New Haven Schools:
Building for the 21st Century
Program Drivers (2000-present)

- Improve Learning Environment
- Enrollment growth—needed new capacity
- Building Age/Deferred Maintenance
- Technology Upgrades
- Code and ADA compliance
- Community/Jobs Program
- Economic Development (SBI)
- Neighborhood Revitalization
- Reduce Energy & Operating Costs
- Security /safety for schools in Urban setting
Educational Program Objectives

- Update and modernize all schools to allow for maximum flexibility for changes in educational programs as technology evolves
- Change to a Pre-Kindergarten to 8th Grade structure
- Provide for a 2 classroom/grade “model” program
- Improve facilities for core support and specialized services
- Smaller, “themed” program high schools
- Pre-school programs for all children in every neighborhood
- Diverse learning environments (hands on and lecture)
K-12 Hot Topics

- Quality of Design/Standards
- Community Centers
- LEED/Energy Efficiency
- Renovation vs. New
- New Educational “Flagships”
- Hands on education/Vo-Tech
- Academies within Schools
- Safety in Schools
- Technology ready (current and future)
Phases of a Large Rebuilding Program

★ 1-2 years Early Studies & Innovative Funding
★ 1-2 years Early Master Plan & Political Structuring
★ 4-5 years Phase 1 Implementation
 First Projects Completed, “Credibility Building,” Update Master Plan, Confirm Ph. 2 Commitments
★ 4-5 years Phase 2 Implementation
 Standardize Design, Large Volume Construction, Refine “end-game”
★ 3-5 years Phase 3
 End Game
1994: City effort
Conditions Evaluation Study

- Site & Building Conditions
 - Building Exterior & Interior Condition
 - Code/ADA Compliance
 - Building Systems – Mechanical – Security – Technology Assessment
 - Historic Significance/Fabric – Renovation?
1995-96: Innovative Funding

- Early tax lien sale generated $23 million for early city share on Phase 1
- Concentrated legislative approach obtained commitments for magnet funding, “renovate like new,” swing space funding, etc.
- ERATE funding of technology
- Gradual buildup of local support for limited property tax increases (i.e. consistent with performance)
- Funding of energy saving changes
1996-97: Necessity of Master Plan

- Enrollment Projections - City wide
- Educational Program Requirements
- Building Capacity Assessments
- Facility Condition Assessments
- Phased Implementation Plan
- Financial Plan
- Community Goals
- Swing Space availability – fit out and planning

Update Plan at Each Critical Program Phase
1998: GILBANE is hired

- By late 1997, Phase 1 program had grown to 11 schools, $170 million
- Decision to hire outside Program Management (PM) assistance: Gilbane Building Company
- Gilbane provides 1998-2000 Revision of Master Plan
- Initial projects starting construction
- Advantages of Program Manager
 - Visible evidence and responsible control of program dollars
 - Administers and interfaces with all program constituents
 - Maintains all communication and reports with State School Facilities
Updated Enrollment Projection
Updated Educational Program Requirements
Refined Capacity Assessment of Buildings
Updated facility assessment / priority list
Detailed and updated financial plan
Updated Community Goals
Swing Space Strategy implementation

★Refinement of Implementation Plan★
Why Program Management?

- Program Managers are owner advocates and staff extensions (BOE, Facilities, City entities)
- Program Managers mitigate project risk by providing an owner comprehensive project leadership in all phases of design and construction.
- Program management allows the use of experienced construction professional staff to match program design, cost and schedule requirements.
Capacity Adjustment

- “Seat” Capacity affected by:
 - Changing space standards
 - Enrollment policy
 - Mandatory code and statutory changes
 - Educational program requirements and essential core support spaces

- “Preferred” Capacity results from evaluation of facility's ability to satisfy all of above requirements
Implementation Challenges

- Realistic & Updated Master Plan
- Swing Space Plan
- Cost & Schedule Control
- Design Standards/High Performance
- Communication—Website Based
- Workforce & SBI Goals
- Field Quality Control of Unique
- Maintaining Local & State Support as Project Budgets Increase from Inflation & Economic Factors
Implementation Challenges: Need for Swing Space Strategy

- “Gut” renovation of “like-new” projects requires schools to be vacant during construction.
- 35 of 44 projects require moving into temporary swing space optimizing construction schedule and minimizing costs.
- 10 different facilities used for swing space including old schools replaced by new buildings, leased private school space and converted leased space.
Swing Space Schedule

<table>
<thead>
<tr>
<th>SCHOOL CONSTRUCTION PROJECTS REQUIRING SWING SPACE (NO. PUPILS)</th>
<th>1/04-6/04</th>
<th>8/04-12/04</th>
<th>1/05-6/05</th>
<th>8/05-12/05</th>
<th>1/06-6/06</th>
<th>8/06-12/06</th>
<th>1/07-6/07</th>
<th>8/07-12/07</th>
<th>1/08-6/08</th>
<th>8/08-12/08</th>
<th>1/09-6/09</th>
<th>8/09-12/09</th>
<th>1/10-6/10</th>
<th>8/10-12/10</th>
<th>1/11-6/11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>EDGECWOOD (250)</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>EDGECWOOD (250)</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>LINCOLN BASSETT (250)</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>LINCOLN BASSETT (250)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BRENAN (289)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>WEXLER (283)</td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td>FAIR HAVEN MIDDLE [6-8] (644)</td>
<td>644</td>
<td></td>
</tr>
<tr>
<td>5B</td>
<td>FAIR HAVEN MIDDLE [5] (220)</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HALE (533)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TRUMAN (353)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CELNTANO (287)</td>
<td>276</td>
<td>310</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>BARNARD (232) - June 06</td>
<td>206</td>
<td>206</td>
<td>258</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TROUP [5-8] (415) - June 07</td>
<td></td>
<td></td>
<td>659</td>
<td>659</td>
<td>591</td>
<td>591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>BEECHER (293) - Apr 07</td>
<td>367</td>
<td>367</td>
<td>357</td>
<td>357</td>
<td>357</td>
<td>357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CLINTON (556) - Jun 05</td>
<td>535</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>HOOKER K-2 (213) Nov 06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>249</td>
<td>249</td>
<td>249</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13A</td>
<td>HOOKER 3-4 (91) - Jun 09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13B</td>
<td>HOOKER 5-8 (160) - Jun 09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SHERIDAN (339) - Jun 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>395</td>
<td>395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>COLUMBUS K-4 (408) - Jun 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>DAVIS (365) - Jun 10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>CLEMENTE (K-3) (221)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>221</td>
<td>221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>CLEMENTE (4-8) (374)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>374</td>
<td>374</td>
<td>374</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>BISHOP WOODS (268)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>373</td>
<td>373</td>
<td>373</td>
<td>373</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19A</td>
<td>MAURO SPLIT (200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19B</td>
<td>MAURO SPLIT (200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>HILL CENTRAL (532)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>DWIGHT (384)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>EAST ROCK (753)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>820</td>
<td>820</td>
<td>820</td>
<td>820</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>CROSS ANNEX (167)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal - Swing Space Needs: 1493 1418 1418 1523 1523 1512 1514 1929 1929 1824 1824 2046 2046 1447 1447
Program Management Approach

Program Manager
- Project Development
- Pre-Design
- Project Construction
- Post-Construction

Each Project

City of New Haven
- Fire Marshall
- City Plan / Zoning
- Traffic & Parking
- Engineering
- Building
- Public Works
- Parks
- CEO
- Economic Development
- Police

Construction
- Construction Manager
- General Contractor
- Prime Contractor
- Sub Contractors

Board of Aldermen
Board of Education
Architects & Consultants
School-Based Building Advisory Committee (SBBAC)
CT Office of School Facilities (OSF)
School Building Committee (CSBC)
The Value of Community Involvement (SBBAC)

- School Based Building Advisory Committees (SBBAC)
 Community becomes **invested** in process and new school
- Each community is unique with process that allows for input and involvement, more support for each school before, during and after construction and for overall program because of buy in.
School Construction typical Schedule in Connecticut

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>File for state approval</td>
<td>15 months</td>
</tr>
<tr>
<td>Develop educational building program</td>
<td>2 months</td>
</tr>
<tr>
<td>Develop conceptual design</td>
<td>1 month</td>
</tr>
<tr>
<td>Develop schematic design</td>
<td>2 months</td>
</tr>
<tr>
<td>Design development</td>
<td>3 months</td>
</tr>
<tr>
<td>Construction documents</td>
<td>5 months</td>
</tr>
<tr>
<td>State and local approval process</td>
<td>2-4 months</td>
</tr>
<tr>
<td>(bidding and award of contracts by Board of Education)</td>
<td></td>
</tr>
<tr>
<td>Building construction (typical school)</td>
<td>14-16 months</td>
</tr>
<tr>
<td>Move-in to building</td>
<td>1-2 months</td>
</tr>
<tr>
<td>(furnishings /equipment / commissioning / turnover)</td>
<td></td>
</tr>
<tr>
<td>Total Schedule</td>
<td>45-60 months</td>
</tr>
</tbody>
</table>
Community Impacts

- Workforce Initiative – Jobs
- Training in Various Construction Trades
- Small and Minority Business Opportunities

★ 37 Completed and Active Projects (2013 data)★
★ Total Construction Trade Labor Hours 6,010,130 hrs. ★
Aquaculture Vo-Ag High School

- Magnet Vocational School
 Located on Long Island Sound
- 40,000 new & 24,500 renovated Square Feet for 360 students
- Marine Focused Campus features:
 - Greenhouse
 - Aquariums & Fish Farm
 - Plant & Animal Science Labs
 - Boat Restoration Workshop

Unique Facilities

Dewberry Goodkind

- Project Cost: $27 m
- State Funding: 100%
- Completion: Winter 2003
Elementary students acquire their math and reading skills through course work with an environmental science focus.

The building’s facilities support a curriculum of sustainability through interactive learning:
- Largest solar panel display in CT
- WeatherBug Station
- Two greenhouses & gardens
- West River Nature Center, connected to the main school by a pedestrian bridge over Rt. 34
- Educational kiosks

Connecticut’s 1st GOLD LEED™ Certified SCHOOL Building.

<table>
<thead>
<tr>
<th>Project Cost:</th>
<th>$43 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students:</td>
<td>600</td>
</tr>
<tr>
<td>Square Feet:</td>
<td>90,000</td>
</tr>
<tr>
<td>Completed:</td>
<td>Summer 2006</td>
</tr>
</tbody>
</table>
Master Plan included Central Kitchen to realize benefits on all levels:

- Reallocation of Kitchen space at schools
- Reduction of Kitchen Staff
- Uniform quality and nutrition standards
- Energy Savings
Unique Facilities

Hillhouse High School & District Wide Field House

- One of 2 large comprehensive high schools
- 1,200 students
- Multi-phase renovation/addition while occupied

- New 92,000 sf District Field House

S/L/A/M Collaborative

Project Cost: $86 m
Completed: 2002
New Educational Flagships:

Cooperative Arts & Humanities High School

- Pelli Clarke Pelli Architects
- 145,000 GSF on 1.5 acres in the heart of New Haven’s Theater District.
 - Performance & Black Box Theaters
 - Full Support; including Scene Shop
 - Studio Spaces for:
 - Dance
 - Theater
 - Film
 - Music
 - Video Labs

Project Cost: $66 m
Construction Cost: $47 m
Completion: Fall 2008
Central Utility Plant designed to service 2 schools in adjacent campuses

Implementation of Fuel Cell technology for electricity, heating and cooling

CUP allowed a more efficient system integration and minimize first cost for separate mechanical building systems at each school.
Defining Expectations
Building Program Standards

- Programming Guidelines
 - Space programming
 - Best practices - lessons learned
- Material Standards
 - Level of quality - life cycle
 - Format consistency
- High Performance Guidelines
 - Sustainable design strategies
 - Student performance
 - Health of occupants
 - Cost effectiveness/operation/maintenance
 - Environmental stewardship
 - Energy Efficiency
Design Guidelines

- Space programming

New Haven School Construction Program

<table>
<thead>
<tr>
<th>Space</th>
<th># staff/stu</th>
<th>Area/stu</th>
<th>NSF/m²</th>
<th># ms</th>
<th>Total NSF</th>
<th>stu capacity</th>
<th>NSF/STU</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative, Guidance & Student Support (incl. Faculty & Parents Areas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reception/Waiting Area (Admin)</td>
<td>4</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Office Area</td>
<td>1</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal's Office</td>
<td>1</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistant Administrator's Office</td>
<td>1</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistant Admin. ReceptWorkspace</td>
<td>1</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mail/Workroom (Admin)</td>
<td>1</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document Storage Area</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference Room (Admin)</td>
<td>8</td>
<td>25</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td>Locate remotely from main administrative office area, typically in area of older students.</td>
</tr>
<tr>
<td>Security Office</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>Locate adjacent to Assistant Admin. Office</td>
</tr>
<tr>
<td>Parent Room</td>
<td>1</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff Toilet (Admin)</td>
<td>60</td>
<td>1</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidance & Student Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reception/Waiting Area (Guidance)</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work/Storage Room (Guidance)</td>
<td>200</td>
<td>1</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidance Counselor Office</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Worker Office</td>
<td>120</td>
<td>1</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech Pathology</td>
<td>120</td>
<td>1</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilingual/ESL/Migrant</td>
<td>120</td>
<td>1</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychologist Office</td>
<td>120</td>
<td>1</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing Room</td>
<td>60</td>
<td>1</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign Language Office</td>
<td>150</td>
<td>1</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May be located near or adjacent to Foreign Language Classroom</td>
</tr>
</tbody>
</table>
School Construction Design Standards

Space Programming

Net Required Area: 55,140 sf
Maximum Enrollment: 540
Required Gross Area: 76,138 sf
Owner Expectations

- Design Guidelines
 - Space programming
 - Best practices – lessons learned
- Material Standards
 - Level of quality
 - Format consistency
Material Standards

- Design Guidelines
 - Space programming
 - Best practices – lessons learned
- Material Standards
 - Level of quality
Gilbane High Performance Building Plan

3.0 BUILDING ENERGY USE: GOALS AND PROCESS

<table>
<thead>
<tr>
<th>Goals</th>
<th>LEED NC v2.2</th>
<th>LEED v4.1</th>
<th>3.1 Building Sustainability and Energy Efficiency Goals & Consumption</th>
<th>Initial Performance Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Establish a minimum performance goal of 75 by the project.</td>
<td>1. Earning 50 points</td>
<td></td>
<td></td>
<td>1. Earn 50 points</td>
</tr>
<tr>
<td>2. Use LEED’s online Project Finder tool to calculate the building’s performance versus similar buildings.</td>
<td>2. Earning 50 points</td>
<td></td>
<td></td>
<td>2. Earn 50 points</td>
</tr>
<tr>
<td>3. Plan site energy consumption at 50% or lower.</td>
<td></td>
<td></td>
<td></td>
<td>3. Plan site energy consumption at 50% or lower.</td>
</tr>
<tr>
<td>4. Plan site energy consumption at 50% or lower.</td>
<td></td>
<td></td>
<td></td>
<td>4. Plan site energy consumption at 50% or lower.</td>
</tr>
<tr>
<td>5. Ensure building performance meets target by the project.</td>
<td></td>
<td></td>
<td></td>
<td>5. Ensure building performance meets target by the project.</td>
</tr>
</tbody>
</table>

3.1 Building Sustainability and Energy Efficiency Goals & Consumption

EA01: Optimize Energy Performance

<table>
<thead>
<tr>
<th>EA01: Optimize Energy Performance</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plan energy consumption at 50% or lower.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2. Plan energy consumption at 50% or lower.</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

EA02: Optimize Energy Performance

<table>
<thead>
<tr>
<th>EA02: Optimize Energy Performance</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plan energy consumption at 50% or lower.</td>
<td>1</td>
</tr>
</tbody>
</table>

EA03: Optimize Energy Performance

<table>
<thead>
<tr>
<th>EA03: Optimize Energy Performance</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plan energy consumption at 50% or lower.</td>
<td>1</td>
</tr>
</tbody>
</table>
Gilbane High Performance: When does it start?

CONCEPTUAL DESIGN
- All hands design charrette
- Performance plan developed
- Design continues using plan as guide

SCHEMATIC DESIGN
- Design continues
 - Groups discuss ECM’s as they are analyzed
 - Plan updated at 100% SD charrette

DESIGN DEVELOPMENT
- Energy Modeler analyzes design
 - Life Cycle Cost Analysis prepared
 - Commissioning Agent reviews Project
 - Design is optimized to findings
 - Plan updated at 100% DD Charrette

CONSTRUCTION DOCUMENTS
- Design is optimized and finalized
- Final Energy Model Report prepared
 - Life Cycle Cost Analysis is tool for VE
 - CxA prepares Cx Plan
 - Plan is updated at 50% CD Charrette

Sooner Better Than Later!
DESIGN TEAM & CONSULTANTS
Architect
MEP, Structural & Civil Engineers
Lighting, Interiors & Other Consultants

ENERGY MODELER

OWNER’S TEAM
Operations & Maintenance Personnel
LEED Consultant
End Users, if appropriate

CONSTRUCTION MANAGEMENT TEAM
Gilbane Team:
PM, PE, HPB COE Staff
(estimating, SME’s)
Commissioning Agent

LOCAL UTILITIES
To discuss rebates & incentives

Everyone!
Gilbane High Performance Approach

<table>
<thead>
<tr>
<th>Existing Building Energy Consumption Survey</th>
<th>Full Life Cycle Cost Analysis including Utility Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Project & Program-wide Performance Plans</td>
<td>Grant & Rebate Application Management</td>
</tr>
<tr>
<td>LEED Documentation of Energy Credits</td>
<td>Measurement & Verification and O & M Readiness</td>
</tr>
<tr>
<td>Energy Modeling Peer Review</td>
<td>Program-wide Energy Modeling</td>
</tr>
<tr>
<td>Energy Audits (Level I & II)</td>
<td>Energy Efficiency Measure Consulting</td>
</tr>
<tr>
<td>Whole Building Energy Modeling</td>
<td>Renewable Energy Analysis</td>
</tr>
</tbody>
</table>
Gilbane High Performance Building

EXISTING FACILITIES
- Model Existing Buildings to determine where savings exist
- Review current energy consumption through utility bill analysis
- Level I and Level II Energy Audits

PRE-CONSTRUCTION
- Create the energy model for review, analysis and design optimization
 - Review an existing model (prepared by another party) to confirm savings and provide a fresh eyes approach
- Research and develop proper documentation to submit for rebates, grants and incentives from government and utilities.
 - Run Life Cycle Cost Analysis on proposed equipment
- Develop Energy Modeling Documentation for ‘like’ LEED submission
 - Full ‘like’ LEED Project Administration

CONSTRUCTION
- Confirm energy efficiency of submittal documentation
 - Work with utility companies and others to verify grants & rebates

POST CONSTRUCTION
- Implement real time energy monitoring to report real time building efficiency and sustainability information
 - Comprehensive video training on HPB systems/continuous commissioning
High Performance

1: Goals

- Energy Efficiency
 - Energy Star Targets & Savings over Code
 - Lighting Power Density
 - Renewable/On Site Power
 - Energy Modeling
 - Commissioning
 - Passive Heat & Light Strategies
 - Occupant Comfort

- Environmental Sustainability
 - Water Use
 - Site Selection
 - Landscaping & Building Placement
 - Materials Selection Standards
 - Occupant Productivity
 - Architectural Considerations
 - Policy Goals

2: Design

- Energy Efficiency
 - MEP and HVAC Selection
 - Envelope Design
 - Controls and Monitoring

- Environmental Sustainability
 - Materials and Fixture Selection
 - Architectural and Landscaping Policies and Details to Support Sustainability Goals

3: Policy

- Operations & Maintenance
 - Construction Waste, IAQ, Site, other
 - Building O&M Policies, Practices
Gilbane High Performance BENEFITS
Why Adopt Good Management Principles

PREVENTATIVE MAINTENANCE
can save an average of 15% on O&M costs

Preventative Maintenance – Manufacturer’s Requirements

PREDICTIVE MAINTENANCE
can save an additional average of 10% on O&M costs

Predictive Maintenance – Facility Manager’s Expertise
Gilbane High Performance – Post Construction

- Operations and Maintenance Readiness

BENEFITS

- Design & Construction Costs: 20%
- Operation & Maintenance Costs: 80%
Gilbane High Performance Benefits

- Evaluation of actual building performance:
- Actual Energy consumption versus Energy Model
- Effect of occupants on the Energy Model – computers and miscellaneous equipment used.
- Light loads
- Effect of Preventive Maintenance Program
Gilbane High Performance Actual Benefits

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Used</td>
<td>74</td>
<td>60</td>
<td>20%</td>
</tr>
<tr>
<td>Energy Saved</td>
<td>29</td>
<td>43</td>
<td>47%</td>
</tr>
<tr>
<td>Energy Saved</td>
<td>28%</td>
<td>42%</td>
<td>47%</td>
</tr>
</tbody>
</table>
Benefits

- Post construction monitoring is in progress for all completed schools for additional validation of energy cost savings.
- Before implementing High Performance Building Design, the City was experiencing at an average of 190 kBtus/sf/yr (no AC). Currently, the City is under 70 kBtus/sf/yr, and we are currently modeling under 40 kBtus/sf with the recent implementation of LED lighting in the latest buildings with AC.