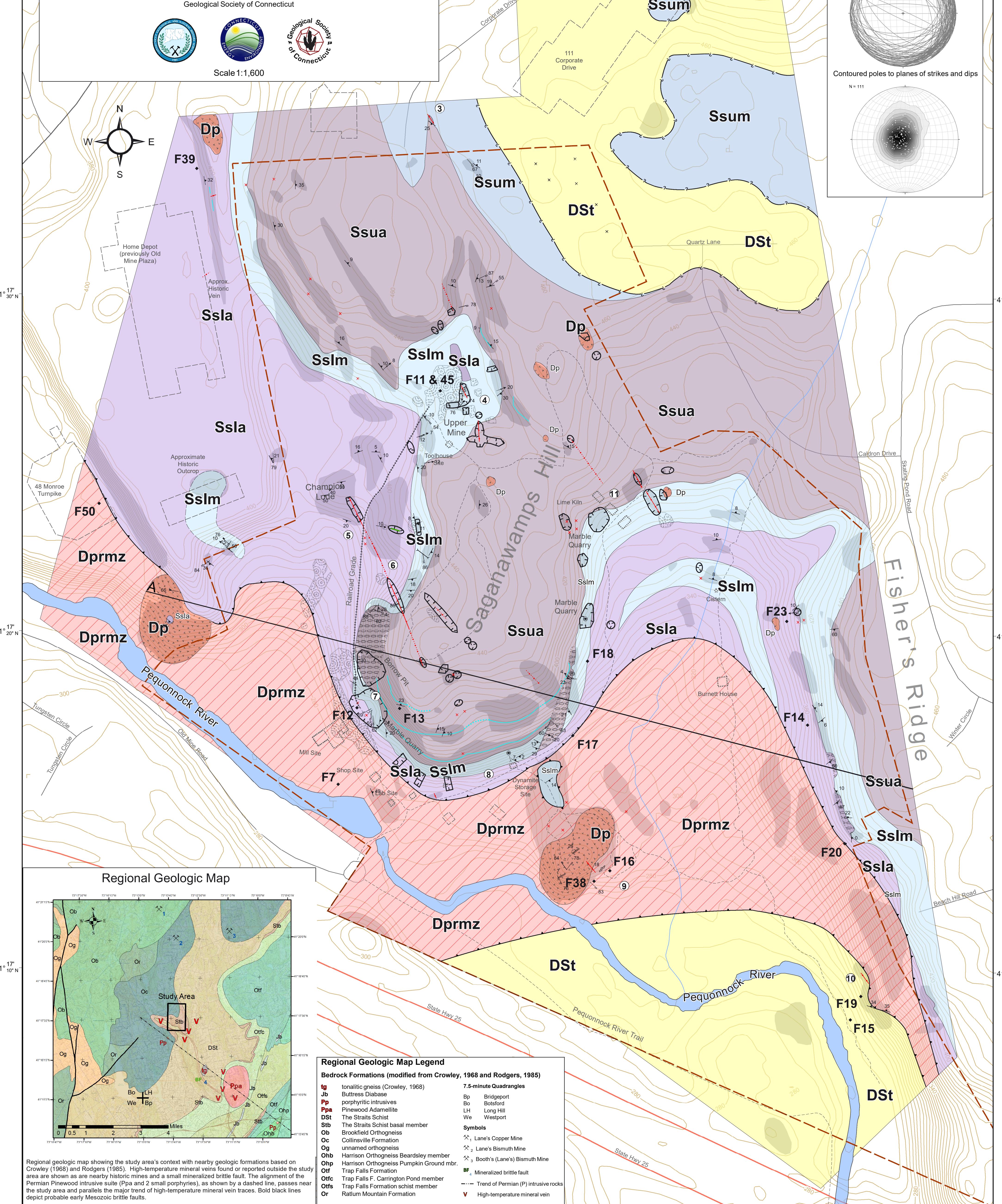


Bedrock Geologic Map of The Old Mine Park Area, Trumbull, Connecticut

By Harold Moritz¹, William Devlin², Robert Wintsch^{3,4}, Ian Hillenbrand⁴, and Zachary Klang⁴
¹East Haddam, Connecticut
²Rock Bottom Research, Southbury, Connecticut
³Indiana University, Bloomington, Indiana; Wesleyan University, Middletown, Connecticut
⁴Connecticut State Geological and Natural History Survey, Hartford, Connecticut


2019

A Companion Map To
 Geology & Mineralogy of the Old Mine Park Area, Trumbull, Connecticut
 Connecticut Geological and Natural History Survey Guidebook No. 11

Department of Energy and Environmental Protection
 State Geological and Natural History Survey of Connecticut
 Margaret A. Thomas, State Geologist

Scale 1:1,600

The Old Mine Park area of northern Trumbull in southwestern Connecticut includes a town-owned recreation area encompassing the mineral-rich Saganawamps Hill and surrounding residential, retail and commercial development. The bedrock exposed in the park and at some of the surrounding developments displays significant ductile deformation features and hosts multiple, distinct episodes of overlapping mineralization, some unique to the state and the region. The wooded and rocky 62-acre park preserves the first tungsten mine and the first topaz locality identified in the U.S., as well as the type locality for the mineral tungsite. Long before prospecting by European settlers, the term Saganawamps, after the Paugussets' term for "on the side of the hill," alluded to a large vein of white "bull" quartz used by Native Americans. The hill became a focus for prospecting, quarrying and mining from about 1800-1900. Mining at Saganawamps has varied from quarrying for agricultural lime and quartz, to gathering of minerals of scientific importance like scheelite, tungsite, and topaz, to attempted tungsten mining as recently as 1901.

The area hosts excellent exposures of Rodgers (1985) lithologically heterogeneous, "basal member" of the Silurian-Devonian The Straits Schist (DSt). The protolith of the Straits Schist was a quartz-rich aluminous mudstone that Rodgers interpreted to overlie a regional (Silurian-Devonian) unconformity with Cambro-Ordovician Rowe-Hawley Zone metasediments. This erosional surface was interpreted as post-Taconic orogeny (post-mid-Ordovician ~450 Ma). During the Taconic orogeny, the Saganawamps section was thrust over the DSt, exposing the DSt as a high-grade metamorphic facies. The DSt is a polymetamorphic marker and correlated the interval with the Russell Mountain Formation in southern Massachusetts. The Silurian "basal member" in Old Mine Park consists of a thick, well-exposed section dominated by amphibolite and marble plus minor quartzite and is informally referred to herein as the Saganawamps section. All rocks in western Connecticut were metamorphosed to upper amphibolite facies during the Acadian Orogeny (~400-360 Ma).

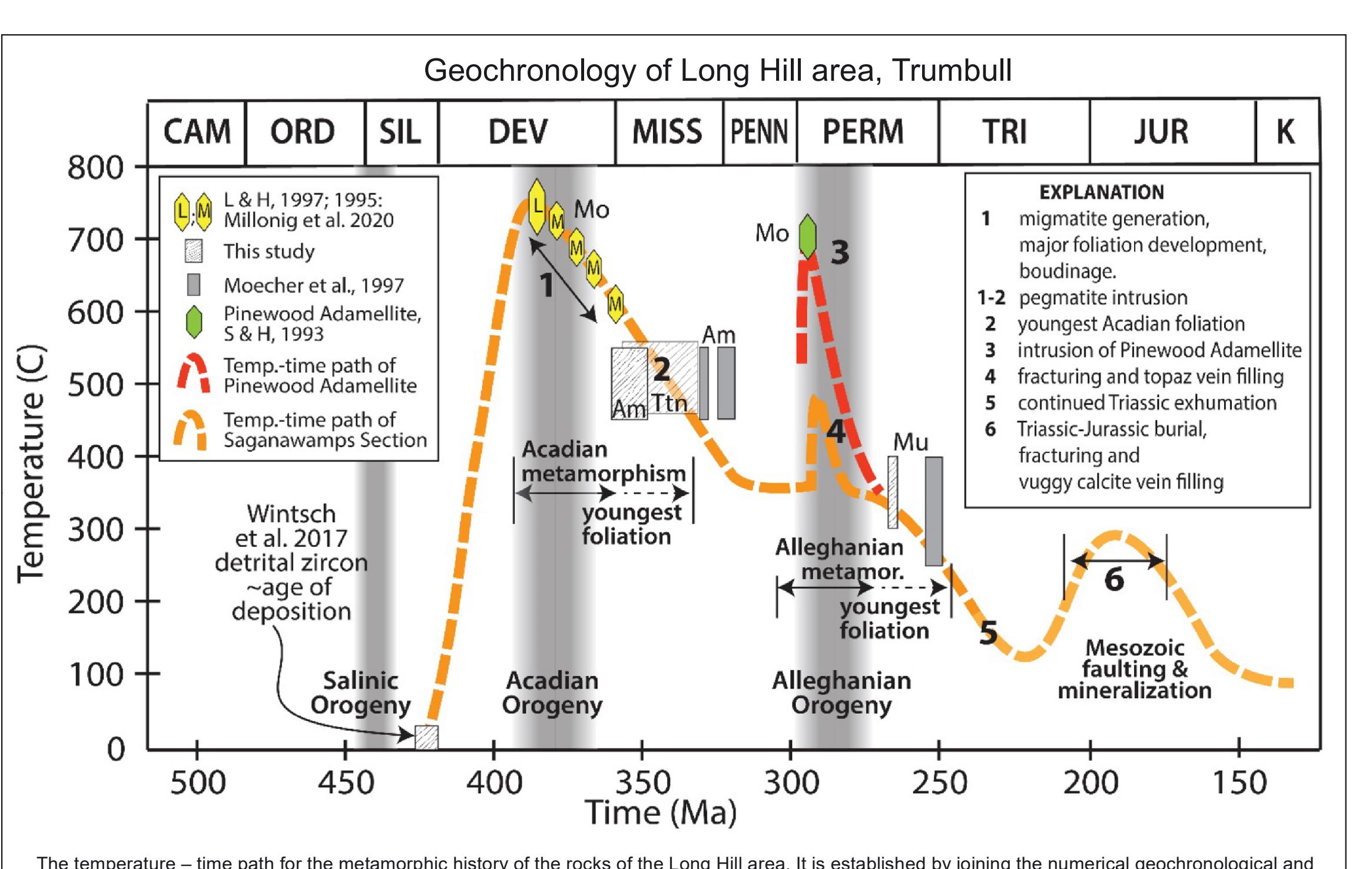
The Saganawamps section and DSt occur above this regional unconformity and are among the youngest meta-segments preserved in western Connecticut. Although the Saganawamps section stratigraphically overlies the DSt, it was also structurally thrust over DSt during the Taconic orogeny. The Saganawamps section is a syn-tectonic igneous unit designated herein as the Devonian Pequonnock River migmatite zone (Dpmz), an intrusive interval demarcated by granitic pegmatite with included screens of amphibolite and schist. Exposures in the map area show the Saganawamps section in contact with both DSt and Dpmz. A separate episode of diapiric granitic pegmatites intruded the DSt, Dpmz and Saganawamps section subsequent to Dpmz emplacement.

Approximately 100 million years after the Acadian Orogeny, renewed heating and associated diastrophism in the Alleghanian Orogeny are recorded in the area by reactivation of pre-existing foliations and the emplacement of the Silurian-Schist Member. The Saganawamps section, this intrusive episode also included the emplacement of c. 1-m thick, steeply-dipping, high-temperature hydrothermal mineral veins. The Old Mine Park area lies within a \sim 40° W alignment of undeformed Permian intrusions that includes the Pinewood Adamellite (201 ± 4 Ma (Sevigny and Hanson, 1993)). The strikes of the high-temperature quartz veins cluster around a similar orientation. These coarse-grained, compositionally-zoned veins contain primarily quartz, muscovite, topaz and/or albite and fluorite variety chlorophane (a rare few contain primarily calcite). They probably crystallized above 400 °C, or before about 275 Ma, with the veins cooling down to below 350 °C about 267 Ma. These veins were the locus of common quartz mineralization, with the veins containing quartz, topaz, and/or albite. Similar veins are present in and around the Pinewood Adamellite. Proximal metasomatic alteration of host rocks is reflected by phlogopite scatters, albite, with traces of schistose zones. Some veins contain small amounts of metasomatic minerals, often amosite, and/or quartz, topaz, and/or albite. Other rocks are largely unaffected. One limited zone of altered amphibolite situated in the northern part of Old Mine Park shows replacement of scheelite crystals by ferberite and some subsequent weathering to tungsite. It was the locus of the short-lived tungsten mining attempt. The chemical and structural correlation between middle Permian intrusive bodies, high-temperature vein emplacement and amphibolite metasomatic alteration suggests that a body of felsic rock of comparable age underlies the park. Fluids rising from it invaded fractures associated with its emplacement, bringing late mineralizing fluids to the park area.

Early Mesozoic crustal extension, Triassic loading and Jurassic brittle-faulting/hydrothermal mineralization heated the rocks for a third time. Mesozoic brecciated, brittle faults in the map area, many of which were only temporarily exposed during area land development, host low-temperature hydrothermal mineralization consisting primarily of calcite, fluorite, quartz, sphalerite, galena and pyrite. While exposed they produced a wealth of mineral specimens.

Map Units

Dp	Devonian Pegmatite: Very coarse- to medium-grained, massive, unzoned granite pegmatite, composed of albite, quartz and microcline with accessory muscovite, anite, and rarely schorl. Present mostly as two large bodies intruding into the Pequonnock River migmatite zone, but also as small bodies throughout the map area.
Dpmz	Devonian Pequonnock River migmatite zone: Zone of medium- to coarse-grained granitic pegmatite locally intermixed with and/or graded or infused into fragments of the adjacent lower amphibolite unit of the Saganawamps section and The Straits Schist. The gneiss host forms the bulk of the exposed bedrock but also preserves the foliation found in the metamorphic fragments, which are typically semi-conformable or preserved in their general structural position relative to the surrounding map units.
DSt	Devonian – Silurian The Straits Schist: Uniform, medium- to coarse-grained, rusty weathering garnet-plagioclase-biotite-muscovite schist. Schistosity is usually irregular, with abundant quartz and/or pegmatite boudins.


Saganawamps section

Ssum	Silurian upper marble unit: The term "marble" is used to describe calcite-rich rocks in the section. The upper marble is a white to grey fine- to medium-grained, locally quartz-rich and/or felsic-rich marble. The unit also contains variable amounts of accessory minerals (grossular, diopside, actinolite, titanite). Feldspathic quartzite occurs below the contact with the Devonian-Silurian The Straits Schist.
Ssua	Silurian upper amphibolite unit: Dark grey to black, fine- to medium-grained amphibolite to amphibolite gneiss composed of quartz, topaz, and/or albite, with traces of schistose zones. Locally may show zones of altered composition rich in quartz, clinzoisite, actinolite, scheelite, marcasite and/or albite. Iron and copper-rich sulfides are also locally present. Up to 3 marble interlayers, generally less than 1 mm thick but up to 2 mm thick, occur in this unit and these calcareous layers can include thinner, laterally continuous quartz-feldspar layers/boudins. Pattern delineates areas of mappable boudins characterized by finer-grained margins, and tight to isoclinal folds and generally coarser-grained, massive-textured interiors.
Sslm	Silurian lower marble unit: Lithologically similar to the upper marble in places (e.g. the upper mine area), but mostly coarsely crystalline marble that contains numerous, laterally persistent quartz-feldspar layers and boudins. Individual quartz-feldspar layers are generally <10 cm thick, but are typically grouped into packages of multiple, closely-spaced layers separated by zones of marble. Also includes a few amphibolite layers (<30 cm) too small to map.
Ssia	Silurian lower amphibolite unit: Similar to the upper amphibolite unit but can include multiple packages of quartz-feldspar layers and boudins as observed outside of park west of Home Depot. Locally may show zones of altered composition rich in quartz, clinzoisite, actinolite, scheelite, marcasite and/or albite. Iron and copper-rich sulfides are also locally present. A massive quartz-clinzoisite-scheelite layer 0.1 to 0.5 m thick is locally present at the top of this unit, which at the upper mine area includes ferberite pseudomorphs after scheelite crystals. Locally includes mappable interlayers or boudins of lower marble unit. Pattern delineates areas of mappable boudins characterized by peripherally deformation and generally coarser-grained, massive-textured interior.

High-Temperature Mineral Veins

Typically <1m thick, planar, steeply-dipping, non-brecciated veins composed primarily of variable amounts of quartz, topaz (or marginally alteration of topaz), albite, muscovite, and/or fluorite variety chlorophane. Rarely, calcite is the dominant mineral. Accessory minerals include marcasite, clinzoisite, beryl, fluorite, and/or quartz. The veins are typically planar and may contain zones of variable composition. The veins are typically found in a wall zone, topaz-aluminosilicate chlorophane in an intermediate zone, and quartz in a core zone. Fine-grained scheelite and fluorite may be present along the vein-host rock contact, visible only under short-wave ultraviolet light. Calcite-dominated veins have a wall zone of albite, marcasite, quartz, pyrophyllite and/or beryl. Open spaces are rare and generally <2 cm but commonly host euhedral crystals of topaz, albite, clinzoisite and/or muscovite. Small crystals and/or thin, inter-grain coatings of calcite, pyrite and fluorite from a later low-temperature hydrothermal event may also be present. Amphibolite host rock typically shows metasomatic alteration zones containing fine- to medium-grained phlogopite and marcasite within 10-20 cm of the vein contact. Mapped float indicates proximity to vein source.

Inclined foliation and layering	Cataclastic Foliation	High-temperature Mineral Vein	Old Mine Park Boundary
Horizontal foliation and layering	Foliation in Schlieren	High-temperature Mineral Vein (Concealed)	Trails
Joint	Joint filled with Chlorite	Joint	Inferred Fault
Silicified Fault Breccia	Axial Plane	Mineral Vein float	Pits and Quarry Walls
Contact	Fold Axis	Mineral Vein float	Historic Structure
Brittle Fault (quartz, clinzoisite)	L-Tectonic Penetrative Lineation	Mineral Vein float	Modern Structure
Marble Interlayer	Adit	Mineral Vein float	Outcrop
Marble Interlayer (Concealed)	Thermochronology locality (Moritz et al. 2022)	Mineral Vein float	Mining Dump
Contact	Field Guide Photograph Site	Mineral Vein float	Field Guide Stop
Contact (Location approx.)			
Thrust Fault			
Line of Section			

The temperature – time path for the metamorphic history of the rocks of the Long Hill area. It is established by joining the numerical geochronological and thermochronological data from this study (see Appendices 1 and 2) and from the cited literature (see guidebook text) with metamorphic, structural and cross-cutting relationships observed in the field. The time ranges for 3-well-known orogenies are indicated by the vertical shaded zones. Abbreviations: Am = amphibole, Mo = monazite, Mu = muscovite, Trt = titanite. References in Moritz et al. (2022).

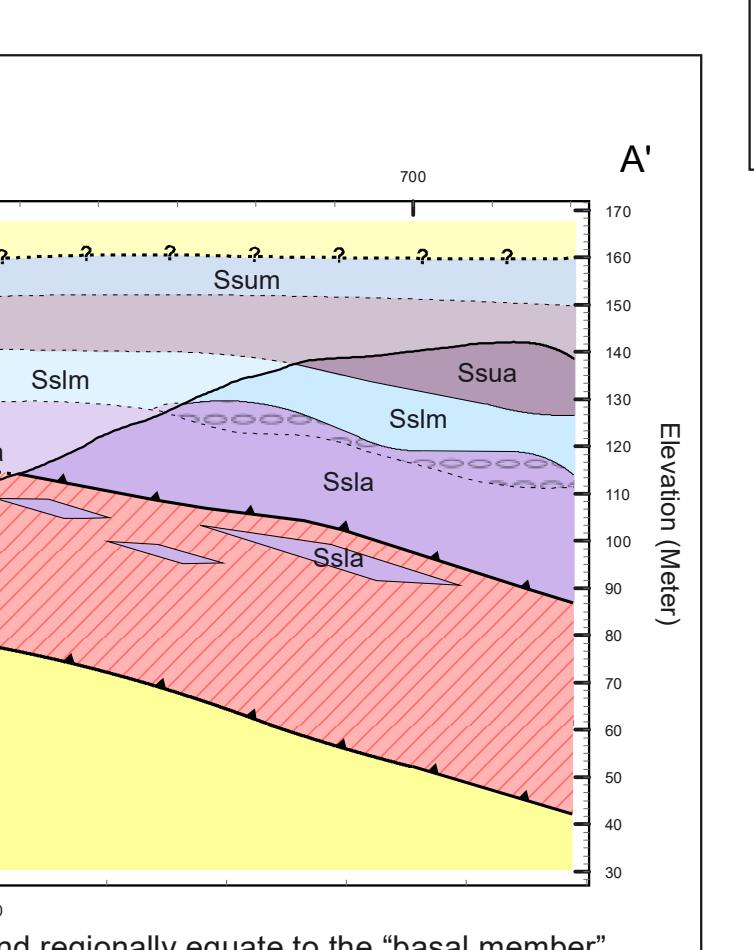
Location	Unit	Mineral	Method	Age (Ma)*
a	upper amphibolite	Titanite	U-Pb	346 ± 13
a	upper amphibolite	Amphibole	$^{40}\text{Ar}/^{39}\text{Ar}$	355 ± 3
b	high-temperature mineral vein	Muscovite	$^{40}\text{Ar}/^{39}\text{Ar}$	266.7 ± 1.4

Acknowledgements

Scientific contributions from Shinae Lee, SeokJu Kim, and Kewook Yoo for U-Pb SHRIMP analyses of titanite grains, and Ryan McAleer for $^{40}\text{Ar}/^{39}\text{Ar}$ cooling ages of amphibole and muscovite, are sincerely appreciated as they enhance the value of the map and provide context for its use in regional mapping efforts.

References

Crowley, William Patrick, 1968, The Bedrock Geology of the Long Hill and Bridgeport Quadrangles, with maps: State Geological and Natural History Survey of Connecticut, Quadrangle Report 24: 81 p.


Fisher, Joseph O., 1942, Structure and origin of the old tungsten mine near Trumbull, Conn.: Unpub. MA thesis, Columbia U.

Hatch, N. L., Jr. and Stanley, R. S., 1973, Some suggested stratigraphic relations in part of southwestern New England: USGS Bulletin 1380.

Hobbs, W. H., 1911, The old tungsten mine in Trumbull, Conn.: U.S. Geological Survey Annual Report 22, Part II, Plate 1.

Moritz, Harold; Wintsch, Robert P.; Devlin, William; McAleer, Ryan J.; Shinae Lee; SeokJu Kim; and Kewook Yoo, 2022, Geology and Mineralogy of the Old Mine Park Area, Trumbull, Connecticut: State Geological and Natural History Survey of Connecticut Guidebook No. 11, 76 Pages

Rodgers, John (compiler), 1985, Bedrock Geological Map of Connecticut: State Geological and Natural History Survey of Connecticut, scale 1:125,000, 2 Sheets

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation. Most notable thickness variations are observed in the zone of boudinage. High-temperature mineral veins collectively penetrate all the rock units, but any single one may not be multiple short veins are shown. The portions of the column exposed in different parts of the study area are indicated at left.

Generalized depiction of the interpreted stratigraphic succession for the rocks exposed in the study area. Thicknesses for the 2-m-scale units were measured in the field, while the ranges in thickness for the amphibolite and marble units were derived from map and cross-section compilation