

2020

Forests Sub-Group Draft Report

Forests Sub-Group

Working and Natural Lands Working Group

9/10/2020

Acknowledgements

Over the course of 5 months, the Forests Sub-Group held 9 public meetings, organized 20 presentations from experts on various issues related to forests and climate change, built a resource catalog of over 40 peer-reviewed journal articles, and kept up an enthusiastic pace thanks to the wisdom, expertise, and commitment of its members.

The following members of the Forests Sub-Group who all contributed to this report are listed below with their organizational affiliations:

- Tim Abbott, Housatonic Valley Association
- Mark Ashton, Yale School of Forestry & Environmental Studies
- Patrick Comins, Connecticut Audubon Society
- Thomas Easley, Yale School of Forestry & Environmental Studies
- Robert Fahey, University of Connecticut, Natural Resources and the Environment
- Edward Faison, Highstead
- David Gumbart, The Nature Conservancy – CT Chapter
- Eric Hammerling, Connecticut Forest & Park Association, Chair
- Lisa Hayden, New England Forestry Foundation
- Charles Leigus, Supreme Forest Products, Inc.
- Amy Paterson, Connecticut Land Conservation Council
- Herb Virgo, Keney Park Sustainability Project

The CT Department of Energy and Environmental Protection also deserves enormous credit for supporting the efforts of this Sub-Group in addition to their “day jobs.” In particular, the Sub-Group wants to thank Commissioner Katie Dykes for enabling Rick Jacobson, Chris Martin, Cary Lynch, and Jaimeson Sinclair to be so engaged and helpful throughout this process.

We also want to recognize the other Sub-Groups of the Working and Natural Lands Working Group – Agriculture/Soils, Rivers, Wetlands – as well as the Equity and Environmental Justice Working Group, the Science & Technology Working Group, and the Progress on Mitigation Strategies Working Group for their partnership on forest issues and to make our Sub-group and process as inclusive as it should be.

Lastly, we thank Governor Lamont for re-energizing the Governor’s Council on Climate Change through Executive Order #3 which gave our Sub-Group its overall charge to create this report.

In the following report, the Forests Sub-Group endeavors to give you a better understanding of Connecticut’s forests and the important role they play in helping Connecticut to adapt, become more resilient, and mitigate the many challenges we face due to climate change.

Contents

Executive Summary.....	1
Background	1
Summary of Report.....	1
Status of Connecticut's Forests	4
Carbon Storage in Connecticut's Forests.....	4
Forest Quantity is Good but Highest Quality Forests are Getting Fragmented	4
Dominant Forest Types and Age Structure.....	5
Who Owns the Woods?	7
Management of Forests on DEEP Properties	8
Forest Management Plan Status.....	8
Active and Passive Management on DEEP Properties.....	9
State Forests	9
Wildlife Management Areas	9
Passive Forest Management Acreage by DEEP Land Classifications	10
Benefits of Forests to Ecosystems and Society.....	11
Forests benefit wildlife	11
Forests mitigate climate change and clean the air	11
Forests protect water resources.....	11
Forests provide wood products and economic benefits	12
Forests support recreation and health	13
Forests provide shade and make communities more livable	13
Adopt Statewide "No-Net-Loss of Forest" Policy	14
Top Priority Action	14
Adaptation and Resilience Considerations for Connecticut's Forests.....	16
The Resilience of Connecticut's Forests is currently Threatened and Declining.....	17
Actions to Increase Adaptation and Resilience of Connecticut's Forests	18
Top Priority Actions.....	18
Short Term (1-5 year) Recommendations	18
Monitoring, Evaluation, and Planning	18
Experimentation	19
Forest Management Approaches	19
Education and Outreach	20

DRAFT 9.10.2020 for Public Comment

Longer Term (5-10 year) Recommendations	21
Forest Protection Strategies	21
Forest Restoration and Acquisition Strategies	21
Implementing Forest Resiliency.....	21
Education and Outreach	22
Changing Laws and Regulations.....	22
Creating Strong Markets for Products and Services with Multiple Benefits	22
Mitigation Considerations for Connecticut's Forests	24
Available climate mitigation solutions in forests.....	24
Connecticut's Forest Carbon Storage	24
Connecticut's Forest Carbon Sequestration and Future Role in Climate Mitigation	24
Forest Conversion threats.....	25
Reforestation Potential in Connecticut	25
The Settled Treescape.....	25
Timber harvesting in Connecticut.....	25
Actions to Increase Mitigation of GHG from Connecticut's Forests.....	26
Top Priority Actions.....	26
Longer Term (5-10 year) Actions	27
Develop Action Plan to Increase Forest cover from 59% to over 60% by 2040	27
Longer Term (5-10 year) Actions	28
Establish Criteria and Designate Core Forest Natural Area Preserves on State Lands	28
Short Term (1-5 year) Actions.....	30
Longer Term (5-10 year) Actions	30
Retain Large Trees and Forest Cover in Settled Landscapes (urban and residential)	30
Short Term (1-5 year) Actions.....	31
Improve the Management of Connecticut's Working Forests	31
Short Term (1-5 year) Actions.....	31
Longer Term (5-10 year) Actions	31
Climate Change Threats to Vulnerable Populations.....	32
Top Priority Actions.....	32
Vulnerability to Climate-Related Health Stressors	33
Improve Community Health and Reduce Health Inequities	34
Support Community Interest in Tree-Planting, Green Spaces, and/or Gardens	36

DRAFT 9.10.2020 for Public Comment

Support Market for Local Wood Re-use	38
Climate Threats to Vulnerable Forest Types.....	39
Top Priority Actions.....	39
Black Spruce Bogs	40
Lowland mixed conifer.....	40
Beech, birch, maple forest.....	40
Freshwater forested wetlands.....	40
Pitch pine-scrub oak.....	40
Cold water streams and headwaters and the associated shading forests	41
Lowland Atlantic white cedar forests	41
Coastal Forests.....	41
Funding, Programs, and Resources Needed for Implementation	42
Top Priority Actions.....	42
1. Enhance Existing Land Conservation Programs	43
2. Tax and Other Incentives	45
3. Municipal Funding Programs (See also Urban Forest Carbon Credit)	46
4. Tax Revenue Options	46
5. Public – Private Partnership Pilot Programs to Advance Land Conservation	47
Establishing a Forest Carbon Baseline for Connecticut	48
Top Priority Actions.....	48
Review & Rank of 2011 Climate Preparedness Report Recommendations	52
Top Priority Actions: Best Management Practices	52
Top Priority Actions: Research, Monitoring, and Education	52
Policy, Legislation, Regulation, and Funding: Top-Ranked Priorities	53
Synergies with CT Forest Action Plan and Other GC3 Working Groups	54
2020 Connecticut Forest Action Plan.....	54
Other GC3 Working Groups and Sub-Groups	54
Glossary of Terms & Endnotes.....	55

Executive Summary

Background

In its 2018 report, Building a Low Carbon Future for Connecticut: Achieving a 45% GHG Reduction by 2030,¹ the Governor’s Council on Climate Change (GC3) recognized natural and working lands as important carbon sinks that could help mitigate emissions from the electricity generation, transportation, and building sectors which together produce almost 60% of Connecticut’s greenhouse gas (GHG) emissions.²

The GC3 recommended that Connecticut continue to work with non-governmental organizations like the U.S. Climate Alliance in efforts to regionally develop carbon sequestration and storage practices.³ The council also recommended that “DEEP should work with land trusts, forest owners, and working lands managers to help adopt carbon accounting methodologies that further support sustainable land-use practices.”

In 2018, Connecticut joined with over 25 states in accepting the U.S. Climate Alliance’s Natural and Working Lands Challenge⁴ with a commitment to the following actions:

- Improve inventory methods for land-based carbon flux;
- Identify best practices to reduce GHG emissions and increase resilient carbon sequestration;
- Advance programs, policies, and incentives to reduce GHG emissions and enhance resilient carbon sequestration;
- Undertake actions that will support a collective, Alliance-wide goal to maintain natural and working lands as a net sink of carbon and protect and increase carbon storage capacity, while balancing near- and long-term sequestration objectives; and
- Integrate priority actions and pathways into state GHG mitigation plans within two years of joining this challenge.

Although none of these actions are “completed” at this time, Connecticut continues to work toward these goals both individually and in partnership with neighboring states, academia, and nonprofit organizations as well as the private sector. Many of the recommendations in this report are tied to furthering the commitments Connecticut made in 2018.

Summary of Report

Climate change is an enormous threat to Connecticut’s forests and people, and we must respond boldly with urgent action.

This report recommends policy, funding, conservation, research, and stewardship actions which would both make forests more resilient and enhance their potential for sequestering and storing carbon as a significant and growing offset for GHG emissions from other sectors. Following is a summary of the major recommendations and findings in this report:

We are all forest dwellers. Connecticut’s dominant land type is “forest” which covers approximately 59% of the state. [Go here for more on the Status of Connecticut’s forests.](#)

Resilient forests provide many benefits to people and nature, such as reducing heat stress and lowering energy bills by providing shade; improving air quality and providing physical and mental health benefits; supporting local wood products, jobs, and economic benefits; sustaining wildlife habitats and more livable communities for people; storing and sequestering carbon; and much more. [Go here for the benefits forests provide to Connecticut](#).

Forest resiliency is threatened by various factors. Although forests are an important carbon sink in Connecticut, our forests may become less resilient and effective at adapting to and mitigating climate change due to a mix of factors (invasive plants and forest pests; over-browse by deer impacting forest regeneration; forest conversion to other uses creating more vulnerable forest edges; air pollution; more intense weather events; etc.). [Go here for threats to forest resiliency](#).

Connecticut's forests are valuable for carbon storage. Connecticut's forests are the most "carbon dense" (most above-ground carbon stored/acre), oldest (~16% of our forests are 100+ years old), and have the highest annual net growth in forest biomass in the Northeast (net growth exceeds net removals from timber harvests or salvage operations by more than 500%). [Go here for forests as mitigation to climate change](#).

Keep forests as forests. Protecting healthy forests and preventing the conversion of forestland to other uses are likely the most important things we can do to allow forests to both adapt to and mitigate climate change. Recommendations in the report include setting a goal for increasing Connecticut's forest cover, protecting and connecting core forests, and dedicating more resources to work with private landowners (who own ~71% of Connecticut's forestland). [Go here for recommendations on forest adaptation/resiliency](#), and [go here for recommendations on mitigation](#).

Retain large trees in forests and residential areas. Large trees often provide a significant amount of the carbon and other benefits that trees provide in both urban/residential and rural settings. Retaining large trees and forest cover whenever possible should be actively encouraged. [Go here for recommendations on large trees](#).

Climate change is impacting vulnerable people the hardest, and there are significant inequities both in the locations where trees are, and are not, currently providing benefits to people. These inequities are most apparent in our cities where communities with the highest poverty rates and health inequities tend to also have the lowest tree canopy cover and direct connections to green spaces. [Go here for impacts of climate change on vulnerable populations](#).

Energize a Youth Conservation Corps for another "tree planting army" like the original Civilian Conservation Corps (CCC) to provide outdoor jobs, build trust and cultural understanding of green spaces at the community level, clean-up/plant-up open spaces to benefit both urban and rural environments, and at the same time encourage conservation career opportunities for people of color. [Go here for supporting community interest in trees and green spaces](#).

Vulnerable forest types require focused protection. There are a number of specialized forest types (freshwater forested wetlands, pitch pine-scrub oak, riparian forests alongside cold-water

streams and headwaters, lowland Atlantic white cedar, and other forest types) that should be priorities for protection. [Go here for the impacts of climate change on special forest types.](#)

Establish forest carbon baseline and goals for Connecticut. Under the Global Warming Solutions Act (GWSA), Connecticut has established significant goals for reducing emissions from the transportation, energy, and building sectors to combat climate change. Connecticut should add similar goals to the GWSA for carbon storage and ongoing “negative emissions” (carbon and other greenhouse gas sinks) that forests, wetlands, soils, and other natural climate solutions can provide. [Go here for Connecticut’s forest carbon baseline and goals.](#)

Commitments to funding, programs, and resources are critical. Enhancing existing funding programs, funding long-term research initiatives, establishing new sources of revenue, and providing tax incentives for acquisition and stewardship must be priorities. [Go here for recommended funding, programs, and resources.](#)

Adopt a “No Net Loss of Forest” policy for Connecticut to support all of the recommendations above by:

- (1) Keeping forests as forests to retain the multiple benefits of carbon storage, biodiversity, public health, green infrastructure, etc.
- (2) Protecting healthy, intact forests to ensure that impacts upon forests, sensitive habitats, and other natural climate solutions are considered at every level of planning.
- (3) Offsetting all planned or permitted forest losses through a combination of compensatory mitigation requirements and other tools.
- (4) Providing financial incentives for stewardship, forest retention, and forest resiliency on privately-owned forestlands; and
- (5) Protecting urban forests, building more parks, and planting more trees and gardens to maximize the benefits to people of trees and green spaces. [Go here for more on a “No Net Loss of Forest” policy for Connecticut.](#)

There are many factors to consider simultaneously with forests which makes any single recommendation on their future insufficient. It will likely require a full suite of conservation strategies working together to manage for a variety of values and uses on a long-term timescale using peer-reviewed science and a holistic understanding of forest systems.

In addition, any comprehensive climate policy solutions for forests should strive to address the challenges of 1) the *longevity* of the approach, 2) *additionality* (that the action would not have taken place anyway), 3) *leakage* (that the mitigation action is not pushing the activity elsewhere where it may cause more damage), and 4) *substitution*, the carbon implications of using one material instead of another compared to keeping carbon stored in the forest.^{5,6} This kind of approach can help ensure that southern New England forests continue to capture and store carbon, maintain ecosystem functions and services, and decrease global deforestation.⁷

Status of Connecticut's Forests

Connecticut's forests and trees add immensely to the quality of life for the people of the state. They filter the air that is breathed, safeguard private and public drinking water sources, produce locally grown forest products, provide essential habitat for wildlife, and moderate summer and winter temperatures near homes and businesses. They also have the potential to absorb and store atmospheric carbon which is currently increasing beyond historic and naturally occurring levels.

Carbon Storage in Connecticut's Forests

The most recent national Forest Carbon Inventory published by the USDA Forest Service documents 191 million metric tons (MMT) of Carbon in Connecticut's forests in 2019, which has increased by ~9 MMT over the past decade. Of note, these Forest Service figures do not include individual trees or groups of trees that may not fit the standard definition of "forest." The Forest Service's definition of forest land is at least one continuous acre of forest canopy cover.⁸

A different type of carbon pool exists in the urban forest. Connecticut is a heavily urbanized state. According to Forest Service analysis, 36.4% of the land area of the state is urban (1.13 million acres), with 87.7% of the population, nearly 3 million people, living in these urban areas (FIA). Despite the high population concentration in these areas, these same lands have a fairly high degree of tree cover, with tree canopy cover estimated at nearly 50%. These urban trees are storing about 22.5 million tons of carbon and continue to sequester carbon at the rate of about 744 thousand tons per year (FIA). The importance of urban trees is magnified by their proximity to people and co-benefits for health, energy savings, flood retention, and more.⁹

Forest Quantity is Good but Highest Quality Forests are Getting Fragmented

Approximately 59% of Connecticut is "forested" and this percentage has remained relatively flat since 2010.¹⁰

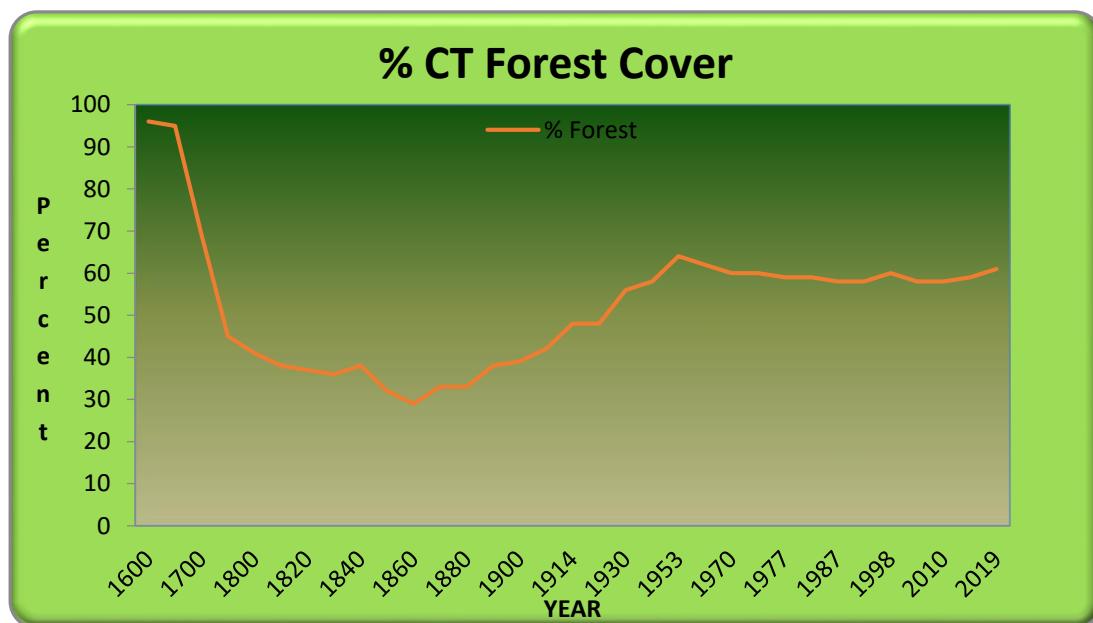
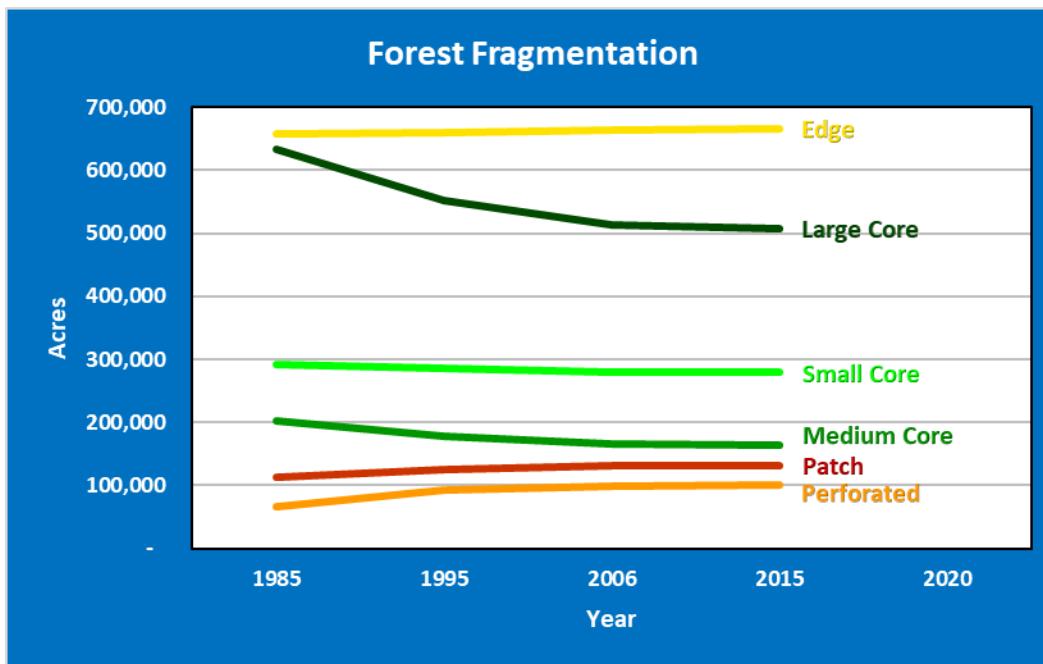



Figure 1. Historic Forest Cover in Connecticut.¹¹

Connecticut's forests have made a remarkable comeback after being cleared, primarily for agriculture, starting in the 1700's. At the low point in ~1860, only 30% of Connecticut's forests remained (approximately half of the forest cover we enjoy today). As the forests grew back they were repeatedly cut for charcoal fuel that fed the industrial age until about 1920 when coal and petroleum replaced wood-based fuel.

Of the 59% forested area, preliminary findings show ~53% of Connecticut's forest are core forest, larger blocks of forest that are generally more important for wildlife habitat, drinking water supply protection, ecological resilience, and a sustainable supply of lumber, homeowner firewood, and other forest products.

Larger core forests of 500+ acres have been the fastest declining forest type losing approximately 120,000 acres over 30 years from 1985 to 2015.¹² In fact, 1985 to 2015, Connecticut lost about 465 km² of forest cover to development—about 5.8% of the forest that existed in 1985. Loss of core forest during that period was about 719 km², a relative change of 15.7% from 1985 levels. In fact, core forest was lost at a pace (24 km² per year) more than 1.5 times the pace of the loss of total forest (15 km² per year).¹³

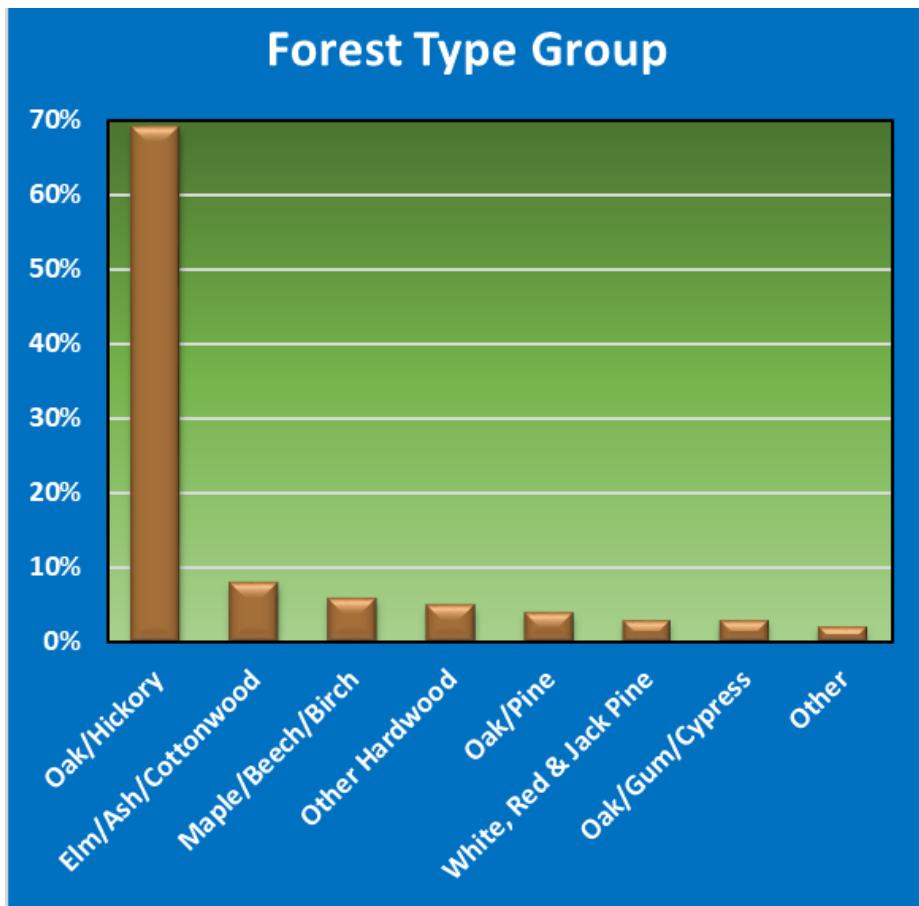
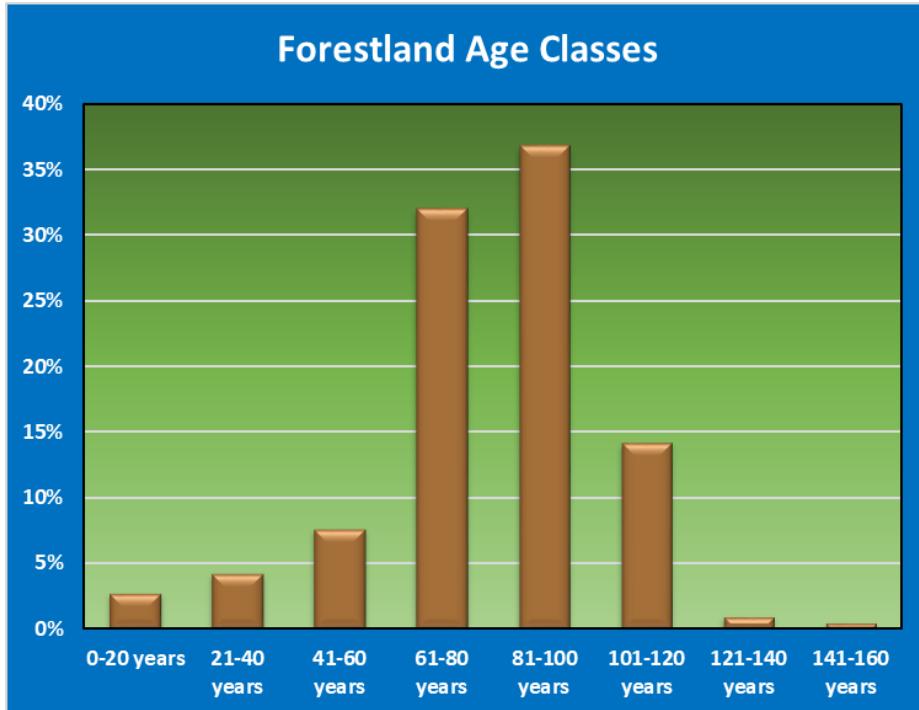


Figure 2. Forest fragmentation by forest category. Source: 2015 CT Forest Action Plan. **Note that Connecticut's 2020 Forest Action Plan is due to be published at the end of 2020.


Dominant Forest Types and Age Structure

Oak/Hickory is the most common forest type with red maple being the most common tree. Regarding tree age and forest demographics, Connecticut's forests are growing older with less age diversity. Despite significant tree mortality between 2013 and 2018 due to Gypsy moth and Emerald ash borer infestations, net annual growth in aboveground forest biomass continued to exceed annual removals by more than five times.¹⁴

The following figures provide a quick snapshot of Connecticut's forest types and age structure:

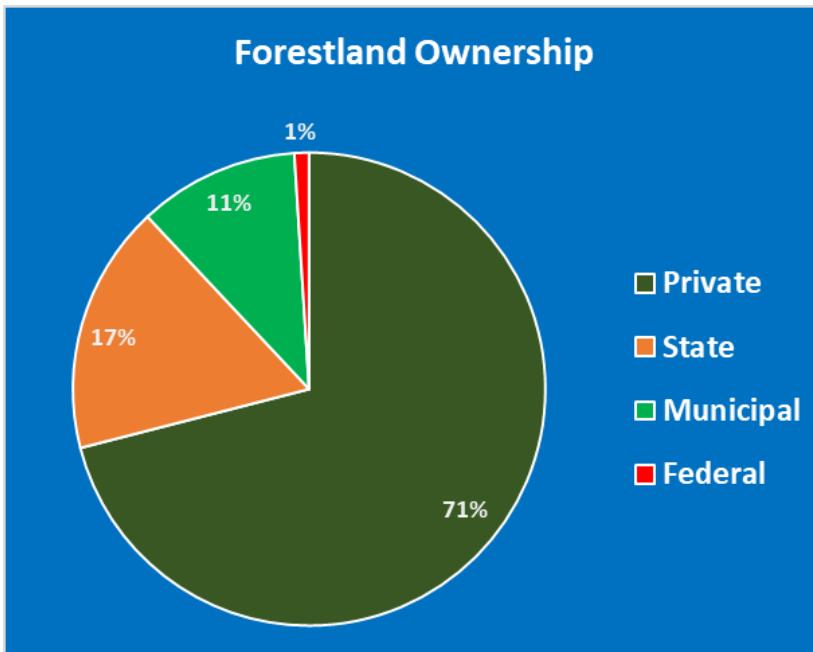

Figure 3. Percentage of forest cover in Connecticut by forest type. Source: 2015 CT Forest Action Plan.

Figure 4. Forest cover in Connecticut grouped by age classes. Source: 2015 CT Forest Action Plan.

Who Owns the Woods?

Of Connecticut's approximate 1.8 million acres of woodlands, 71% is owned by private individuals, corporate landholders (including private water companies), and land trusts. The remaining forestland is owned by the state (17%), municipalities (11%), and minimal federal lands (1%).

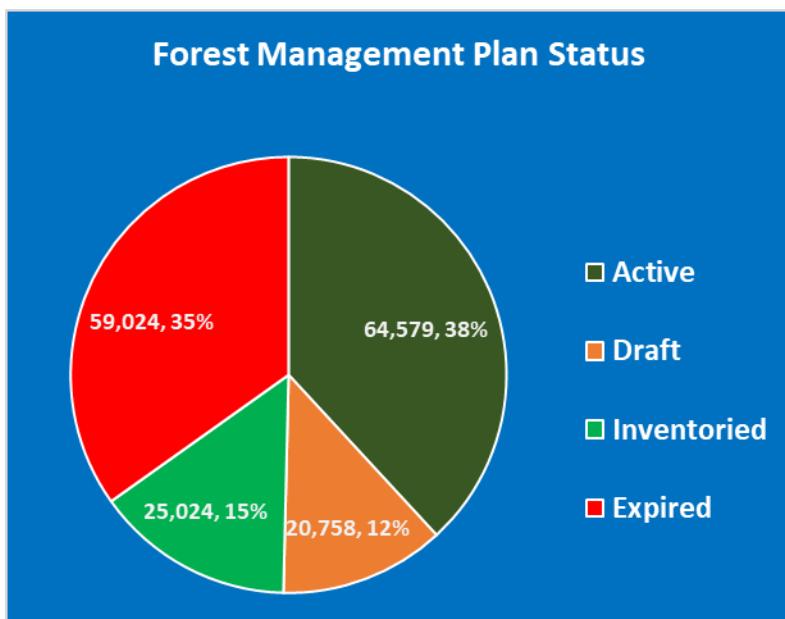
Figure 5. Forestland in Connecticut with percentage of ownership. Private includes individuals/families, land trusts, private water companies, and corporate landowners. [Source](#): USDA Forest Service FIA Program (2018).

Likely contributing to an aging forest is the low interest in active forest management by most individual forest landowners. A 2015 Connecticut Woodland Owners (CWO) Survey report documented that the primary ownership objectives tend to be beauty/scenery, privacy, wildlife viewing, and nature protection, with only 21% having cut trees at some time during their ownership. 59% of these landowners have cut trees for their personal home heating purposes. Many woodland owners believe that “hands off, let nature take its course” is the best approach.¹⁵

The 2015 CWO Survey also showed these owners believe conserving their woodlands is extremely important - they almost unanimously say they would like their land to stay wooded (95%). Hence there exists considerable opportunity to retain Connecticut existing forests as forest. However, most woodland owners would require financial compensation to permanently protect their forest values through a conservation easement.

These same woodland owners are also discouraged and deeply concerned with invasive plants and insects which are disrupting their woodlands. Fortunately, the USDA Natural Resources Conservation Service has invested millions of dollars in Connecticut annually for several years through federal assistance programs such as the Environmental Quality Incentives Program and Regional Conservation Partnerships Programs. These USDA Farm Bill-funded programs encourage property owners to engage and invest in the health, diversity and sustainability of

their woodlands. DEEP's Cooperative Forestry Program also offers technical assistance to these woodland owners supported by the USDA Forest Service. DEEP Service Foresters direct woodland owners to these resources and qualified professional foresters and wildlife biologists to make informed decisions. The more programs and professionals that engage with landowners on stewardship of their woods, the more likely these landowners will continue as long-term, dedicated stewards of their woodlands.


Because the vast majority of Connecticut's forests are privately owned, engaging family forest landowners, corporate landholders, and land trusts is critical to maintain and increase resilient sequestration and storage of forest carbon in Connecticut.

Management of Forests on DEEP Properties

All forested land held by the CT Department of Energy & Environmental Protection (DEEP) can be classified as either "actively managed" or "passively managed." Actively managed lands may support periodic forest, or wildlife habitat management through commercial sales of forest products or other tree and vegetation removal treatments. Passive management lands are generally reserved from commercial forest product harvesting, and left to grow without designed professional intervention.

Forest Management Plan Status

State Forests are managed based upon Forest Management Plans developed by professional state land foresters at DEEP. These Forest Management Plans, which receive input from interested parties (which varies based upon location) as well as DEEP resource managers in the Wildlife and other divisions, are due to be updated every 10 years. It has been difficult for DEEP to keep its Forest Management Plans up-to-date due to inadequate staff resources to stay on top of this ongoing planning need. All currently active Forest Management Plans are posted online by DEEP.¹⁶

Figure 6. Status of Forest Management Plans with acres and percentages as of June, 2020. Source: DEEP Forestry.

Active and Passive Management on DEEP Properties

State Forests and Wildlife Management Areas (WMAs) are subject to periodic forest and wildlife habitat management with the goals of improving forest health and augmenting conditions for wildlife.

State Forests

32 State Forests cover approximately 170,000-acres and include a mix of active and passive management.¹⁷ On average, DEEP is conducting active management on an average of 1,000 – 1,500 acres/year (less than 1% of all State Forest lands annually) based upon forest management plan prescriptions.¹⁸ Current program-specific planning guidelines allow for designed passive management, or forest reserve areas within and throughout the State Forest landscape. Old Forest Land Management Sites (OFLMS) are selected to grow and evolve naturally in an attempt to reach advanced stages of vegetative succession and develop as forests subject to the forces of nature with minimal or no human intervention.

There are 36,429 acres -- ~21.4% of all State Forest lands – that today are considered to be under passive management (this figure does not include 104,000+ acres of State Forest lands that do not have active Forest Management Plans). These passive management forest lands fall into the following three categories:

- **Old Forest Management Sites** (planned Forest Reserves): **14,077 acres**
- **Inoperable Sites** (land perpetually passively managed due to site conditions, such as abundant surface stones, excessive soil moisture, steep slopes, etc.): **16,864 acres**
- **Inaccessible Sites** (land which cannot currently be accessed to be managed): **5,488 acres**

Wildlife Management Areas

Of the 34,000 acres of Wildlife Management Areas, 19,812 acres are considered to be forest land using GIS analysis and CT Land Cover Assessment data.

State WMA's are managed to provide habitat for both common and uncommon wildlife and to provide for wildlife based recreation (hunting, fishing, trapping and wildlife viewing) in support of the Division's overall mission of conserving the state's wildlife resources for the use and appreciation of the public. The vast majority of the funding to manage these lands comes from the U.S. Fish and Wildlife Service Wildlife and Sport Fish Restoration (WSFR) program. WSFR funding is provided to restore, conserve, manage and enhance wildlife habitat and to provide wildlife based recreation. Activities, uses or encumbrances which interfere with the purpose of the WSFR funding are not allowed.

The need for old forest management areas would be determined at the site specific level and would take into consideration existing physical and biological natural resource conditions and the management objectives for the property. Opportunities to designate no management or reserve areas to function as old forest management areas would vary widely, due to the diversity of habitat types found on our WMAs. If it was determined that a particular wildlife species required it and/or it would enhance overall biological diversity, the Wildlife Division would consider passive management (or even active management) to set the stage for well-

developed old forest management areas. Ideally old forest management areas would either provide for or be able to grow into areas characterized with large trees, a diversity of tree species and complex multi-layered structure, canopy gaps, standing dead trees, fallen trees and trees with cavities. At this time, no passive management in WMAs for forests is shown.

Passive Forest Management Acreage by DEEP Land Classifications

The DEEP Land Classifications on the following chart generally receive no planned forest management. The forested-acreage numbers attributed to each classification are derived based on Land Cover analysis. Any forest activity implemented on these lands would be in response to an immediate public safety issue or large scale forest health concern.¹⁹

Table 1. Passive Forest Management Acreage on DEEP-held lands shown by DEEP Land Classification.

Passive Forest Management Acreage by DEEP Land Classification	Total Acres Classified (acres)	Passive Forest Management Acres	Percentage of Total by DEEP Land Class Category
State Forest	168,960	36,429	21%
Wildlife Management Area	34,000	0	0%
State Park	34,115	27,167	79%
Fish Hatchery	744	393	52%
Flood Control	4,434	2,627	59%
Natural Area Preserve	2,508	2,452	97%
Other	1,498	1,063	71%
Water Access	1,588	900	57%
Wildlife Sanctuary	1,500	1,280	85%
DEEP Water Body	5,708	0	0
Total	221,055	72,311	33%

Benefits of Forests to Ecosystems and Society

Forests are one of nature's most powerful solutions to human-caused climate change.

Whether we live near a forest or not, our human communities are intricately connected with the services they provide. These natural benefits include homes and food for wildlife, pumping oxygen into the air we breathe, filtering runoff that helps clean the water we drink, and delivering nutrients to the soil when leaves and branches decompose.²⁰

Forests benefit wildlife

Healthy forest landscapes often include a variety of tree species of varying age classes. Tall, canopy-layer trees grow above smaller sub-canopy trees, with a shrub layer and diverse plants on the forest floor. This suite of vegetation supports wildlife, from bear and moose to resident and migratory birds. Butterflies and insect pollinators help ensure that same vegetation produces the next generation of life-supporting trees. Many of Connecticut's wildlife species rely on forest habitats. With greater biodiversity comes forest resilience and a greater ability to adapt to changing conditions related to climate change.

Forests mitigate climate change and clean the air

By doing what they naturally do, the trees in Connecticut's forests – covering an estimated 1.8 million acres, about 59% of the state's land cover²¹ – provide innumerable benefits to people, including removing heat-trapping carbon emissions our activities release into the atmosphere. The U.S. Climate Alliance estimates that "within Alliance states [including Connecticut], natural and working lands offset 16% of the GHG emissions from energy, transportation, and other sources in 2016."²²

The ability of trees to take in or sequester and store carbon dioxide, turning it to wood and other forest components including soil, provides significant potential to mitigate climate change by retaining existing forests and improved forest management. A study in the Proceedings of the National Academy of Sciences finds that "natural climate solutions" could reduce land-based emissions and store additional carbon equivalent to more than a third (37%) of needed emissions reductions to keep global temperatures at or below 2 degrees Celsius through 2030, although benefits decrease beyond that date due to saturation of natural systems among other factors. Among the strategies found to deliver the most benefit, according to the paper, are "reforestation" (conversion of non-forest to forest) and "avoided forest conversion" that along with "natural forest management," represent easily available and effective solutions.²³

Trees are also effective air filters, removing pollution and particulate matter through their respiration, with studies showing significant reduction of asthma and improved respiratory health in urban areas with more tree cover.²⁴ Roadside trees could reduce nearby air pollution by more than 50%,²⁵ but the potential for air pollution reduction varies among species and as a function of tree size and landscape position.²⁶

Forests protect water resources

Forests are also indispensable in production of our drinking water. Approximately 85% of Connecticut residents get their drinking water from public water systems.²⁷ Forests that

surround public water supply reservoirs and private wells improve water quality and can greatly reduce costs for treatment by filtering surface water and maintaining groundwater reserves, ensuring this vital natural resource is not degraded. Forested wetlands and floodplains along rivers retain and slow the movement of vast quantities of water during storm events, protecting nearby municipalities from flooding and reducing stormwater runoff.

Forests provide wood products and economic benefits

In Connecticut, the Land of Steady Habits, generations of families have harvested trees from their land to heat their homes, to build the post and beam barns on their farms and perhaps sell some timber to generate income. The vistas of forested hills and fields along country roads, and tree-lined suburban streets are part of our New England cultural identity.

Trees are a renewable resource – and in New England, where conditions usually allow seeds to take root and regenerate, working forests can also supply a local source of wood products. Connecticut consumes an estimated 80.4 million board feet of roundwood or about 22.77 board feet per person each year.²⁸ For a relative measure, building a typical 2,000 square foot home would require about 16,000 board feet of roundwood.²⁹

Depending on the goals and desired outcomes of private or public owners of forests, cutting some trees according to a variety of silvicultural practices or prescriptions, can enhance the health and vigor of remaining trees, generate income from the sale of timber to produce wood products for human needs, and silviculture can be employed to create a wide variety of habitat conditions and specific habitat features to benefit various wildlife species.³⁰

Harvesting timber grown sustainably in our own region can help to reduce transport emissions and global deforestation by avoiding a shift of pressure to harvest primary forests in other nations with less stringent environmental policies. In its 2015 report, the North East State Foresters Association estimated Connecticut's forest products and forest recreation industries produce an annual gross output of \$3.38 billion and almost 13,000 jobs (figure below).³¹

Gross State Output (sales), Forest-based Manufacturing & Recreation, Connecticut, 2013		
	millions of \$	jobs
Forestry & logging	25	450
Wood products manufacturing	154	1,300
Furniture and related product manufacturing	418	2,802
Paper manufacturing	1,573	3,550
Wood energy	7	40
Christmas trees and maple syrup	4	58
Total Forest Products	2,181	8,200
Forest Recreation sales	1,200	4,600
Total	\$ 3,381	12,800

Long-lived wood products – from your grandmother's antique desk to the cabinets in your renovated kitchen – also lock up and store carbon until the wood decomposes. From paper to plywood and barrels to baseball bats, some wood products are well known; other forest products such as rayon, mulch, medicines, fiber, gums, resins and tannins (such as witch hazel)

are less obvious.^{32,33} Lumber can also be reclaimed from old structures and recycled into new uses for furniture or building materials, keeping carbon out of the atmosphere longer.

Forests support recreation and health

Connecticut's forests provide recreational settings for people to get outside to exercise and enjoy nature through countless activities, such as hiking, mountain biking, horse riding, bird watching, camping, hunting and fishing, and serve as attractions that support tourism and natural resource-related businesses that generate economic benefits to Connecticut.

Forests also offer solace and spiritual renewal to people seeking to unplug from hours of "screen time" spent for work and entertainment. Particularly during the 2020 pandemic, forest trails and open space available for public access has provided physical and mental health benefits. One study on the Japanese practice of forest bathing (shinrin-yoku), found that pulse rate, systolic and diastolic blood pressure were significantly lower among a group of 128 people (ages 45-86) after a two-hour program in the forest which indicated physiological benefits from stress recovery.³⁴ A recent "Forests Make Us Healthier" campaign by the Northeast Forest Network provides a toolkit with much more information on the important connection between forests and mental and physical health.³⁵

Forests provide shade and make communities more livable

By releasing water vapor through transpiration, street trees can help alleviate the urban "heat island effect" that has caused deaths in some cities during heat waves, which may become more common with higher extreme temperatures.³⁶ An improved tree canopy can cool residential neighborhoods and reduce energy use, while potentially making communities more attractive, livable and safe.

Connecticut should balance public safety with the health benefits of urban and suburban street trees in reviewing policies for tree planting in residential areas and hazard tree removal implemented by utility companies or municipalities.

By maintaining Connecticut's existing forests, and significantly increasing the acreage of permanently protected forest land, we can help ensure our state's natural and human communities can continue to thrive in the face of climate change.

Adopt Statewide “No-Net-Loss of Forest” Policy

Top Priority Action

- **Adopt a statewide “No-Net-Loss of Forest” policy** in the CT General Assembly.

The Forests Sub-Group recommends an overarching “no-net-loss of forest” (NNLF) policy for Connecticut. This policy would support the top priority recommendation in both the Adaptation/Resilience and Mitigation sections of this report which is to KEEP FORESTS AS FORESTS.

To achieve this NNLF policy goal will take concerted actions at the local, regional, and statewide levels. Fortunately, the state of Maryland has been working on implementing its “no-net-loss of forest” policy which was adopted in 2013 with passage of the MD Forest Preservation Act.³⁷ This landmark legislation accomplished four goals:³⁸

- Establishing no-net-loss of forest as the policy of the State of Maryland.
- Encouraging the retention of family-owned forests by doubling the income tax credit for forest management activities and expanding the range of activities to include the planting of streamside forests, removing invasive species, and improving wildlife habitat.
- Broadening the State Reforestation Law to support tree planting and forest health management on family-owned forests.
- Ensuring that local fees under the Forest Conservation Act of 1991 are used for tree planting and conservation.

The NNLF policy has helped establish several mechanisms at the statewide and county levels to slow the rate of forest losses in Maryland. This policy should be adapted to work for Connecticut, and the climate crisis makes this an urgent priority. The following recommendations are based on those proposed for Maryland to implement its NNLF policy:³⁹

- (1) **Avoid Forest Conversion** – protect existing public- and privately-owned forestland from conversion to non-forest purposes to retain the benefits of increased carbon storage, biodiversity, public health, green infrastructure, etc. (see benefits in previous chapter);
- (2) **Protect Healthy, Intact Forests** – ensure that impacts upon forests, sensitive habitats, and other natural climate solutions and priorities (wetlands, soils, rivers, farmland, etc.) are considered at every level of planning – urban, suburban, and rural – and across all landscapes;
- (3) **Offset All Planned or Permitted Forest Losses** – it is not practical to protect all forested areas from conversion and periodic natural disturbances may also result in temporary forest losses. However, it is essential to offset all planned or permitted forest losses through a combination of compensatory mitigation requirements and tools such as compensatory reforestation, replanting programs, and acquiring local or regional forest mitigation banks;
- (4) **Provide Incentives for Stewardship, Forest Retention, and Forest Resiliency** – since 71% of the state’s woodlands are privately owned by individuals/families, corporate landholders, and land trusts, a no-net-loss policy must include financial and technical assistance measures to

engage private landowners in maintaining and increasing sequestration and storage of forest carbon as well as incentives for critical ecosystem services that their forests provide.

For example, as a participating state in the Regional Greenhouse Gas Initiative or RGGI, Connecticut should study forest carbon offset allowances available through compliance and voluntary markets for reforestation, improved forest management, avoided conversion, and proforestation as well as programs that aggregate, evaluate and monitor forest offsets, in order to implement a system of paying landowners for enhanced carbon sequestration and storage with verifiable climate benefits and strict certification standards in place; and

(5) Protect Urban Forests, Build More Parks, and Plant More Trees – planting, re-planting, and caring for trees and establishing neighborhood parks in Connecticut’s cities not only provides improved health, reduced energy costs, and other co-benefits, but also often provides more equitable access to parks and the outdoors for people of color and other vulnerable communities disproportionately impacted by climate change. If this is implemented with appropriate community engagement rather than as a top-down program, this can result in more healthy, equitable, and resilient communities.⁴⁰

Adaptation and Resilience Considerations for Connecticut's Forests

Resilience is the fundamental ecological ability of a forest to change and adapt to stressors and provide the functions and values that society demands.^{41,42}

Following are the primary components of resilience and their relevance for Connecticut's forests:

1. Forests and their native species (especially trees) have an inherent ability to endure and self-organize after disturbances with which they have co-evolved.

In Connecticut, the predominant oak-hardwood forest type has co-evolved with disturbances that are mostly episodic (e.g. hurricanes, microbursts, tornadoes, droughts) – rather than frequent and chronic (e.g. small canopy wind events).^{43,44} The historic frequency and intensity of storms may be different in the future as climate changes occur.

2. Greater tree species diversity confers greater stability, in the form of resistance to change in forest stands (and landscapes) related to disturbance and stress.^{45,46}

The primary environmental drivers of our forest diversity follow (in general order of importance for forests in Connecticut):

- a) The ability of plant species to specialize in relation to each other on different soils and topographies (a.k.a. niche partitioning);⁴⁷
- b) The ability of different plant species (trees) to have different growth habits and forms such as herbs, shrubs, small trees and canopy trees which is closely tied to precipitation and soil moisture (a.k.a. crown stratification);^{48,49,50,51}
- c) The ability of different tree species to grow and live for different lengths of time as a forest grows back after an episodic disturbance such as tornadoes, microbursts and hurricanes (a.k.a. successional development);^{52,53} and
- d) Ability for various species to “hide” amongst unrelated neighbors to avoid insects and diseases specific to that species. This process in and of itself promotes diversity (a.k.a. negative density dependence).^{54,55}

Connecticut's forest diversity is relatively young, since these drivers have been dynamically interacting over the past 20,000 years (since the peak of the last glaciation) with human-related land uses, climate, and other stressors (mostly human-related) and disturbances. Its current diversity is largely controlled by three diversity drivers: a) niche partitioning - because of Connecticut's inherent soil and topographic variability; b) crown stratification - promoted by moist soils from the relatively high rainfall Connecticut receives; and c) succession - disturbances that are punctuated by periods of recovery long-enough to promote sun-loving long-lived canopy trees (ash, oak, hickory and pine) to grow as canopy dominants with longer-lived shade tolerant species (beech, hemlock, maple) more characteristic of northern New England Forests.

3. Redundancy is a form of resilience where multiple species have the same roles or functions in a developing forest.⁵⁶

Generally speaking, Connecticut's forest redundancy is high meaning that there are multiple species and multiple unrelated genera. For example, oak, hickory, and maple trees all have multiple species found across the state that can inhabit the same space and function in a forest. Hence, the elimination of one species through insects, disease, or other stressors would not limit the ability of a forest to recover and retain its basic structure and composition. Of course, the removal of multiple species will reduce or eliminate redundancy and will have a dramatic impact in a forest's resilience. Evidence suggests this is beginning to happen, for example with the functional elimination of chestnut, elm and ash and the decline in beech, hemlock, and oak.

There are other drivers of Connecticut's forest resiliency that are not covered in this report, such as "driver" and "passenger" species relationships^{57,58,59} and biogeographic effects.⁶⁰

The Resilience of Connecticut's Forests is currently Threatened and Declining

There are multiple factors and stressors that have combined to threaten the resilience of our forests:

1. Forest Age Classes and Structure are Not Diverse – Legacies of Connecticut's agriculture, chronic selective logging, and development history has left a relatively age- and structure-simplified second growth forest across most of our state.^{61,62}
2. Most Forests Are Mature and Getting Older – The pattern of a large proportion of forests in the landscape simultaneously reaching maturity has the potential to reduce resilience as maturing forests are more susceptible to multiple stressors (e.g. insects, disease, pollutants, and drought).⁶³ Old growth forests have enormous ecological and social value, are rare in the modern landscape, and can have substantial resilience to disturbance. Also disturbances in mature forests can promote the age and structural diversity missing from the forest landscape, but novel stressors described below may affect these values and outcomes.^{64,65}
3. Most stressors are human caused but beyond our immediate control – Abiotic stressors to trees such as ozone and NOx⁶⁶ can be significant, as can biotic stressors such as invasive insects, plants, and diseases. Both have been impacting the development of the Connecticut forest for over a century and will continue to impact future forest composition and structure.^{67,68}
4. Fragmented forests with permanent "edge" are more prone to degradation – Permanent edge exists because of persistent and continuous disturbance from: i) farming and agricultural activities; ii) development and suburban expansion through roads, lawns, and lots; and iii) through continuous activities in the forest such as recreation (e.g. trails), frequent rather than episodic timber harvesting, and the chronic imbalance of predator-prey in wildlife populations (e.g. deer).⁶⁹
5. Climate Change is Increasing Disturbances – Climate change is exacerbating chronic issues for forests such as incremental mean increases in temperature resulting in increased respiration stresses and decomposition processes. Climate change also heightens episodic stresses such as periods of drought during the growing season, extra-normal rainfall and snowfall events, and increased abnormal and high severity disturbance events such as ice storms, tornadoes, hurricanes, and microbursts.^{70,71}

6. Climate Change Can Reduce Forest Carbon Sink Potential -- Climate change is producing, facilitating, and reinforcing negative impacts from stressors already present in low-resilience forests. This can cause a degradation spiral which further simplifies forest composition and structure, increases dominance of non-native species, may reduce standing biomass, increases decomposition processes, and lowers soil carbon.^{72,73,74}

The bottom line is that forests will not be impactful to mitigate climate and carbon if they are not resilient.

Actions to Increase Adaptation and Resilience of Connecticut's Forests

Top Priority Actions

- **KEEP FORESTS AS FORESTS** with mechanisms to encourage private landowners to protect forestland through easements, tax incentives, ecosystem payment mechanisms, and strong markets for local forest products.
- **Create forest monitoring network** to evaluate forest ecosystem conditions in naturally regenerating forests across the rural to urban gradient, various land ownerships, and including trees in more developed areas.
- **Sponsor research on active and passive ways to create greater resiliency in forests** through alteration or natural development of structure, function, and diversity. Encourage financial incentives to apply the results of this research on public and private lands by stakeholders to promote more resilient forests.
- **Ensure statewide, regional, and local actions align to maintain un-fragmented forests** (both reserves and actively managed) within and across political boundaries with emphasis on connections to waterways and wetlands, core forests, and wildlife habitat linkages.

Short Term (1-5 year) Recommendations

Monitoring, Evaluation, and Planning

- Create a monitoring network to evaluate forest ecosystem conditions in naturally regenerating forests (i.e., not mowed or maintained ground cover) across the rural to urban gradient throughout Connecticut at a more refined scale than the National FIA and that complements other existing programs such as the Breeding Bird Survey. Incorporate or establish additional network for “maintained trees” across the state.
 - Include a wide diversity of measurements beyond forest growth and change in composition: such as breeding bird census, invasive plant monitoring, insects and diseases, disturbance characterization from a variety of sources (timber harvest, wind, insects, pathogens, and fire) and periodic measures of soil carbon.
 - Ensure that data are accessible and usable by stakeholders through an open access data portal and that the importance and utility of the data are communicated to potential users.

- Create a citizen science program where trained and mentored individuals (from across life stages – including students and adults) conduct some of the monitoring – e.g., bird census on a specific series of days at the sampling points, camera trap monitoring for mammals, or amphibian surveys. If well planned, this could be systematic part of the design for the monitoring program carried out by or alongside professionals. This could be developed as a component of a college or high school curricula.
- Identify areas that are especially important to landscape-level resilience through partnerships with TNC’s Staying Connected Initiative,⁷⁵ HVA’s Follow the Forest Initiative,⁷⁶ and other climate corridor proponents to identify and prioritize the protection and enhancement of climate and habitat corridors in Connecticut. TNC’s Resilient Lands Mapping Tool⁷⁷ can also be used for site assessments in Connecticut to measure the capacity of different lands to withstand climate change.
 - Identify areas where wildlife movement between core forests becomes constrained by roads, culverts and bridges, and design mitigation efforts to improve wildlife passage.

Experimentation

- Sponsor experimental studies to investigate both active and passive ways of creating greater resiliency in forests through management-promoted or natural development of structure, function, and diversity. Use these studies as baselines for adaptive management of forests in different contexts. Initiate studies across the rural-urban gradient, ownership and land use types, and in both maintained and naturally regenerating forest systems.
 - Promote and expand on existing examples such as Adaptive Silviculture for Climate Change program at UConn⁷⁸ and many efforts of USFS Northern Institute of Applied Climate Science.⁷⁹ Create a state-wide list/portal of existing and newly created projects where their outcomes can be communicated.
 - Explore funding streams through USFS and other agencies for expanded efforts.

Forest Management Approaches

- Increase the reserve (passive management) acreage in the state to promote local and landscape/regional resilience (e.g., as buffers against extinction/extirpation²) and to provide controls to assess the outcomes of experimental manipulations.
 - Reserves should be representative of the entire landscape in order to provide suitable controls (i.e., similar environments) for actively managed areas.
- Implement active forest management approaches that can increase structural, age class, and species diversity in low-diversity second-growth forests.⁸⁰⁸¹
 - Promote silviculturally-informed, resilience-focused management approaches across ownership categories and especially on private lands.
- Respond to ongoing elevated tree mortality (related to gypsy moth, drought, emerald ash borer, etc.) across the urban to rural gradient with hazard tree removals, limited

salvage harvesting where appropriate (e.g., not in reserves and to a very limited extent on public lands where public safety including wildfire risk is not increased), and tree additions (seedling/sapling planting) where needed based on regeneration monitoring.

- Coordinate and share information on tree mortality patterns and safety concerns.
- Set up specialized monitoring program to assess tree regeneration patterns across affected and unaffected stands.
- Re-vitalize the State Tree Nursery to promote seedling availability.
- Retain snags and deadwood to promote wildlife habitat and carbon storage wherever feasible based on hazards and economic considerations.
- Respond to ongoing invasive pests and pathogens and prepare for future introductions.
 - Adopt and promote biocontrol methods where possible and work with partners from the federal level to test and apply these methods.
 - Continue and expand monitoring programs and early warning systems.
 - Continue and fund firewood and horticulture regulations to limit new introduction.
- Promote regeneration of native and future-adapted tree species (especially oaks and hickories) across forest types, stand conditions, and ownership types.
 - Develop and promote herbivore population control measures where appropriate and based on monitoring of regeneration and herbivore populations.
 - Include regeneration as a primary focus of monitoring and experimentation plans outlined above.
 - Implement forest management approaches and planting initiatives to promote regeneration of mid-tolerant and intolerant species such as oaks and hickories where needed and appropriate (based on monitoring or protected status).

Education and Outreach

- Continue and expand education and outreach/training efforts focused on promoting the importance of resilient forests, and forest management approaches (both passive and active) that promote resilience, as linchpins of state climate adaptation and mitigation strategies.
 - Create and fund a Connecticut Youth Conservation Corps, on the model of the Civilian Conservation Corps, to provide jobs and paid job training to young people that prioritize tree planting and reforestation activities with an emphasis on explicitly creating employment opportunities for young people from Environmental Justice communities (as defined under section 22a-20a of the CT General Statutes) to carry out planting and reforestation activities in EJ communities.

Longer Term (5-10 year) Recommendations

Forest Protection Strategies

- KEEP FORESTS AS FORESTS with “no-net-loss of forest” policies and financial incentives to encourage private landowners to protect forestland through easements, tax incentives, ecosystem sustaining payments, and strong markets for forest products.
- Develop active outreach programs to connect and engage private woodland owners with conservation-based estate planning resources, such as tax benefits of conservation, family facilitation in succession planning, and guidance about options to sell carbon credits as market opportunities emerge.
- Ensure statewide, regional, and local actions align to maintain un-fragmented forests (both reserves and actively managed) within and across political boundaries with emphasis on connections to waterways and wetlands, core forests, and wildlife habitat linkages.
 - Reduce fragmentation, protect sensitive soils and waterways, and create a forest structure and composition that is a buffer to edge, diverse in composition and structure - making it resilient to both acute (hurricanes) and chronic (pollutants) disturbances.
- Keep wetlands as wetlands, wooded wetlands and riparian forests (floodplains), and enact amplified land protection strategies to avoid wetland and riparian forest conversion.
 - Promote restoration of forested wetlands to more diverse species composition, including coniferous component where appropriate.⁸²
- Protect the most significant forest cores and wildlife habitat linkages and actively restore connections where wildlife movement (terrestrial and aquatic) is constrained by roads, culverts, dams, and bridges.

Forest Restoration and Acquisition Strategies

- Acquire riparian lands for rehabilitation and restoration back into forest.
- Look for appropriate opportunities to reforest currently non-forested lands that would have historically supported forest vegetation and are not currently or likely in the near term to be utilized for agriculture, to provide additional habitat for early successional species.
- Sponsor and develop a network of forest resilience nurseries developed and managed by landowners to propagate plant species of ecological concern for out-planting in forests and regions of Connecticut with extirpated populations (with appropriate oversight).

Implementing Forest Resiliency

- Encourage financial incentives to implement what we learn from adaptive experimentation and monitoring (above) on public and private lands by stakeholders to promote more resilient forests in structure, function and diversity.

- Create a funded program for municipalities (especially in underserved/EJ areas) to increase urban tree canopy cover and resilience in plantings and post-establishment treatments/monitoring as well as in appropriate circumstances to maintain mature and large trees which provide especially high levels of ecosystem services such as cooling, pollution reduction, and habitat.
- Fund strategic state programs to control important emerging invasive insects, plants, and diseases.
- Develop and promote programs to increase resiliency of trees and forests in proximity to human (gray) infrastructure and reduce tree-infrastructure conflicts.

Education and Outreach

- Create a funded educational program for forest landowners and interested citizens around what a resilient forest is and how promoting a resilient forest benefits society.
- Enhance outreach and education efforts focused on promoting the importance of tree and forest cover to human health and well-being to constituents.
- Develop programs and outreach/education materials that educate citizens, stakeholder institutions (e.g., highway departments and utilities), and policy-makers about the exceptional ecosystem services of maintaining large trees in gray infrastructure areas, but also balance with the "right tree, right place" message to avoid disbenefits⁸³ and work with communities to determine local priorities rather than a cookie-cutter, top-down approach.

Changing Laws and Regulations

- Enact and enforce tougher firewood and horticultural State laws around invasives, fuelwood, and packaging across state lines – including a well-funded enforcement program.
- Very carefully regulate hunting of top predators to encourage development of intact top-down trophic food webs and to remediate the current imbalance regarding herbivory.

Creating Strong Markets for Products and Services with Multiple Benefits

- Strengthen local markets for long-lived forest products to promote a local rural economy so that treatments to create more resilient forests are not paid for by the taxpayer but come "free."
 - Include "Build with Wood" programs and market local timber products (e.g., Connecticut Grown wood) with certifications and requirements for implementation of resilience-focused forest management approaches to incentivize construction in wood and mass timber technologies and discourage more carbon-intensive building materials.
 - Incentivize local production and marketing of Connecticut Grown non-timber forest products (e.g., forest gardening of non-timber forest foods – maple syrup,

ramps, mushrooms, herbs, and berries as well as understory spices and medicinals).

- Create a fund to strengthen local markets and provide payments or services to promote social and economic resilience for landowners - particularly for rural economically-disadvantaged and small-acreage landholders who are currently incentivized to sell or develop.
 - Watershed services payments for private landowners.
 - Recreational trail payments to landowners for public access on private lands.
 - Payments for enhanced sequestration and/or storage of carbon through reforestation, improved forest management, or avoided conversion, with strict standards in place through programs that aggregate verified carbon credits from private lands in order to sell carbon offsets in voluntary or compliance markets.

Mitigation Considerations for Connecticut's Forests

Climate mitigation involves both reducing the emissions of carbon dioxide (CO₂) and other greenhouse gases, and increasing the removal of CO₂ and other GHG's - e.g. methane, nitrous oxides, and ozone - from the atmosphere to reduce potential adverse effects of climate change.

Natural ecosystems (grasslands, wetlands, forests) are, on balance, the best and most effective climate solutions available both for the uptake ("sequestration") and long-term storage of carbon, whereas human-made carbon capture technologies are still in their infancy.⁸⁴ Of these natural systems, forests sequester and store the most carbon and likely have the largest potential to remove additional CO₂ from the atmosphere.⁸⁵

Available climate mitigation solutions in forests

- *Avoided conversion of forest* to non-forest sustains the mitigation value of forests and is a prerequisite for both *proforestation* and *improved forest management*.⁸⁶
- *Proforestation* (natural forest growth in areas protected from timber harvesting) is likely the most effective solution to preserve and foster further growth of accumulated carbon storage in woodlands.^{87,88,89}
- *Mitigation-focused forest management* – (e.g., extending rotation periods and retaining more and larger trees) has important potential to retain carbon storage on managed lands, while providing long-lived wood products.
- *Reforestation* (conversion from non-forest to forest) generally has the highest potential rate of carbon dioxide sequestration among these four solutions.

Connecticut's Forest Carbon Storage

Connecticut's forests are, on average, the most carbon dense – in aboveground carbon stored per acre – of the nine Northeastern US states⁹⁰ and therefore have extraordinary mitigation value for this region in terms of their accumulated carbon stocks. A combination of *avoided conversion, proforestation, and mitigation-focused forest management* is critical to maintain these carbon stocks.⁹¹

Connecticut's Forest Carbon Sequestration and Future Role in Climate Mitigation

Approximately 16% of Connecticut's forests are estimated to be >100 years of age, the highest percentage in the Northeast.⁹² Annual net growth of Connecticut's forests is also estimated to be the highest in the region,⁹³ indicating that forest age is not currently constraining forest growth. In fact, Connecticut's forests have increased their rate of growth and standing biomass significantly over the past 10 years.⁹⁴ These increases have occurred despite, and perhaps in part because of, an increase in tree mortality resulting from insect outbreaks and windstorms over this time period.⁹⁵ Connecticut's forest resilience in the face of increased tree mortality can likely be attributed to the following:

- Natural disturbance events have resulted in relatively small fluctuations in carbon across the state as a whole.⁹⁶
- Temperate deciduous forests typically develop structural complexity naturally as they age and are exposed to moderate severity disturbances; this complexity can lead to greater carbon sequestration that helps maintain carbon storage in mature forests well beyond the 100-year mark.^{97,98}

- Recent surveys of private forestland owners suggest a relatively low interest in timber harvests on their land with their top reasons for owning their woodlands being to enjoy the beauty and scenery, followed by privacy, home, and protecting wildlife habitat, nature, and biological diversity. That said, landowner attitudes can certainly change over time and it is difficult to generalize across this group.⁹⁹

Though growth rates and carbon uptake rate will eventually slow as Connecticut's forests enter late successional and old growth stages, most of these forests will continue to accumulate carbon in live tree biomass, down and dead trees, and soils well past 200 years of age.^{100,101,102} In fact, Connecticut's forests have the potential to almost double their carbon storage.¹⁰³ Natural disturbances, predicted with climate change to increase in both frequency and intensity, will generally sustain carbon sequestration levels up to a relatively high disturbance severity threshold, beyond which sequestration tends to decline.¹⁰⁴

Forest Conversion threats

Connecticut's forests cover ~59% of the state's land area,¹⁰⁵ and 53% of these forested areas is considered to be "core forest" as defined by UConn CLEAR in its landmark forest fragmentation study.¹⁰⁶ Over the past 10 years, Connecticut's forest area has changed little, ranging from a net loss of 400 acres per year to a net gain of 1,400 acres per year, depending on the calculation.¹⁰⁷ However, large core forest has declined sharply (see Figure 2 on page 4). The biggest ongoing and future threats from forest conversion and fragmentation occur in the Connecticut River valley and northern Fairfield, New London and Windham counties.¹⁰⁸

Reforestation Potential in Connecticut

Four hundred years ago, Connecticut was almost entirely forested.¹⁰⁹ Moderate mitigation potential exists for reforestation on lands that were once forested and are not currently being used for agriculture (i.e., lawns, vacant lots, barren lands and other non-agricultural fields in rural, suburban, and urban areas).¹¹⁰ In Connecticut, the reforestation potential is highest in the rural areas of Litchfield county and in the settled areas of the Connecticut River valley and Fairfield County.¹¹¹

The Settled Treescapes

Because of increased light, trees and forests that grow near edges, along roads and in settled areas are generally larger and store more carbon than trees in forest interiors.¹¹² Settled treescapes also cool buildings in summer and insulate them in winter, reducing CO₂ emissions from heating and air conditioning.¹¹³ Large trees provide the largest cooling/insulation benefits and airborne pollution reduction compared to small trees.¹¹⁴ Because of these significant benefits, removals and aggressive pruning of large trees by utility companies and highway departments can result in disproportionately large effects on climate mitigation and should be limited to trees in poor condition that are imminent threats to people or electric infrastructure.

Timber harvesting in Connecticut

Connecticut's forests are currently harvested at a relatively low intensity – 17% of the state's annual forest growth in volume is being cut each year.¹¹⁵ However, there is some concern that

Connecticut's forests are being high-graded (i.e., the largest and most valuable trees are being harvested).¹¹⁶ *Mitigation-focused forest management* combined with incentives for landowners could help retain more of the state's larger trees and their carbon on managed forestlands.

Actions to Increase Mitigation of GHG from Connecticut's Forests

Top Priority Actions

- KEEP FORESTS AS FORESTS and set statewide goal to permanently protect at least 50% of medium (>250 ac.) and large (>500 ac.) core forests by 2040.
- Develop Action Plan to Increase statewide forest cover from 59% to over 60% by 2040.
- Establish Criteria and Designate Core Forest Natural Area Preserves on state conservation lands.
- Retain large trees and forest cover in urban and residential areas to reduce carbon emissions from buildings and retain health and other co-benefits.
- Improve forestry practices in Connecticut's working forests by extending harvest rotations and retaining more large trees.

Forests offer the single most effective land-based solution for removing carbon dioxide from the atmosphere and storing it long-term to limit some of the worst impacts of climate change.¹¹⁷ From the deep "core forest"¹¹⁸ to the individual, mature trees that shade our streets, all of our treescapes are essential to meeting the state's carbon emission reduction goals.

As a co-benefit, forests sustain the health and well-being of the state's residents and the broad diversity of plant and animal life that comprise Connecticut's natural heritage. The protection, expansion and extension of forests are central to an effective and equitable approach to climate mitigation that Connecticut requires and deserves. The following recommendations are bold and necessary to address the enormous threats associated with climate change.

Permanently Protect at least 50% of Core Forests >250 acres Statewide by 2040

Avoided conversion of forest to non-forest is a critical climate mitigation strategy. Connecticut's Forest Action Plan already recognizes core forest protection as a conservation priority. Public Act 17-218 further requires that the Commissioner of DEEP consider the environmental impacts to core forests from proposed solar projects and certify to the Connecticut Siting Council that such projects will not materially impact the status of core forests. Because of the many co-ecological benefits core forests provide in addition to climate mitigation, Connecticut should ensure that loss of core forest cover does not occur, or is offset by core expansion. Permanently protecting 50% or more of the state's medium and large¹¹⁹ core forests by 2040 should be a conservation goal with the same statutory authority as the State's current 21% overall land conservation goal.¹²⁰

Short Term (1-5 year) Actions

- Adopt statewide core forest permanent protection goal (cores >250 acres) of 50% by 2040, an increase of about 137,000 acres from 33.5%.¹²¹ This goal would have the same statutory authority as the existing 21% overall conservation goal.

- Realign all state land protection program and funding sources in the Green Plan to reward and incentivize land protection that protects core forest land >250 acres in size.
- Actively discourage loss of core forest by incompatible land-uses through required mitigation, financial disincentives, and strong policies to avoid land-use conversion.
- Increase land protection funding from all available sources, including funds to increase capacity of DEEP land protection and stewardship staff necessary to sustain a fivefold increase in acres saved and tripling the number of conservation transactions accomplished each year. This should include annual bond authorizations of at least \$25 million for DEEP's Recreation and Natural Heritage Trust Fund and \$25 million for the Open Space and Watershed Land Acquisition (OSWA) program.

Longer Term (5-10 year) Actions

- Ensure Forest Management Plans for state conservation lands include prioritization of protecting intact large core forest areas.
- Incorporate training on recognizing core forest areas into resources available for all state licensed forest practitioners.
- Ensure water utilities are made aware of medium and large core forest areas on their properties, and are incentivized to discourage activities that would fragment these valuable lands.
- Require an individual permit for any petition before the Connecticut Siting Council that would affect core forest.
- Consider increasing financial incentives such as PILOT payments to municipalities that exceed the statewide average of protected core forest.

Develop Action Plan to Increase Forest cover from 59% to over 60% by 2040

Approximately 59% of Connecticut is forested.¹²² Although of varied size and uneven distribution, these forests already have significant aboveground carbon storage (averaging from 31.5 to 39 metric tons/acre),¹²³ especially compared to other states in the northeastern U.S.

Using a no-net-loss policy in Connecticut to avoid deforestation and building upon it to increase forest cover to safely above 60% of the state's land area with *reforestation* (defined here as conversion of land from non-forest to forest) will expand carbon storage capacity, and increase the rate of carbon uptake ("sequestration"). In fact, reforestation is the single most effective forest-based solution to increase the sequestration rate on a per-acre basis in Connecticut.¹²⁴

This increase in forest land cover could be achieved through natural forest succession on currently unforested land in residential, rural, and urban areas (i.e., grass and turf, reclaimed and remediated lands, marginal and abandoned fields). It could also be achieved by deliberate re-plantings (as needed), expanding forested riparian buffers, and curtailing unnecessary tree pruning and removals along transportation, residential utility transmission, and telecommunications lines and infrastructure.

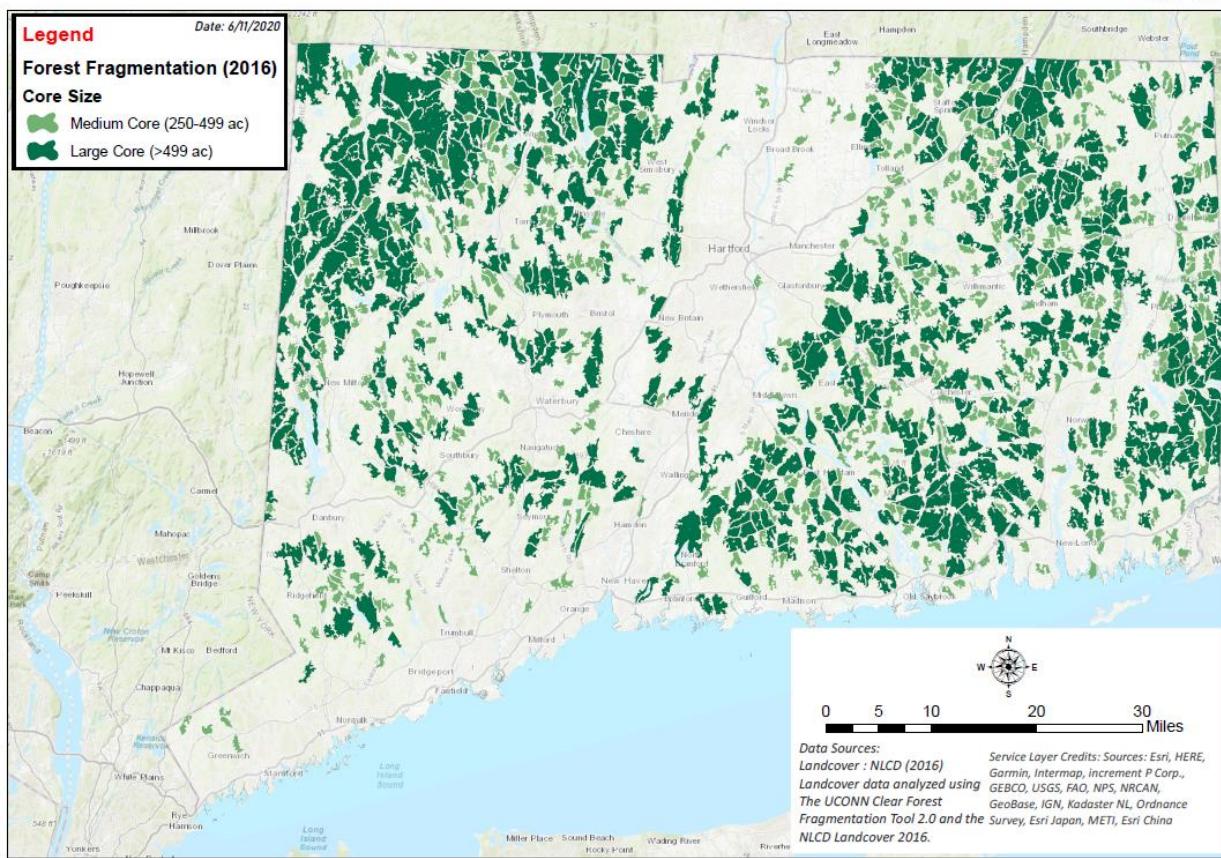
This increase in forest land cover would not require the reforestation of active agricultural fields, except in areas where the priority may be to expand riparian buffers. Reforestation potential is particularly high in Litchfield, Tolland, and Windham Counties and in the urban areas of the Connecticut Valley and northern Fairfield County.¹²⁵ Co-benefits of reforestation

include improved water quality, vegetated buffers to forest cores and old growth forest, and enhanced wildlife connectivity between larger areas of forest habitat.

Short Term (1-5 year) Actions

- Adopt a statewide forest cover goal of “over 60% by 2040” and launch rapid action planning process to determine areas and incentives to target for reforestation efforts.
- Create and fund a Connecticut Youth Conservation Corps, on the model of the Civilian Conservation Corps, to provide jobs and job training to young people that prioritize tree planting and reforestation activities with an emphasis on employment and work in environmental justice communities as defined under [section 22a-20a](#) of the CT General Statutes.
- Consider options for amending Public Act 490 to more actively discourage forest conversion in and beyond the current 10-year term.
- Actively discourage conversion of forest, particularly core forest, for industrial solar projects, while increasing incentives for renewable energy projects on the built environment, such as on brownfields or along highway infrastructure.
- Develop educational programs for policy makers and local governments on the climate mitigation benefits of reforesting urban and settled areas, and update existing public information to highlight Connecticut’s land-based carbon.
- Greatly reduce clear-cutting of mature forests as a habitat management practice benefiting young forest species.

Longer Term (5-10 year) Actions


- Establish financial incentives for landowners who allow their lawns or abandoned fields to reforest.
- Invest in scientific monitoring, remote sensing and GIS capacity, by DEEP or its partners in the public and non-profit sectors, to track progress toward increasing overall forest cover using remote sensing and the most current land cover and protected lands data.

Establish Criteria and Designate Core Forest Natural Area Preserves on State Lands

Proforestation (defined as continuous forest growth in natural areas protected from timber harvesting) is the most effective solution to preserve accumulated carbon storage and enable it to continue to increase.¹²⁶ Given the accumulated carbon density in the state (ranked first on a per acre basis in the Northeast and the second highest average carbon density/acre of forest of any state in the eastern United States), establishing long-term protection of this carbon storage is an important step the state can take in meeting its climate mitigation goals.

Designating natural areas is consistent with long-standing federal and state policy and existing models. Since 1927, the USDA Forest Service has established over 430 Research Natural Areas (RNAs) across the nation where commercial harvests and salvage logging are excluded and where natural processes predominate.¹²⁷ Connecticut has been establishing Natural Area Preserves since 1969 with the statutory purpose of keeping land “in as natural and wild a state as is consistent with the preservation and enhancement of protected resources and educational, scientific, biological, geological, paleontological and scenic purposes.”

State of Connecticut Core Forest

Figure 7. Map of Medium and Large Core Forest Areas in Connecticut produced by Housatonic Valley Association using NLCD Landcover 2016 data with UConn CLEAR Forest Fragmentation Tool 2.0.

Though the Natural Area Preserves program has not been a budget or funding priority for DEEP in recent years, updating the Natural Area Preserves statute could be the basis for rejuvenating this program and establishing Core Forest Natural Area Preserves (CFNAPs) as a new category of Natural Area Preserves with formalized criteria. These CFNAPs would be focused on protecting large core forest areas of greater than 250 contiguous acres that occur (entirely or in part) on State properties.

We suggest there are three urgent reasons to establish criteria and designate CFNAPs on state conservation lands as a critical mitigation strategy:

1. Although proforestation is a new term, it is based upon considerable scientific evidence that continuous forest growth in protected reserves is the most effective immediate solutions to preserve accumulated carbon storage and enable it to continue to increase. On lands already owned by the state, this is a very low cost climate solution, as there is no need to purchase the land in order to take it out of production, but only a need to change management objectives;
2. State lands managed for proforestation would provide a “control” to compare to the outcomes of management prescriptions that are designed to increase the resilience of

Connecticut's forest or to mitigation-focused forest management. In experimental research, the "control" provides the "no change" option that other variables are tested against.¹²⁸ Without areas that exclude commercial harvests and salvage logging, there would be no controls to compare with forests subject to various management techniques; and

3. There is uncertainty about how climate change will impact forests because there are so many variables. That necessitates employing various strategies at the same time— avoided conversion, reforestation, mitigation-focused forest management, and Proforestation -- while continuing to follow the emerging science¹²⁹ about the role of forests in climate mitigation.

Short Term (1-5 year) Actions

- DEEP should work with partners to identify core forest areas (>250 acres) occurring on or intersecting with land owned or conserved by the State of Connecticut, and designate areas to be managed as Core Forest Natural Area Preserves with priority on the most carbon-dense forests in Tolland, Litchfield, Fairfield, and New Haven Counties. Recommended is that a multi-disciplinary research group (including academics, non-profits, forest practitioners, and DEEP personnel) should be formed to study and report on the implications of a potential statewide goal of 104,000 acres (which would protect 70% of large core forest areas on state lands) and produce a feasible and consensus implementation strategy for this or any revised goal stemming from the analysis.
- Include the state's existing old forest management sites that occur in core forest on State lands as part of the 70% goal above.
- Update Connecticut's Natural Area Preserves statute¹³⁰ to incorporate the management model of the USDA Research Natural Areas¹³¹ and establish Core Forest Natural Area Preserves to enable this program to be implemented quickly based on important groundwork that has been laid over many decades.

Longer Term (5-10 year) Actions

- Ensure core forest protection is a top priority considered in current and future additions to state parks, forests and wildlife management areas through the state's Recreation and Natural Heritage Trust Fund.
- Establish financial incentives for private and municipal landowners to maximize carbon storage on their protected forestlands with mechanisms like wild carbon easements¹³² and working forest conservation easements.

Retain Large Trees and Forest Cover in Settled Landscapes (urban and residential)

Because of higher light levels and reduced competition from other trees, edge forests and residential and urban treescapes typically contain larger trees, on average, and therefore store more carbon per tree or area of forest than do interior forests and trees.¹³³ Hence their climate mitigation value is disproportionately large and should be reflected in the level of protection that they are afforded.

Residential and urban trees and forests also shade and cool buildings in summer and insulate them in winter, which significantly reduces energy levels of air conditioning and heating fuel and associated carbon emissions.¹³⁴ Moreover, large trees reduce airborne pollutants (i.e.,

carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter) to a much greater extent than do small trees. For example, a large tree ≥30 inches in diameter at breast height (dbh) removes an estimated 60-70 times the pollutants as a small tree <3 inches in dbh.¹³⁵

Short Term (1-5 year) Actions

- Do not permit aggressive pruning and removals of healthy street trees, and focus (or target) pruning and removals to trees in hazardous poor condition that are imminent threats to people or electric infrastructure. If trees are removed, PURA should require a plan and support funding for utilities to replant trees, especially in EJ communities with higher percentages of impervious surfaces and related heat island impacts.
- Create and promote model municipal ordinances to encourage replacement of and mitigation offsets for non-emergency removals of street trees within the municipal road right-of-way.
- Establish new Connecticut standards for state roads and highways that minimize losses of healthy trees.

Improve the Management of Connecticut's Working Forests

Improving the forest management that takes place outside of Core Forest Natural Area Preserves, while retaining core forest land and large tree cover in settled landscapes – most notably extending the time between harvests and retaining larger trees – is an important forest solution to reducing emissions and mitigating climate change. Large trees store by far the largest amount of carbon in the forest and therefore contribute disproportionately to climate mitigation.¹³⁶

Short Term (1-5 year) Actions

- Implement New England Forestry Foundation's 'Exemplary Forestry™' in managed forests to retain more large trees and carbon in the forest.¹³⁷ This approach incorporates climate mitigation and adaptation, management for umbrella wildlife species and best management practices for soil and water, in conjunction with improved forestry or silvicultural practices to increase forest growth rates.
- Reduce salvage harvests and establish policies to help retain dead trees in managed forests hit by insects except in areas where they are a public safety hazard (i.e. along roadways and trails). Dead trees provide a significant source of aboveground carbon¹³⁸ and exceptional habitat for cavity nesting birds.¹³⁹
- Include assessment in forest management plans and timber harvests of the forested landscape in which the property is situated, together with its contributions to maintaining core forest cover and embedded habitats.¹⁴⁰
- Increase resources for service foresters to help private landowners practice exemplary forestry. That includes hiring at least three more DEEP service foresters and partnering with organizations like NEFF to help advance the principles of 'Exemplary Forestry.™'

Longer Term (5-10 year) Actions

- Support thoughtful reuse of wood products to help reduce waste and demand for new wood products.¹⁴¹
- Review indigenous forest and wildlife management practices for ideas on different techniques to achieve more resilient mature forests.¹⁴²

Climate Change Threats to Vulnerable Populations

Top Priority Actions

- **Improve the social determinants of health and reduce health inequities** at the individual and community levels to reduce vulnerability and increase resilience to climate change.
- **Support community interest in tree planting, parks, and/or community gardens** in densely populated areas to support climate solutions that could meet multiple needs such as increasing health outcomes, employment, and entrepreneurial opportunities. Youth Conservation Corps could help community-based groups with implementation.
- **Build a market for creative re-use of urban wood waste** to store carbon while simultaneously creating education, employment, and stewardship opportunities.
- **Engage, train, and educate on adaptation planning, resiliency, and risks** from climate change with emphasis on local officials, planners, community organizations, and emergency responders.

In the United States, some communities of color, low-income groups, people with limited English proficiency (LEP), and certain immigrant groups (especially those who are undocumented) live with many of the factors that contribute to their vulnerability to the health impacts of climate change.¹⁴³

These populations are at increased risk of exposure given their higher likelihood of living in risk-prone areas (such as urban heat islands, isolated rural areas, or coastal and other flood-prone areas), areas with older or poorly maintained infrastructure, or areas with an increased burden of air pollution. These groups of people also experience relatively greater incidences of chronic medical conditions, such as cardiovascular and kidney disease, diabetes, asthma, and COPD which can be exacerbated by climate-related health impacts.

Socioeconomic and educational factors, limited transportation, limited access to health education, and social isolation related to English language deficiencies collectively impede their ability to prepare for, respond to, and cope with climate-related health risks. These populations also may have limited access to medical care and may not be able to afford medications or other treatments. For LEP and undocumented persons, high poverty rates, language and cultural barriers, and citizenship status limit access to and use of health care and other social services and make these groups more hesitant to seek out help that might compromise their immigration status in the United States.

The number of people of color in the United States who may be affected by heightened vulnerability to climate-related health risks is growing. Currently, Hispanics or Latinos, Blacks or African Americans, American Indians and Alaska Natives, Asian Americans, and Native Hawaiians and Pacific Islanders represent 37% of the total U.S. population and 24.8% of the population in Connecticut. 22.1% of the population in Connecticut speaks some language other than English at home, and 10.4% of the population was born outside the U.S. As a proportion of Connecticut's population, people of color as a group grew by 2.6% from 2010 to 2014.^{144,145}

As noted earlier in the Status of CT Forests section of this report, 36.4% of the land area of Connecticut is considered by the U.S. Census to be “urban” (1.13 million acres), with 87.7% of the population, nearly 3 million people, living in these urban areas. Despite the high population concentration in these areas, these same lands have a fairly high degree of tree cover, with tree canopy cover estimated at nearly 50%. Despite this encouraging canopy cover statistic statewide, there continues to be a strong correlation between lower-income neighborhoods, communities of color, and a distinct lack of tree cover.

Figure 8. Urban areas like Hartford are hotter than more rural areas during summer. Tree cover can help reduce health and other problems associated with urban heat islands.¹⁴⁶

Vulnerability to Climate-Related Health Stressors

Disproportionate climate impacts for some communities of color and low-income, LEP, and immigrant populations include heat waves, other extreme weather events, poor air quality, food safety, infectious diseases, and psychological stressors.¹⁴⁷

Race and class are important factors in the vulnerability to climate-related stress, but it can be difficult to isolate the role of race from other related socioeconomic and geographic factors. Some racial minorities are also members of low-income groups, immigrants, and people with limited English proficiency, and it is their socioeconomic status (SES) that contributes most directly to their vulnerability to climate change-related stressors. SES is a measure of a person’s economic and social status, often defined by income, education, and occupation. Additional factors such as age, gender, pre-existing medical conditions, psychosocial factors, and physical and mental stress are also associated with vulnerability to climate change. Because many of these variables are highly related to one another, statistical models must account for these factors in order to accurately measure the relative importance of various risk factors. For instance, minority race and low SES are jointly linked to increased prevalence of underlying

health conditions that may affect sensitivity to climate change. When adjusted for age, gender, and level of education, the number of potential life-years lost from all causes of death was found to be 35% greater for Blacks than for Whites in the United States, indicating an independent effect of race.

Extreme heat events. Some communities of color and some low-income, homeless, and immigrant populations are more exposed to heat waves as these groups often reside in urban areas affected by heat island effects.

Other weather extremes. As observed during and after Hurricane Katrina and Hurricane/Post-Tropical Cyclone Sandy, some communities of color and low-income people experienced increased illness or injury, death, or displacement due to poor-quality housing, lack of access to emergency communications, lack of access to transportation, inadequate access to health care services and medications, limited post-disaster employment, and limited or no health and property insurance.

Degraded air quality. Climate change impacts on outdoor air quality will increase exposure in urban areas where large proportions of minority, low-income, homeless, and immigrant populations reside. Fine particulate matter and ozone levels already exceed National Ambient Air Quality Standards in many urban areas.

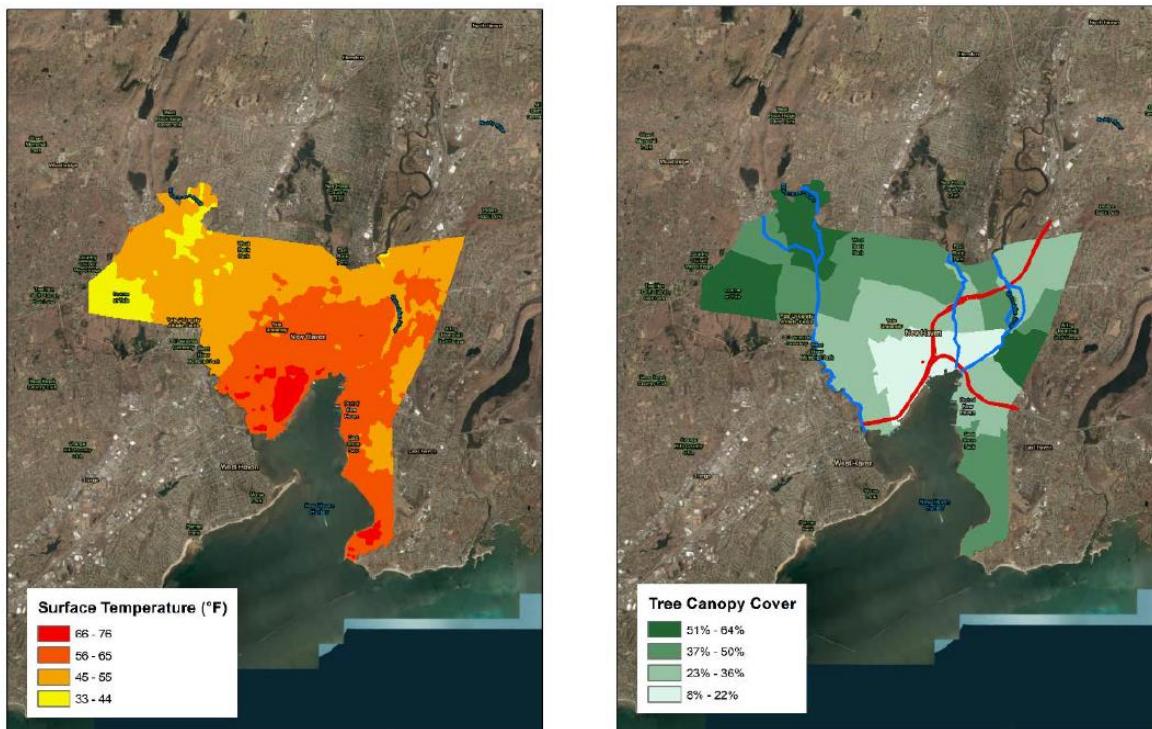
Waterborne and vector-borne diseases. Climate change is expected to increase exposure to waterborne pathogens that cause a variety of illnesses—most commonly gastrointestinal illness and diarrhea. Health risks increase in crowded shelter conditions following floods or hurricanes, which suggests that some low-income groups living in crowded housing may face increased exposure risk.

Food safety and security. Climate change affects food safety and is projected to reduce the nutrient and protein content of some crops, like wheat and rice. Some communities of color and low-income populations are more likely to be affected because they spend a relatively larger portion of their household income on food compared to more affluent households.

Psychological stress. Some communities of color, low-income populations, immigrants, and LEP groups are more likely to experience stress-related mental health impacts, particularly during and after extreme events. Other contributing factors include barriers in accessing and affording mental health care, such as counseling in native languages, and the availability and affordability of appropriate medications.

Improve Community Health and Reduce Health Inequities

The impacts of climate change on health and health inequities are moderated by individual and community vulnerability and resilience. Interventions that improve the social determinants of health and population health and reduce health inequities can significantly reduce vulnerability and increase resilience to climate change, at the individual and community-levels. Increasing resilience to climate change will require investing significantly in the public sphere, including in social determinants of health and in public health infrastructure.


Many climate actions bring significant health co-benefits, but some may have significant adverse health consequence and/or increase health inequities. Some health interventions also

have climate co-benefits. Thoughtful implementation of actions to reduce greenhouse gas emissions and adapt to climate impacts will help maximize co-benefits and minimize co-harms.

Urban trees and other natural systems provide a range of physical health benefits. Trees can improve air and water quality, mitigate the heat island effect, and help alleviate noise.¹⁴⁸ Trees can shield people from ultraviolet (UV) radiation, the cause or contributing factor for three types of skin cancer.¹⁴⁹ Urban ecosystems are increasingly recommended by national and State environmental protection agencies to mitigate the harmful impacts of air and water pollutants, harmful emissions, and the negative effects of urban heat and noise.¹⁵⁰ Trees also help reduce flooding by slowing rainwater runoff.

The demands of modern life can often be mentally exhausting. Focusing attention on flows of information and tasks, screening out distractions, and responding to the constant stimuli of commuting, work, school, and family leaves many people feeling drained, with memory loss and reduced capacity for sustained attention.¹⁵¹ Rachel and Stephen Kaplan's Attention Restoration Theory (ART) suggests that we can use nature to restore depleted cognitive functions and maintain performance.¹⁵²

Access to green spaces also provides other health benefits. Researchers at the University of Exeter surveyed 10,000 urban residents in the United Kingdom, asking how satisfied they were with their lives and whether they had signs of depression, anxiety, or other psychological disorders. After controlling for other factors known to significantly influence well-being such as income, employment, marital status, health, and housing, researchers found a strong correlation between a boost in a feeling of well-being overall and increases in green space within a 2.5-mile radius of residents' homes.¹⁵³

Figure 9. Maps showing tree canopy cover and surface temperatures in New Haven help to show the urban heat island effect that trees help to mitigate.¹⁵⁴

Support Community Interest in Tree-Planting, Green Spaces, and/or Gardens

Tree planting in urban areas provides many potential benefits to human health, but it's important to note that the top green priority for a neighborhood may not be tree-planting, and policy-makers should be careful to not approach community green spaces with a "top-down" approach.¹⁵⁵ It is critical to engage the community locally to understand local needs and discuss trees as one potential solution rather than approaching the community with the assumption that tree-planting is the answer. Ongoing stewardship of local investments in green spaces is critical and may be more important than tree-planting depending upon various factors.

Ultimately, community support is the foundation for long-term stewardship. As an additional benefit, work done to increase access to community green spaces may also inspire young people of color to consider outdoor employment opportunities, and perhaps this kind of locally-driven effort might provide the first step to a conservation career.

Underrepresented communities are adversely impacted by climate conditions, but historically, these communities have been marginalized, set aside, and not engaged in these discussions. While this report addresses Climate Change Threats to Vulnerable Populations, assessing community needs without their input would further exacerbate the vulnerabilities these communities face. Decisions about others without their input would further perpetuate the effects of climate when leaders are not communicating with the communities they represent. So, it is critical that we connect with leaders within the communities we're identifying as vulnerable populations and learn with them while assisting them.

That said, the existence of trees in areas with limited canopy cover can sometimes literally be the difference between life and death. Neighborhoods with little to no trees can, on average, be 5 to 7 degrees hotter during the day and up to 22 degrees hotter at night than neighborhoods with good tree cover. Treeless neighborhoods also have worse air pollution because trees trap air pollutants and the hotter temperatures in these treeless neighborhoods help cook air pollutants into dangerous smog. That's one of the reasons why health experts project a ten-fold increase in heat-related deaths across America's cities.¹⁵⁶

Another reason for considering tree planting amongst community options is that some trees in urban areas are in poor condition and need to be removed and/or replaced. For example, Connecticut is currently losing many ash trees due to the emerald ash borer. A recent study suggests that the loss of trees to emerald ash borer is increasing human mortality related to cardiovascular and lower-respiratory-tract illnesses.¹⁵⁷ This finding adds to the growing evidence that the natural environment provides major public health benefits.

The need to maintain and increase urban tree cover (UTC) in Connecticut is not a new issue and is well-documented. Studies of UTC were conducted in New Haven (2009),¹⁵⁸ Hartford (2010),¹⁵⁹ Bridgeport (2012),¹⁶⁰ and the Greater Bridgeport region (2014)¹⁶¹ to map UTC, show areas where heat islands are a current problem, and suggest areas where UTC could be increased through a combination of plantings or replantings and stewardship of existing trees. There have been follow-up studies and recommendations such as Hartford's Urban Tree Canopy Assessment and Planting Plan (2014).¹⁶²

The City of Hartford, working with the city's Tree Advisory Commission, developed a Hartford Tree Canopy Action Plan (June, 2020)¹⁶³ with the following laudable long-term goals:

- Maintain the health of the urban forest.
- Ensure public safety.
- Increase our tree canopy to at least 35% (current tree canopy is ~25%).
- Reduce the urban heat island effect through targeted planting in the urban heat islands.
- Increase tree plantings aimed at energy savings.
- Reduce storm water run-off through target plantings.
- Improve air quality through forest management and careful selection of new trees.
- Design and implement an environmental stewardship program for Hartford schools, City of Hartford employees, and Hartford citizens.
- Become an urban forestry model for cities in the northeast and beyond.

The Hartford Tree Canopy Action Plan calls for the a 5-year goal of planting 3,000+ trees each year to increase its canopy from 25% to 35% over the next 50 years. According to the Tree Plan, planting ~1,500 trees each year is required just to maintain the current tree canopy. Of course, to maintain and increase tree cover in a healthy urban forest requires more than tree planting alone. Hartford and other cities must also make investments to remove dead trees, care for diseased, damaged or aging trees, and have a plan for replacing trees that are lost through storms or other common stressors for trees in cities.

Tree planting programs are more impactful when complemented by local environmental education and green jobs programs at the municipal level. KNOX for example, provides hands-on environmental education for Hartford students through their Gaia's Guides program which offers a combination of after-school educational opportunities and in-school programming on the benefits of trees to communities. In addition, KNOX offers Green Jobs Apprenticeships that provide job counseling and hand-on experience for out-of-work Hartford residents in the fields of landscaping (which includes tree planting), and horticulture. These kinds of job opportunities build experience for potential careers in landscaping, landscape design, land management, plant and soils science, agriculture, arboriculture/tree care, forestry, and many more fields.

Actively nurturing a broad appreciation of trees at the community level through outreach and education is important because there are ongoing costs associated with maintaining tree health that individual land-owners and community residents should consider. Well-maintained trees can be seen as a community asset and point of pride, but poorly maintained, unhealthy, or dead trees can be viewed as symbols of community neglect.

The plans and goals for Hartford's urban tree canopy are very good. However, due to budget shortfalls and other challenges, Hartford has been losing ground and has only been able to plant a few hundred trees in recent years. In the Tree Plan, it is suggested that Hartford's urban tree cover may have actually decreased by approximately 2% between 2014 and 2018 due to inadequate plantings despite best intentions, strong plans, and an appreciation for trees.

Without additional state or federal funding, human resources, and support with technical elements such as GIS mapping of heat islands and potential planting zones, to assist cities like

Hartford and local partners like KNOX, Connecticut's urban areas will continue to struggle just to maintain the status quo for their urban tree canopies. A program like a Youth Conservation Corps could help provide some human resources to complement and extend the capacity of existing community-based organizations such as KNOX (Hartford), Urban Resources Initiative (New Haven), and Groundwork Bridgeport.

A Youth Conservation Corps, funded through a model like the national AmeriCorps program or perhaps a model like the “Greening the Gateway Cities” program being implemented in 13 towns in Massachusetts,¹⁶⁴ could employ high school or recently graduated students to build trust and cultural understanding at the community level around environmental restoration. Work that could be led by this youth corps could include controlling invasive plants or protecting native plants, working on trails connecting green spaces, and cleaning-up/planting-up open spaces in urban and rural environments. This could be a great program for expanding outdoor youth employment and career enrichment opportunities for students of color in fields such as landscaping, horticulture, and land management/conservation, and can bring multiple benefits when students from the local community are employed.

Support Market for Local Wood Re-use

A program to encourage the local re-use of wood from the urban forest can accomplish multiple goals. Trees in urban areas provide many benefits while trees are growing and healthy, especially if they are well-maintained. However, some trees are not in good condition and need to be removed. In this situation, urban trees can move from being seen as a benefit to becoming a cost for the municipality. If the wood from that tree were re-used, it could reduce costs associated with tree removal and disposal, create job opportunities, partially offset the use of wood products from international forests that can be poorly regulated and leave a larger carbon footprint, and store carbon in long-lived wood products.^{165,166}

It's worth noting that some tools and equipment that would support local wood re-use can represent barriers to entry. Some tools and equipment – e.g., a portable sawmill or lathe or chipper or kiln for drying wet wood – may be more apt to be readily accessed if it were available for rent from an equipment rental business or loanable through a local/regional co-op. There are significant resources on urban wood re-use to provide models that work.¹⁶⁷

Construction in densely developed neighborhoods with locally-grown, long-lived wood products substituted for more carbon-dense materials (e.g. steel, aluminum, or concrete) can also have carbon offset benefits.^{168,169} Wood products have many important benefits when used as a construction material. New techniques, such as cross-laminated timber and wood fiber insulation, are allowing use of wood in new ways that expand potential beneficial impacts. In a climate context, long-lived wood products have two benefits. First, they can store carbon previously captured by trees; as living forests may potentially experience increasing mortality and associated carbon release due to climate change, this could become an increasingly important benefit.^{170,171,172} Greater focus and incentives toward reduced-impact techniques of forest harvest, improved forest management to enhance growth rates, and directing more of the harvest to long-lived products has potential to improve the efficiency of this carbon benefit over past performance.

Climate Threats to Vulnerable Forest Types

Top Priority Actions

- **Reevaluate Connecticut's Green Plan and open space grant programs** to prioritize acquisition of land and conservation easements for habitats most at risk from climate change.
- **Increase efforts to model and map vulnerable natural communities** and their buffers to increase efficiency of protection efforts to create better and integrated mapping of all natural resources and better inform decisions (e.g., Natural Resource Atlas and Monitoring Project).
- **Increase pace of forest and open space protection** with a focus on vulnerable natural communities and important buffers.
- **Advocate for passage of federal funding programs** such as the Great American Outdoors Act, Recovering America's Wildlife Act, and others that support habitat stewardship and protection.
- **Invest in research and actions supporting adaptive management** for vulnerable natural communities.

Because of the uncertainty of climate change, all types of Connecticut Forest could be considered vulnerable. Unpredictable changes in temperature regimes, precipitation and importantly invasive species, pests and pathogens may mean that forest types thought to have low vulnerability, such as northern hardwood and central hardwood pine, may in fact be more vulnerable than we expect. For the purposes of this section we will focus on forest communities that are most likely to be negatively affected by climate change:^{173,174}

- Black spruce bogs
- Lowland mixed conifer
- Beech, birch maple forest
- Freshwater forested wetlands (forested swamps)
- Pitch pine-scrub oak (not called out in the literature, but added because of threat from southern pine beetle)
- Cold water streams and headwaters and the associated shading forests
- Lowland Atlantic white cedar forests
- Floodplain forests, and
- Coastal Forests

The climate-related threats to forests in Connecticut and the northeastern U.S. are well-described by Swanston et al. (2018):¹⁷⁵

“Forests of the Midwest and Northeast significantly define the character, culture, and economy of this large region but face an uncertain future as the climate continues to change. Forests vary widely across the region, and vulnerabilities are strongly influenced by regional differences in climate impacts and adaptive capacity. Not all forests are vulnerable; longer growing seasons

and warmer temperatures will increase suitable habitat and biomass for many temperate species. Upland systems dominated by oak species generally have low vulnerability due to greater tolerance of hot and dry conditions, and some oak, hickory, and pine species are expected to become more competitive under hotter and physiologically drier conditions. However, changes in precipitation patterns, disturbance regimes, soil moisture, pest and disease outbreaks, and nonnative invasive species are expected to contribute forest vulnerability across the region. Northern, boreal, and montane forests have the greatest assessed vulnerability as many of their dominant tree species are projected to decline under warmer conditions. Coastal forests have high vulnerability, as sea level rise along the Atlantic coast increases damage from inundation, greater coastal erosion, flooding, and saltwater intrusion. Considering these potential forest vulnerabilities and opportunities is a critical step in making climate-informed decisions in long-term conservation planning.”

Black Spruce Bogs

This is a rare habitat type in Connecticut and we represent the southern terminus of its range and a habitat expected to be adversely affected by climate change in general.¹⁷⁶ As such changes in temperature regimes may decrease suitability for this habitat type in Connecticut.

Lowland mixed conifer

This forest type is generally uncommon in Connecticut and is considered to be of moderate to high vulnerability in the Northeast (though upland mixed conifer at above 1,000-foot elevation is doing better in Connecticut).¹⁷⁷ Good examples may be found in Norfolk and Eastford. Changes in temperature regimes and increased threat of non-native pests (hemlock woolly adelgid, *Adelges tsugae*) may stress this habitat type in Connecticut, particularly hemlock which is included in this grouping.

Beech, birch, maple forest

This forest type is considered highly vulnerable in Southern New England because of temperature changes, precipitation changes, change in timing of seasons, Invasive plants and animals, pests and diseases, and is already stressed by development and habitat loss as well as terrestrial connectivity loss (roads and development).¹⁷⁸

Freshwater forested wetlands

This forest type is considered highly vulnerable in Connecticut because of temperature changes, precipitation changes, changes in hydrology, changes in winter, Sea level rise, storms and floods, change in timing of seasons, invasive plants and animals, pests and diseases, development as well as habitat loss and terrestrial connectivity loss (roads and development).¹⁷⁹

Pitch pine-scrub oak

Generally thought to have low vulnerability,¹⁸⁰ this is already a rare habitat type in Connecticut, threatened by development, invasive plants and insect pests. Climate change is making our habitats more suitable for the southern pine beetle, but restoration projects on old sand plains may offer hope.

Cold water streams and headwaters and the associated shading forests

It is the cold water streams and headwaters that are the vulnerable community, but associated riparian forests are important for reducing water temperature and creating suitable habitat for Brook Trout and other associated wildlife.¹⁸¹ It's important to note that in urbanized watersheds, existing riparian forests can be relatively intact, less stressed than roadside forests, and important to protect for carbon storage, habitat, floodwater retention, aesthetic, shade and other community benefits.

Lowland Atlantic white cedar forests

An already rare habitat type in Connecticut. These forested wetlands are threatened by increased severity and length of droughts in Connecticut.¹⁸² Coastal examples could be threatened with increased saltwater intrusion into groundwater.

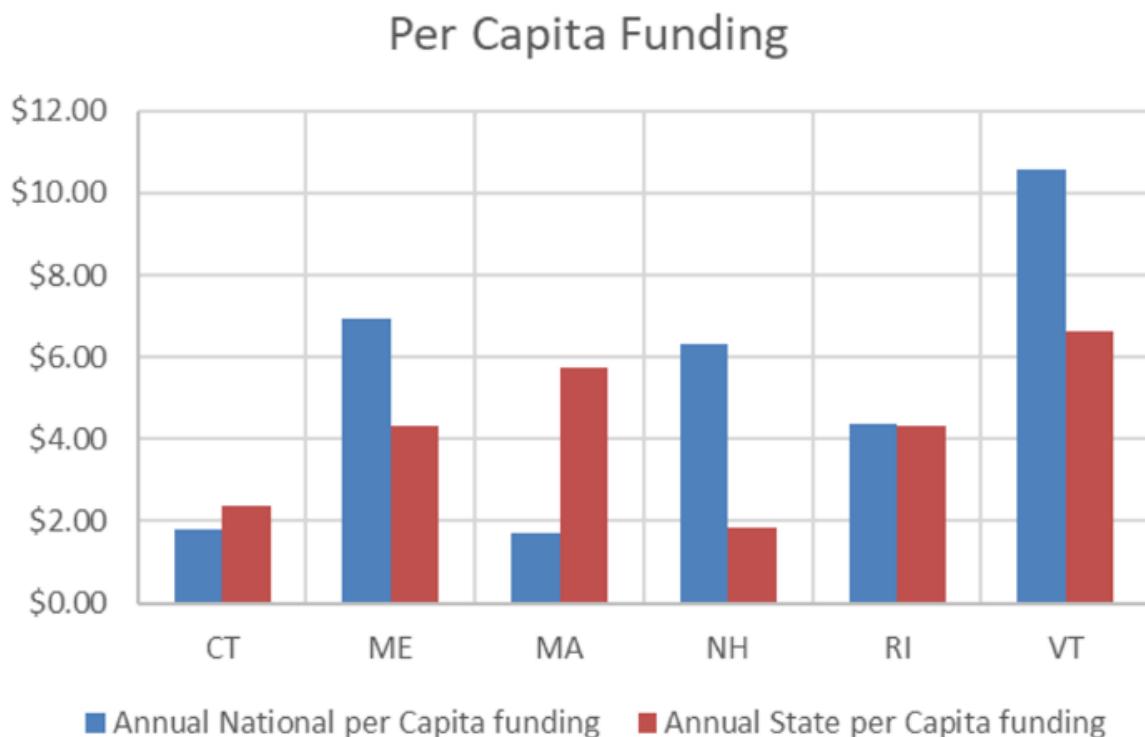
Coastal Forests

Rising sea levels, the associated landward migration of tidal marshes, and increased salinity of ground water, as well as our attempts to protect developed infrastructure threatens the viability and resilience of our coastal forests.¹⁸³

Funding, Programs, and Resources Needed for Implementation

Top Priority Actions

Enhance Existing Funding Programs


- Bonding
- Community Investment Act
- State Revolving Funds (Water Quality and Drinking Water)
- Regional Greenhouse Gas Initiative

Establish New Sources of Revenue

- Include comprehensive forest protection component in a Carbon Tax
- Enable Municipal Funding Option
- Establish Compensatory Mitigation Fund as part of “No Net Loss of Forest” policy

Provide Tax Incentives for Acquisition and Stewardship

- Expand existing corporate tax credit to individuals for land donations

Figure 10. Connecticut’s spending on land conservation -- \$2.12 per year per person -- places the state last in combined state and federal per capita public funding among other New England states.¹⁸⁴

Connecticut must ramp up investments in natural lands protection which is a necessary component of the state’s plans to meet its ambitious goals of achieving a 100% net zero-carbon target by 2040.¹⁸⁵ Investments in natural climate solutions are relatively inexpensive compared to the costs of doing nothing or simply responding to magnified impacts of climate change.

1. Enhance Existing Land Conservation Programs

Increase state investments for existing land conservation programs and incorporate more specific climate-related criteria into selection of projects/level of funding (Open Space and Watershed Land Acquisition Grant Program [OSWA]; Recreation and Natural Heritage Trust Program; Recreational Trails Program)

- Source of funds: State Bonding
- Action required: Legislative
- Note: Typical bond authorizations for these programs have ranged from \$3 to \$7.5 Million per year, but allocation of those funds has neither been consistent nor adequate to meet project demands. Based upon specific Sub-Group recommendations related to forest protection, annual bond authorizations for OSWA and RNHT should be \$25 Million, respectively, and \$10 Million for the Recreational Trails Program. In states offering statewide bond referendums, voters have approved the dedication of significantly higher levels of funding for open space conservation.¹⁸⁶ With more specific carbon accounting criteria, the OSWA scoring may be further refined to award projects that provide higher carbon mitigation benefits.

Increase funding for Community Investment Act (CIA)

- Source of funds: Increase surcharge on local recording fee (currently \$40)
- Action required: Legislative
- Note: The CIA provides dedicated funds to support community-level investments across four sectors: Open Space Conservation, Farmland Preservation, Affordable Housing, and Historic Preservation. The CIA is currently funded through a \$40 surcharge on municipal recording fees, which is distributed as follows: \$1 remains with the Town Clerk; \$3 go to the municipality to pay for local capital improvement projects; \$10 supplements the income to dairy farmers; and the remaining \$26 is distributed to state agencies to fund matching grants to the four sectors enumerated above. The Forests Sub-Group recommends an increase in the surcharge on recording fees, ranging from \$10 to \$20, with the additional revenue to the CIA account distributed evenly to the four sectors. A \$10 - 20 increase to the recording fee would add an estimated \$1.5 - 3.0 million per year for the open space sector of the CIA account. This additional funding could be dedicated to urban forest improvement projects such as tree planting or re-planting and stewardship in underserved areas, as well as support for CT DEEP to administer the program.

Expand Urban Green and Community Garden Program to include Urban Forest Improvement Projects

- Source of funds: Community Investment Act
- Action required: Legislative
- Note: CT DEEP's Urban Green and Community Garden Program provides assistance to communities designated as targeted and/or distressed to develop or enhance urban open spaces for public enjoyment and/or environmental education, including the

development of a community garden or reclaiming and enhancing existing open space for the public's use. The Forests Sub-Group recommends expanding this program to specifically include funding for urban forest improvement projects. See also, Urban Forest Carbon Credit Program.

Utilize Portion of State Revolving Funds for Land Conservation/Green Infrastructure Projects

- Source of funds: Existing state revolving funds (SRF) for clean water and drinking water
- Action Required: None. Currently up to 10% of SRF may be used to finance green infrastructure projects, which may include street trees, bio-swales, land conservation, etc. However, legislative action would be required to mandate spending on green infrastructure projects. In 2019, S.B. No. 927, An Act Creating the Environmental Infrastructure Fund Within the Connecticut Green Bank, proposed expanding the types of projects the Green Bank can promote investment in to include environmental infrastructure, which, under the bill, is structures, facilities, systems, services, and improvement projects related to water, waste and recycling, zero-emission vehicle refueling, climate adaptation and resiliency, agriculture, land conservation, parks and recreations, and other environmental markets.
- Note: This is an opportunity for cross-sector dialogue about tapping into the Green Bank for creative financing for infrastructure projects to leverage co-benefits of land conservation including air pollution reduction, carbon removal, flood protection, food production, avoided costs for healthcare system, etc. See also, Urban Forest Carbon Credit Program.

Expand Use of Regional Greenhouse Gas Initiative (RGGI) funds to Forest Land Conservation

- Source of funds: Proceeds from sale of RGGI State Emission Allowances
- Action Required: Legislative
- Note: While RGGI participating states may use afforestation projects to award offset allowances (project-based GHG emission reduction outside of the capped electric power generation sector),¹⁸⁷ this recommendation proposes the state reinvest the proceeds from the CO2 allowance auctions to fund CT DEEP land protection projects, land acquisition staff capacity, due diligence, scientific studies related to forest science (including an assessment of current forest management practices and policies and impacts on climate mitigation goals), development of a state mapping system to identify forests of highest current or future conservation value, and public education and outreach programs promoting the importance of resilient forests, forest stewardship, etc. New Jersey is an example of a RGGI state that has a legislative mandate to spend a portion of RGGI proceeds on land sector activities.¹⁸⁸ At the same time, Connecticut should study forest carbon offset allowances available through compliance and voluntary markets for reforestation, improved forest management, avoided conversion, and proforestation as well as programs that aggregate, evaluate and monitor forest offsets, in order to implement a system of paying landowners for enhanced carbon sequestration and storage with verifiable climate benefits and strict certification standards in place.

2. Tax and Other Incentives

Expand Corporate Tax Credit for Donations/Bargain Sale of Open Space to Individuals for Land that meets certain Climate Mitigation Criteria and/or for Forest Carbon Services

- Source of Funds: Individual Tax Credit
- Action required: Legislative
- Note: The Forest Sub-Group should include recommendations for climate mitigation criteria to include in the next iteration of the State's Green Plan, which may then be tied into legislation providing for an individual income tax incentive for forestland protection. We may also want to consider transferable tax credits for conservation easement donations as offered in multiple states, allowing landowners with little taxable income to transfer tax credits to another taxpayer and/or carry the credit forward over a number of years. The New York tax credit is unique, offered not at the time of donation, but every year in an amount equivalent to 25% of the property taxes paid on land under easement.¹⁸⁹ Tax credits may also be allocated to landowners engaging in afforestation, reforestation, proforestation, and other forest stewardship and restoration efforts with defined carbon mitigation benefits.¹⁹⁰ Extra incentives may be built in to the program to encourage landowners to pursue other co-benefits.

Enable Compensatory Mitigation for State and Local Projects

- Source of Funds: Developers make payments to a mitigation fund if unavoidable conversion of forest and other natural lands occurs.
- Action required: Legislative
- Note: Requiring mitigation for forest loss through the adoption of "no-net-loss of forest" laws would provide an opportunity to generate significant new funding for conservation from developers mitigating their forest impacts.¹⁹¹ This program should also apply to disturbances on public land, i.e. any project conducted on public land that leads to a loss of forest cover must be compensated for by the state or municipality with an equivalent amount of replanting in another location (e.g., models in New Jersey and Maryland). Any program needs to carefully consider what is deemed "unavoidable conversion," which must be strictly construed (see below).

Incentivize the Siting of Renewable Energy Infrastructure to Avoid Loss of Forests, Farmland and Other Sensitive Lands

- Source of Funds: N/A
- Action Required: Legislative/Regulatory
- Note: Incentivize the development of renewable energy infrastructure on areas other than forests and other open lands by loosening regulatory requirements to do so (e.g. requiring only a general permit) and/or disincentivizing development on open lands by developing more stringent siting approval requirements. Require developers to make payments to a mitigation fund if unavoidable conversion occurs.

3. Municipal Funding Programs (See also Urban Forest Carbon Credit)

Enable Municipal Option to Fund Local Land Conservation, Stewardship and Climate

Mitigation Strategies

- Source of Funds: Local Buyer's Conveyance Fee
- Action required: Legislative
- Note: The legislation is enabling, giving municipalities the option, if they so choose, to establish a buyer's conveyance fee program to generate a local source of revenue to implement nature-based climate solutions and other local environmental projects. 2020 draft legislation included specific authorization to use funds for local climate mitigation strategies and to offset loss of tax revenue from land that has been permanently protected. See www.ctconservation.org for case studies and other information.

4. Tax Revenue Options

Sales Tax Increase or a Percentage of Current Sales Tax Devoted to Fund Land Conservation and Related Programs

- Source of funds: Increase CT General Sales Tax by .125% (from 6.35% – 6.475%)
- Action required: Legislative
- Note: Using the State of Minnesota Clean Water, Land and Legacy Amendment model (funds natural and cultural heritage programs), a sales tax increase of .125% would generate an estimated \$78.4 million to fund a variety of climate-related programs, including land conservation. Based upon on overall New England average, this tax increase would cost approximately \$47 per family per year.¹⁹² The revenue would not be a substitute for other state conservation funding; rather it would provide an additional source of dedicated funds which may be available to CT DEEP, as well as non-profits and municipalities through a competitive grant process. An alternative to a tax increase is to allocate a percentage of the existing general sales tax paid on outdoor recreation and related goods and services to fund land conservation and stewardship programs.

Carbon Tax

- Source of funds: Tax on power plants, developments, and other uses (including renewable energy infrastructure projects on forest or agricultural lands) responsible for greenhouse gas (GHG) emissions and/or loss of CO2 storage, with revenues to help pay for climate initiatives including forest carbon mitigation programs.
- Action required: Legislative
- Note: Carbon legislation in Washington State is a notable example.¹⁹³ If other subgroups are suggesting a carbon tax, then a portion of the revenue should go to investments in natural climate solutions.

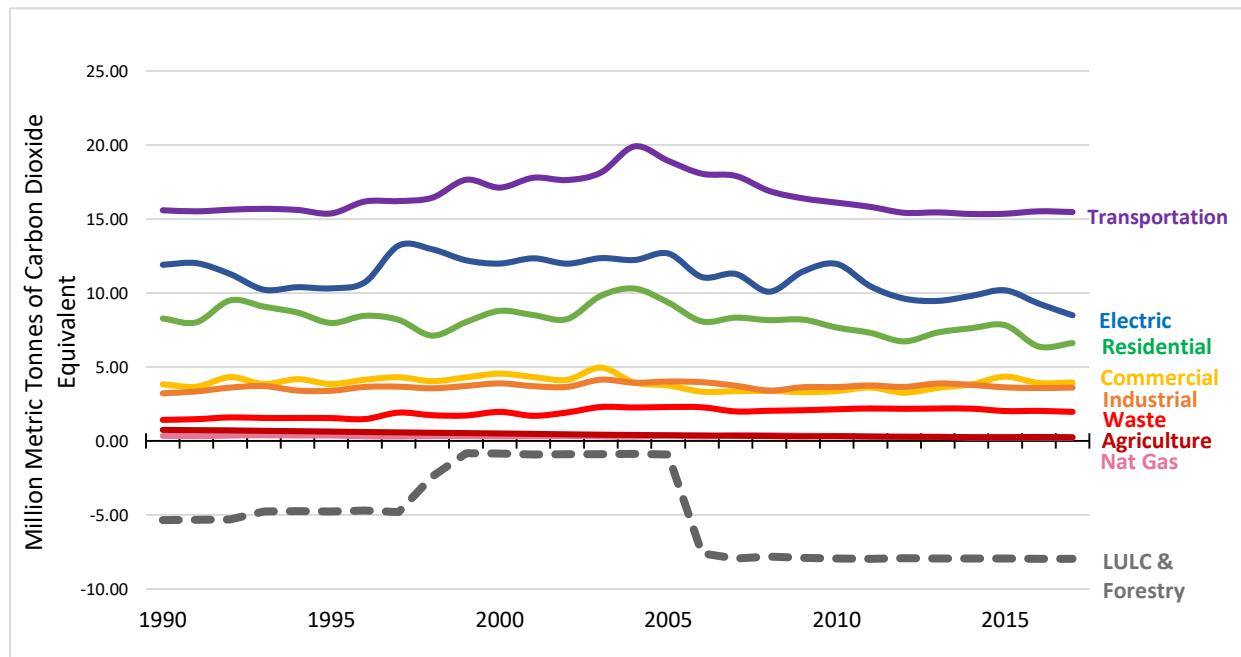
5. Public – Private Partnership Pilot Programs to Advance Land Conservation

Connecticut Land Conservation Partnership Program

- Source of funds: State Bonding
- Action required: Legislative
- Note: This, and other suggested programs funded through bonding, could be packaged as part of a larger green bond program. Using the well-established New York State Conservation Partnership Program as a model, the state would partner with a private non-profit organization to offer competitive matching grants to qualified Connecticut land trusts for organizational capacity building, collaborations, stewardship/resource management, and conservation transaction support. Studies commissioned by the Land Trust Alliance found that stronger, more professional land trusts save more land.¹⁹⁴ Other public-private partnership programs may include DEEP personal services agreements with NGOs to provide direct services to municipalities and other NGOs for grant writing, grant administration, and project administration.

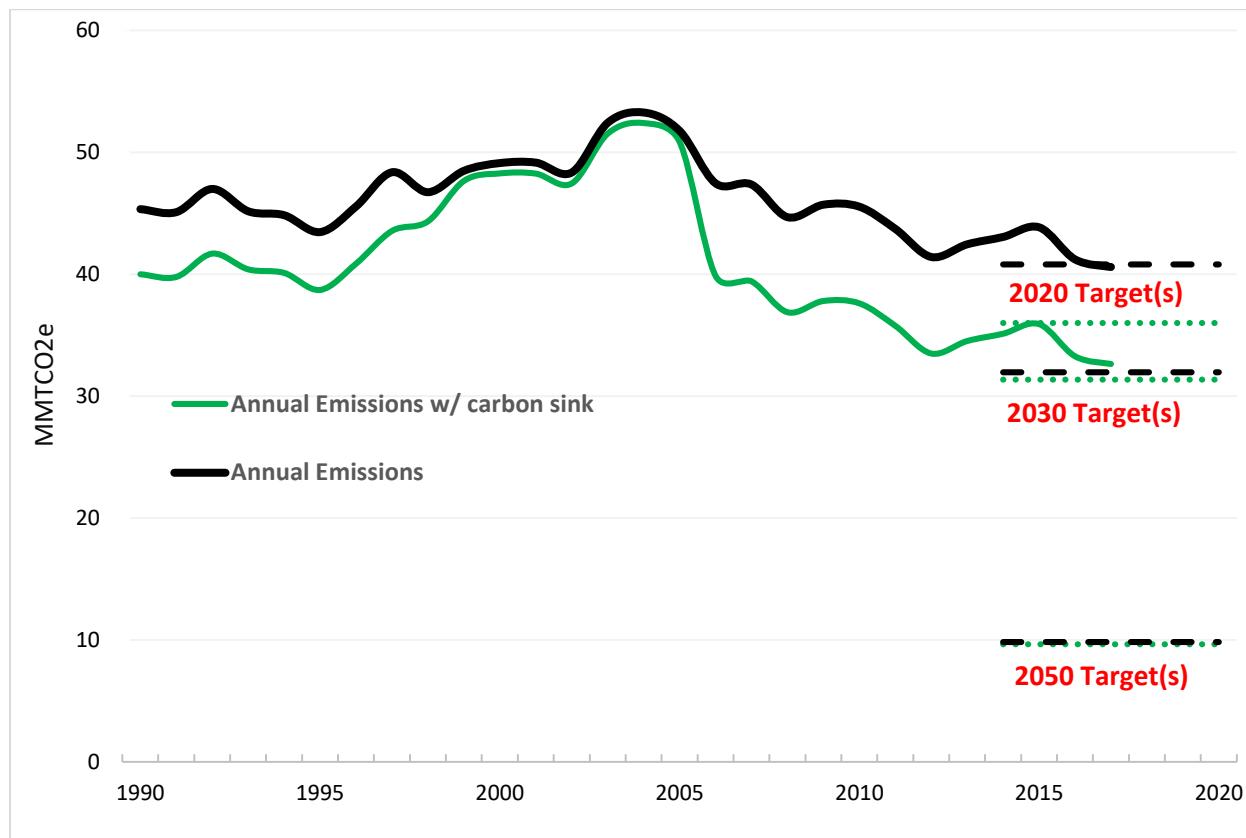
Urban Forest Carbon Credit Project

- Source of funds: Urban Forest Carbon Credit¹⁹⁵
- Action required: None unless the state wants to incentivize partnerships, including (i) enacting enabling legislation for municipalities that want to set up special carbon districts; and/or (ii) using SRF; and/or (iii) expanding Urban Green and Community Garden Program, or other incentives.
- Note: This program would value carbon credit (metric tons of CO2 captured in urban forests), including quantifiable ecosystem and other co-benefits associated with urban trees (stormwater reduction, air quality, energy savings, health and equity benefits, as well as employment); value the carbon revenue; establish a value per year; and sell the carbon credits to garner funding for local preservation, planting, restoration and other projects. Whether or not there is an urban forest carbon credit program established in Connecticut, the state should fund a program for municipalities (especially in underserved/EJ areas) to increase urban tree canopy cover and resilience in plantings and post-establishment treatments/monitoring as well as, in appropriate circumstances, to maintain mature and large trees which provide especially high levels of community benefits services such as cooling, mental health, pollution reduction, and habitat.


Establishing a Forest Carbon Baseline for Connecticut

Top Priority Actions

- Develop a usable model to reliably monitor carbon sinks related to working and natural lands, or to utilize models developed by state, academic, and nonprofit partners involved with the U.S. Climate Alliance.
- Report on Connecticut’s “forest carbon inventory” over time alongside reported emissions for the building, energy, and transportation sectors.
- Include goals for increasing Connecticut’s forest carbon sink (a.k.a. “negative emissions”) with the next update to the Global Warming Solutions Act.

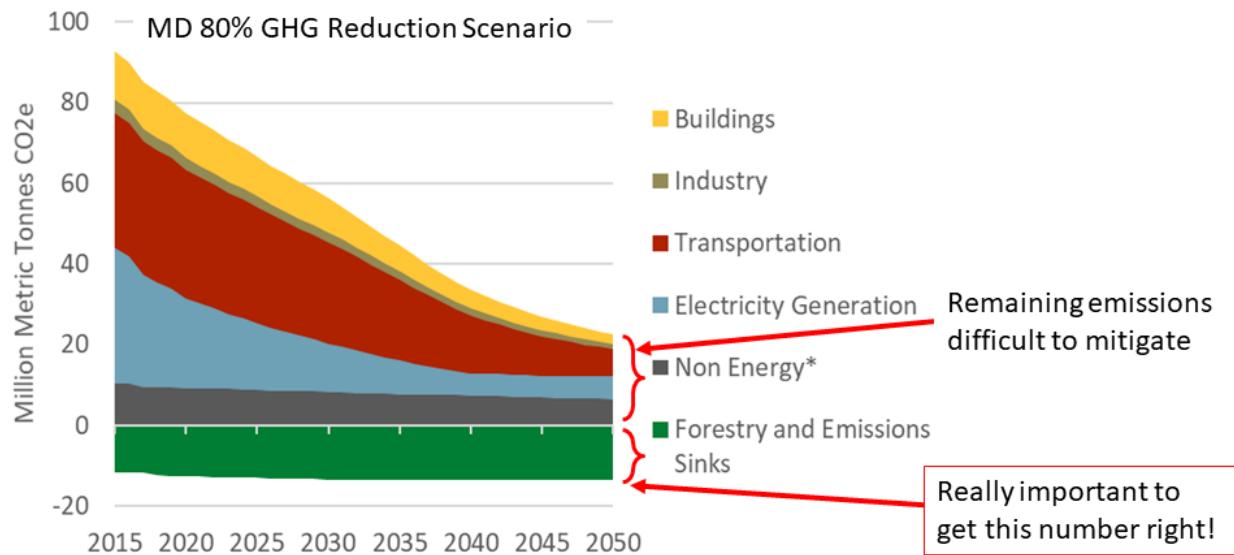

Connecticut relies heavily on the U.S. Environmental Protection Agency’s State Inventory Tool (SIT) modules¹⁹⁶ for estimating annual GHG emissions. SIT is an interactive spreadsheet model that calculates sector-by-sector GHG emissions based on numerous state-level data sets.

Currently, the Connecticut annual GHG inventory does not use the “land use, land use change, and forestry” (LULCF) SIT module. The SIT LULCF module applies national emission factors to state forest inventories. Data used in this model comes primarily from USDA Forest Service reports,¹⁹⁷ which can have significant sampling errors and inconsistent inventory methodologies over time. For Connecticut, this tool produces results that are not well understood.¹⁹⁸ For example, there are two large unexplained swings in total forest carbon flux (Figure 9). In 1998, a large increase in soil organic carbon and dead wood results in the total carbon flux in LULC changing from a sink to a source. Then in 2006, this trend sharply reverts, and soil organic carbon and litter becomes a large sink for CO₂ emissions. There are no changes in forest policy or disturbances that can account for these fluctuations.

Figure 11. Annual Connecticut GHG emissions by sector 1990-2017. Sectoral estimates are from EPA SIT modules and state-level data. LULCF module data included in figure but not counted in annual GHG total.

In effect, Connecticut does not account for carbon sinks. Connecticut statutes PA-08-98 and PA-18-82 established several future reduction goals below baseline estimates. Baseline estimates are based on 1990 and 2001 annual emission totals, years in which carbon sinks have not been estimated for Connecticut forests. Methods to quantify and assess sources and sinks of carbon in the forestry and land use sectors will help inform Connecticut's policy efforts to meet its statutory emission targets.

Figure 12. Annual Connecticut, sector-wide GHG emissions and future emission targets, 1990-2017. Black lines (solid and dashed) are annual emission totals without LULCF carbon sink accounting. Green lines (solid and dashed) are annual emission totals with LULCF carbon sink accounting.


Although the SIT LULCF estimates leave much to be desired in terms of accuracy, it does suggest that the carbon sequestered and stored in forests and related soils accounted for the equivalent of 20% of total emissions in 2017 (Figure 2). If estimates were reliable, the carbon sink from forests and related soils could represent about a decade's worth of emission reductions.

Another way to look at this challenge may be similar to what is currently done in Maryland (see Figure 3 below) where the state estimates that it can reduce emissions by 80% by 2040 using all available tools. However, the remaining 20% of emissions are proposed to be offset by “negative emissions” or carbon sinks from natural climate solutions such as management and protection of additional forest lands with increased carbon capture in mind.

Emissions vs Sequestration

Some GHG categories are difficult or impossible to zero-out (at least with state policy)

Figure 13. From presentation by Chris Hoaglund, Climate Change Program Manager with MD Department of the Environment showing the State efforts to both reduce emissions and account for sequestration from natural climate solutions, e.g. forests.

Accounting for carbon sink estimation through forestry is an important potential aspect of Connecticut's GHG emission inventory. Forests can be significant sinks for atmospheric carbon, potentially offsetting GHG emissions. For the New England region, projections show that despite land-use, land cover (LULC) change projected trends, carbon storage will increase.^{199,200} Regardless of projected increases in soil respiration due to increased temperatures, the longer growing season and increased CO₂ fertilization account for this growth in carbon stock.

In a 2014 study,²⁰¹ a method was created to use land cover data for estimating land use, land change, and forestry (LUCF) impacts on GHG inventories. The authors used Stanford's Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Carbon Storage and Sequestration model,²⁰² applied to the University of Connecticut's land cover change data (discussed below) for which carbon pool valuations had been assigned. The study was thus able to account for "foregone carbon sequestration" lost due to decreases in forested land cover over the 25-year period of the land cover dataset. Continuation of this work can inform state and local policy by accounting for CO₂ emissions from LUCF impacts while highlighting the potential for carbon sequestration to meet state statutory GHG emission goals.

The data that provided the basis for the Tomasso and Leighton (2014) study is from the University of Connecticut's Center for Land Use Education and Research (CLEAR). CLEAR has a long-running project, Connecticut's Changing Landscape (CCL), that uses remote sensing technology to chart changes in the state's major land cover categories over time. CLEAR developed the CCL project specifically to enable the public to compare multi-temporal land cover data sets, based on 30-meter pixel Landsat imagery.

The data in the CCL viewer dates back to 1985, the first year for which imagery of this resolution was available. CLEAR used cross-correlation analysis, which employs statistical analysis to identify pixels indicating a potential change between images, to produce a consistent land cover dataset for land cover change over time (Hurd et al., 2003²⁰³). Potentially changed pixels were identified and then merged with the 1985 classification to create the 1990 classification. This process was done for the 1995, 2002, 2006, 2010, and 2015 classifications, resulting in a 30-year record of land cover change for the state with 12 land cover categories. Land cover change data is compiled for the entire state, by town, by watershed, and shown in geographically-specific maps.

Previous work to construct a baseline in forest carbon storage has not yet resulted in a reproducible methodology for annual reporting. It should be a top priority to develop a usable model for reliably charting carbon sinks related to working and natural lands, and/or to utilize models developed by state, academic, and nonprofit partners involved with the U.S. Climate Alliance.

Review & Rank of 2011 Climate Preparedness Report Recommendations

One of the important charges to the Forests Sub-Group was to review the recommendations made in the 2011 Connecticut Climate Change Preparedness Plan: Adaptation Strategies for Agriculture, Infrastructure, Natural Resources and Public Health Climate Change Vulnerabilities.

This important report included recommendations on 15 Best Management Practices, 30 Research, Monitoring, and Education priorities, and 22 Policy, Legislation, Regulation, and Funding priorities. The members of the Forests Sub-Group utilized a survey and voted to determine the highest priority actions for Forests. The top priorities in each category follow:

Top Priority Actions: Best Management Practices

- Identify and conserve ecosystem services vulnerable to climate change.
- Encourage land management behaviors that support ecosystem services.
- Encourage adaptation strategies, including natural habitat conservation, Low Impact Development (LID) Best Management Practices (BMPs), agriculture water BMPs and drinking water treatment standards that will ameliorate the effects of water inundation.
- Apply adaptive management procedures.
- Increase active management of upland forests and reduce non-climatic stressors.
- Consider the public health needs of vulnerable populations in climate change adaptation planning.

Top Priority Actions: Research, Monitoring, and Education

- Engage and educate private landowners to manage their lands to minimize risk from climate change.
- Build public consensus for adaptation strategies through education and outreach.
- Develop educational campaigns for climate change adaptation awareness in Connecticut targeted at multiple sectors.
- Advance regional research and modeling to guide conservation efforts.
- Assess future flooding risks to natural and built infrastructure, including agricultural operations and public health and safety.
- Develop Connecticut- specific climate change projections for temperature, precipitation and sea level rise and support monitoring efforts for these climate drivers.
- Include students (future stakeholders) in climate change programs.
- Partner with educational institutions or organizations that conduct research.

Policy, Legislation, Regulation, and Funding: Top-Ranked Priorities

- Acquire land and conservation easements in riparian areas adjacent to coldwater streams.
- Target headwaters for protection throughout the state.
- Reevaluate Connecticut's Green Plan and open space grant programs to prioritize acquisition of land and conservation easements for habitats most at risk from climate change.
- Collaborate among state agencies, municipalities and non-profits within Connecticut to implement regulations and policies that promote and facilitate the conservation of habitats and species most at risk from climate change.
- Continue to support regional cooperation on climate change adaptation through involvement in regional planning activities.
- Proceeds from RGGI auctions should support climate change adaptation work identified in this report and in accordance with Section 22a-200c(c).
- Implement new or modified policies that would encourage appropriate land use and reduce repetitive losses.
- Acquire land and conservation easements to provide upslope advancement zones adjacent to tidal marshes.

Synergies with CT Forest Action Plan and Other GC3 Working Groups

The Forests Sub-Group did not develop this report in a vacuum, and tried to stay connected to the efforts of other Working Groups, Sub-Groups, and Subcommittees of the Governor's Council on Climate Change. In addition, we were mindful of the development of the 2020 Forest Action Plan for Connecticut by the Department of Energy and Environmental Protection, and hosted a presentation on this topic. Following are some of the notable synergies with these other efforts.

2020 Connecticut Forest Action Plan

Every 10 years, each State and US Territory is required to develop and submit to the USDA Forest Service a statewide comprehensive Forest Action Plan that covers all lands within its jurisdiction; Federal, State, private, municipal, and non-profit. The Plan requires considerable stakeholder input and public outreach ensuring identified strategies are the "State's" priorities but based upon three overarching national priorities 1) Conserving and managing working forest landscapes for multiple values and uses, 2) Protecting forests from threats, 3) Enhancing public benefits from trees and forests. State-based strategies are built upon an in-depth assessment of current forest and tree conditions.

As required in the 2008 Farm Bill, Connecticut developed and submitted its first Forest Action Plan in 2010. This plan was slightly revised in 2015 and by December 31, 2020 a new Forest Action Plan will be submitted to USDA Forest Service. Having a Forest Action Plan allows Connecticut to receive substantial annual federal financial assistance to address the threats and issues we as a State have identified.

Other GC3 Working Groups and Sub-Groups

As the Forests Sub-Group was holding public meetings and preparing this report, other GC3 Working Groups and Sub-Groups were developing recommendations that at times touched on forests. The following groups deserve special recognition for their partnership and coordination:

- Agriculture/Soils, Rivers, and Wetlands Sub-Groups;
- Equity and Environmental Justice Working Group;
- Science & Technology Working Group; and
- Progress on Mitigation Strategies Working Group.

This report is being shared with those Working Groups and others to solicit additional input and suggestions before presenting an updated report to the full GC3 Council.

Glossary of Terms & Endnotes

Early in the informational gather phase for the Forests Sub-Group it became apparent the need to define common terms to help working group members understand context of dialog and presentations. On February 27, 2020 GC3 Natural and Working Lands Work Group Forests Subgroup agreed upon the following definitions for the terms provided. While there are many ways to define these terms for the purpose of the Forests Subgroup effort the following definitions were agreed upon to achieve common understandings of ecological terms that relate to climate adaption and mitigation of forests. We are grateful to Mark Ashton, Robert Fahey, and Edward Faison and the following source materials UMASS/UVM ([Forest-Carbon-Booklet UMass UVM 2020.pdf](#)), Society of American Foresters, USDA FS R & D.

Adaptation: How forests react over time to all impacts including climate, fragmentation, insect disease, and pollution.

Carbon sequestration: The process of removing carbon from the atmosphere for use in photosynthesis, resulting in the maintenance and growth of plants and trees. The rate (or amount and speed) at which a forest sequesters carbon changes over time. In the northeastern United States, carbon sequestration [rates] typically peak when forests are young to intermediate in age (around 30–70 years old), but they continue to sequester carbon through their entire life span.

Carbon storage: The amount of carbon that is retained in a carbon pool within the forest. Storage levels increase with forest age and typically peak in the northeastern United States when forests are old (>200 years old). Forest-Carbon-Booklet UMass UVM 2020.pdf.

Competitive hierarchy: Longer lived species are site restrictive and will dominate specific sites reducing structural diversity and complexity.

Diversity Theory (a.k.a. “negative density dependence hypothesis”): Forests have evolved complexity over time including the adaptation and resistance to native insects and disease.

Forest Health: A tricky term because it is often used in the “eye of the beholder” and can refer to several different aspects of a forest. Most common use refers to an absence of invasive insects, disease, and related problems for tree survival.

Intermediate disturbance hypothesis: Relates to forest succession. How forests adapt and interact to site disturbance and climate. Guided by length in between disturbances and severity of disturbance. Forest diversity simplifies over time to late successional species.

Mitigation (of forest carbon): Action taken to alleviate potential adverse effects of climate change by increasing carbon sequestration in forest ecosystems.

Redundancy: A form of resilience. Multiple species comprising the same functional role.

Resilience: Rate of recovery from a disturbance. The ability of forest to absorb impacts over time. The capacity of an ecosystem to return to its previous pre-disturbance condition.

Resistance: Affiliated with resilience. The capacity to absorb disturbance and remain unchanged.

¹ <https://portal.ct.gov/-/media/DEEP/climatechange/publications/BuildingaLowCarbonFutureforCTGC3Recommendationspdf.pdf>

² <https://portal.ct.gov/DEEP/Climate-Change/CT-Greenhouse-Gas-Inventory-Reports>

³ The U.S. Climate Alliance Commits to Maintain Lands as a Net Carbon Sink and Develop Pathways to Act by 2020. United States Climate Alliance. August 23, 2018.

⁴ U.S. Climate Alliance Natural & Working Lands Challenge: <http://www.usclimatealliance.org/nwlchallenge>

⁵ Valatin, Gregory. 2012. Additionality and climate change mitigation by the UK forest sector. *Forestry: An International Journal of Forest Research*. Volume 85, Issue 4, 445-462. <https://doi.org/10.1093/forestry/cps056>

⁶ Virgilio, N. and S. Marshall. 2009. Forest Carbon Strategies in Climate Change Mitigation: Confronting Challenges Through On-the-Ground Experience, The Nature Conservancy. Arlington, Virginia.

⁷ Foster, D et al. 2017 as described in Southern New England Forest Management in an Era of Climate Change: A Position of the Yankee Division of the Society of American Foresters (2020), found at https://portal.ct.gov/-/media/DEEP/climatechange/GC3/GC3-2020-agendas-and-minutes/GC3_Forests_Yankee_SAF_Position_061820.pdf

⁸ As defined by the USDA Forest Service's Forest Inventory and Analysis National Program (FIA) available at <https://www.fia.fs.fed.us/>

⁹ Hochholzer, H. (2015, Revised). Connecticut's Forest Action Plan 2010. 46. Retrieved from https://portal.ct.gov/-/media/DEEP/forestry/assessment_and_strategy/FAP2015pdf.pdf

¹⁰ Arnold, C; Wilson, E; Hurd, J; and Civco, D. (2020) 30 Years of Land Cover Change in Connecticut, USA: A Case Study of Long-Term Research, Dissemination of Results, and Their Use in Land Use Planning and Natural Resource Conservation. Land, P. 12. https://www.mdpi.com/2073-445X/9/8/255?type=check_update&version=2

¹¹ Chart by 2006 D. Smith (former Connecticut State Forester). Updated to current with data from [Forest Inventory and Analysis National Program](#)

¹² Connecticut's Changing Landscape study on forest fragmentation since 1985 by UConn Center for Land Use Education and Research from <http://clear.uconn.edu/projects/landscape/v2/index.htm>

¹³ Ibid. Arnold, C; Wilson, E; Hurd, J; and Civco, D. (2020). P. 16.

¹⁴ USDA Forest Service. 2019. Forests of Connecticut, 2018. Resource Update FS-209. Madison, WI: U.S. Department of Agriculture, Forest Service. 2p. <https://doi.org/10.2737/FS-RU-209>

¹⁵ Tyrrell, M. report by Yale University's Global Institute of Sustainable Forestry. 2015. [Understanding Connecticut Woodland Owners: A Report on the Attitudes, Values and Challenges of Connecticut's Family Woodland Owners](#).

¹⁶ <https://portal.ct.gov/DEEP/Forestry/Management-on-State-Lands/Forest-Management-on-State-Lands>

¹⁷ Based on analysis of a 168,960-acre forest stands database by DEEP.

¹⁸ Estimate of average annual active forest management provided by DEEP's State Forester, Christopher Martin.

¹⁹ An assessment of the DEEP property layer was conducted in June 2020 by DEEP Forestry staff, and the Summary of Passive DEEP Land by Category has been produced summarizing the results. In presenting the assessment they noted this analysis is somewhat incomplete since not all DEEP land records have been added to the GIS property layer to date, but efforts are underway by DEEP Land Acquisition and Management staff to capture all holdings.

²⁰ Jenkins, M. & Schaap, B. (April 2018). Forest Ecosystem Services: Background study prepared for the thirteenth session of the United Nations Forum on Forests. Retrieved June 11, 2020 from

https://www.un.org/esa/forests/wp-content/uploads/2018/05/UNFF13_BkgdStudy_ForestsEcoServices.pdf

²¹ Hochholzer, H. (2015, Revised). Connecticut's Forest Action Plan 2010. 8. Retrieved from https://portal.ct.gov/-/media/DEEP/forestry/assessment_and_strategy/FAP2015pdf.pdf

²² U.S. Climate Alliance. NWL Challenge. Retrieved from <http://www.usclimatealliance.org/nwlchallenge-faqs>

²³ Griscom, B., et al. (2017) Natural Climate Solutions. *Proceedings of the National Academy of Sciences of the United States of America*. <https://doi.org/10.1073/pnas.1710465114>

²⁴ McDonald, R., Kroeger, T., Boucher, T., Longzhu, W. & Salem, R. (2016). Planting Healthy Air: A global analysis of the role of urban trees in addressing particulate matter pollution and extreme heat. The Nature Conservancy. Retrieved June 10, 2020 from file:///C:/Users/lhayden/Downloads/20160825_PHA_Report_Final.pdf

²⁵ Maher, B., Ahmed, I., Davison, B., Karloukovski, V. & Clarke, R. (2013). Impact of Roadside Tree Lines on Indoor Concentrations of Traffic-Derived Particulate Matter. *Environmental Science & Technology*. 47 (23), 13737-13744. <https://pubs.acs.org/doi/10.1021/es404363m>

²⁶ Yang, J., Y. Chang, and P. Yan. (2015). Ranking the suitability of common urban tree species for controlling PM2.5 pollution. *Atmospheric Pollution Research*. 6(2): 267-277.

²⁷ Connecticut Department of Public Health. What is a Public Water System? Retrieved June 10, 2020 from <https://portal.ct.gov/DPH/Drinking-Water/DWS/Public-Drinking-Water-FAQs>

²⁸ Hochholzer, H. (2015, Revised). Connecticut's Forest Action Plan 2010. 8. Retrieved from https://portal.ct.gov/-/media/DEEP/forestry/assessment_and_strategy/FAP2015pdf.pdf

²⁹ National Association of Home Builders. Estimate of lumber from http://imi.us.tripod.com/imi/lumber_cost.html

³⁰ Hunter, M. L., Jr. 1990. Wildlife, forests, and forestry: principles of managing forests for biological diversity. Prentice Hall, Englewood Cliffs, New Jersey, USA.

³¹ North East State Foresters Association. (2015) The Economic Importance of Connecticut's Forest Based Economy: https://www.nefainfo.org/uploads/2/7/4/5/27453461/connecticuts_forest_based_economy_4.2.15.pdf

³² New England Forestry Foundation. New England Forests: The Path to Sustainability. Retrieved June 8, 2020 from https://newenglandforestry.org/wp-content/uploads/2016/04/12_Grow_As_Much_As_We_Use_0613141.pdf

³³ USDA Forest Service. Ethnobotany. Retrieved June 8, 2020: <https://www.fs.fed.us/wildflowers/ethnobotany/>

³⁴ Yu, C. P., Lin, C. M., Tsai, M. J., Tsai, Y. C., & Chen, C. Y. (2017). Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals. *International journal of environmental research and public health*, 14(8), 897. <https://doi.org/10.3390/ijerph14080897>

³⁵ Forests Make Us Healthier Toolkit: <https://standupforforests.org/amplify-forests-make-us-healthier/>

³⁶ McDonald, R., Kroeger, T., Boucher, T., Longzhu, W. & Salem, R. (2016). Planting Healthy Air: A global analysis of the role of urban trees in addressing particulate matter pollution and extreme heat. The Nature Conservancy. Retrieved June 10, 2020 from file:///C:/Users/lhayden/Downloads/20160825_PHA_Report_Final.pdf

³⁷ Link to text of MD Forest Preservation Act: <http://mgaleg.maryland.gov/2013RS/bills/hb/hb0706T.pdf>

³⁸ Description of the MD Forest Preservation Act of 2013 on the website of the National Association of State Foresters: <https://www.stateforesters.org/2013/04/08/maryland-passes-landmark-forestry-legislation/>

³⁹ The text for this session is modeled after recommendations set forth in the "Report on Policies to Achieve No Net Loss of Forests in Maryland" (2011) <https://dnr.maryland.gov/forests/Documents/nonetlossfinalreport.pdf>

⁴⁰ Visit <https://www.tpl.org/parkscore> to get the data, explore maps of Connecticut communities, and learn how well Connecticut cities are meeting the need for parks.

41 Cain, M.L., Bowman, W.D. and Hacker, S.D., 2014. Ecology, Sinaur Associates, Incorporated, Sunderland, MA. ISBN-13: 978-0878939084.

42 Peterson, G., Allen, C.R. and Holling, C.S., 1998. Ecological resilience, biodiversity, and scale. *Ecosystems*, 1(1), pp.6-18.

43 Foster, D.R., 1988. Species and stand response to catastrophic wind in central New England, USA. *The Journal of Ecology*, pp.135-151.

44 Boose, Emery R., Kristen E. Chamberlin, and David R. Foster. "Landscape and Regional Impacts of Hurricanes in New England." *Ecological Monographs* 71, no. 1 (2001): 27-48.

45 Jactel, H., Brockerhoff, E. and Duelli, P., 2005. A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In *Forest diversity and function* (pp. 235-262). Springer, Berlin, Heidelberg.

46 Wright, J.S., 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. *Oecologia*, 130(1), pp.1-14.

47 Canham, C.D., Papaik, M.J., Uriarte, M., McWilliams, W.H., Jenkins, J.C. and Twery, M.J., 2006. Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. *Ecological applications*, 16(2), pp.540-554.

48 Liptzin, D. and Ashton, P.M.S., 1999. Early-successional dynamics of single-aged mixed hardwood stands in a southern New England forest, USA. *Forest ecology and management*, 116(1-3), pp.141-150.

49 Kelty, M.J., 1986. Development patterns in two hemlock-hardwood stands in southern New England. *Canadian Journal of Forest Research*, 16(5), pp.885-891.

50 Ellum, D.S., Ashton, M.S. and Siccama, T.G., 2010. Spatial pattern in herb diversity and abundance of second growth mixed deciduous-evergreen forest of southern New England, USA. *Forest Ecology and Management*, 259(8), pp.1416-1426.

51 Panchen, Z.A., Primack, R.B., Nordt, B., Ellwood, E.R., Stevens, A.D., Renner, S.S., Willis, C.G., Fahey, R., Whittemore, A., Du, Y. and Davis, C.C., 2014. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. *New Phytologist*, 203(4), pp.1208-1219.

52 Lorimer, C.G. and White, A.S., 2003. Scale and frequency of natural disturbances in the northeastern US: implications for early successional forest habitats and regional age distributions. *Forest Ecology and Management*, 185(1-2), pp.41-64.

53 Burns, R.M., 1990. *Silvics of North America: Conifers/Hardwoods* (No. 654). US Department of Agriculture, Forest Service. Vols. 1-2.

54 Johnson, D.J., Beaulieu, W.T., Bever, J.D. and Clay, K., 2012. Conspecific negative density dependence and forest diversity. *Science*, 336(6083), pp.904-907.

55 LaManna, J.A., Mangan, S.A., Alonso, A., Bourg, N.A., Brockelman, W.Y., Bunyavejchewin, S., Chang, L.W., Chiang, J.M., Chuyong, G.B., Clay, K. and Condit, R., 2017. Plant diversity increases with the strength of negative density dependence at the global scale. *Science*, 356(6345), pp.1389-1392.

56 Cain, M.L., Bowman, W.D. and Hacker, S.D., 2014. *Ecology*, Sinaur Associates, Incorporated, Sunderland, MA. ISBN-13: 978-0878939084.

57 Ellison, A.M., Bank, M.S., Clinton, B.D., Colburn, E.A., Elliott, K., Ford, C.R., Foster, D.R., Kloepel, B.D., Knoepp, J.D., Lovett, G.M. and Mohan, J., 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. *Frontiers in Ecology and the Environment*, 3(9), pp.479-486.

58 Orwig, D.A., Plotkin, A.A.B., Davidson, E.A., Lux, H., Savage, K.E. and Ellison, A.M., 2013. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest. *PeerJ*, 1, p.e41.

59 Case, B.S., Buckley, H.L., Barker-Plotkin, A.A., Orwig, D.A. and Ellison, A.M., 2017. When a foundation crumbles: forecasting forest dynamics following the decline of the foundation species *Tsuga canadensis*. *Ecosphere*, 8(7), p.e01893.

60 Bell, M., 1985. *The Face of Connecticut: People. Geology and the Land*.

61 Foster, D.R., Motzkin, G. and Slater, B., 1998. Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England. *Ecosystems*, 1(1), pp.96-119.

62 Hochholzer, H. (2015, Revised). Connecticut's Forest Action Plan 2010. 8. Retrieved from https://portal.ct.gov/-/media/DEEP/forestry/assessment_and_strategy/FAP2015pdf.pdf

63 Messier, C., Puettmann, K.J. and Coates, K.D. eds., 2013. *Managing forests as complex adaptive systems: building resilience to the challenge of global change*. Routledge.

64 Stuart-Haëntjens, E.J., Curtis, P.S., Fahey, R.T., Vogel, C.S. and Gough, C.M., 2015. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity. *Ecology*, 96(9), pp.2478-2487.

65 Fahey, R.T., Fotis, A.T. and Woods, K.D., 2015. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. *Ecological applications*: 25(3), p.834.

66 Ollinger, S.V., Aber, J.D. and Reich, P.B., 1997. Simulating ozone effects on forest productivity: Interactions among leaf-, canopy-, and stand-level processes. *Ecological Applications*, 7(4), pp.1237-1251

67 Gandhi, K.J. and Herms, D.A., 2010. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. *Biological Invasions*, 12(2), pp.389-405.

68 Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J., Brosowske, K.D., Saunders, S.C., Euskirchen, E.S., Roberts, D.A.R., Jaiteh, M.S. and Esseen, P.A., 2005. Edge influence on forest structure and composition in fragmented landscapes. *Conservation biology*, 19(3), pp.768-782.

69 Didham, R.K., Ghazoul, J., Stork, N.E. and Davis, A.J., 1996. Insects in fragmented forests: a functional approach. *Trends in ecology & evolution*, 11(6), pp.255-260

70 Seidl, R., SCHELHAAS, M.J. and Lexer, M.J., 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. *Global Change Biology*, 17(9), pp.2842-2852.

71 Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J. and Lexer, M.J., 2017. Forest disturbances under climate change. *Nature climate change*, 7(6), pp.395-402.

72 Seidl, R. and Rammer, W., 2017. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. *Landscape Ecology*, 32(7), pp.1485-1498.

73 Ma, Z., Peng, C., Zhu, Q., Chen, H., Yu, G., Li, W., Zhou, X., Wang, W. and Zhang, W., 2012. Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests. *Proceedings of the National Academy of Sciences*, 109(7), pp.2423-2427.

74 Hubau, W., Lewis, S.L., Phillips, O.L., Affum-Baffoe, K., Beeckman, H., Cuni-Sanchez, A., Daniels, A.K., Ewango, C.E., Fauset, S., Mukinzi, J.M. and Sheil, D., 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. *Nature*, 579(7797), pp.80-87.

⁷⁵ The Nature Conservancy: Staying Connected Initiative (SCI): <http://stayingconnectedinitiative.org/>

⁷⁶ Housatonic Valley Association: Follow the Forest: <http://followtheforest.org>

⁷⁷ <http://maps.tnc.org/resilientland/>

⁷⁸ <https://www.adaptivesilviculture.org/>

⁷⁹ <https://forestadaptation.org/>

⁸⁰ Messier, C., Puettmann, K. J., & Coates, K. D. (Eds.). (2013). Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge.

⁸¹ Keeton, W. S. (2006). Managing for late-successional/old-growth characteristics in northern hardwood-conifer forests. *Forest Ecology and Management*, 235(1-3), 129-142.

⁸² Mylecraine, K. A., & Zimmerman, G. L. (2000). Atlantic white-cedar: Ecology and best management practices manual. Department of Environmental Protection, Division of Parks and Forestry, New Jersey Forest Service.

⁸³ Conway, T. M., & Yip, V. (2016). Assessing residents' reactions to urban forest disservices: A case study of a major storm event. *Landscape and Urban Planning*, 153, 1-10.

⁸⁴ Fargione, J. E., Bassett, S., Boucher, T., Bridgman, S. D., Conant, R. T., Cook-Patton, S. C., ... & Gu, H. (2018). Natural climate solutions for the United States. *Science advances*, 4(11), eaat1869.

⁸⁵ Fargione, J. E., Bassett, S., Boucher, T., Bridgman, S. D., Conant, R. T., Cook-Patton, S. C., ... & Gu, H. (2018). Natural climate solutions for the United States. *Science advances*, 4(11), eaat1869.

⁸⁶ Fargione, J. E., Bassett, S., Boucher, T., Bridgman, S. D., Conant, R. T., Cook-Patton, S. C., ... & Gu, H. (2018). Natural climate solutions for the United States. *Science advances*, 4(11), eaat1869

⁸⁷ Moomaw, W. R., Masino, S. A., & Faison, E. K. (2019). Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. *Frontiers in Forests and Global Change*, 2, 27.

⁸⁸ Nunery, J. S., & Keeton, W. S. (2010). Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products. *Forest Ecology and management*, 259(8), 1363-1375.

⁸⁹ Catanzaro, P., & D'Amato, A. (2019). Forest carbon: An essential natural solution for climate change. University of Massachusetts.

⁹⁰ The 9 Northeastern states include the six New England states, New York, New Jersey, and Pennsylvania. USDA Forest Service, Forest Inventory and Analysis Program, Fri Jun 12 00:38:20 GMT 2020. Forest Inventory EVALIDator web-application Version 1.8.0.01. St. Paul, MN: U.S. Department of Agriculture, Forest Service, Northern Research Station. [Available only on internet: <http://apps.fs.usda.gov/Evalidator/evalidator.jsp>]

⁹¹ Mackey, B., Prentice, I. C., Steffen, W., House, J. I., Lindenmayer, D., Keith, H., & Berry, S. (2013). Untangling the confusion around land carbon science and climate change mitigation policy. *Nature Climate Change*, 3(6), 552-557.

⁹² <https://apps.fs.usda.gov/Evalidator/evalidator.jsp>

⁹³ <https://apps.fs.usda.gov/Evalidator/evalidator.jsp>

⁹⁴ Oswalt, Sonja N.; Smith, W. Brad; Miles, Patrick D.; Pugh, Scott A., coords. 2019. Forest Resources of the United States, 2017: a technical document supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97. Washington, DC: U.S. Department of Agriculture, Forest Service, Washington Office. 223 p.
<https://doi.org/10.2737/WO-GTR-97>.

⁹⁵ Curtis, P. S., & Gough, C. M. (2018). Forest aging, disturbance and the carbon cycle. *New Phytologist*, 219(4), 1188-1193.

⁹⁶ Harris, N. L., Hagen, S. C., Saatchi, S. S., Pearson, T. R. H., Woodall, C. W., Domke, G. M., ... & Fore, A. (2016). Attribution of net carbon change by disturbance type across forest lands of the conterminous United States. *Carbon balance and management*, 11(1), 24.

⁹⁷ Gough, C. M., Atkins, J. W., Fahey, R. T., & Hardiman, B. S. (2019). High rates of primary production in structurally complex forests. *Ecology*, 100(10), e02864. Curtis, P. S., & Gough, C. M. (2018). Forest aging, disturbance and the carbon cycle. *New Phytologist*, 219(4), 1188-1193.

⁹⁸ Domke, G., Williams, C. A., Birdsey, R., Coulston, J., Finzi, A., Gough, C., ... & Kurz, W. A. (2018). Forests. In *Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report*. [Cavallaro, N.; Shrestha, G.; Birdsey, R.; Mayes, MA; Najjar, RG; Reed, SC; Romero-Lankao, P.; Zhu, Z., eds. Washington, DC, USA: US Global Change Research Program., 365-398.

⁹⁹ Tyrrell, Mary. Understanding Connecticut Woodland Owners: A Report on the Attitudes, Values and Challenges of Connecticut6s Family Woodland Owners. 2015.

¹⁰⁰ Catanzaro, P., & D'Amato, A. (2019). Forest carbon: An essential natural solution for climate change. *University of Massachusetts*.

¹⁰¹ McGarvey, J. C., Thompson, J. R., Epstein, H. E., & Shugart Jr, H. H. (2015). Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink. *Ecology*, 96(2), 311-317.

¹⁰² Keeton, W. S., Whitman, A. A., McGee, G. C., & Goodale, C. L. (2011). Late-successional biomass development in northern hardwood-conifer forests of the northeastern United States. *Forest Science*, 57(6), 489-505.

¹⁰³ Adams, J. M., Faure, H. F. D. L., Faure-Denard, L., McGlade, J. M., & Woodward, F. I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. *Nature*, 348(6303), 711-714. McGarvey, J. C., Thompson, J. R., Epstein, H. E., & Shugart Jr, H. H. (2015). Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink. *Ecology*, 96(2), 311-317.

¹⁰⁴ Stuart-Haëntjens, E. J., Curtis, P. S., Fahey, R. T., Vogel, C. S., & Gough, C. M. (2015). Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity. *Ecology*, 96(9), 2478-2487.

¹⁰⁵ Oswalt, Sonja N.; Smith, W. Brad; Miles, Patrick D.; Pugh, Scott A., coords. 2019. Forest Resources of the United States, 2017: a technical document supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97. Washington, DC: U.S. Department of Agriculture, Forest Service, Washington Office. 223 p.

National Land Cover Database (NLCD) 2016.

¹⁰⁶ Defined using the University of Connecticut's Center Forest Land Use & Education (CLEAR) Forest Fragmentation Model 1 as an area of forest land cover at least 300 feet from a non-forest edge.

<http://clear.uconn.edu/projects/landscape/CT/stats/change7dates.htm#top>

¹⁰⁷ Oswalt, Sonja N.; Smith, W. Brad; Miles, Patrick D.; Pugh, Scott A., coords. 2019. Forest Resources of the United States, 2017: a technical document supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97. Washington, DC: U.S. Department of Agriculture, Forest Service, Washington Office. 223 p.

<https://doi.org/10.2737/WO-GTR-97>

¹⁰⁸ UConn/CLEAR Forest Fragmentation Analysis Project. Found at

<http://clear.uconn.edu/projects/landscape/v2/forestfrag/index.htm>

¹⁰⁹ Oswalt, Sonja N.; Smith, W. Brad; Miles, Patrick D.; Pugh, Scott A., coords. 2019. Forest Resources of the United States, 2017: a technical document supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97. Washington, DC: U.S. Department of Agriculture, Forest Service, Washington Office. 223 p.

<https://doi.org/10.2737/WO-GTR-97>.

¹¹⁰ UConn/CLEAR Forest Fragmentation Analysis Project. Found at

<http://clear.uconn.edu/projects/landscape/v2/forestfrag/index.htm>

¹¹¹ bid.

¹¹² Reinmann, A. B., & Hutyra, L. R. (2017). Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests. *Proceedings of the National Academy of Sciences*, 114(1), 107-112.

Nowak, D.J., Crane, D.E., 2002. Carbon storage and sequestration by urban trees in the USA. *Environmental Pollution* 116 (3), 381e389

¹¹³ <https://www.itreetools.org/>

¹¹⁴ Nowak, D.J., 1994. Air pollution removal by Chicago's urban forest. In: McPherson, E.G., Nowak, D.J., Rountree, R.A. (Eds.), Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA Forest Service General Technical Report NE- 186, Radnor, PA, pp. 63-81

¹¹⁵ <https://apps.fs.usda.gov/Evalidator/evalidator.jsp>

¹¹⁶ Canham, C. D. (2020). *Forests Adrift-Currents Shaping the Future of Northeastern Trees*. Yale University Press.

¹¹⁷ Fargione, J. E., Bassett, S., Boucher, T., Bridgman, S. D., Conant, R. T., Cook-Patton, S. C., ... & Gu, H. (2018). Natural climate solutions for the United States. *Science advances*, 4(11), eaat1869.

¹¹⁸ Defined using the University of Connecticut's Center Forest Land Use & Education (CLEAR) Forest Fragmentation Model 1 as an area of forest land cover at least 300 feet from a non-forest edge.

¹¹⁹ Medium core forests comprise 250-500 acres and Large core forests comprise >500 acres.

¹²⁰ Section 23-8 of the General Statutes

¹²¹ Connecticut has 830,679 acres of core forest >250 acres [190,471 acres classified as medium size core forest of 250-499 acres, and 640,208 acres of large cores >500 acres]. Protected lands used in this analysis were calculated using POSM and Litchfield Hills Greenprint datasets. According to these data, 33.53% of these medium and large cores is permanently protected [42,324 acres or 22.22% of medium cores and 236,230 acres or 36.89% of large cores].

¹²² Based on the National Land Cover Database (NLCD) 2016.

¹²³ USDA Forest Service, Forest Inventory and Analysis Program, Fri Jun 12 00:38:20 GMT 2020. Forest Inventory EVALIDator web-application Version 1.8.0.01. St. Paul, MN: U.S. Department of Agriculture, Forest Service, Northern Research Station. [Available only on internet: <http://apps.fs.usda.gov/Evalidator/evalidator.jsp>]

¹²⁴ Fargione, J. E., Bassett, S., Boucher, T., Bridgman, S. D., Conant, R. T., Cook-Patton, S. C., ... & Gu, H. (2018). Natural climate solutions for the United States. *Science advances*, 4(11), eaat1869.

¹²⁵ Connecticut's Changing Landscape study on forest fragmentation since 1985 by UConn Center for Land Use Education and Research from <http://clear.uconn.edu/projects/landscape/v2/index.htm>

¹²⁶ Moomaw, W. R., Masino, S. A., & Faison, E. K. (2019). Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. *Frontiers in Forests and Global Change*, 2, 27.

¹²⁷ <https://www.nrs.fs.fed.us/rna/>

¹²⁸ https://en.wikipedia.org/wiki/Scientific_control

¹²⁹ Sohngen, B. (2020). Climate Change and Forests. *Annual Review of Resource Economics*. 12(17), 1–17.

<https://doi.org/10.1146/annurev-resource-110419-010208>

¹³⁰ Natural Area Preserve statute Section 23-5a - i: https://www.cga.ct.gov/2019/pub/chap_447.htm#sec_23-5a

¹³¹ Example of Research Natural Area Management Plan from the Routt National Forest in Colorado:

https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5166048.pdf

¹³² The Northeast Wilderness Trust offers a Wild Carbon option for landowners found at <https://newwildernesstrust.org/wilderness-conservation/climate-change/>

¹³³ Reinmann, A. B., & Hutyra, L. R. (2017). Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests. *Proceedings of the National Academy of Sciences*, 114(1), 107-112. Nowak, D.J., Crane, D.E., 2002. Carbon storage and sequestration by urban trees in the USA. *Environmental Pollution* 116 (3), 381e389

¹³⁴ <https://www.itreetools.org/>

¹³⁵ Nowak, D.J., 1994. Air pollution removal by Chicago's urban forest. In: McPherson, E.G., Nowak, D.J., Rountree, R.A. (Eds.), Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA Forest Service General Technical Report NE- 186, Radnor, PA, pp. 63-81

¹³⁶ Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., ... & Blomdahl, E. M. (2018). Global importance of large-diameter trees. *Global Ecology and Biogeography*, 27(7), 849-864.

¹³⁷ <https://newenglandforestry.org/2019/02/11/what-is-exemplary-forestry/>

¹³⁸ Krebs, J., Pontius, J., & Schaberg, P. G. (2017). Modeling the impacts of hemlock woolly adelgid infestation and presalvage harvesting on carbon stocks in northern hemlock forests. *Canadian Journal of Forest Research*, 47(6), 727-734.

¹³⁹ Gutzat, F., & Dormann, C. F. (2018). Decaying trees improve nesting opportunities for cavity-nesting birds in temperate and boreal forests: A meta-analysis and implications for retention forestry. *Ecology and evolution*, 8(16), 8616-8626.

¹⁴⁰ North East Association of State Foresters: Landscape stewardship guide (NA-IN-06-11). 2011. Found at https://www.fs.usda.gov/naspf/sites/default/files/publications/landscape_stewardship_guide_11_screen_1.pdf

¹⁴¹ Donnelly, C. and Doria, G. The Use of Wood from Urban and Municipal Trees. CT DEEP Division of Forestry publication. June 2014. Found at https://portal.ct.gov/-/media/DEEP/forestry/urban_forestry/Biomassfinal62914pdf.pdf

¹⁴² Waller, D. M., and N. J. Reo. 2018. First stewards: ecological outcomes of forest and wildlife stewardship by indigenous peoples of Wisconsin, USA. *Ecology and Society* 23(1):45. <https://doi.org/10.5751/ES-09865-230145>

¹⁴³ U.S. Global Change Research Program, [Section 9.2](#)

¹⁴⁴ U.S. Census Bureau Profile of Connecticut: <https://data.census.gov/cedsci/profile?q=Connecticut&g=0400000US09>

¹⁴⁵ Governing: A State-by-State Look at Growing Minority Populations. 2015. <https://www.governing.com/topics/urban/gov-majority-minority-populations-in-states.html>

¹⁴⁶ Graphic of urban heat island effect in Hartford on Climate Central website: <https://www.climatecentral.org/news/urban-heat-islands-threaten-us-health-17919>

¹⁴⁷ <https://health2016.globalchange.gov/populations-concern>

¹⁴⁸ Nowak, David & Dwyer, John. (2010). Understanding the Benefits and Costs of Urban Forest Ecosystems. 10.1007/978-1-4020-4289-8_2.

¹⁴⁹ Nowak, D. and Heisler, G. Air Quality Effects of Urban Trees and Parks. National Recreation and Parks Association Research Series. 2010.

¹⁵⁰ Wolf, K. L., & Robbins, A. S. (2015). Metro nature, environmental health, and economic value. *Environmental health perspectives*, 123(5), 390–398. <https://doi.org/10.1289/ehp.1408216>

¹⁵¹ Berto R., Baroni M.R., Zainaghi A., Bettella S. An exploratory study of the effect of high and low fascination environments on attentional fatigue. *J. Environ. Psychol.* 2010;30:494–500. doi: 10.1016/j.jenvp.2009.12.002.

¹⁵² Kaplan, S. The restorative benefits of nature: Toward an integrative framework. *Journal of Environmental Psychology*. Volume 15, Issue 3, September 1995, Pages 169-182.

¹⁵³ White, MP; Alcock, I; Wheeler, BW; et al. Coastal proximity, health and well-being: results from a longitudinal panel survey. *Health Place Journal*. 2015.

¹⁵⁴ Landsat-8 satellite imagery provided by Jarlath O’Neil-Dunne at the University of Vermont Spatial Analysis Laboratory as part of 2014 study on urban tree cover in New Haven.

¹⁵⁵ Mock, B. CityLab Article. “Why Detroit residents pushed back against tree planting.” <https://getpocket.com/explore/item/why-detroit-residents-pushed-back-against-tree-planting>

¹⁵⁶ American Forests Magazine. Tree Equity Issue. Winter/Spring 2020. Found at <https://www.ctwoodlands.org/sites/default/files//American-Forests%20Magazine%20Tree%20Equity%20Issue%202.11.20.pdf>

¹⁵⁷ American Journal of Preventative Medicine (2013); 44(2):139 –145.

¹⁵⁸ Study of urban tree cover in New Haven (2009): https://portal.ct.gov/-/media/DEEP/forestry/urban_forestry/UTCReportNewHavenpdf.pdf

¹⁵⁹ Study of urban tree cover in Hartford (2010): https://portal.ct.gov/-/media/DEEP/forestry/urban_forestry/TreeCanopyReportHartfordpdf.pdf

¹⁶⁰ Study of urban tree cover in Bridgeport (2012): https://portal.ct.gov/-/media/DEEP/forestry/urban_forestry/TreeCanopyReportBridgeportpdf.pdf

¹⁶¹ Study of urban tree cover in Greater Bridgeport region (2014): https://portal.ct.gov/-/media/DEEP/forestry/urban_forestry/GreaterBridgeportTreeCanopyReportpdf.pdf

¹⁶² City of Hartford Urban Tree Canopy Assessment and Planting Plan (2014): <https://www.americanforests.org/wp-content/uploads/2015/04/AF-Community-ReLeaf-%e2%80%94-Hartford-UTC-Assessment.pdf>

¹⁶³ City of Hartford Tree Canopy Action Plan (June 2020): https://hartfordgov-my.sharepoint.com/:b/g/personal/yig001_hartford_gov/EWf4RrmpvSxHrB8f4LP8QU8BN8o8gHUfvl89QN4EJzi82g?e=kUV41m

¹⁶⁴ <https://www.mass.gov/service-details/greening-the-gateway-cities-program>

¹⁶⁵ Donnelly, C. and Doria, G. The Use of Wood from Urban and Municipal Trees. CT DEEP Division of Forestry publication. June 2014. Found at https://portal.ct.gov/-/media/DEEP/forestry/urban_forestry/Biomassfinal62914pdf.pdf

¹⁶⁶ Sherrill, S. and Bratkovich, S. (2018) Estimates of Carbon Dioxide withheld from the Atmosphere by Urban Hardwood Products.

[https://www.researchgate.net/publication/324687399 ESTIMATES_OF_CARBON_DIOXIDE_WITHELD_FROM_THE_ATMOSPHERE_BY_URBAN_HARDWOOD_PRODUCTS](https://www.researchgate.net/publication/324687399_ESTIMATES_OF_CARBON_DIOXIDE_WITHELD_FROM_THE_ATMOSPHERE_BY_URBAN_HARDWOOD_PRODUCTS)

¹⁶⁷ USDA Forest Service. Wood Education Resource Center/Urban Wood Utilization resources:

<https://www.fs.usda.gov/naspf/programs/wood-education-and-resource-center/urban-wood-utilization>

¹⁶⁸ Oliver, C., Nassar, N., Lippke, B., & McCarter J. (2014). Carbon, Fossil Fuel, and Biodiversity Mitigation with Wood and Forests. *Journal of Sustainable Forestry*. 33(3), 248-275.

¹⁶⁹ Forest Management & Greenhouse Gas Mitigation Opportunities. Information Sheet #7. Peter Woodbury & Jenifer Wightman (2017).

¹⁷⁰ McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B., Chini, L., Clark, J.S., ... Xu, C. (2020.) Pervasive shifts in forest dynamics in a changing world. *Science*. 368 (6494). DOI: 10.1126/science.aaz9463

¹⁷¹ Brodribb, T.J., Powers, J., Cochard, H. and Choat, B. (2020) Hanging by a thread? Forests and drought. *Science*. 68, 261–266.

¹⁷² Anderegg, W.R.L., Trugman, A.T., Badgley, G., Anderson, C.M., Bartuska, A., Ciais, P., Cullenward, D., ... Randerson, J.T. (2020) Climate-driven risks to the climate mitigation potential of forests. *Science* 368, 1327.

¹⁷³ Janowiak, Maria K. et al. 2018. *New England and northern New York forest ecosystem vulnerability assessment and synthesis*: a report from the New England Climate Change Response Framework project. Gen. Tech. Rep. NRS-173. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 234 p. <https://doi.org/10.2737/NRS-GTR-173>

¹⁷⁴ Swanston, C., Brandt, L.A., Janowiak, M.K. et al. Vulnerability of forests of the Midwest and Northeast United States to climate change. *Climatic Change* 146, 103–116 (2018). <https://doi.org/10.1007/s10584-017-2065-2>

¹⁷⁵ Ibid.

¹⁷⁶ Joyce, Dennis G., and Gerald E. Rehfeldt, Management strategies for black spruce (*Picea mariana* (Mill.) B.S.P.) in the face of climate change: climatic niche, clines, climatypes, and seed transfer, *Forestry: An International Journal of Forest Research*, Volume 90, Issue 4, October 2017, Pages 594–610, <https://doi.org/10.1093/forestry/cpx018>

¹⁷⁷ Janowiak, Maria K. et al. 2018. *New England and northern New York forest ecosystem vulnerability assessment and synthesis*: a report from the New England Climate Change Response Framework project. Gen. Tech. Rep. NRS-173. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 234 p. <https://doi.org/10.2737/NRS-GTR-173>

¹⁷⁸ Manomet Center for Conservation Science (Manomet) and Massachusetts Division of Fisheries and Wildlife (MA DFW). 2010. Climate change and Massachusetts fish and wildlife: Volume 2 habitat and species vulnerability. Massachusetts Division of Fisheries and Wildlife, Westborough, MA. <https://climateactiontool.org/>

¹⁷⁹ Ibid.

¹⁸⁰ Ibid, Janowiak, Maria K. et al. 2018.

¹⁸¹ Adaptation Subcommittee to the Governor's Steering Committee on Climate Change (ASGSCCC). 2010. The impacts of climate change on Connecticut agriculture, infrastructure, natural resources and public health. Available at: <http://www.ct.gov/deep/lib/deep/climatechange/impactsofclimatechange.pdf>

¹⁸² Climate Change Atlas <https://www.fs.fed.us/nrs/atlas/tree/43> U.S. Department of Agriculture, Forest Service.

¹⁸³ Moore Myers, Jennifer, Coastal Forests Face Rising Sea Levels, Increased Salinity, SRS Science Communications, November 7, 2019: U.S. Department of Agriculture, Forest Service.

<https://www.srs.fs.usda.gov/compass/2019/11/07/coastal-forests-face-rising-sea-levels-increased-salinity/>

¹⁸⁴ Wildlands and Woodlands, "Public Conservation Funding in New England: Recent Trends in Government Spending on Land Conservation."

<https://www.wildlandsandwoodlands.org/sites/default/files/Public%20Funding%20LR.pdf>

¹⁸⁵ From powerpoint presentation by Chris Hoagland, Climate Change Program Manager, Maryland Department of the Environment on May 18, 2020.

¹⁸⁶ U.S. Climate Alliance Natural and Working Lands Learning Lab, July 9-11, 2018

¹⁸⁷ <https://www.rggi.org/allowance-tracking/offsets/offset-categories/forestry-afforestation>

¹⁸⁸ U.S. Climate Alliance Natural and Working Lands Learning Lab, July 9-11, 2018

¹⁸⁹ <https://www.landtrustalliance.org/topics/taxes/income-tax-incentives-land-conservation>

¹⁹⁰ U.S. Climate Alliance Natural and Working Lands Learning Lab, July 9-11, 2018

¹⁹¹ Highstead, "New England Conservation Pathways Report", pp 73-80

https://www.wildlandsandwoodlands.org/sites/default/files/Highstead_Pathways_Report.pdf

¹⁹² *Id.*, pp. 52-58

¹⁹³ U.S. Climate Alliance Natural and Working Lands Learning Lab, July 9-11, 2018

¹⁹⁴ Land Trust Alliance, Studies by Peter Szabo, Bloomington Management Advisors

¹⁹⁵ <https://www.cityforestcredits.org/>

¹⁹⁶ <https://www.epa.gov/statelocalenergy/state-inventory-and-projection-tool>

¹⁹⁷ Butler, B. (2018). Forests of Connecticut, 2017. Resource Update FS-159. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 3 p. <https://doi.org/10.2737/FS-RU-159>.

¹⁹⁸ Tomasso, L., and M. Leighton (2014). The impact of land use change for greenhouse gas inventories and state-level climate mediation policy: A GIS methodology applied to Connecticut. *Journal of Environmental Protection*, 5: 1572-1587. <http://dx.doi.org/10.4236/jep.2014.517149>

¹⁹⁹ Brown, M., Canham, C., Murphy, L., and T. Donovan (2018). Timber harvest as the predominant disturbance regime in northeastern U.S. forests: effects of harvest intensification. *Ecosphere* 9, e02062.

²⁰⁰ Duveneck, M., and J. Thompson (2019). Social and biophysical determinants of future forest conditions in New England: Effects of a modern land-use regime. *Global Environmental Change*, 55: 115-129.

<https://doi.org/10.1016/j.gloenvcha.2019.01.009>

²⁰¹ Tomasso, L., and M. Leighton (2014). The impact of land use change for greenhouse gas inventories and state-level climate mediation policy: A GIS methodology applied to Connecticut. *Journal of Environmental Protection*, 5: 1572-1587. <http://dx.doi.org/10.4236/jep.2014.517149>

²⁰² Sharp, R., H. Tallis, T. Ricketts, A. Guerry, S. Wood, R. Chaplin-Krame, E. Nelson, D. Ennaanay, S. Wolny, N. Olwero, K. Vigerstol, D. Pennington, G. Mendoza, J. Aukema, J. Foster, J. Forrest, D. Cameron, K. Arkema, E. Lonsdorf, C. Kennedy, G. Verutes, C. Kim, G. Guannel, M. Papenfus, J. Toft, M. Marsik, J. Bernhardt, R. Griffin, K. Glowinski, N. Chaumont, A. Perelman, M. Lacayo, L. Mandle, P. Hamel, A. Vogl, L. Rogers, W. Bierbower, D. Denu, and J. Douglass (2018). InVEST 3.6.0 User's Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

²⁰³ Hurd, J., E. Wilson, D. Civco, S. Prisloe, and C. Arnold (2003). Temporal Characterization of Connecticut's Landscape: Methods, Results and Applications. In Proc 2003 ASPRS Annual Convention, Anchorage, AK 12 p.