
cinity of the burn housewith high levels of PFAS, primarily PFOS. U.S. Air
Force investigations between 2015 and 2017measured PFOS concentra-
tions up to 27 ng/g (ppb) in soil and 238 ng/L (ppt) in groundwater
(Baker, 2018). The land is now owned by the Aroostook branch of the
MicmacNation, an indigenous people.Workingwith theMicmacNation
and a community organization called UplandGrassroots, a pilot test was
conducted near the burn house using fiber hemp (Cannabis sativa), a
crop that is suitable for phytoremediation due to its high water uptake,
high biomass, and rapid growth. Hemp has previously been used for
phytoremediation of both heavy metals (Ahmad et al., 2016) and or-
ganic contaminants (Campbell et al., 2002), although its use in the U.S.
was legally restricted until recently (Smith-Heisters, 2008). Of the 19
PFAS quantified in soil at the test site, eight were taken up into hemp
plants and four had significantly decreased soil concentrations at the
end of the growing season. The group is currently exploring strategies
to optimize hemp growth at the site and recently published their
work on screening for additional PFAS in the soil (Nason et al., 2020).
Thiswork provides amodel for citizen science initiatives inwhichmem-
bers of PFAS-impacted communities can actively engage in research
being conducted by scientists at local government laboratories and aca-
demic institutions.

7. Conclusion

As highlighted throughout this symposium, PFAS present unique
challenges to scientists and policymakers alike. First and foremost, al-
though the PFAS class comprises >9000 different chemicals, analytical
Fig. 4. Interactions between Connecticut residents, universities, and government entities that
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chemists have reference standards for fewer than 200, and extensive
epidemiological and toxicological data exist for only a handful of these
compounds; there are even fewer studies evaluating the EDC potential
of PFAS. Many of the PFAS prevalent in the global marketplace are
short-chain replacement compounds whose health effects have yet to
be studied. Furthermore, while many products and industrial process
employ complex mixtures of PFAS, existing studies provide scant infor-
mation about the health impacts of mixed PFAS exposures. These data
gaps make it challenging for health officials to accurately assess the
risks posed by PFAS and to develop sufficiently protective policies. For
environmental officials, management of PFAS waste presents an
immense challenge due the concentrated waste generated during the
remediation of contaminated water and the lack of commercially avail-
able PFAS destruction technologies and remediation methods for PFAS-
contaminated environmental media, e.g., soil.

These challenges present opportunities for scientists to conduct re-
search with meaningful real-world implications. Ongoing epidemiolog-
ical and toxicological research can help fill data gaps by exploring the
pathophysiological effects of exposure to PFAS mixtures and short-
chain PFAS, and by characterizing the mechanisms by which adverse
health effects manifest. Progress in the understanding of these mecha-
nisms could, in turn, inform green chemistry research to produce safer
alternatives to PFAS. New sampling, data acquisition, and data analysis
approaches should serve as valuable resources for large-scale epidemi-
ological studies, increase the number of PFAS that can be easily identi-
fied during testing, and facilitate the prioritization of PFAS for future
health studies. New remediation technologies that efficiently degrade
PFAS could help manage the waste streams generated during drinking
water remediation.

Moving forward, sustained connections between researchers, gov-
ernment officials, and community leaders (such as those fostered by
this symposium)will be invaluable as states and regionswork to imple-
ment ambitious PFAS management initiatives, such as those laid out in
the Connecticut PFAS Action Plan (Fig. 4). It is clear that extensive
have taken place or could take place to address PFAS contamination and health concerns.
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research will be necessary to assess the situation on the ground in
Connecticut, i.e., to identify in-state PFAS sources and measure ambient
PFAS concentrations in environmental media statewide. CTDPH efforts
to identify public drinking water supplies potentially affected by PFAS
contamination and CTDEEP efforts to inventory potential PFAS sources
across the state provide an opportunity for a landfill-focused collabora-
tion with Yale researchers to be broadened to apply a similar hydrolog-
ical modeling approach on a larger scale. A statewide assessment of the
vulnerability of community drinking water sources to PFAS contamina-
tion will help state government officials better identify and protect at-
risk communities. In addition, connections with researchers will help
ensure that messaging by state and local officials accurately represents
the state of the science on PFAS. Collaborations between state officials,
local officials, and community advocates will enhance existing commu-
nication channels and develop outreach practices that effectively meet
the needs of Connecticut communities.
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