Partial Development & Management Plan For: Quinebaug Solar, LLC Connecticut Siting Council Petition 1310A

Substation, Switchyard and Project Clearing

October 8, 2020

TABLE OF CONTENTS

1	INTR	ODUCTION	1
2	DEVE	LOPMENT AND MANAGEMENT PLAN	1
	a.	Site Plans	1
	b.	Final Construction Hours and Schedule	1
	с.	Construction Traffic Control Plan	2
	d.	Department of Energy and Environmental Protection (DEEP) General Permit Registratio	
	e.	Stormwater Pollution Control Plan	3
	f.	Clearing, Grubbing, Stabilization, and Stormwater Phasing Plan	3
	g.	DEEP-approved stormwater Management Plan	3
	h.	Compliance with the DEEP Natural Diversity Database Final Determination	3
	i.	Compliance with DEEP Stormwater Guidance	4
	j.	Vegetation Management Plan	4
	k.	Invasive Species Management Plan	4
	I.	Pollinator Species Plans	4
3	PROJ	ECT PARCELS	5
4	PROJ		5
5	PROJ	ECT EQUIPMENT	6

LIST OF ATTACHMENTS

Attachment A – Figures

- Figure 1 Quinebaug Solar Project Overview
- Figure 2 Quinebaug Solar Parcels
- Figure 3 Quinebaug Solar Substation/Eversource Switchyard
- Figure 4 Project Limit of Vegetation Clearing

Attachment B - Quinebaug Solar Project Substation Construction Drawings

Attachment C – Stormwater Pollution Control Plan

Attachment D – Eastern Spadefoot Toad Protection Summary

1 INTRODUCTION

On April 23, 2020, the Connecticut Siting Council (Council) issued the Decision and Order approving the Modified Quinebaug Solar, LLC (Quinebaug Solar) Petition (Petition No. 1310A) pursuant to Connecticut General Statues §4-176 and §16-50k, for the proposed construction, maintenance and operation of an approximately 50 megawatt alternating current solar photovoltaic electric generating facility. Quinebaug Solar consists of approximately 561 acres comprised of 29 separate and abutting privately-owned parcels located generally north of Wauregan Road in Canterbury, Connecticut, and south of Rukstella Road and Allen Hill Road in Brooklyn, Connecticut (Project or Project Site).

This partial Development and Management (D&M) Plan is being provided in compliance with §16-50j-60 through §16-50j-62 of the Regulations of Connecticut State Agencies, and serves to meet the requirements of the Council's Decision and Order as they pertain to site clearing and construction of the Quinebaug Solar Substation and Switchyard. This partial D&M plan is being filed now due to the need to begin clearing within the window allowed for protection of tree-roosting bat species, as well as the long lead time required for construction of the Collector Substation and Canterbury Switching Station. The remaining D&M requirements outlined in the Decision and Order will be filed with the Council at a later date. Figures pertinent to this partial D&M Plan are provided in Attachment A, including Figure 1, which provides an overview map of the Project site.

2 DEVELOPMENT AND MANAGEMENT PLAN

a. Site Plans

The delineation of tree clearing areas for the Project are provided in Attachment A, Figure 4. The final civil drawings for the Substation and Switchyard are included in Attachment B.

b. Final Construction Hours and Schedule

Construction of the Substation and Switchyard will begin in November 2020. Construction hours will be Monday through Saturday between 7:00 a.m. and 7:00 p.m. Work on Sundays would occur on an asneeded basis, and occur between 8:00 a.m. and 5:00 p.m. Construction of the Substation and Switchyard are expected to be completed by October 2021, with the exception of punch list items and final establishment of vegetation cover, which is expected to be completed by Spring 2022. A high-level Project sequence is as follows:

Pre-Construction

- 1. Mobilize site contractors.
- 2. Pre-construction meetings.
- 3. Demarcation of Project work areas and buffer areas.
- 4. Environmental restriction and safety training for all site personnel.

Construction Phasing - Substation

- Stage 1 Civil preparations
- Stage 2 Construction

• Stage 3 – Commissioning

Additional details on substation construction phasing is provided in the Stormwater Pollution Control Plan (SWPCP) in Attachment C.

c. Construction Traffic Control Plan

During construction, access to the Project Site will utilize the two existing access points located along Wauregan Road. Access to the Substation and Switchyard area will be from Wauregan Road.

To minimize the potential for traffic issues during construction, Project construction contractors are responsible for access and traffic control measures, working with representatives from the towns of Brooklyn and Canterbury, as necessary. Such measures will include procedures for safe ingress and egress of construction equipment and other vehicles, such as implementing traffic control patterns if any vehicle or work area protrudes onto any part of a travel lane or shoulder. Since the Project does not propose any work within a travel lane or shoulder, traffic control patterns are not expected to be necessary.

Signs will be erected to identify active construction zones. Construction signage will be consistent with the federal, state and local standards. Signs shall be placed in a position that allows motorists the opportunity to reduce their speed prior to the work area, and will be installed on the same side of the roadway as the work area.

Major equipment and materials will be delivered directly to the Project Site, and the material staging area located directly adjacent to the Substation and Switchyard areas (Attachment A, Figure 2). During construction, there will be a temporary increase in the amount of truck traffic for delivering materials, pouring concrete and removing spoils. To help mitigate traffic issues at the Project Site for the entrance on Wauregan Road, a Town of Canterbury Police Officer or a certified flagger (if Town police officers are unavailable) may be posted at the entrance depending on the type and level of activity.

Contractors for Quinebaug Solar will be responsible for providing notice to the towns of any projected heavy truck traffic days (e.g., material deliveries involving semi-trucks, large concrete pours or hauling out large amounts of spoils).

Delivery of large equipment for the Substation and Switchyard (transformers, control enclosure, and distribution switchgear) will be subject to oversize load permits issued by Connecticut Department of Transportation. Quinebaug Solar and Project contractors will work closely with the towns to coordinate these large deliveries. No underground facilities are present on site within the development area for the Substation and Switchyard, and therefore none will be crossed by any construction or delivery equipment.

d. Department of Energy and Environmental Protection (DEEP) General Permit Registration

Quinebaug Solar is currently working with the Connecticut Department of Energy and Environmental Protection (DEEP) on a General Permit registration and will provide this to the Council upon receipt. The Project's registration was filed on July 19, 2020 and Quinebaug Solar has been in communication with representatives from DEEP during the review process. Registration is anticipated to be received in mid-October, prior to any construction activities occurring on the site. Quinebaug Solar respectfully requests

the Council's approval of this partial D&M Plan, contingent on approval of the General Permit Registration from DEEP.

e. Stormwater Pollution Control Plan

A copy of the SWPCP is provided in Attachment C, and this plan is currently under review by DEEP.

f. Clearing, Grubbing, Stabilization, and Stormwater Phasing Plan

This partial D&M Plan covers clearing for the entire Project Site. Quinebaug Solar is proposing to clear forested areas without stumping or grubbing. All earth-disturbing activities will be deferred until the Project receives approval of the SWPCP from DEEP. Proposed clearing activities for the purpose of this partial D&M plan include clearing trees above-ground (retain stumps) in frozen conditions. If reliably frozen conditions do not exist, or if the tree cutting operation will result in ground disturbance or rutting, stormwater controls will be installed prior to any ground disturbance, in accordance with the Project's Soil Erosion and Sediment Control Plans.

Attachment A, Figure 3 represents the areas where vegetation will be removed during the clearing phase of the Project. These clearing limits have been reduced since the site plan was submitted to the Council and the DEEP Natural Diversity Data Base (NDDB) program. This reduction in required clearing enhances the Project commitments made by Quinebaug Solar to protect herpetofauna including eastern spadefoot toad (*Scaphiopus holbrookii*). The amount of clearing has been reduced from 73 acres to 55 acres due to layout changes that are currently underway. All clearing will occur within the Project footprint as approved by the Council in the April 24 Decision and Order.

Prior to site clearing, limits of clearing and delineated natural resources boundaries will be clearly marked in the field. Clearing around resources will occur in accordance with the conditions included in the Final Determination issued by the DEEP NDDB Program.

One small wetland occurs within proximity of the Project Substation, which is located approximately 200 feet north of the Substation at its closest point. This small, isolated wetland is located at the toe of slope of the berm where the existing transmission line crosses through the parcel. No construction vehicles will cross this wetland or any other watercourse on the Project site. While no clearing is required in this area, proper sediment and erosion controls will be installed around the Substation workspace prior to construction to prevent any erosion and sedimentation into this natural resource. As noted above, prior to clearing activities, all natural resources and approved buffers will be clearly marked in the field to identify resource boundaries and to provide a visual aid to construction contractors working in and around sensitive areas.

Grubbing, site stabilization and stormwater phasing plans will be covered in the final D&M plan to be provided to the Council at a later date.

g. DEEP-approved Stormwater Management Plan

The Project's stormwater management plan is currently under review by DEEP and will be provided to the Council upon receipt.

h. Compliance with the DEEP Natural Diversity Database Final Determination

To comply with the March 5, 2020 DEEP NDDB Final Determination, the following items will commence approximately around the time that winter clearing activities are completed (November 1 through March 31:

Tł

TETRA TECH

- An on-site environmental monitor will be employed to monitor American kestrel (*Falco sparverius*) activity and guide construction personnel on avoidance activities required for this species. Commencement of monitoring will coincide with the start of the American kestrel nesting season (March 1 to July 30);
- Exclusion fencing will be installed at the onset of the spring amphibian migratory season, in early March, with installation activities completed prior to the time amphibian migration activities around vernal pools begins on the Project site. On-site monitoring of vernal pools, eastern spadefoot toad (*Scaphiopus holbrookii*), and other listed wildlife species will commence with the installation of exclusion fencing and will continue throughout the summer of 2021. Additional details on environmental monitoring requirements will be provided in the final D&M Plan;
- No clearing will occur within the any of the mapped resource protection areas (Attachment D, Figure 2);
- Remaining compliance requirements identified in the NDDB Final Determination will be provided in the final D&M plan to be submitted at a later date.

The final, NDDB approved, Eastern Spadefoot Toad Protection Summary is provided in Attachment D

i. Compliance with DEEP Stormwater Guidance

As mentioned above, Quinebaug Solar is currently working with DEEP on a General Permit registration and will provide it to the Council upon receipt. This document was filed on July 19, 2020 and registration is anticipated in mid-October, prior to any construction activities on the site.

j. Vegetation Management Plan

Section 3(f) above provides details on site clearing. Limited tree removal and trimming of branches may be required within the Connecticut Light and Power Company d/b/a Eversource Energy (Eversource) right-of-way (ROW). A vegetation management plan will be filed as part of the final D&M plan at a later date.

k. Invasive Species Management Plan

A vegetation management plan will be filed with the final D&M plan at a later date, and will include management of invasive plant species.

I. Pollinator Species Plans

Pollinator plants associated with the planting plan will be provided in the vegetation management plan as part of the final D&M plan to be filed at a later date.

Timber Salvaging Plan

The clearing contractor will have the rights to the salvage value of marketable timber. Any snag/hazard trees in the clearing area will be removed. Quinebaug Solar anticipates repurposing excess soil, stump, and non-marketable wood material on site as much as practical. Any excess material as a result of construction will be properly managed at a designated location within the Project Site (i.e., laydown areas).

Herbicide Use Plan

Within the solar array areas, mowing and trimming is the preferred and primary method to manage vegetation on site. Herbicides may be used as a secondary means of control where necessary. All applications would be handled in spot treatment method and target specific discrete locations; broadcast aerial application of herbicides is not anticipated. Herbicides are only to be used to prevent potential fire hazards and to treat invasive species that cannot be managed with mechanical control. Any herbicide use will comply with the regulations and requirements of DEEP's Pesticide Management Program.

Historical and Archaeological Resource Plan

Quinebaug Solar will follow the historical and archaeological resource protocol approved in the Council's Decision and Order, as well as the those included in the January 9, 2020 correspondence sent to Quinebaug Solar by the State Historic Preservation Office.

3 PROJECT PARCELS

In summary, the proposed lease and purchase arrangements for all Project parcels has not changed from the original Petition. Below is an explanation of ownership and land agreements in relation to the Collector Substation and Canterbury Switching Station.

The Project Substation and Canterbury Switching Station will be subdivided from the existing 60-acre parcel. The land occupied by the Collector Substation will be subdivided, with portions to be owned by a third party; and the Canterbury Switching Station will be subdivided and owned and operated by Eversource (see Attachment A, Figures 2 and 3 for details). The transmission tap line will be granted to Eversource through an easement. Eversource will install two 95-foot tall single-circuit weathering steel dead-end structures (Tap Structures) within the ROW.

Temporary laydown and workspaces for the Substation and Switchyard will be located directly adjacent to the Collector Substation and Canterbury Switching Station for use during construction. This area is identified in Attachment A, Figure 2.

Quinebaug Solar will transfer fee ownership of approximately 0.64 acres of land (Attachment A, Figure 2) comprising the area where the Collector Substation facilities will be installed to a third party, pursuant to a separate commercial agreement, following the Council's approval of this partial D&M Plan. Quinebaug Solar will continue to own and have rights in the Collector Substation facilities pursuant to a long-term easement agreement with a third party. Eversource will be granted a perpetual easement to access the Project Site to install transmission facilities and conduct regular maintenance of the Canterbury Switching Station (Attachment A, Figure 3) and associated infrastructure.

4 **PROJECT INTERCONNECTION**

Collector Substation

The Quinebaug Collector Substation will include a generator step-up transformer (GSU), which will receive the Project's output from 34.5 kV collection cable lines and step-up the voltage to the interconnection voltage of 115 kV. The Collector Substation also will include a high-voltage circuit breaker for interruption of fault current and a disconnect switch for manual isolation. Instrument transformers will be installed for the protection and control of facilities and communication equipment.

A transmission feeder line will deliver the Project's energy from the high voltage side of the GSU (115 kV) to the point of interconnection (POI) at the new Eversource Canterbury Switching Station.

Electrical Interconnection

The Project holds Independent System Operator-New England (ISO-NE) Generation Interconnection Queue Positions #588 and #841. The Project's ISO-NE System Impact Study report (issued July 16, 2018) concluded the Project, along with identified network upgrades, has no adverse effect on ISO-NE transmission system. Section I.3.9 approval was received from ISO-NE on October 24, 2018. Quinebaug Solar entered into a large generator interconnection agreement with ISO-NE and Eversource on February 4, 2019.

Quinebaug Solar's POI into the ISO-NE grid is the 115-kV bus at Eversource's existing 1607 Transmission Line, in Canterbury, Connecticut. The Project will deliver output to the POI via a transmission feeder bus originating from the Project's Collector Substation, which will be constructed adjacent to Eversource's 1607 Line. The Project also will require a new switching station that will be constructed, operated and owned by Eversource.

Pursuant to the large generator interconnection agreement, Eversource will design, construct, own, and maintain the transmission line structures, and Canterbury Switching Station. Quinebaug Solar will design, construct, own, and maintain the Collector Substation up to the point of change of ownership located on the Collector Substation's bus leading to the Eversource switching station ring bus.

Eversource Canterbury Switching Station

Eversource will construct a new 115 kV switching station on Wauregan Road in Canterbury (Canterbury 67F), across the road from the Project. The switching station area is approximately 1 acre in size, and is located on the east side of a larger parcel that is currently being used as an active gravel yard. The new switching station, to be designated by Eversource as the Canterbury Switching Station, will consist of four 115 kV circuit breakers arranged in a ring bus configuration. Additional components will include two 115 kV line terminals, 115 kV generator lead bus, capacitive-coupled voltage transformers, station service voltage transformers, motor operated disconnect switches, manually operated disconnect switches, wave traps, surge arresters, and a relay and control enclosure approximately 24 feet by 36 feet in size. Within the control enclosure, the switching station also will include a station battery, supervisory control and data acquisition equipment, digital fault recorder, and relay and control panels.

5 PROJECT EQUIPMENT

Collector Substation Equipment

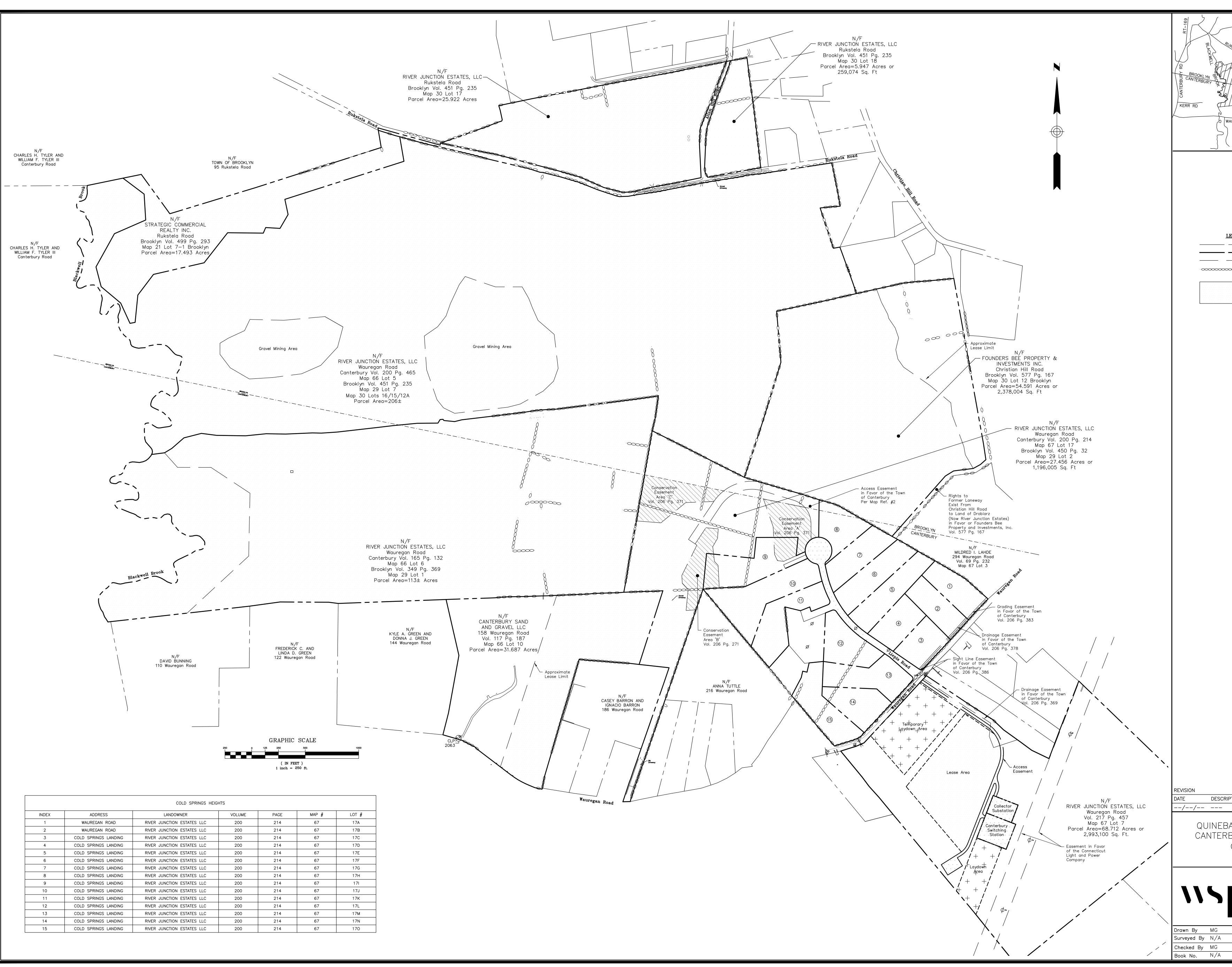
The following is a list of equipment associated with the Collector Substation:

- 34.5 kV to 115 kV GSU transformer;
- High voltage circuit breaker;
- Disconnect switch and instrument transformers;
- Control enclosure;
- Static mast (70-feet); and

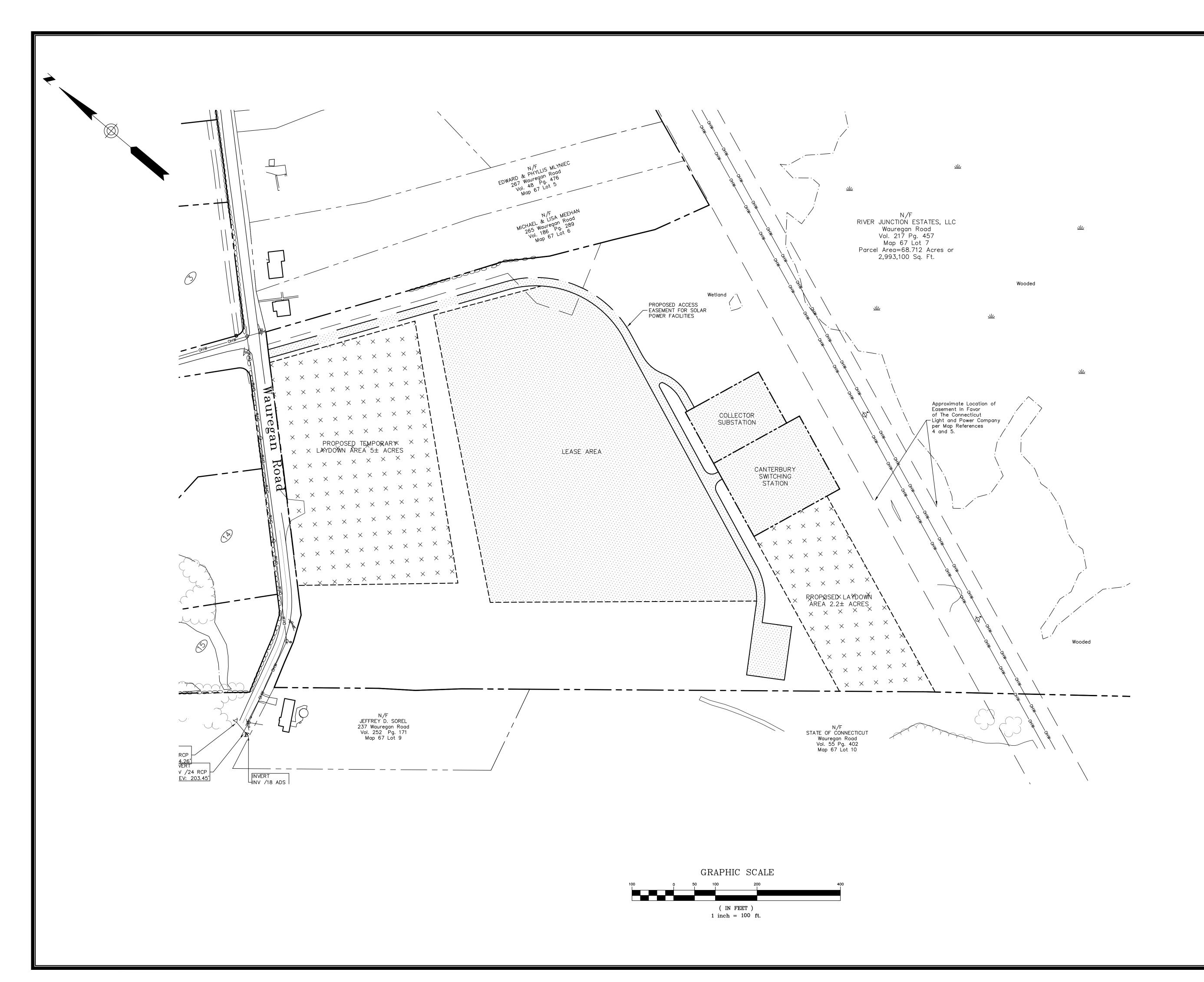
TETRA TECH

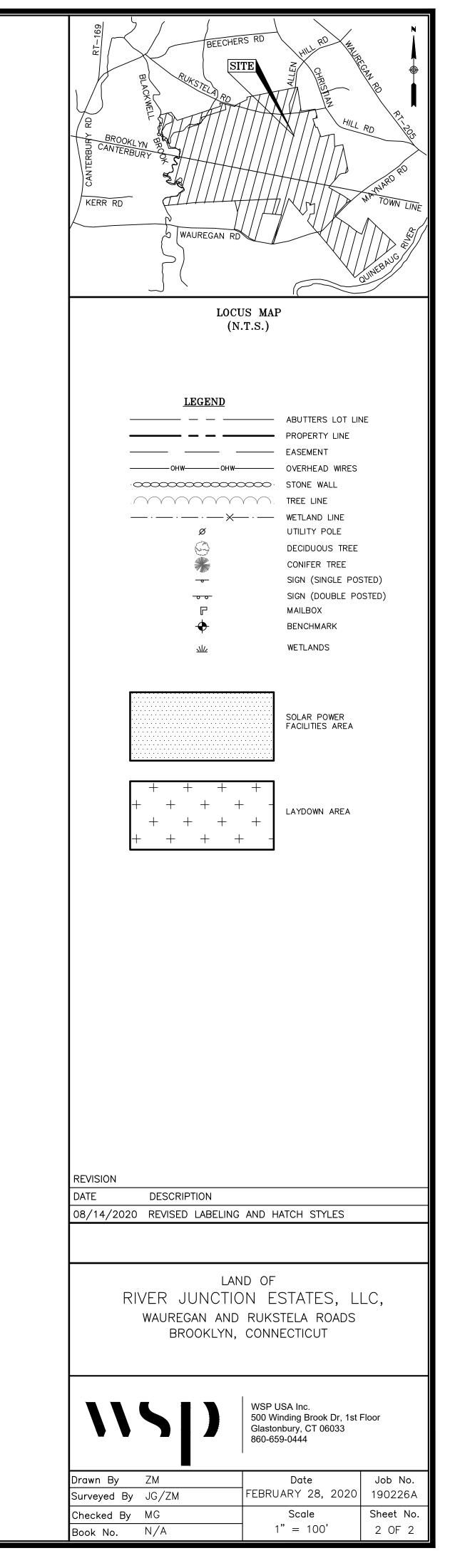
• Termination structure (60-feet).

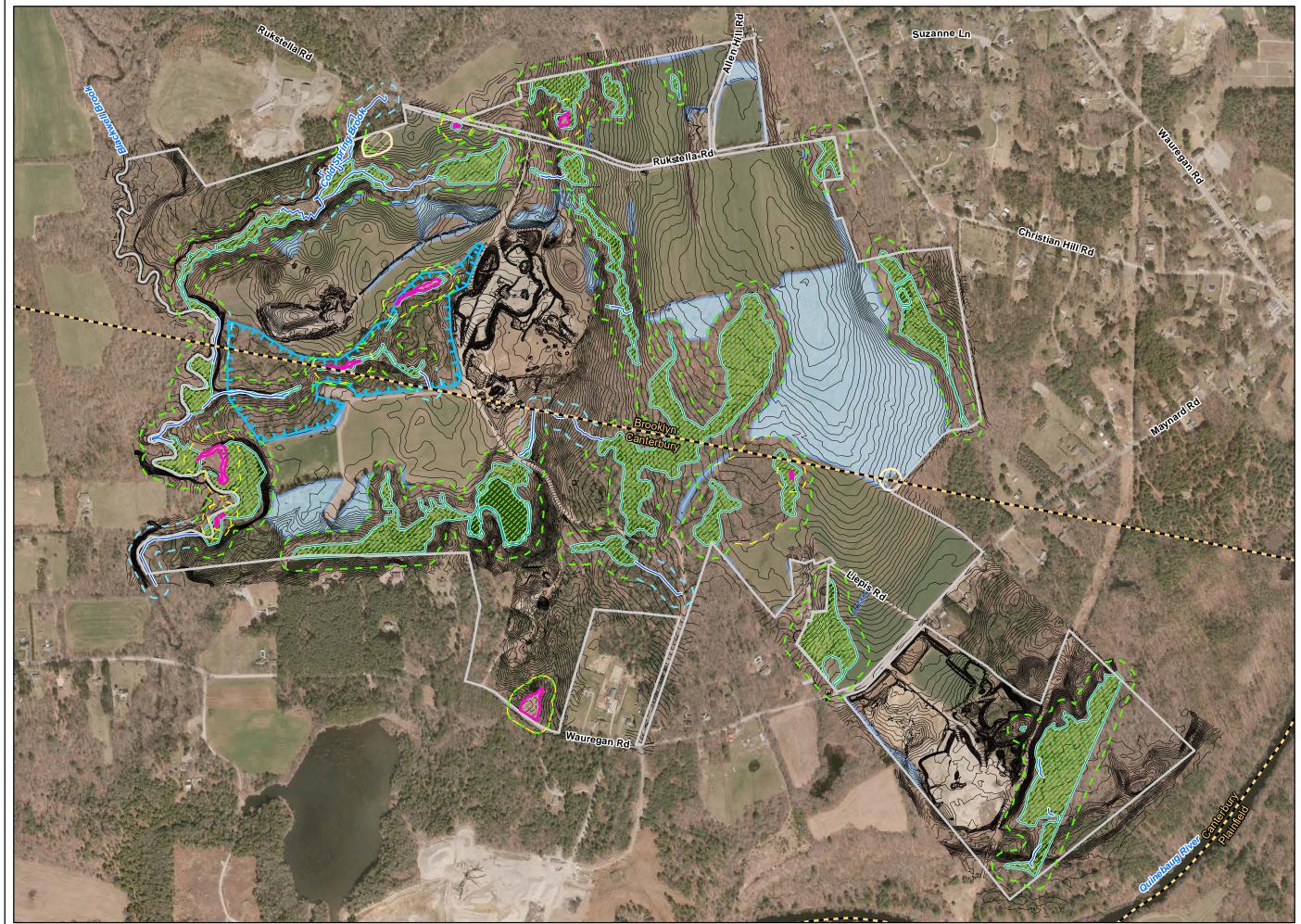
Switchyard Equipment


The following is a list of equipment associated with the Switchyard:

- Three 115 kV circuit breakers with foundations;
- Six circuit breakers manually operated disconnect switches;
- Three motor operated disconnect switches;
- Three station service voltage transformers;
- Nine capacitor coupled voltage transformers;
- One wave tap;
- Two line terminal structures;
- Bus work, bus support and switch support structures and foundations;
- 24 x 40 x 12-foot pre-fabricated control enclosure; and
- Lightning masts.


ATTACHMENT A – FIGURES

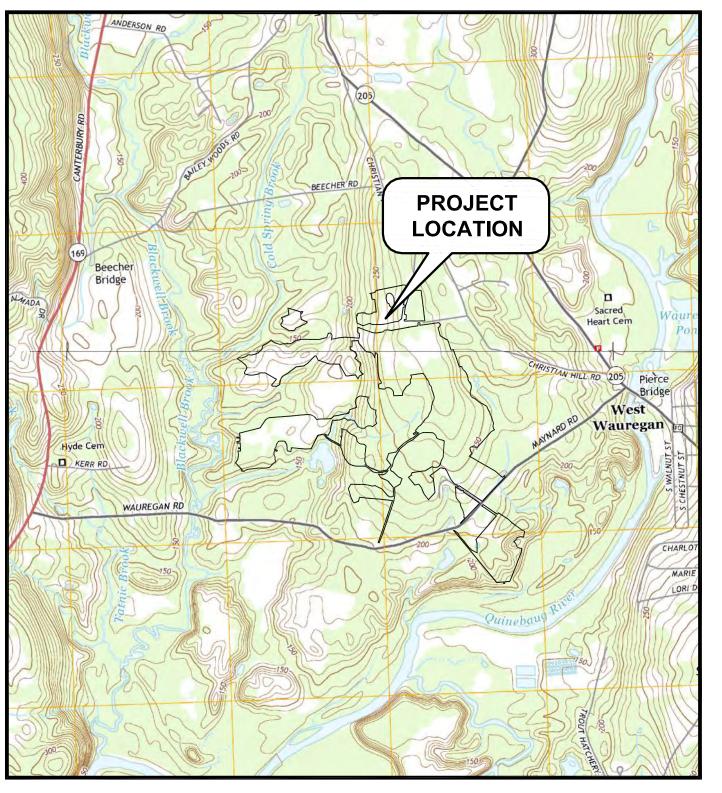




		COLD SPRINGS HEIG	піз			
INDEX	ADDRESS	LANDOWNER	VOLUME	PAGE	MAP #	LOT 🛔
1	WAUREGAN ROAD	RIVER JUNCTION ESTATES LLC	200	214	67	17A
2	WAUREGAN ROAD	RIVER JUNCTION ESTATES LLC	200	214	67	17B
3	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17C
4	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17D
5	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17E
6	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17F
7	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17G
8	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17H
9	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	171
10	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17J
11	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17K
12	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17L
13	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17M
14	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	17N
15	COLD SPRINGS LANDING	RIVER JUNCTION ESTATES LLC	200	214	67	170

BEECHERS	S RD	RD	4		N	
SIT		HILL RD	MALIREGEN	4	•	
#STELAL RD				B		
FI]	MAN	HILL R	RD	100	
$\{\{1,1,1,1,1\}$				OD R	2	
		KAT		ATNARD P	LINE	
AUREGAN RD			\mathcal{M}	\mathcal{M}	ALES A	
				INEBAUG	7/	
LOCU	JS MAI	P		/		
	T.S.)					
<u>EGEND</u>						
		ABUTTERS LO				
		EASEMENT STONE WALL				
		PROJECT LIMI	TS			
PTION						
		R_PRO				
BURY / Conne		BROO CUT	ΚL	ŕN		
	I !					
	500 V	USA Inc. Vinding Brook [Dr,			
	Conn	ecticut, CT 060 559.0444	33			
		Date	I	Job		
	Septe	mber 23, 2	019	19022	26A	
		Scale 1" = 250'		Sheet 1 OF		

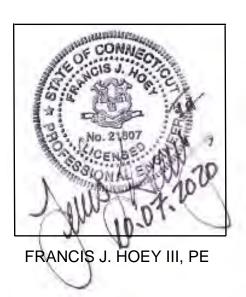
LIMIT OF VEGETATION CLEARING Project Site Watercourse Buffe Wetland Buffer - Directional Buffer / 100' Vernal Pool Envelope ----- 2-foot Contour Wetland Boundary Wetland Area Herpetofauna Exclusion Area Vernal Pool Cultural Area Limit of Vegetation Clearing CT Municipal Boundary LOCUS MAP and a 350 700 0 Feet 1 in = 700 ft NOTES 1. Based on 2016 Statewide Orthophotography, Courtesty of CTECO. Quinebaug Solar Brooklyn & Canterbury, Connecticut September 2020

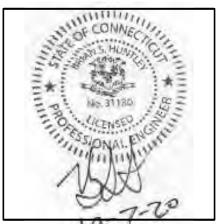


ATTACHMENT B – QUINEBAUG SOLAR PROJECT SUBSTATION CONSTRUCTION DRAWINGS

QUINEBAUG SOLAR PROJECT SUBSTATION CONSTRUCTION DRAWINGS BROOKLYN AND CANTERBURY, CONNECTICUT OCTOBER 2020

SHEET NO.	SHEET TITLE
	COVER SHEET
G-001	NOTES AND LEGEND
C-001	EXISTING CONDITIONS AND DEMOLITION PLAN
C-002	PROPOSED CONDITIONS PLAN
C-003	DETAILS


PREPARED BY: Tighe&Bond


DEVELOPER

ENGINEER

TIGHE & BOND 213 COURT STREET, #1100 MIDDLETOWN, CONNECTICUT 06457

SCALE: 1" = 2,000'

BRIAN S. HUNTLEY

QUINEBAUG SOLAR, LLC C/O NEXTERA ENERGY RESOURCES, LLC 700 UNIVERSE BOULEVARD JUNO BEACH, FL 33408

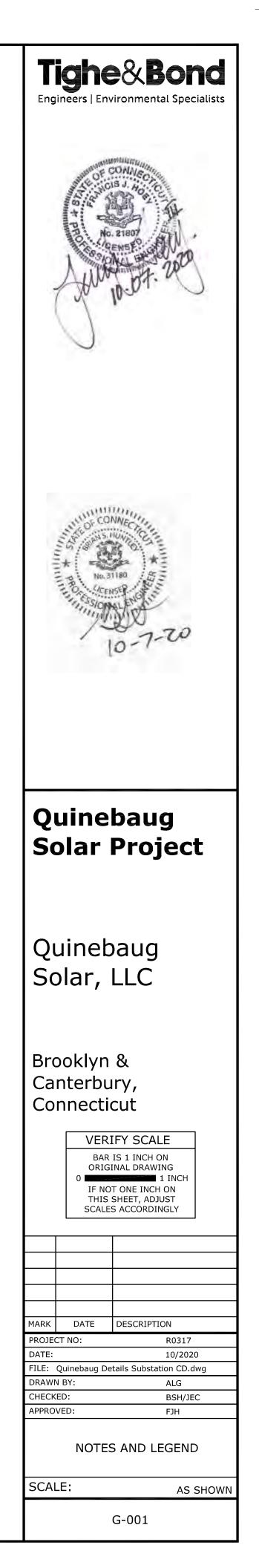
COMPLETE SET 5 SHEETS

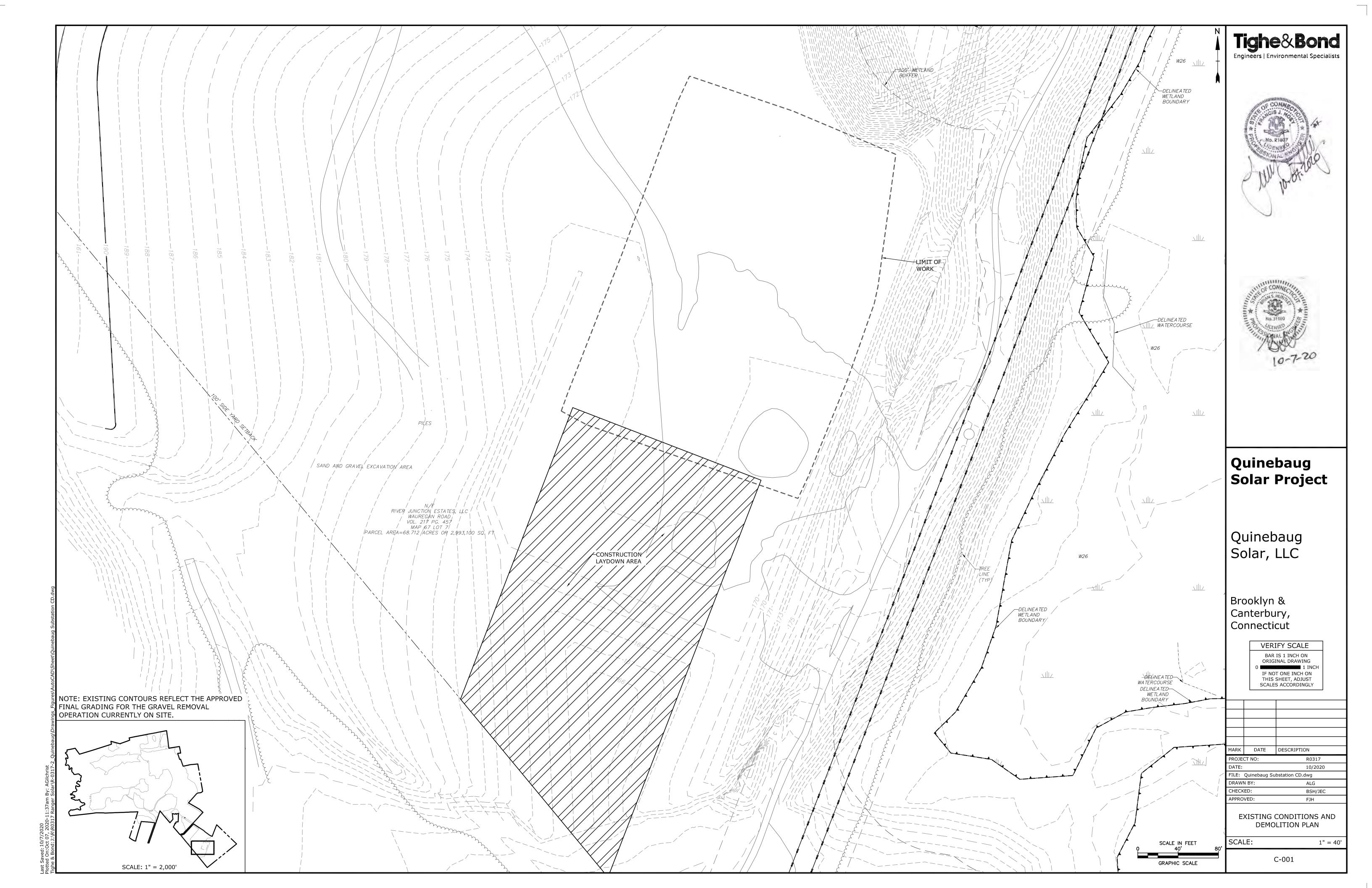
DESCRIPTION	EXISTING	PROPOSED
PROPERTY LINE		
PROPERTY LINE SETBACK		
EASEMENT LINE		
LIMITS OF WORK		
TOWN BOUNDARY		
INTERMEDIATE CONTOURS		222
INDEX CONTOURS	<u> </u>	220
SPOT GRADE	× ^{262.69}	¥ ^{262.69}
MAGNITUDE & DIRECTION OF SLOPE		_ 2%
WATER LINE		w w
GRAVEL ROAD/DRIVEWAY		
GRAVITY SANITARY SEWER	SSS	
SANITARY FORCE MAIN	SFM SFM SFM SFM	
STORM DRAIN	D D	D D
GAS LINE	G G	G
UNDERGROUND ELECTRIC LINE	Е Е Е	EEEEE
OVERHEAD ELECTRIC LINE	OHW	онwонw
CHAIN LINK FENCE		
GUARDRAIL		
TREE LINE		
TIER 1 PLANTINGS		
TIER 2 PLANTINGS		(\cdot)
TIER 3 PLANTINGS		ANK -
		T
CATCH BASIN	⊞CB	
DRAIN MANHOLE	\square	
ELECTRIC MANHOLE	Ē	
SEWER MANHOLE	S	()
TEL-COMM STRUCTURE	\bigcirc	() ()
UTILITY POLE		ۍ
LIGHT POLE	\$	☆
WATER GATE	$\overset{\scriptscriptstyle{WV}}{\boxtimes}$	Ŵ
HYDRANT	₩ ₩ ₩	,∀ ♥
SIGN	<u> </u>	-
FLARED END SECTION		∇
AREA OF PROPOSED TREE CLEARING -		
STUMPS TO REMAIN		
AREA OF PROPOSED TREE CLEARING AND GRUBBING		
CONSTRUCTION LAYDOWN AREA		
REMOVE/REMOVE AND DISPOSE		
WETLAND		
HORIZONTAL DIRECTIONAL DRILLING	z siliz siliz siliz s	
DIRECTIONAL BUFFER / 100' VERNAL POOL ENVELOPE		
HERPETOFAUNA PROTECTION AREA		
STONE WALL		
WETLAND BUFFER		
WATERCOURSE BUFFER		
DELINEATED WATERCOURSE		
VERNAL POOL		
DELINEATED WETLAND		

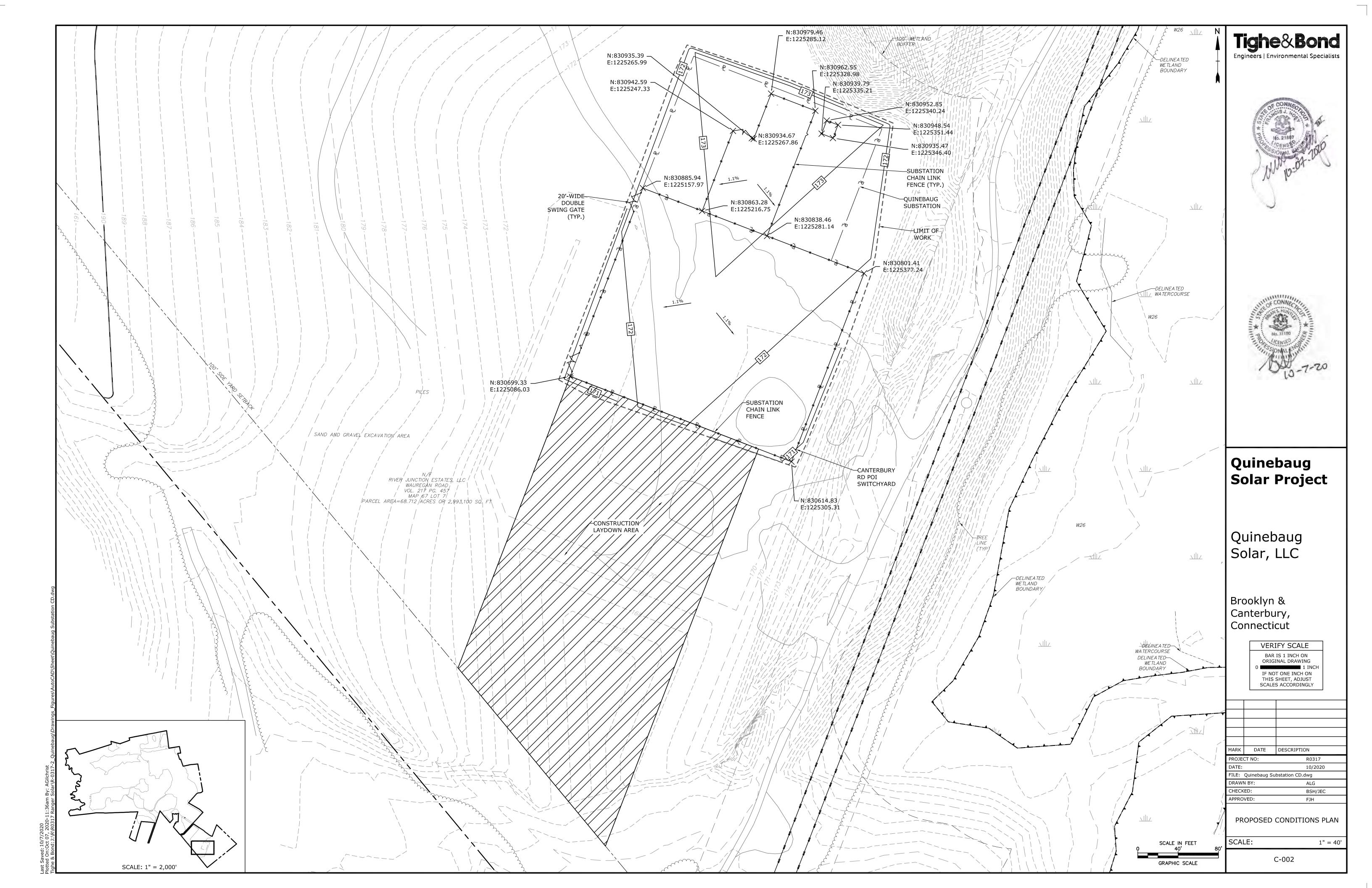
ABBREVIATIONS

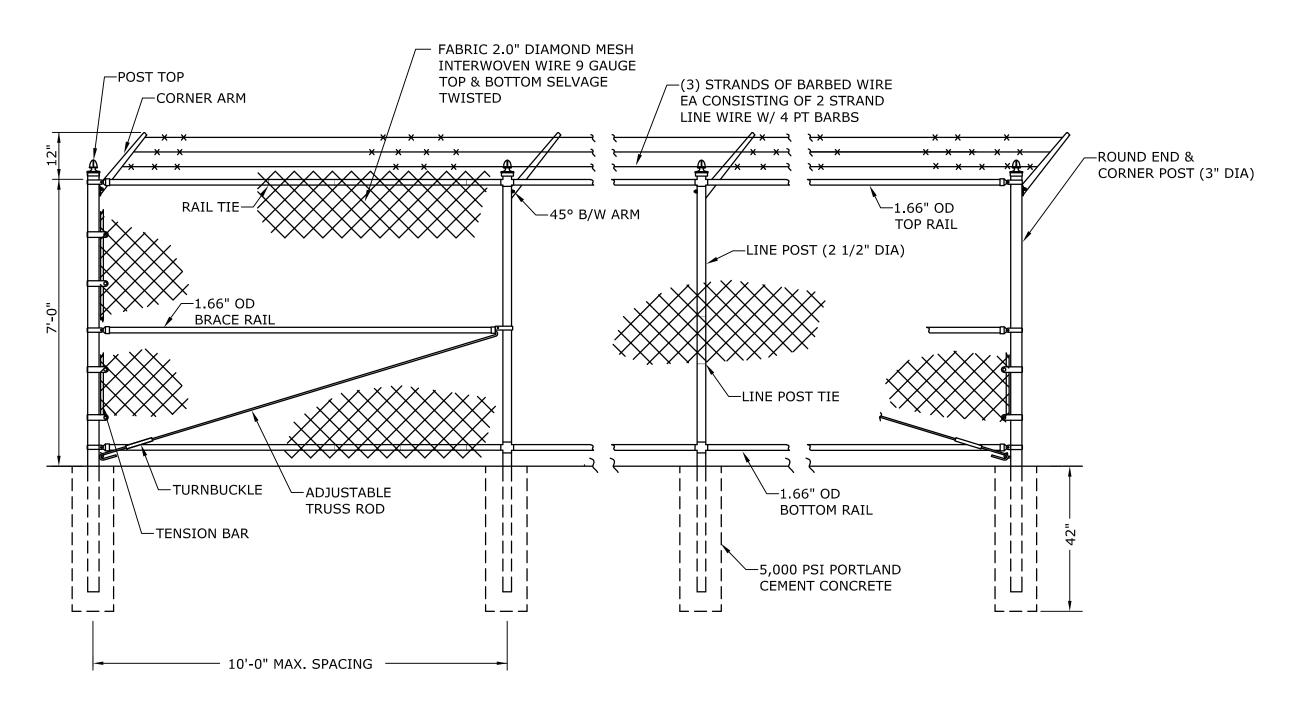
ABDN('D)	ABANDON(ED)
AC	ASBESTOS CEMENT PIPE
APPROX. BC	APPROXIMATE BITUMINOUS CURB
BFP	BACK FLOW PREVENTOR
BIT BL	BITUMINOUS BASELINE
BLDG	BUILDING
BND BOC	BOUND BOTTOM OF CURB
BOT	воттом
BS BW	BOTTOM OF STEP BOTTOM OF WALL
CATV	CABLE TELEVISION
CB CEM	CATCH BASIN CEMENT
CI	CAST IRON PIPE
CL CLF	CENTERLINE CHAIN LINK FENCE
CO	CLEAN OUT
CONC CPP	CONCRETE CORRUGATED POLYETHYLENE PIPE
CY	CUBIC YARD
DH DHF	DRILL HOLE DRILL HOLE IN STONE REMAINS (FOUND)
DI	DUCTILE IRON PIPE
DIA DMH	DIAMETER DRAIN MANHOLE
E	EAST
EF EG	EACH FACE EXISTING GRADE
EG EL/ELEV	ELEVATION
ELEC EMH	ELECTRIC ELECTRIC MANHOLE
EOP	EDGE OF PAVEMENT
EW	EACH WAY
EXIST FES	EXISTING FLARED END SECTION
FF	FINISH FLOOR
FM G	FORCE MAIN GAS
GG	GAS GATE
GRAN HC	GRANITE HANDICAP
HDPE	HIGH DENSITY POLYETHELENE
HMA HYD	HOT MIX ASPHALT HYDRANT
	INCHES
INV IPF	INVERT IRON PIPE (FOUND)
IRF	IRON PIN (FOUND)
L LF	LENGTH OF CURB LINEAR FEET
LP	
LT MAX	LEFT MAXIMUM
MH	MANHOLE
MIN MISC	MINIMUM MISCELLANEOUS
MON	MONUMENT
MJ N	MECHANICAL JOINT NORTH
NITC	NOT IN THIS CONTRACT
NTS N/A	NOT TO SCALE NOT APPLICABLE
N/F	NOW OR FORMERLY
OC OCS	ON CENTER OUTLET CONTROL STRUCTURE
ОН	OVERHEAD
PB PC	PLANT BED POINT OF CURVATURE
PCC	POINT OF COMPOUND CURVATURE
PCPP PERF	PERFORATED CORRUGATED POLYETHYLENE PIPE PERFORATED
PI	POINT OF INTERSECTION
PRC PSF	POINT OF REVERSE CURVATURE POUNDS PER SQUARE FOOT
PSI	POUNDS PER SQUARE FOOT
PT PVC	POINT OF TANGENCY POLYVINYLCHLORIDE
PVMT	PAVEMENT
R RCP	RADIUS REINFORCED CONCRETE PIPE
RD	
REV ROW	REVISION RIGHT OF WAY
RT	
R&D R&R	REMOVE AND DISPOSE REMOVE AND RESET
R&S	REMOVE AND STACK
S SAN	SOUTH SANITARY
SB	
SCH SF	SCHEDULE SQUARE FOOT
SMH	SEWER MANHOLE
SS STA	STAINLESS STEEL STATION
STL STRM	STEEL STORM
Т	TANGENT LENGTH
TC TEL	TOP OF CURB TEL-DATA
ТР	TEST PIT
TS TW	TOP OF STEP TOP OF WALL
ТҮР	TYPICAL
UP W	UTILITY POLE WATER
WG	WATER GATE
WV XFMR	WATER VALVE TRANSFORMER

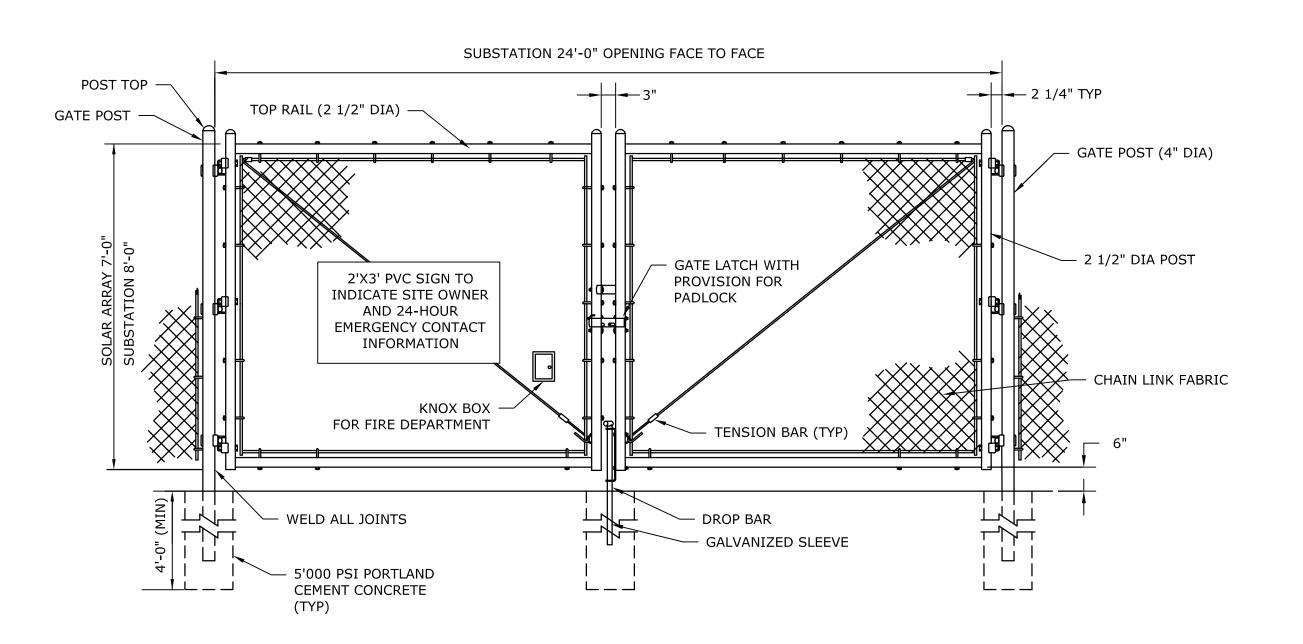
GENERAL NOTES


- 1. PER CONNECTICUT LAW, CALL 811 (CALL BEFORE YOU DIG), THE MUNICIPALITY AND THE PROPERTY OWNER PRIOR TO ANY UNDERGROUND EXCAVATION ON SITE. SUBMIT THE CALL BEFORE YOU DIG VERIFICATION NUMBER TO THE APPROPRIATE MUNICIPALITY PRIOR TO ANY EXCAVATION, DEMOLITION AND REMOVAL OR CONSTRUCTION WORK.
- 2. OBTAIN, PAY FOR AND COMPLY WITH ADDITIONAL PERMITS, NOTICES AND FEES NECESSARY TO COMPLETE THE WORK. ARRANGE AND PAY FOR NECESSARY INSPECTIONS AND APPROVALS FROM THE AUTHORITIES HAVING JURISDICTION.
- 3. FIELD VERIFY EXISTING CONDITIONS PRIOR TO CONSTRUCTION. IF FIELD CONDITIONS ARE OBSERVED THAT SIGNIFICANTLY VARY FROM THOSE SHOWN ON THESE PLANS, IMMEDIATELY NOTIFY THE ENGINEER FOR RESOLUTION OF THE CONFLICTING INFORMATION.
- 4. LIGHT TEXT AND LINES INDICATE APPROXIMATE EXISTING CONDITIONS. BOLD TEXT AND LINES INDICATE PROPOSED WORK.
- 5. NOTIFY THE ENGINEER OF ANY EXISTING UTILITY DISCOVERED DURING THE WORK THAT IS NOT SHOWN ON THE DRAWINGS.
- 6. COMPLY WITH LATEST OSHA STANDARDS FOR EXCAVATION WORK. FOLLOW ALL REQUIREMENTS OF OSHA EXCAVATION STANDARDS INCLUDING, BUT NOT LIMITED TO, THE PROVISION FOR A COMPETENT PERSON ON SITE AND ANY REQUIRED DOCUMENTATION REQUIRES CERTIFICATION BY A PROFESSIONAL ENGINEER.
- 7. MAINTAIN ALL UTILITIES FUNCTIONING PROPERLY IN THE AREAS UNDER CONSTRUCTION PRIOR TO THE TIME WHEN FINAL WORK IS PUT INTO USE. LEAVE ALL PIPES AND STRUCTURES WITHIN THE LIMITS OF THIS CONTRACT IN A CLEAN AND OPERABLE CONDITION AT THE COMPLETION OF THE WORK. TAKE ALL NECESSARY PRECAUTIONS TO PREVENT SAND AND SILT FROM DISTURBED AREAS FROM ENTERING THE SYSTEM. CONTRACTOR IS RESPONSIBLE FOR DAMAGE SUSTAINED TO ANY EXISTING UTILITIES AND IS RESPONSIBLE FOR REPAIRS THAT COMPLY WITH THE REQUIREMENTS OF THE MUNICIPALITY OR RESPECTIVE UTILITY COMPANY AT NO ADDITIONAL COST TO THE OWNER.
- 8. DISPOSE OF ANY AND ALL DEMOLISHED BUILDING MATERIALS, STORAGE TANKS, PAVEMENT, BITUMINOUS CURBING, CONCRETE, VEGETATION, SURPLUS MATERIAL, SITE RUBBLE AND OTHER DEMOLITION DEBRIS OFF-SITE IN ACCORDANCE WITH ALL APPLICABLE LOCAL, STATE AND FEDERAL REGULATIONS.
- 9. LOAM AND SEED ALL DISTURBED AREAS UNLESS OTHERWISE SPECIFIED. OVER-EXCAVATE LOAM AND SEED AREAS AS REQUIRED TO PROVIDE REQUIRED LOAM DEPTH AND MEET ADJACENT GRADE.
- 10. TEST PITS TO LOCATE EXISTING UTILITIES ARE STRONGLY ENCOURAGE AND MAY BE ORDERED BY THE OWNERS PROJECT REPRESENTATIVE.
- 11. TAKE NECESSARY MEASURES AND PROVIDE CONTINUOUS BARRIERS OF SUFFICIENT TYPE, SIZE AND STRENGTH TO PREVENT ACCESS TO ALL WORK AND STAGING AREAS AT THE COMPLETION OF EACH DAY'S WORK.
- 12. STORE FUEL, OIL PAINT OR OTHER HAZARDOUS MATERIALS IN A SECONDARY CONTAINER AND REMOVE FROM THE SITE TO A LOCKED INDOOR AREA WITH AN IMPERVIOUS FLOOR DURING NON-WORK HOURS.
- 13. PROVIDE A SUPPLY OF ABSORBENT SPILL RESPONSE MATERIALS, SUCH AS BOOMS, BLANKETS AND OIL ABSORBENT MATERIALS AT THE CONSTRUCTION SIT AT ALL TIMES TO CLEAN UP POTENTIAL SPILLS OF HAZARDOUS MATERIALS. IMMEDIATELY REPORT SPILLS OF HAZARDOUS MATERIALS TO THE STATE ENVIRONMENTAL AGENCY AND THE MUNICIPALITY WHERE THE WORK IS OCCURRING.
- 14. REGRADE ALL UNPAVED AREAS DISTURBED BY THE WORK TO ORIGINAL CONTOURS OR PROPOSED CONTOURS AS REQUIRED BY THE DRAWINGS. LOAM AND SEED ALL UNPAVED AREAS DISTURBED BY THE WORK.
- 15. PROVIDE ACCESS FOR EMERGENCY VEHICLES AT ALL TIMES.
- 16. ALL PROPOSED WORK MAY BE VARIED IN THE FIELD BY THE OWNERS PROJECT REPRESENTATIVE TO MEET EXISTING CONDITIONS.
- 17. COORDINATE ALL WORK WITH THAT OF ALL SUBCONTRACTORS, THE OWNER, AND OTHER CONTRACTORS WORKING WITHIN THE PROJECT LIMITS.
- 18. AREAS OUTSIDE THE LIMIT OF WORK DISTURBED BY CONSTRUCTION WILL BE RETURNED TO THEIR ORIGINAL CONDITION OR BETTER AND WILL BE GRADED TO MEET PROPOSED CONSTRUCTION AS DIRECTED BY THE OWNERS PROJECT REPRESENTATIVE. COST FOR THIS WORK WILL BE BORNE BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE OWNER.
- 19. CULVERTS TO BE INSPECTED AT COMPLETION OF PROJECT AND REPLACED IF NEEDED DUE TO DAMAGE DURING CONSTRUCTION.
- 20. UNDERDRAIN SYSTEMS ARE COMMON IN AGRICULTURAL FIELDS AND ARE NOT DOCUMENTED ON SITE NOR LOCATED BY SURVEY. IF UNDERDRAINS ARE DAMAGED DURING CONSTRUCTION THEY SHALL BE REPAIRED SO EXISTING SUBSURFACE DRAINAGE SYSTEM IS FUNCTIONAL AT THE END OF THE CONSTRUCTION.


PLAN REFERENCES


- 1. EXISTING CONDITIONS ARE BASED ON INFORMATION PROVIDED BY WSP USA INC. IN "PROPERTY AND TOPOGRAPHIC SURVEY", DATED MARCH 22, 2019 AND "ALTA/NSPS LAND TITLE SURVEY", DATED AUGUST 28, 2019.
- 2. VERNAL POOL SURVEYS WERE CONDUCTED BY TETRA TECH AND SUBCONTRACTORS IN 2016, 2018 AND 2019.
- 3. WETLAND AND WATERCOURSE DELINEATIONS WERE COMPLETED BY TETRA TECH IN JULY AND AUGUST 2016, FALL 2018 AND WINTER/SPRING 2019.
- 4. DESIGN PARAMETERS (E.G., INTERROW SPACING, PANEL TILT, LEADING EDGE HEIGHT, ETC.) PROVIDED BY NEXTERA ENERGY.
- 5. THE HORIZONTAL DATUM REFERENCED IS NAD83 AND THE VERTICAL DATUM IS NAVD 88.


EROSION CONTROL NOTES


- 1. INSTALL ALL EROSION CONTROL MEASURES SHOWN, SPECIFIED AND REQUIRED BY THE ENGINEER PRIOR TO ANY CONSTRUCTION OR IMMEDIATELY UPON REQUEST. MAINTAIN ALL SUCH CONTROL MEASURES UNTIL FINAL SURFACE TREATMENTS ARE IN PLACE AND/OR UNTIL PERMANENT VEGETATION IS ESTABLISHED.
- 2. PRIOR TO STARTING WORK, CLEARLY STAKE WORK LIMIT LINE(S). DO NOT DISTURB VEGETATION AND TOPSOIL BEYOND THE PROPOSED LIMIT LINE. COORDINATE WITH THE OWNERS PROJECT REPRESENTATIVE ON LOCATIONS FOR THE TEMPORARY STOCKPILING OF TOPSOIL DURING CONSTRUCTION.
- 3. SIDE SLOPES, SHOULDER AREAS AND DISTURBED VEGETATED AREAS, SHALL BE GRADED TO A MAXIMUM GRADE OF 3:1, COMPACTED, STABILIZED, AND LOAMED AND SEEDED AS SHOWN ON PLANS. SLOPES STEEPER THAN 3:1 SHALL BE COVERED WITH EROSION CONTROL BLANKETS TO PREVENT EROSION.
- 4. REMOVE SILT TRAPPED AT BARRIERS AND DISPOSE OF IT IN UPLAND AREAS OUTSIDE OF BUFFER ZONES. REMOVE MATERIALS DEPOSITED IN ANY TEMPORARY SETTLING BASIN AT THE COMPLETION OF PROJECT. RESTORE ALL AREAS DISTURBED BY SETTLING BASINS.
- 5. SETTLE OR FILTER ALL SILT-LADEN WATER FROM DEWATERING ACTIVITIES IN A SEDIMENTATION OR FILTER BAG TO REMOVE SEDIMENTS PRIOR TO RELEASE TO ANY WATERWAY LOCATED DOWNSTREAM OF THE DEWATERED AREA.
- 6. SWEEP AND COLLECT ANY SEDIMENT TRACKED ONTO PUBLIC RIGHT-OF-WAYS AT THE END OF EACH DAY.
- 7. LOAM AND SEED ALL DISTURBED AREAS TO ESTABLISH VEGETATIVE COVER AND STABILIZATION AS SOON AS POSSIBLE FOLLOWING DISTURBANCE. 8. THIS DRAWING SET COVERS POST-CONSTRUCTION STORMWATER CONTROL MEASURES ONLY. REFER TO THE QUINEBAUG SOLAR PROJECT SOIL
- EROSION AND SEDIMENT CONTROL PLAN DRAWINGS AND STORMWATER POLLUTION CONTROL PLAN FOR CONSTRUCTION STORMWATER CONTROL MEASURES.

SUBSTATION CHAIN LINK FENCING NOTES:

- 1. FOOTING WIDTH TO BE (4)X POST WIDTH.
- 2. UNLESS OTHERWISE NOTED ON THE SITE PLANS, ALL CHAIN LINK FENCING COMPONENTS SHALL HAVE A HOT DIPPED GALVANIZED FINISH. ANY CHIPS IN THE GALVANIZED FINISH DUE TO SITE INSTALLATION SHOULD BE MINIMIZED AND REPAIRED WITH INDUSTRIAL GRADE GALVANIZED PAINT. ALL CUT ENDS ARE TO BE FINISHED WITH INDUSTRIAL GRADE PAINT ON GALVANIZED FINISH.
- 3. CHAIN LINK FABRIC SHALL BE MADE OF 9 GAUGE STEEL WIRE, 2" MESH SIZE, AND HOT DIPPED GALVANIZED PRIOR TO WEAVING. THE FABRIC SHALL BE FINISHED WITH A SELVAGE TWIST TOP AND BOTTOM.
- 4. ALL POSTS ARE TO BE PLUMB IN ALL DIRECTIONS.
- 5. LINE POSTS TO BE HAMMER DRIVEN. POST END MUST BE CUT TO FINAL HEIGHT AFTER DRIVING IS COMPLETE. CUT END IS TO BE CUT SQUARE AND FREE OF BENDS, MUSHROOMING, AND BURRS. CUT END TO BE TREATED AS PER NOTE #1.
- 6. LINE & TERMINAL POSTS, BRACE TUBES, TOP RAILS, & GATE POSTS SHALL ALL BE SCHEDULE 40 PIPE. REFERENCED DIAMETER IS NOMINAL.
- 7. ALL FENCE POSTS TO HAVE CAPS.
- 8. 3" WILDLIFE PASSAGE TO BE PROVIDED ON PERIMETER FENCE IN ALL AREAS THAT DO NOT ABUT PUBLIC ROADS. 6" GAP TO BE PROVIDED IN AREAS OF WILDLIFE TRAVEL.

SUBSTATION CHAIN LINK FENCE NO SCALE

DOUBLE SWING GATE NOTES:

- 1. SUBSTATION GATE TO HAVE THREE (3) STRANDS OF BARBED WIRE. EACH CONSISTING OF 2 STRAND LINE WIRE WITH 4 PT BARBS.
- 2. FOOTING WIDTH TO BE (4)X POST WIDTH.

3. GATES MAY BE MANUALLY OPERATED.

DOUBLE SWING GATE NO SCALE

Quinebaug Solar Project Quinebaug Solar, LLC Brooklyn & Canterbury, Connecticut VERIFY SCALE BAR IS 1 INCH ON ORIGINAL DRAWING 1 INC IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY MARK DATE DESCRIPTION PROJECT NO: R0317 DATE: 10/2020 FILE: Quinebaug Details Substation CD.dwg DRAWN BY: ALG CHECKED: BSH/JEC APPROVED: FJH DETAILS

Tighe&Bond

Engineers | Environmental Specialists

SCALE:

C-003

AS SHOWN

ATTACHMENT C – STORMWATER POLLUTION CONTROL PLAN

STORMWATER POLLUTION CONTROL PLAN

Quinebaug Solar Project

PROJECT NAME AND LOCATION:

Name:	Quinebaug Solar Project Brooklyn and Canterbury, Connecticut
Latitude:	41° 44' 56"
Longitude:	-71° 56' 2"

OPERATOR:

Owner: Quinebaug Solar, LLC

General Contractor: TBD

Tighe&Bond

CONTENTS

Section 1 Certification Statements

1.1	Permittee	.1-3
1.2	Contractors and Subcontractors	.1-4

Section 2 Stormwater Pollution Control Plan

2.1	Responsible Parties2-1
2.2	Project Description2-1
2.3	Estimated Total Site Area and Total Disturbed Area2-3
2.4	Soils & Geology2-3
	2.3.1 Wetland Soils2-4
	2.3.2 Non-Wetland Soils2-5
	2.3.3 Measured Infiltration Rate2-5
2.4	Runoff Curve Number2-5
2.5	Site Map2-5
2.6	Name of Receiving Water2-5
2.7	Sequence of Major Activities2-6
	2.7.1 Pre-Construction2-7
	2.7.2 Phase 1: Access Road Construction and Staging2-7
	2.7.3 Phase 2: Grubbing for Previously Wooded Areas2-8
	2.7.4 Phase 3: Grassed Area Array Construction2-8
	2.7.5 Phase 4: Wooded Area Array Construction2-9
2.8	Post-Construction Stormwater Management2-9
	2.8.1 Site Hydrology and Hydraulic Analysis2-9
	2.8.2 Best Management Practices and Water Quality2-10
	2.8.3 Post-Construction Storm Water Management Measures2-11
2.9	Pollution Controls
	2.9.1 Stabilization Practices2-12
	2.9.2 Erosion and Sediment Controls
	2.9.3 Sequence of Major Erosion and Sediment Control Activities2-13
	2.9.4 Waste Materials
	2.9.5 Hazardous Waste
	2.9.6 Sanitary Waste
2.10	Maintenance
	2.10.1 Inspection Procedures2-15
2.11	Monitoring
	2.11.1 Turbidity Monitoring Requirements
	2.11.2 Sample Collection
	2.11.3 Sampling Locations2-17
	2.11.4 Analysis
	2.11.5 Turbidity Values
	·

	2.11.6 Monitoring Reports	2-18
2.12	Financial Assurance Mechanism	2-19
2.13	Non-Stormwater Discharges	2-20
2.13	Significant-Materials Inventory	2-20
2.14	Spill Prevention and Response Procedures	2-20
	2.14.1 Good Housekeeping	2-20
	2.14.2 Product-Specific Practices	2-21
	2.14.3 Spill Control and Response Practices	2-21
2.15	Plan Location and Public Access	2-22
2.16	Reporting and Record Keeping	2-22

Appendices

- Appendix A Site Location Maps
- **Appendix B** NDDB Determination
- **Appendix C** Project Development Plans
- **Appendix D** Stormwater Management Calculations
- **Appendix E** Sweeping Schedule and Receipts
- **Appendix F** Potential Spill Location Information
- **Appendix G** Spill Incident Recording Form
- **Appendix H** CT DEEP Report of Petroleum or Chemical Product Discharge, Spillage or Release Form
- Appendix I Monthly Inspection Checklist for the Year
- **Appendix J** Weekly Report Template
- **Appendix K** Comprehensive Annual Stormwater Evaluation and Inspection Report
- **Appendix L** Stormwater Monitoring Report
- Appendix M Notice of Termination
- **Appendix N** Construction Period Stormwater Financial Assurance Mechanism Estimate

Tighe&Bond

SECTION 1

Section 1 Certification Statements

1.1 Permittee

Certification Statement

"I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify that, based on reasonable investigation, including my inquiry of those individuals responsible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief. I understand that a false statement made in this document or its attachments may be punishable as a criminal offense, in accordance with Section 22a-6 of the General Statutes, pursuant to Section 53a-157b of the General Statutes, and in accordance with any other applicable statute.

Signature:	Date:	
Name:	Title:	
Company name:		
Address:		
Telephone:	Fax:	

Project Site: Quinebaug Solar Project, Brooklyn and Canterbury, CT

1.2 Contractors and Subcontractors

Each Contractor and Subcontractor that will perform actions on the site which may reasonably be expected to cause or have the potential to cause pollution of the waters of the State shall sign the certification statement included in this plan.

Certification Statement

"I certify under penalty of the law that I have read and understand the terms and conditions of the General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities. I understand that as a contractor or subcontractor at the site, I am authorized by this General Permit, and must comply with the terms and conditions of this General Permit, including but not limited to the requirements of the Stormwater Pollution Control Plan prepared for the site."

CONTRACTOR CERTIFICATION

Signature:	Date:
Name:	Title:
Company name:	
Address:	
Telephone:	Fax:
Project Site: Quinebaug Sola	r Project, Brooklyn and Canterbury, CT
SUBCONTRACTOR CERTIFICA	ATION
Signature:	Date:
Name:	Title:
Company name:	
Address:	
Telephone:	Fax:
Project Site: Quinebaug Sola	r Project, Brooklyn and Canterbury, CT

SUBCONTRACTOR CERTIFICATION Signature: _____ Date: _____ Name: ______Title:______Title:______ Company name: _____ Address: _____ Telephone:______ Fax: ______ Project Site: Quinebaug Solar Project, Brooklyn and Canterbury, CT SUBCONTRACTOR CERTIFICATION Signature: _____ Date: _____ Name: ______ Title: _____ Company name: _____ Address: Telephone:______ Fax: ______ Project Site: Quinebaug Solar Project, Brooklyn and Canterbury, CT SUBCONTRACTOR CERTIFICATION Signature: _____ Date: _____ Name: ____ Title: Company name: _____ Address: ______ Telephone:_____ Fax: ______Fax: ______ Project Site: Quinebaug Solar Project, Brooklyn and Canterbury, CT

Tighe&Bond

SECTION 2

Section 2 Stormwater Pollution Control Plan

2.1 Responsible Parties

The following Parties are identified in this Plan:

- Permittee: Quinebaug Solar, LLC. The Permittee is the party that initiates, creates or maintains a discharge in accordance with Section 3 of the General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities (General Permit).
- Owner: Quinebaug Solar, LLC. Owner of the proposed solar facility and associated stormwater management measures.
- Contractor: Engineering, Procurement, and Construction (EPC) Contractor hired by Quinebaug Solar, LLC to perform installation of the solar facility and appurtenances.
- Sub-Contractor: Specialty sub-contractor hired by Contractor or Quinebaug Solar, LLC to perform installation of the solar facility and appurtenances.
- Site Superintendent: Representative of Contractor tasked with overseeing daily operations at the site.
- Qualified Inspector: As defined in the GP, means an individual possessing either (1) a professional license or certification by a professional organization recognized by the commissioner related to agronomy, civil engineering, landscape architecture, soil science, and two years of demonstrable and focused experience in erosion and sediment control plan reading, installation, inspection and/or report writing for residential and commercial construction projects in accordance with the Guidelines; or (2) five years of demonstrable and focused experience in erosion and sediment control plan reading, installation, inspection and/or report writing for residential and commercial construction projects in accordance with the Guidelines; or (3) certification by the Connecticut Department of Transportation(DOT).
- Environmental Monitor: Representative of Quinebaug Solar, LLC on-site full time to provide construction and permit compliance oversight.
- Design Engineer: Professional Engineer licensed in the state of CT who stamped the construction-period stormwater design.

2.2 Project Description

Quinebaug Solar, LLC (the Permittee or Owner) is proposing to install a 49.36 megawatt (AC) ground-mounted solar photovoltaic (PV) facility in the Towns of Brooklyn and Canterbury, Connecticut (Project).

The Project Site consists of 30 privately-owned parcels located in the southeast portion of the Town of Brooklyn the northeast portion of the Town of Canterbury, in Windham County, Connecticut. The Project Site is generally bounded by Wauregan Road to the south (Canterbury), Blackwell Brook and Cold Spring Brook to the west, Rukstela Road,

Allen Hill Road and forested areas to the north (Brooklyn) and the Quinebaug River to the east.

The Project Site consists of gently sloping hills, large level areas, and a few moderately to steeply sloping areas that currently contain a combination of previously developed areas, overgrown former pasture lands, mixed second-growth woodlands, active gravel mines, and agricultural fields. The Permittee intends to utilize existing roadways that traverse the entire Project Area wherever possible. Land uses in the vicinity of the Project Area include gravel mining, residential development, open space, and agriculture.

The topography of the existing conditions site conveys stormwater towards numerous design points. Blackwell Brook, located to the west of the Project Area, is the receiving water for the majority of the Project Area. Smaller sub-watersheds collect stormwater runoff internally in existing depressed areas. The Project has been designed to avoid construction within areas of steeper slopes where possible.

No floodplain exists within the limits of the subject parcels. The Site contains inland wetlands and watercourses and the Project has been designed to limit impacts to these areas. A description of wetland and watercourse impacts can be found in the Wetland and Watercourse Delineation Report prepared by Tetra Tech Inc. in Exhibit D of the Connecticut Siting Council (CSC) Petition # 1310A (Petition). Additional erosion controls are proposed in steep areas and upstream to sensitive areas.

In the post-construction or proposed condition, stormwater management will be accomplished through the conversion of gravel areas to a grassy meadow condition and the construction of basins and berms designed to provide stormwater basins. The conversion of gravel areas to a grassy meadow offsets the impacts of the proposed gravel access road and concrete equipment pads and conversion of woodland to grassy meadow. The construction of berms adds additional infiltration to attenuate the runoff rate and volume caused by a decrease in the time of concentration with the conversion of woods to meadow.

In the proposed condition, within the solar array, stormwater will fall onto the PV modules and will flow off the edge into the grassy ground cover. Stormwater runoff will continue to flow across the ground surface as under existing conditions generally along existing flow paths. To mitigate for the changes in stormwater flow patterns, engineered basins to mitigate peak discharge rates and to encourage infiltration were incorporated within the solar array. Stormwater runoff quantity will not be increased as part of the proposed development.

The Project is proposed to be constructed in phases to minimize disturbance. Within each Phase, sub-phases will be designed to be less than 10 acres and each sub-phase will have a temporary sediment basin or trap as required. A phased erosion control plan for construction activities can be found in Appendix C. While a total of approximately 234 acres will be disturbed as part of the proposed Project, only 105 +/- acres of that disturbed area will experience any significant grading and/ or clearing activities. Significant grading is not anticipated in most of the proposed array areas. Grading is required in certain areas to flatten steep slopes and to accommodate internal access roads, stormwater features, and the substation.

In the area of the agricultural fields, the site will be planted with a low growing seed mix to stabilize the site.

The proposed scope of work is shown on the drawings in Appendix C.

2.3 Estimated Total Site Area and Total Disturbed Area

Combined, the Project Area/Site parcels encompass approximately 599 acres. As proposed, the Development Area/ limit of work of the proposed Project will occupy approximately 234 acres of the 599-acre Project Area/ Site. While a total of approximately 234 acres will be disturbed as part of the proposed Project, only 105 +/- acres of that disturbed area will experience any significant grading and clearing activities.

2.4 Soils & Geology

Bedrock geology within the Project Area is primarily granite, schist, and gneiss. Glacial till is the dominant surface material, with some stratified deposits in valleys. Open hills with low elevations form in irregular plains (Griffith et al. 2009). Typical soil orders include coarse-loamy and sandy, mesic Inceptisols and some Entisols. Soils are generally well drained silt-loam and sandy-loam and depth to bedrock is greater than 60 inches throughout a majority of the Project Area (USDA NRCS 2008). Approximately 40 percent of the Project Area soils have been regularly tilled for agricultural use or otherwise disturbed from gravel extraction. The soils found on-site included in the table below.

Table 1

NRCS Soil Summary

Map Unit Designation	Soil Association	Additional Description	Hydrologic Soil Group (HSG)
2	Ridgebury association	Fine sandy loam	D
3	Ridgebury, Leicester, and Whitman association	Extremely stony	D
13	Walpole association	Sandy loam	B/D
15	Scarboro association	Muck	A/D
17	Timakwa and Natchaug association	N/A	B/D
23A	Sudbury association	Sandy loam	В
29A, 29B	Agawam association	Fine sandy loam	В
34A, 34B	Merrimac association	Fine sandy loam	А
36A, 36B	Windsor association	Loamy sand	А
38A, 38C, 38E	Hinckley association	Loamy sand	А
45A, 45B, 46B	Woodbridge association	Fine sandy loam	C/D
50B, 51B, 52C	Sutton association	Fine sandy loam	B/D
58C, 59D	Gloucester association	Gravelly sandy loam	А
60B, 61B, 61C, 62D	Canton and Charlton association	Stony	В
73C	Charlton-Chatfield association	Rocky	В
84B, 85B, 86C	Paxton and Montauk association	Fine sandy loam	С
100	Suncook association	Loamy fine sand	А
102	Pootatuck association	Fine sandy loam	В
103	Rippowam association	Fine sandy loam	B/D
108	Saco association	Silt loam	B/D
302	Dumps	N/A	-
305	Udorthents-Pits complex	Gravelly	С
306	Udorthents-Urban land complex	N/A	В
701A, 701B	Ninigret association	Fine sandy loam	С
W	Water	N/A	-

2.1.1 Wetland Soils

General soils observations were made as part of the wetland and watercourse delineation survey effort, and to determine if unique soil conditions occur on site. Soils observed as

part of this survey are described in the Wetland and Watercourse Delineation Report provided in Exhibit D of the Petition.

2.1.2 Non-Wetland Soils

Areas mapped by the United States Department of Agriculture Natural Resources Conservation Service (USDA NRCS) as Prime Farmland, Soils of Statewide Importance and Locally Important Farmland soils are located within the Project Site. A Farmland Soil Mitigation Plan has been prepared to minimize and mitigate impacts to agricultural soils. As defined by the USDA NRCS, farmland soils are based on soil type and include Prime Farmland, Soils of Statewide Importance, and Locally Important Farmland. USDA NRCS defines Prime Farmland Soils as those having the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oil seed crops, and that also are available for these uses.

Additionally, in 2016 Tetra Tech performed a site visit, including test pit investigations, to confirm that the soil series mapped for the site were present and matched with those areas designated as Prime, Statewide, and Local Farmland. Test pits were excavated and evaluated in soil areas mapped as Paxton and Montauk soils, as well as in Windsor soils. The results from evaluation of the soil test pits indicated that the Farmland soil series designations shown in the NRCS mapping were generally accurate. Detailed results of this investigation are provided in the Petition.

Portions of the Project Area have been affected by current and historic gravel extraction activities. These areas have modified soil characteristics as a result of the disturbance of and removal of surface soils. These areas exhibit characteristics of undeveloped parent material and would not currently be expected to possess soil quality associated with Prime Farmland. The Farmland Soil Mitigation Plan further quantifies the amount of mapped farmland soils that have been affected by this disturbance

2.1.3 Measured Infiltration Rate

An infiltration test was not performed to determine the infiltration capacity of the existing soils. Infiltration rates assumed in stormwater management calculations were determined in accordance with the National Resource Conservation Service (NRCS) Minimum Infiltration Rates of Hydrologic Soil Groups, as provided in the 2004 Connecticut Stormwater Quality Manual.

2.2 Runoff Curve Number

The weighted runoff curve number "CN" for the existing Project is **62**. The weighted runoff curve number "CN" for the completed Project will be **63**.

2.3 Site Map

See Appendix A, Figure 1 for site location mapping and see Appendix C for detailed site maps.

2.4 Name of Receiving Water

The Quinebaug River is located to the south and east of the Project. Stormwater runoff from the post-construction Project will ultimately discharge to the Quinebaug River.

According to the Thames River Basin Partnership, the Quinebaug River watershed is approximately 255,070 acres and extends into south central Massachusetts and ending where it discharges to Shetucket River in Norwich, Connecticut. According to the State of Connecticut Department of Energy and Environmental Protection (CT DEEP) 2016 Integrated Water Quality Report, the impairments observed in the Quinebaug River include Escherichia coli with potential sources including stormwater, remediation sites, spills, groundwater impacts, industrial discharges, landfills, municipal discharges, illicit discharges, insufficient on-site treatment/septic systems, agricultural activities, and salt storage facilities. The 2016 Report recommended delisting of the Quinebaug River, noting applicable water quality standards had been attained. The proposed Project will not result in an increase in the identified pollutants.

2.5 Sequence of Major Activities

The construction period stormwater design for the Quinebaug Solar Project has been designed in accordance with the CT General Permit, the SESC Manual, and CT DEEP's September 8, 2017 Guidance Document on "Stormwater Management for Solar Farm Construction Projects", with the intention of protecting natural resources and adjacent watercourses from adverse impacts during the construction period. The SESC Manual indicates that construction phases should occur in 5-acre areas, with sediment traps designed to hold a volume of water. Particulates then settle out of suspension, with a secondary volume to retain runoff during larger storm events. The trap includes a spillway through which water is allowed to flow onto stable ground. Runoff from the construction area is diverted through use of earthen berms and swales equipped with check dams to reduce the velocity of stormwater flow. The berms and swales direct stormwater to the sediment trap. Perimeter erosion control barriers will be installed along the downgradient edges of the phase prior to conducting any earth-disturbing activities, with other phase demarcation to be determined by the Contractor installed along the limit of work for each phase. Once earth disturbing activities are complete, the ground surface is considered stabilized once it has reached 80% vegetative coverage per the SESC Manual. Seeded areas will be monitored daily and augmented with additional seeding as needed. Temporary stormwater controls may be removed once the contributing area can be considered stable. Larger development areas are allowed up to 10-acres; however, temporary sediment basins will be required.

For the purpose of this Stormwater Pollution Control Plan, the following activities are considered earth disturbing activities: solar infrastructure installation (i.e., driving piles for solar panel racking); tree clearing if ground is not frozen; vegetation grubbing; grading; roadway installation; concrete equipment pad installation; and subsurface utility infrastructure construction. The Project is proposed to be constructed in phases to minimize disturbance: 4 major phases with 47 sub-phases, as shown in Appendix C. Within each major phase, sub-phases will be designed to be less than 10 acres and each will have a temporary sediment basin or trap as required. The major phases include the following:

- Phase 1: Access Road Construction and Staging
- Phase 2: Grubbing for Previously Wooded Areas
- Phase 3: Grassed Area Array and Substation Construction
- Phase 4: Wooded Area Array Construction

Note that Phase 1 must occur before all other phases. Subsequent subphases can occur simultaneously provided that each active subphase has all temporary measures installed and each trap/basin is discharging to stable ground. Phase 2 and Phase 4 occur in the same location, with differing construction activities. Phase 4 is the installation of solar infrastructure in the area that was grubbed and temporarily stabilized in Phase 2.

Two staging areas are proposed as part of this project: approximately 4 acres in the central gravel pit and approximately 5 acres in the area located northwest of the substation and adjacent array. Soil erosion and sediment control measures for staging in these areas will be implemented in Phase 1 and use of this staging area will continue throughout the duration of the project. Ground conditions will be improved as needed for staging activities, which include storing equipment, vehicle parking, and trailer placement.

Construction of the Project is expected to begin in the fourth quarter of 2020 with mobilization of equipment and land clearing efforts. Further site work and land preparation is expected to be complete by the end of the second quarter of 2021. Final site stabilization, testing, and commissioning is expected to be complete in the third quarter of 2021. The following describes the sequence of construction activities:

2.7.1 Pre-Construction

- 1. Demarcation of clearing limits, selective cutting zones, and buffer areas.
- Cut trees above ground (retain stumps) in frozen conditions. If reliably frozen conditions do not exist, or if the tree cutting operation results in ground disturbance or rutting, stormwater controls must be installed in accordance with the Soil Erosion and Sediment Control Plans in Appendix C for each area to be cleared prior to the tree clearing.
- 3. Environmental restriction and safety training for all site personnel.
- 4. Preconstruction meeting.

2.7.2 Phase 1: Access Road Construction and Staging

- 1. Flag the limits of construction necessary to facilitate the preconstruction meeting.
- 2. Environmental restriction and safety training for all site personnel.
- 3. Preconstruction meeting.
- 4. Install construction entrance.
- 5. Install perimeter controls to establish phase work area in accordance with site plan and Stormwater Pollution Control Plan (SWPCP) prior to conducting any earthdisturbing activities.
- 6. Prior to installing stormwater controls, such as temporary diversions and stone check dams, inspect existing conditions to ensure discharge locations are stable. If not stable, review discharge conditions with the design engineer and implement additional stabilized measures prior to installing surface water controls.
- 7. Construct temporary sediment traps and/or basins, diversion swales and earthen berms with check dams.
- 8. Once temporary stormwater controls are established, clear and grub existing stumps.

- 9. Where applicable, strip, re-distribute, and stabilize all topsoil that is within the footprint of the site roads, site road appurtenances and the collector substation (pursuant to 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, Chapter 4, Part ii and the Farmland Soils Mitigation Plan in Exhibit E).
- 10. Construct site roads and appurtenances.
- 11. Stabilize site by hydroseeding with bonded fiber matrix or installing erosion control blanket in all disturbed areas. Monitor seeded areas daily and augment with additional hydroseeding as needed.
- 12. Upon stabilization, temporary controls may be removed or relocated as necessary and construction may advance on subsequent sub-phases.

2.7.3 Phase 2: Grubbing for Previously Wooded Areas

- 1. Flag the limits of construction.
- 2. Install perimeter controls to establish phase work area in accordance with site plan and SWPCP plans prior to conducting any earth-disturbing activities.
- Prior to installing surface water controls, such as temporary diversions and stone check dams, inspect existing conditions to ensure discharge locations are stable. If not stable, review discharge conditions with the design engineer and implement additional stabilized measures prior to installing surface water controls.
- 4. Construct temporary sediment traps and/or basins, diversion swales and earthen berms with check dams.
- 5. Once temporary stormwater controls are established, grub existing stumps from previously cleared trees.
- 6. Stabilize site by hydroseeding with bonded fiber matrix or installing erosion control blanket in all disturbed areas. Monitor seeded areas daily and augment with additional hydroseeding as needed.
- 7. Check and repair temporary controls as needed. Temporary controls to remain in place through Phase 4 construction.

2.7.4 Phase 3: Grassed Area Array Construction

- 1. Flag the limits of construction.
- 2. Install perimeter controls to establish phase work area in accordance with site plan and SWPCP plans prior to conducting any earth-disturbing activities.
- 3. Prior to installing surface water controls, such as temporary diversions and stone check dams, inspect existing conditions to ensure discharge locations are stable. If not stable, review discharge conditions with the design engineer and implement additional stabilized measures prior to installing surface water controls.
- 4. Construct temporary sediment traps and/or basins, diversion swales and earthen berms with check dams.
- 5. Clear and grub existing stumps as needed.
- 6. Install solar infrastructure, including racking, solar modules, utility connections, and equipment pads. Solar array construction will begin with posts or ground screws being driven into the ground; racking will then be affixed to the posts; and modules will be mounted and installed on the racks.

- 7. Construct substation.
- 8. Stabilize site by hydroseeding with bonded fiber matrix or installing erosion control blanket in all disturbed areas. Monitor seeded areas daily and augment with additional hydroseeding as needed.
- 9. After site is fully stabilized, remove temporary stormwater controls.

2.7.5 Phase 4: Wooded Area Array Construction

- 1. Inspect and install perimeter controls established in Phase 2 to ensure phase work area is in accordance with site plan and SWPCP plans prior to conducting any earth-disturbing activities.
- 2. Inspect and construct temporary sediment traps and/or basins, diversion swales and earthen berms with check dams installed in Phase 2.
- 3. Install solar infrastructure, including racking, solar modules, utility connections, and equipment pads. Solar array construction will begin with posts or ground screws being driven into the ground; racking will then be affixed to the posts; and modules will be mounted and installed on the racks.
- 4. Stabilize site by hydroseeding with bonded fiber matrix or installing erosion control blanket in all disturbed areas. Monitor seeded areas daily and augment with additional hydroseeding as needed.
- 5. After site is fully stabilized, remove temporary stormwater controls. The ground surface is considered stabilized once it has reached 80% vegetative coverage per the SESC Manual.

2.6 Post-Construction Stormwater Management

2.6.1 Site Hydrology and Hydraulic Analysis

Under proposed conditions, large portions of the agricultural uses will be converted to solar array where panels will be installed using driven posts; in some areas, screws or piles may be used in lieu of or in addition to the posts. Existing woodland within the limits of the Project will be cleared and grubbed and allowed to stabilize prior to construction of solar infrastructure.

Following construction, stormwater will fall onto solar panels and will flow off the edge into the vegetated surface and flow along existing flow paths as under existing conditions. Therefore, the only solar panels that are considered impervious will be the most upgradient panels in each subcatchment.¹ The remainder of the solar facility within the limit of work will be considered meadow, non-grazed. Concrete equipment pads or skids, existing and proposed gravel access roads, woodland, remaining agricultural fields and basins also were included in the post-development analysis.

The topography of the site will be altered in select areas to accommodate the solar array, stormwater berms and basins, and proposed access roads. The delineation of drainage

¹ Cook, L.M. & McCuen, R. H., (2013). Hydrologic Response of Solar Farms. *Journal of Hydrologic Engineering*, 18(5). pp.536-541

Quinebaug Solar Project Stormwater Pollution Control Plan

areas will not substantially change as a result of the proposed development. The Proposed Conditions Drainage Area Map, provided as Figure 4 in Appendix A, indicates that the four existing conditions design points will be maintained under proposed conditions. The contributing drainage areas will convey stormwater runoff generally as under existing conditions.

The proposed Project will not substantially alter stormwater flow paths and will result in decreased peak discharge rates as a result of stormwater management features designed to reduce peak discharge rates. The existing Site is primarily woodland and grass with existing gravel areas and gravel roads. The CN value for the existing site is 62 and the proposed CN value is 63 for the entire site. Additionally, infiltration to attenuate runoff rate and volume was achieved through the construction of earthen berms.

Table 2.5 presents the results of the pre-development stormwater runoff analysis versus the post-development stormwater runoff analysis for each design point.

Table 2.5

		2-year Storm Event (cfs)	10-year Storm Event (cfs)	25-year Storm Event (cfs)	100-year Storm Event (cfs)
Design Point 1 (West)	Existing	9.2	36.0	55.6	125.5
	Proposed	8.9	35.9	55.3	124.0
Design Point 2 (South)	Existing	9.8	27.1	42.2	126.0
	Proposed	9.2	25.3	37.1	121.4
Design Point 3 (East)	Existing	21.2	51.3	66.0	97.0
	Proposed	19.5	44.6	58.7	96.5
Design Point 4 (Southeast)	Existing	23.8	66.3	87.7	136.9
	Proposed	21.2	61.5	83.7	133.0

Peak Discharge Rate Comparison

Table 2.5 indicates that existing peak discharge rates are reduced for the 2-, 10-, 25- and 100-year storm events.

2.6.2 Best Management Practices and Water Quality

The proposed conditions stormwater management plan for the proposed site has been designed to remove a high percentage of sediments in accordance with the Connecticut Department of Energy and Environmental Protection "Stormwater General Permit Criteria".

The post-construction stormwater management plan for this site uses "Best Management Practices ("BMPs")" to meet or exceed the Connecticut DEEP's goal of 80% removal of total suspended solids and Water Quality requirements. The BMPs include:

<u>Groundwater Recharge</u>: The Project has been designed to utilize a "country drainage" scheme which allows stormwater runoff from impervious surfaces to flow into adjacent

grassed areas and allowed to recharge to groundwater as under existing conditions. The Project does not include large, uninterrupted spans of impervious ground coverage. Concrete equipment pads are relatively small in comparison to the overall watershed, will not adversely impact groundwater recharge capabilities of the proposed conditions site. The total development area (area within the limit of work shown on the Project drawings) is 234 acres. Of that 234 acres, impervious ground coverage will increase from 0.08% of the entire Project Area to 2.92% of the entire Project Area. Since this increase is negligible in relation to the entire Project Area and larger watershed, no further calculations to determine the volume of required groundwater recharge have been provided as part of this report.

The required Water Quality Volume (WQV) for the proposed conditions is based on the acreage of impervious surfaces including gravel access roads and impervious concrete pads. While the hydrologic analysis assumed that a portion of the solar panels in each drainage area were considered impervious in order to determine anticipated peak discharge rates, they have been excluded from WQV computations. The panels, as well as the concrete equipment pads, will not be subject to vehicular access, and therefore do not produce any pollutants to stormwater runoff.

All other impervious surfaces, specifically gravel roads, will not be curbed in order to promote a "country drainage" scenario. The lack of curb and gutter will allow stormwater runoff from the roadways to flow through the adjacent grasses. This will remove any sediment from the runoff prior to discharge off-site or to a resource area. The Site Plans indicate that impervious surfaces will be located over 100-feet from any receiving water, providing suitable residence time within the grass to remove sediment from runoff.

2.6.3 Post-Construction Storm Water Management Measures

2.8.3.1 General Permit Coverage Termination

Upon the completion of any and all construction activities on site, the Registrant shall submit a Notice of Termination Form, to the CT DEEP to ensure the proper handling of the permit termination. See Appendix M for a blank form.

Upon completion of the construction activities the Owner (or their delegate) shall conduct monthly inspections of the BMPs which include all areas covered by the SWPCP and all stormwater structures and outfalls on the site for surface or floating debris, oil and sediment for the first 90 days. Following the initial 90 day inspection period, stormwater BMPs shall be inspected in accordance with the recommended schedule outlined in 2002 Connecticut Stormwater Quality Manual, or as further detailed in Section 2.8.3.2 below. The site shall be inspected bi-annually for trash accumulation and surface debris. Routine inspection forms can be found in Appendix I.

2.8.3.2 Operations and Maintenance

The application of no disturbance buffers and establishing meadow habitat are two ways water quality will be protected throughout the life of the Project. Compared to current site uses, the final site stabilization design will result in a net improvement in comparison to current conditions for several areas close to Blackwell Brook and Cold Spring Brook. The post-construction stormwater plan was developed with the intention of protecting natural resources and adjacent watercourses from adverse impacts throughout the operational phase of the Project.

The Owner (or their delegate) will be responsible for implementing the Operations and Maintenance Plan on the entire property that shall cover the following:

Roadway Surface

Regular road maintenance will be employed during operation of the Project. Gravel roadway surfaces shall be observed periodically by the Owner to clean trash and other debris, and to identify areas where concentrated runoff may cause erosion of the roadway surface.

Perform a visual inspection of roadway areas four times per year with one inspection after the last snowfall, but no later than April 1. Repair roadway areas as necessary when erosion is found during the remainder of the year.

<u>Landscape</u>

Meadow vegetation surrounding and underneath the solar PV array will be inspected and mowed twice per year to allow for healthy meadow cover, while preventing woody vegetation growth. The number of mows will be adjusted based on field conditions and actual vegetation growth.

Existing vegetation around the perimeter of the Project Site will be maintained in its native condition. No clearing, grading, stockpiling, storage or development will occur in these areas.

Spill Containment

Any oil or gasoline spills should be cleaned from the site immediately, and the stormwater management system components cleaned. The Owner should not wait until the next inspection to clean the components. A record of spills should be kept in a log book, and reported as required to Connecticut DEEP. See Appendices F and G for reporting forms.

2.7 Pollution Controls

2.7.1 Stabilization Practices

Major erosion and sediment controls are shown on the plans in Appendix C. Stabilization practices include:

- 1. **Vehicle areas:** Stabilization of construction road access, staging, and parking areas using coarse aggregate.
- 2. **Temporary Stabilization:** Hydroseed with bonded fiber matrix or install erosion control blankets and broadcast seed areas.
- 3. **Permanent Vegetation:** Sodding and/or seeding of all disturbed areas.

2.7.2 Erosion and Sediment Controls

Construction phase erosion and sediment controls will include structural controls such as conveyance swales and berms, temporary sediment basins and temporary sediment traps in addition to perimeter controls, check dams, and other measures as required during construction to manage stormwater. Structural controls have been designed in accordance with the 2002 Guidelines for Soil Erosion and Sediment Control manual. Additional details regarding temporary basin and trap location and sizing are provided in Appendices B and C, respectively.

Redundant erosion and sediment controls are proposed to provide additional protection in "Erosion Prone Areas" as identified in Appendix A, Figure 5. These include measures to prevent erosion and sedimentation to adjacent watercourses during construction and protection of water quality for protection of eastern pearlshell (*Margaritifera margaritifera*), a freshwater mussel species that has the potential to occur in the freshwater streams in and adjacent to the Project Area as well as other sensitive aquatic species. These include:

- Establishing a no-disturbance buffer around all wetlands and watercourses that will be fortified by using the best erosion control devices available, to maintain high water quality of the stormwater runoff during heavy rainfall events. Buffers will be a minimum of 100 feet, except in limited circumstances in the vicinity of existing gravel roads (less than 100 feet) that are to be used for site access during construction;
- Redundant erosion control devices will be installed along the gravel access roads to ensure a failsafe system is in place to protect the resources. Regular road maintenance will be employed during construction;
- Redundant erosion control devices installed in erosion prone areas (see Appendix A, Figure 5), and others identified prior to construction, will be regularly monitored during construction to ensure proper stormwater control function is maintained throughout the construction period, and if necessary additional controls will be implemented in these areas as needed to control the volume and quality of water running off the site;
- The forested buffer located established for the herpetofauna avoidance area (located around the cluster of wetlands and vernal pools in the relic stream channel immediately up slope from Cold Spring Brook and Blackwell Brook, see Appendix A, Figure 6) will be left intact between the adjacent watercourses and potential sources of erosion and sedimentation created during Project construction; and
- Maintaining temporary stormwater controls until site is considered stabilized.

Areas where additional erosion control is proposed are indicated in the Appendix C.

2.7.3 Sequence of Major Erosion and Sediment Control Activities

The construction will proceed in sequences as previously described in Section 2.7. The stabilized construction access, staging, and parking areas will be constructed first. The following pollution prevention controls and measures will be implemented throughout the Project:

- 1. Perimeter erosion controls will be installed prior to conducting any earth-disturbing activities; and construction entrances, and silt fence will be constructed in predetermined locations.
- Prior to installing surface water controls such as temporary diversions and stone check dam, inspect existing conditions to ensure discharge locations are stable. If not stable, review discharge conditions with the design engineer and implement additional stabilized measures prior to installing surface water controls.
- 3. Construct temporary sediment traps and/ or basins, diversion swales and earthen berms with check dams.

- 4. Complete work designated to sequence sub-phase.
- 5. Stabilize site by hydroseeding with bonded fiber matrix or installing erosion control blanket in all disturbed areas. Monitor hydroseeded areas and erosions control blanketed areas daily and amend with additional seeding as needed.
- 6. Upon stabilization, temporary controls may be removed in order to construct subsequent sub-phases.

2.7.4 Waste Materials

All trash and construction debris from the site will be hauled to an approved landfill or other legal means of disposal. No construction waste material will be buried on the site. Employee waste and other loose materials will be collected so as to prevent the release of floatables during runoff events.

All personnel will receive instructions regarding the correct procedure for waste disposal. Notices describing these practices shall be posted in the construction office. The site superintendent will be responsible for seeing that these procedures are followed.

2.7.5 Hazardous Waste

No hazardous waste is expected to be generated or encountered during this Project. In the event that hazardous waste is encountered, all hazardous waste materials will be disposed of in the manner specified by local, state or federal regulation or by the manufacturer.

The site superintendent will be responsible for seeing that these practices are followed.

2.7.6 Sanitary Waste

Portable sanitary units will be provided for use by all workers throughout the life of the Project. All sanitary waste will be regularly collected from the portable units by a licensed sanitary waste management contractor.

2.8 Maintenance

To maintain the erosion and sediment controls, the following procedures will be performed.

- 1. **Sediment Capture Devices:** Sediment will be removed from the upstream or upslope side of the perimeter erosion controls when the depth of accumulated sediment reaches about one-third the height of the structure. Sediment accumulations in temporary traps and basins shall be removed when sediment depth exceeds one half of the wet storage capacity of the basin or trap, or when the depth of the available pool in the basin is reduced to 18 inches.
- 2. **Temporary Controls:** All temporary controls will be removed after the disturbed areas have been stabilized. The ground surface is considered stabilized once it has reached 80% vegetative coverage per the SESC Manual.

The contractor shall haul off-site and properly dispose of, or use as backfill, sediment that is removed from structural barriers. Sediment temporarily stockpiled on site will be placed in such areas and in such manner as to minimize wash-off into the local drainage system. Berms, perimeter erosion controls, and polyethylene or polypropylene covers are measures which may be utilized in minimizing washoff.

2.8.1 Inspection Procedures

All construction activities submitting a registration for the General Permit shall be inspected initially for Plan implementation and then weekly for routine inspections. Weekly inspection forms can be found in Appendix J. Inspections will be conducted by a Qualified Inspector (defined below at Section 2.10.1.3). The Permittee also will have a full-time, on-site Environmental Monitor to oversee construction and permit compliance throughout the construction process, which will allow for real-time adjustments to be made to protect adjacent natural resources. The Design Engineer will be on-site during the establishment of each major Phase to oversee compliance with the proposed design.

2.80.1.1 Plan Implementation Inspection

Within the first 30 days following commencement of the construction activity on the Site, the Permittee shall contact a qualified soil erosion and sediment control professional or a qualified professional engineer (a Qualified Inspector) to inspect the site. The site shall be inspected at least once and no more than three times during the first 90 days to confirm compliance with the General Permit and proper initial implementation of all controls measures designated in the Plan for the site for the initial phase of construction. The inspection forms can be found in Appendix H, I, and J.

2.10.1.2 Routine Inspections

The Permittee shall routinely inspect the site for compliance with the General Permit and the Plan for the site until a Notice of Termination has been submitted. Inspection procedures for these routine inspections shall be addressed and implemented in the following manner:

- a. The Permittee shall maintain a rain gauge on-site to document rainfall amounts. At least once a week and within 24 hours of the end of a storm that generates a discharge, a qualified inspector (provided by the Permittee), as defined in the "Definitions" section (Section 2) of the General Permit, shall inspect, at a minimum, the following: disturbed areas of the construction activity that have not been finally stabilized; all erosion and sedimentation control measures; all structural control measures; soil stockpile areas; washout areas and locations where vehicles enter or exit the site. These areas shall be inspected for evidence of, or the potential for, pollutants entering the drainage system and impacts to the receiving waters. Locations where vehicles enter or exit the site shall also be inspected for evidence of off-site sediment tracking. For storms that end on a weekend, holiday or other time after which normal working hours will not commence within 24 hours, an inspection is required within 24 hours only for storms that equal or exceed 0.5 inches. For storms of less than 0.5 inches, an inspection shall occur immediately upon the start of the subsequent normal working hours. Where sites have been temporarily or finally stabilized, such inspection shall be conducted at least once every month for three months.
- b. The Qualified Inspector(s) shall evaluate the effectiveness of erosion and sediment controls, structural controls, stabilization practices, and any other controls implemented to prevent pollution and determine if it is necessary to install, maintain, or repair such controls and/or practices to improve the quality of stormwater discharge(s).
- c. A report shall be prepared and retained as part of the Plan. This report shall summarize: the scope of the inspection; name(s) and qualifications of personnel

Quinebaug Solar Project Stormwater Pollution Control Plan

making the inspection; the date(s) of the inspection; weather conditions including precipitation information; major observations relating to erosion and sediment controls and the implementation of the Plan; a description of the stormwater discharge(s) from the site; and any water guality monitoring performed during the inspection. The report shall be signed by the Permittee or his/her authorized representative in accordance with the "Certification of Documents" section (subsection 5(i)) of the General Permit. The report shall include a statement that, in the judgment of the qualified inspector(s) conducting the site inspection, the site is either in compliance or out of compliance with the terms and conditions of the Plan and permit. If the site inspection indicates that the site is out of compliance, the inspection report shall include a summary of the remedial actions required to bring the site back into compliance. Non-engineered corrective actions (as identified in the Guidelines) shall be implemented on site within 24 hours and incorporated into a revised Plan within three (3) calendar days of the date of inspection unless another schedule is specified in the Guidelines. Engineered corrective actions (as identified in the Guidelines) shall be implemented on site within seven (7) days and incorporated into a revised Plan within ten (10) days of the date of inspection, unless another schedule is specified in the Guidelines or is approved by the commissioner. During the period in which any corrective actions are being developed and have not yet been fully implemented, interim measures shall be implemented to minimize the potential for the discharge of pollutants from the site.

- d. Inspectors from the CT DEEP may inspect the site for compliance with the General Permit at any time construction activities are ongoing and upon completion of construction activities to verify the final stabilization of the site and/or the installation of post-construction stormwater management measures pursuant to Section 6(a).
- e. Additional inspections, reports and documentation may also be required to comply with the "Monitoring Requirements" section (Section 5(c)) of the General Permit.

2.10.1.3 Inspection Personnel Qualifications

The site shall be inspected by a qualified soil erosion and sediment control professional or a qualified professional engineer (Qualified Inspector). The inspector shall be someone who:

- a. is not an employee, as defined by the Internal Revenue Service in the Internal Revenue Code of 1986, of the registrant, and
- b. has no ownership interest of any kind in the Project for which the registration is being submitted.

2.9 Monitoring

2.9.1 Turbidity Monitoring Requirements

Sampling shall be conducted in accordance with the requirements of the General Permit at least once every month, when there is a discharge of stormwater from the site while construction activity is ongoing, until final stabilization of the drainage area associated with each outfall is achieved. The Permittee is only required to take samples during normal working hours as defined in Section 2 of the General Permit. The Site's normal working hours must be identified in the Plan pursuant to Section 5(b)(1)(B)(vii) of the General Permit. If sampling is discontinued due to the end of normal working hours, the Permittee shall resume sampling the following morning or the morning of the next working day following a weekend or holiday, as long as the discharge continues.

Sampling may be temporarily suspended any time conditions exist that may reasonably pose a threat to the safety of the person taking the sample. Such conditions may include high winds, lightning, impinging wave or tidal activity, intense rainfall or other hazardous condition. Once the unsafe condition is no longer present, sampling shall resume.

If there is no stormwater discharge during a month, sampling is not required, and the form must be submitted with a notation explaining that a rainfall event did not occur in coincidence with normal working hours.

2.9.2 Sample Collection

All samples shall be collected from discharges resulting from a storm event that occurs at least 24 hours after any previous storm event generating a stormwater discharge. Any sample containing snow or ice melt must be identified on the Stormwater Monitoring Report form. Sampling of snow or ice melt in the absence of a storm event is not a valid sample.

Samples shall be grab samples taken at least three separate times during a storm event and shall be representative of the flow and characteristics of the discharge(s). Samples may be taken manually or by an in-situ turbidity probe or other automatic sampling device equipped to take individual turbidity readings (i.e. not composite). The first sample shall be taken within the first hour of stormwater discharge from the site. In cases where samples are collected manually and the discharge begins outside of normal working hours, the first sample shall be taken at the start of normal working hours.

2.9.3 Sampling Locations

Sampling is required of all point source discharges of stormwater from disturbed areas except as may be modified for linear projects. Where there are two or more discharge points that discharge substantially identical runoff, based on similarities of the exposed soils, slope, and type of stormwater controls used, a sample may be taken from just one of the discharge points. In such case, the Permittee shall report that the results also apply to the substantially identical discharge point(s). No more than 5 substantially identical outfalls may be identified for one representative discharge. If such project is planned to continue for more than one year, the Permittee shall rotate twice per year the location where samples are taken so that a different discharge point is sampled every six months. The Plan must identify each outfall authorized by the permit and describe the rationale for any substantially identical outfall determinations.

All sampling point(s) shall be identified in the Plan and be clearly marked in the field with a flag, stake, or other visible marker. At a minimum, discharge locations from temporary sediment basins and traps will be identified as sampling points. Additional points will be identified during construction in the event that field conditions vary from the available plan information.

2.9.4 Analysis

Sampling and analysis shall be prescribed by 40 CFR Part 136 in accordance with the requirements of the General Permit.

2.9.5 Turbidity Values

The stormwater discharge turbidity value for each sampling point shall be determined by taking the average of the turbidity values of all samples taken at that sampling point during a given storm.

2.9.6 Monitoring Reports

a) Within thirty (30) days following the end of each month, the Permittee shall enter the stormwater sampling result(s) on the Stormwater Monitoring Report (SMR) form, Appendix K, (available at www.ct.gov/deep/stormwater) and submit it in accordance with the NetDMR provisions in subsection f, below, or, if the Permittee has opted out of NetDMR, to the following address:

> Bureau of Materials Management and Compliance Assurance Water Permitting and Enforcement Division (Attn: DMR Processing) Connecticut Department of Energy and Environmental Protection 79 Elm Street Hartford, CT 06106-5127

- b) If there was no discharge during any given monitoring period, the Permittee shall submit the form as required with the words "no discharge" entered in place of the monitoring results.
- c) If the Permittee monitors any discharge more frequently than required by this General Permit, the results of this monitoring shall be included in additional SMRs for the month in which the samples were collected.
- d) If sampling protocols are modified due to the limitations of normal working hours or unsafe conditions in accordance with Section 5(c1A ii) or (iii) in the General Permit, a description of and reason for the modifications shall be included with the SMR.
- e) If the Permittee samples a discharge that is representative of two or more substantially identical discharge points, the Permittee shall include the names or locations of the other discharge points.
- f) NetDMR Reporting Requirements

Prior to one-hundred and eighty (180) days after the issuance of the permit, the Permittee may either submit monitoring data and other reports to the Department in hard copy form or electronically using NetDMR, a web-based tool that allows Permittees to electronically submit stormwater monitoring reports through a secure internet connection. Unless otherwise approved in writing by the commissioner, no later than one-hundred and eighty (180) days after the issuance of the permit the Permittee shall begin reporting electronically using NetDMR. Specific requirements regarding subscription to NetDMR and submittal of data and reports in hard copy form and for submittal using NetDMR are described below:

- i. Submittal of NetDMR Subscriber Agreement: On or before fifteen (15) days after the issuance of the permit, the Permittee and/or the person authorized to sign the Permittee's discharge monitoring reports ("Signatory Authority") as described in RCSA Section 22a-430-3(b2) shall contact the Department at deep.netdmr@ct.gov and initiate the NetDMR subscription process for electronic submission of Stormwater Monitoring Report information. Information on NetDMR is available on the Department's website at www.ct.gov/deep/netdmr. On or before ninety (90) days after issuance of this permit the Permittee shall submit a signed and notarized copy of the *Connecticut DEEP NetDMR Subscriber Agreement* to the Department.
- ii. Submittal of Reports Using NetDMR: Unless otherwise approved by the commissioner, on or before one-hundred and eighty (180) days after issuance of the permit, the Permittee and/or the Signatory Authority shall electronically submit SMRs required under the permit to the Department using NetDMR in satisfaction of the SMR submission requirements of Sections 5(c2A) of the permit. SMRs shall be submitted electronically to the Department no later than the 30th day of the month following the completed reporting period. Any additional monitoring conducted in accordance with 40 CFR 136 shall be submitted to the Department as an electronic attachment to the SMR in NetDMR. Once a Permittee begins submitting reports using NetDMR, it will no longer be required to submit hard copies of SMRs to the Department. NetDMR is accessed from: http://www.epa.gov/netdmr.
- iii. Submittal of NetDMR Opt-Out Requests If the Permittee is able to demonstrate a reasonable basis, such as technical or administrative infeasibility, that precludes the use of NetDMR for electronically submitting SMRs, the commissioner may approve the submission of SMRs in hard copy form ("opt-out request"). Opt-out requests must be submitted in writing to the Department for written approval on or before fifteen (15) days prior to the date a Permittee would be required under the permit to begin filing SMRs using NetDMR. This demonstration shall be valid for twelve (12) months from the date of the Department's approval and shall thereupon expire. At such time, SMRs shall be submitted electronically to the Department using NetDMR unless the Permittee submits a renewed opt-out request and such request is approved by the Department. All opt-out requests and requests for the NetDMR subscriber form should be sent to the following address or by email at deep.netdmr@ct.gov:

Attn: NetDMR Coordinator Connecticut Department of Energy and Environmental Protection 79 Elm Street Hartford, CT 06106-5127

2.10 Financial Assurance Mechanism

The Permittee will establish a Financial Assurance Mechanism (FAM) in the amount of **\$3,400,000** with the CT DEEP prior to initiating construction. The value of the construction period stormwater FAM is based on the cost of construction period

stormwater control measures, as outlined in this Plan. A summary of the FAM elements is provided in Appendix N.

2.13Non-Stormwater Discharges

It is not expected that non-stormwater discharges will occur at the Site during the construction period, however if groundwater is apparent then the following discharge may occur:

1. **Dewatering discharges:** Water pumped from the construction area during dewatering operations.

2.11 Significant-Materials Inventory

Significant materials expected to be found at the construction site include:

- Concrete mix (trucked to the site for proposed site improvements)
- Steel reinforcing bars and related materials
- Photovoltaic panels and related materials
- Diesel fuel and lubricating oils
- Paints
- Fertilizers

This list of significant materials may be reduced or expanded once a contractor has been selected and the materials to be used have been specified. If fewer, or additional, materials are required, the SWPCP will be amended to reflect these changes.

2.12Spill Prevention and Response Procedures

Spill prevention and response include good housekeeping as well as specific practices for certain products and established procedures for responding to spills.

2.12.1 Good Housekeeping

The following good housekeeping practices will be followed on site during construction of the Project.

- 1. **Minimize materials:** An effort will be made to store only enough material required to complete the job.
- 2. **Storage:** All materials stored on site will be stored in a neat, orderly manner in their appropriate containers in a covered area. If storage in a covered area is not possible, the materials shall be covered with polyethylene or polypropylene sheeting to protect them from the elements.
- 3. **Labeling:** Products will be stored in their original containers with the original manufacturer's label affixed to each container.

- 4. **Mixing:** Substances will not be mixed with one another unless this is recommended by the manufacturer.
- 5. **Disposal:** Whenever possible, all of a product will be used prior to disposal of the container. Manufacturers' recommendations for proper use and disposal will be followed.
- 6. **Inspections:** The site superintendent will inspect the site daily to ensure proper use and disposal of materials on site.
- 7. **Spoil materials:** Any excavated material that will not be used for fill material and all demolished pavement will be hauled off site and will be disposed of properly.

2.12.2 Product-Specific Practices

Petroleum products: All on-site vehicles will be monitored for leaks and will receive regular preventive maintenance to reduce the chance of leakage. Petroleum products will be stored in tightly sealed containers which are clearly labeled. Any asphalt substances used on site will be applied according to the manufacturer's recommendations.

Concrete trucks: Concrete trucks will <u>not</u> be allowed to wash out or discharge surplus concrete or drum wash water at the site.

Paints: All containers will be tightly sealed and stored when not required for use. Excess paint will be properly disposed of according to manufacturers' instructions and state and local regulations.

Fertilizers: Fertilizers will be applied only in the minimum amounts recommended by the manufacturer. Once applied, fertilizer will be worked into the soil to limit exposure to storm water. Fertilizer will be stored in a covered area, and any partially used bags will be transferred to a sealable plastic bin to avoid spills.

2.12.3 Spill Control and Response Practices

A spill prevention and response team will be designated by the Owner or the site superintendent. In addition, the following practices will be followed for spill cleanup:

- 1. **Information:** Manufacturers' recommended methods for spill cleanup will be clearly posted, and site personnel will be made aware of the procedures and the location of the information and cleanup supplies.
- 2. Equipment: Materials and equipment necessary for spill cleanup will be present on the site at all times. Equipment and materials will include but not limited to brooms, shovels, rags, gloves, goggles, absorbent materials (sand, sawdust, etc.), and plastic or metal trash containers specifically designed for this purpose. The materials and equipment necessary for spill cleanup will be dependent upon the nature and quantity of the material stored on site.
- 3. **Response:** All spills will be cleaned up immediately upon discovery.
- Safety: The spill area will be kept well ventilated, and personnel will wear appropriate protective clothing to prevent injury from contact with hazardous substances.

- 5. **Reporting**: Spills of toxic or hazardous material will be reported to the appropriate state or local government agency, regardless of the spill's size, immediately upon discovery.
- 6. Record keeping: The spill prevention plan will be modified to include measures to prevent a spill from recurring as well as improved methods for cleaning up any future spills. A description of each spill, what caused it, and the cleanup measures used will be kept with the plan.

2.13 Plan Location and Public Access

This SWPCP must be available at the construction site from the date of Project initiation to the date of final stabilization. The SWPCP and all reports required by the General Permit for permit must be retained by the Owner for at least three years from the date on which the site is finally stabilized.

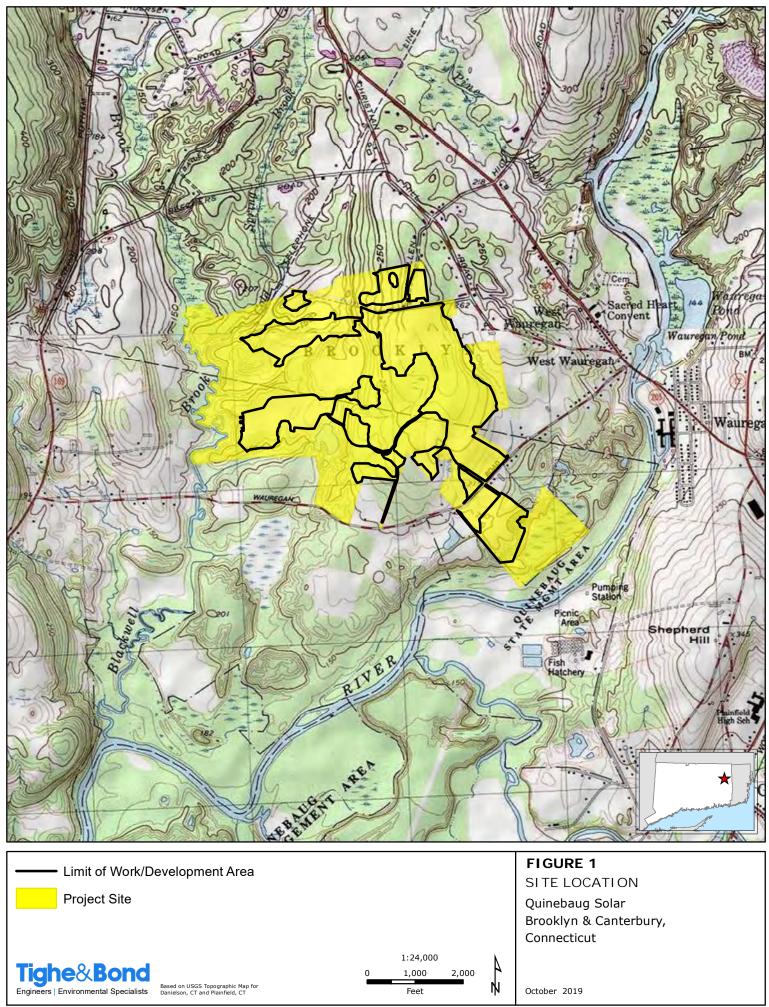
2.14 Reporting and Record Keeping

The Permittee is responsible for keeping the Plan in compliance with the General Permit at all times. For a period of at least five years from the date that construction is complete, the Permittee shall retain copies of the Plan and all reports required by this General Permit, and records of all data used to complete the registration for this General Permit, unless the commissioner specifies another time period in writing. Inspection records must be retained as part of the Plan for a period of five (5) years after the date of inspection.

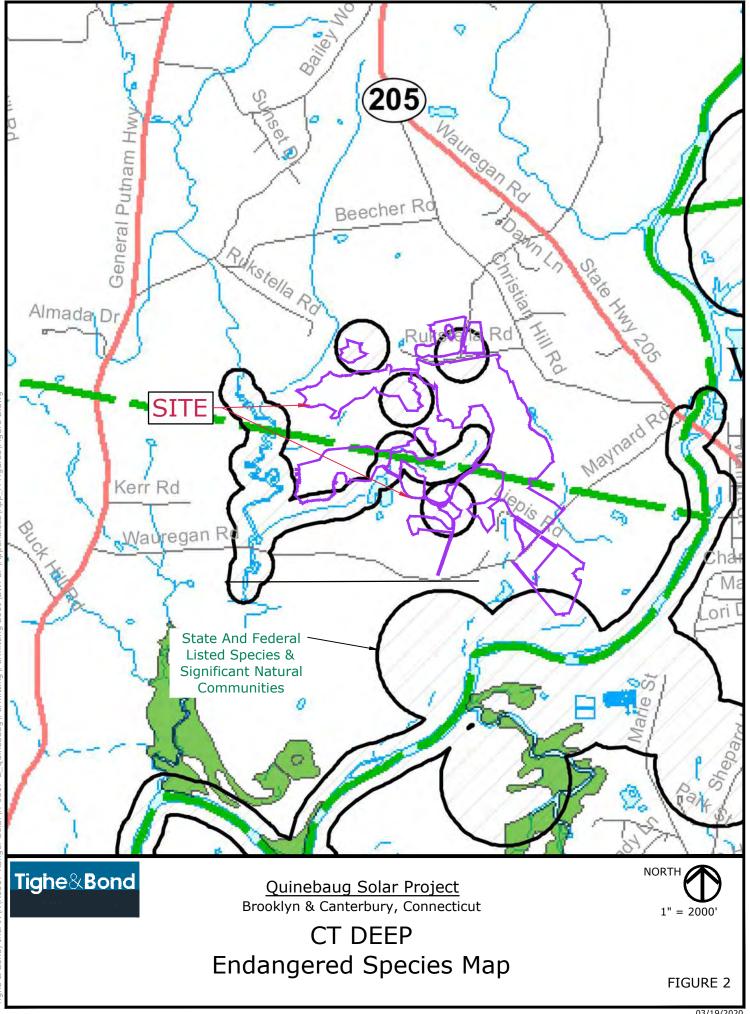
The Permittee shall retain an updated copy of the Plan required by the General Permit at the construction site from the date construction is initiated at the site until the date construction at the site is completed.

Revisions to the plan may involve the following actions:

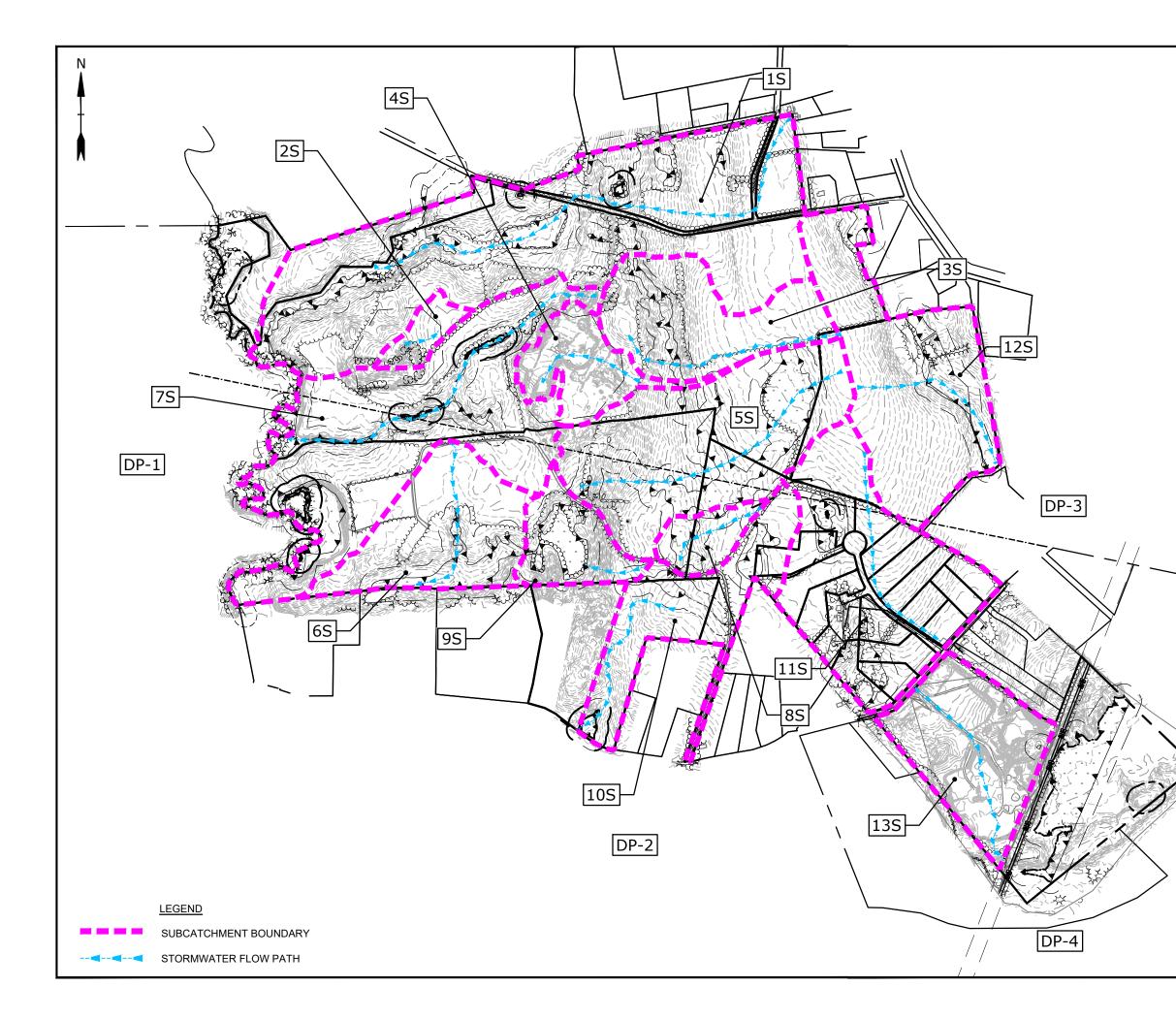
- The Permittee shall amend the Plan if the actions required by the Plan fail to
 prevent pollution or fail to otherwise comply with any other provision of the General
 Permit. The Plan shall also be amended whenever there is a change in contractors
 or subcontractors at the site, or a change in design, construction, operation, or
 maintenance at the site which has the potential for the discharge of pollutants to
 the waters of the state and which has not otherwise been addressed in the Plan.
- The commissioner may notify the Permittee at any time that the Plan and/or the site do not meet one or more of the minimum requirements of the General Permit. Within 7 days of such notice, or such other time as the commissioner may allow, the Permittee shall make the required changes to the Plan and perform all actions required by such revised Plan. Within 15 days of such notice, or such other time as the commissioner may allow, the commissioner may allow, the Permittee shall submit to the commissioner a written certification that the requested changes have been made and implemented and such other information as the commissioner requires, in accordance with the "Duty to Provide Information" and "Certification of Documents" sections (subsections 5(h) and 5(i)) of the General Permit.

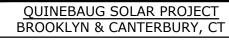

In no event shall failure to complete, maintain or update a Plan, in accordance with the "Development of Contents of the Plan" and "Keeping Plans Current" sections (subsections 5(b)(1) and 5(b)(5)) of the General Permit, relieve a Permittee of responsibility to

Quinebaug Solar Project Stormwater Pollution Control Plan


implement any actions required to protect the waters of the state and to comply with all conditions of the permit.

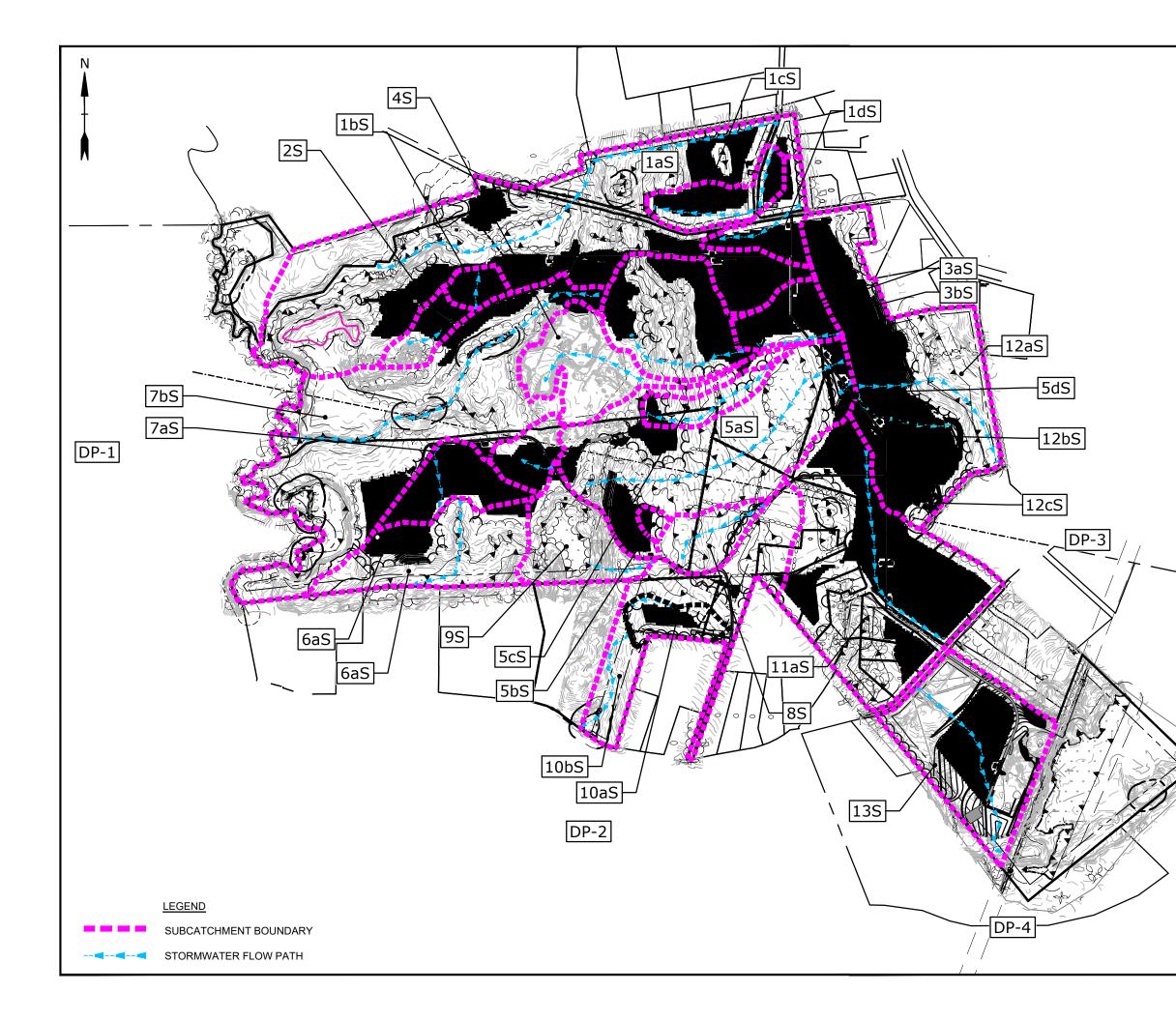
Tighe&Bond

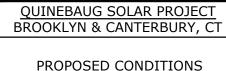

APPENDIX A



V:\Projects\R\R0317\QuinebaugCT_Solar\Maps\FilingFigures_Updated\SiteLocation_QuinebaugCT.mxd [Exported By: kjw, 10/30/2019, 11:47:23 AM]

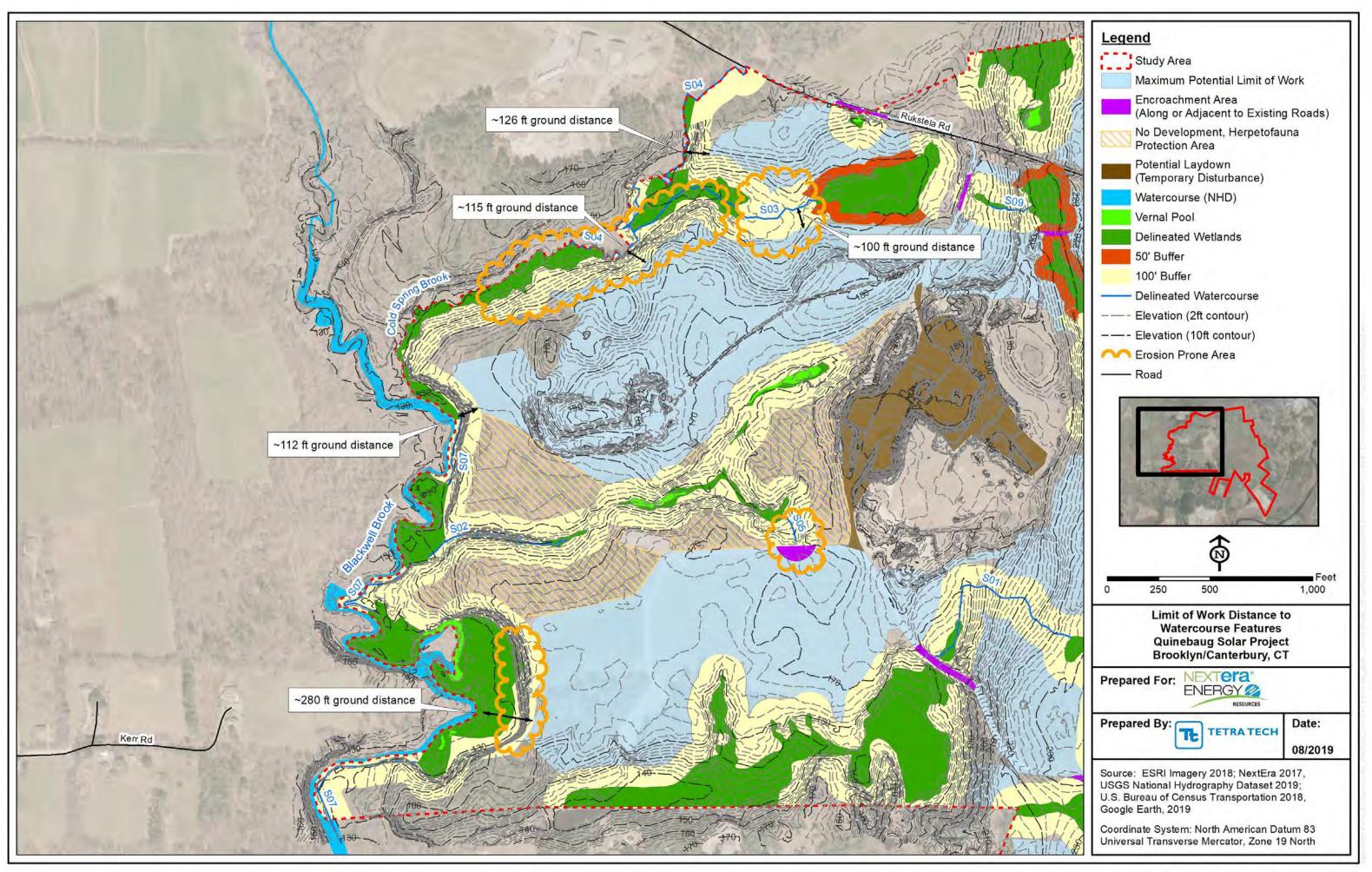
03/19/2020

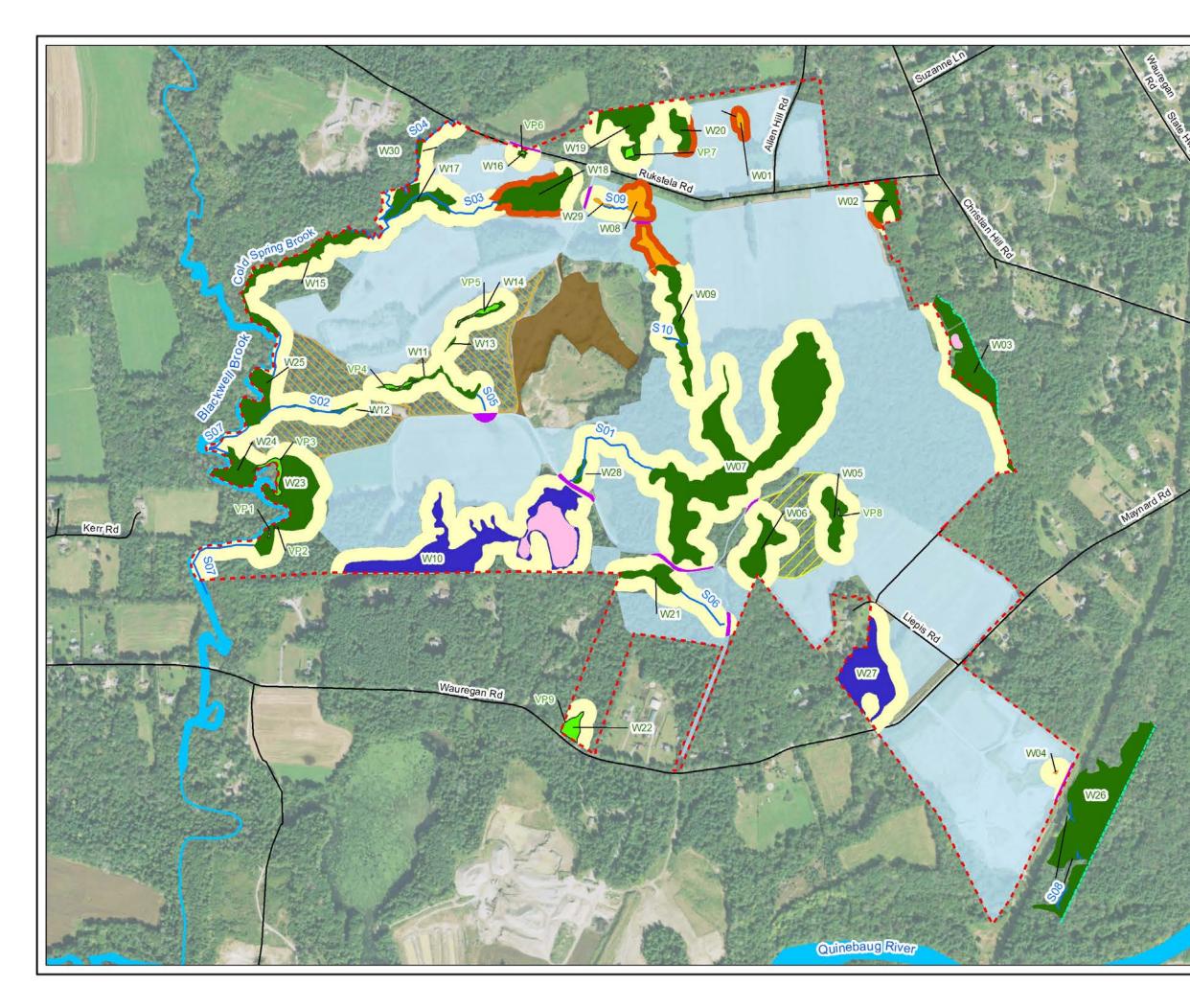


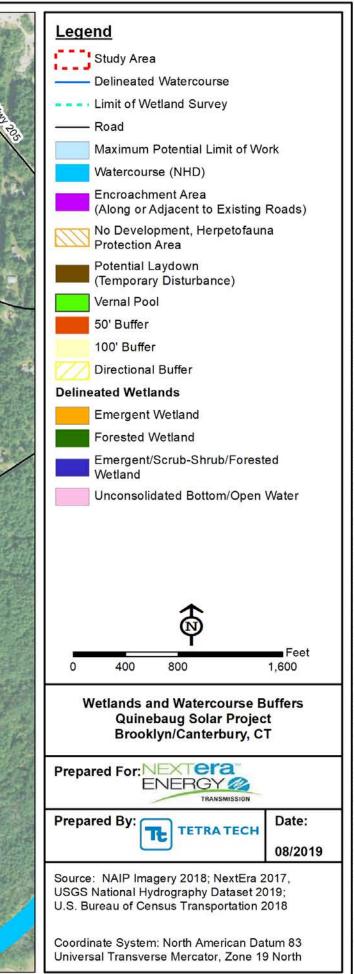


EXISTING CONDITIONS DRAINAGE AREA MAP

DATE: 03/19/2020 SCALE: 1"=800' FIGURE 3







PROPOSED CONDITIONS DRAINAGE AREA MAP

DATE: 03/19/2020 SCALE: 1"=800' FIGURE 4 Engineers | Environmental Specialists

Tighe&Bond

APPENDIX B

79 Elm Street • Hartford, CT 06106-5127

www.ct.gov/deep

Affirmative Action/Equal Opportunity Employer

March 5, 2020

Katelin Nickerson Senior Environmental Consultant Tetra Tech, Inc. 451 Presumpscot Street Portland, ME 04103 Katelin.nickerson@tetratch.com

Re: Quinebaug Solar Project, Wauregan Road and Rukstella Road, Canterbury and Brooklyn, CT NDDB Final Determination: 201904603

Current data maintained by the Natural Diversity Database (NDDB) indicates that the following species have been documented within the vicinity of the proposed project area:

- American kestrel (Falco sparverius) State Special Concern
- Eastern pearlshell (Margaritifera margaritifera) State Special Concern
- Eastern spadefoot (Scaphiopus holbrookii) State Endangered

Wildlife Division staff have reviewed following material submitted by TetraTech, including but not limited to:

- Environmental Site Conditions Report, April 2019
- Vernal Pool Survey and General Herpetological Inventory of the Quinebaug Solar Project. Prepared by FB Environmental (March 2019)
- Eastern Spadefoot Toad Survey, Quinebaug Solar Project, Brooklyn and Canterbury, Connecticut. Prepared by FB Environmental (March 2019)
- Northern Long-eared Bat (NLEB) Presence/Absence Survey Prepared by Tetra Tech, Inc. for Ranger Solar (September 20, 2016)
- Herpetofauna Avoidance and Mitigation Plan, Quinebaug Solar Project, April 2019
- Quinebaug Solar Project, Additional Wildlife and Resource Evaluation (correspondence), August 28, 2019
- Quinebaug Solar 2019 Spadefoot Surveys (October 7, 2019)
- Quinebaug Solar Project, Eastern Spadefoot Toad Protection, January 17, 2020
- Eastern Spadefoot Toad (Scaphiopus holbrookii) Three-Year Monitoring Plan, submitted February 28, 2020, which includes current array layout map and updated conservation area map

American kestrel (Falco sparverius)

Habitat for this bird consists of open grassy or shrubby areas with short vegetation and natural tree cavities or nest boxes for nesting; they are limited by habitat in Connecticut. This bird returns to breed in March – July and can benefit from active nest box monitoring and management to decrease competition by starlings. Availability of early successional habitat benefits this species during the post fledgling period and during migration.

Land disturbance activities including digging, ground clearing, heavy machinery driving, staging, or trampling that will occur more than 100 feet into or cut across in a way that fragments large parcels of grassland or shrubland habitat should be done when birds are not breeding. Breeding primarily takes place between March 1 and July 30. Conducting land disturbance activities outside of this breeding season will avoid impact to the individuals. Additionally, do not introduce new traffic or construction noise within a 200m buffer of an active nest or nest box.

Thank you for your August 28, 2019 memo detailing additional protection measures that will be undertaken for this species, which included seasonal clearing restrictions (winter clearing) as well as the following:

- Construction-phase environmental monitoring,
- On-site environmental training for contractors, and
- Minimizing soil disturbance and establishing meadow habitat following construction.

We concur that these additional measures will be protective of this species.

Eastern pearlshell (Margaritifera margaritifera)

This freshwater mussel species lives buried in clean, stable, mixed substrate in fast-flowing unpolluted streams and rivers. Its host fish include Atlantic salmon (*Salmo salar*), brook trout (*Salvelinus fontinalis*), brown trout (*Salmo trutta*), and rainbow trout (*Onchorhynchus mykiss*). Best habitats are good trout streams that are heavily shaded by a riparian canopy, possess clean cold water with high dissolved oxygen, and have stable channels with substrates of coarse sand, gravel, and cobble. Factors that limit the eastern pearlshell are changes to water quality, including eutrophication, acidification, sedimentation, and increases in water temperature.

DEEP accepts the following measures, outlined in your August 28, 2019 correspondence, intended to prevent erosion and sedimentation to adjacent watercourses during project construction:

- Establish a no-disturbance buffer around all wetlands and watercourses that will be fortified by using the best erosion control devices available to maintain high water quality of the stormwater runoff during heavy rainfall events. Buffers will be a minimum of 100 feet, except in limited circumstances in the vicinity of existing gravel roads (less than 100 feet) that will be used for site access during construction
- Redundant erosion control devices will be installed along the gravel access roads to ensure a failsafe system to protect the resources. Regular road maintenance will be employed during construction and will be maintained during the operation of the Project.
- The herpetofauna avoidance area established around the cluster of wetlands and vernal pools in a relic stream channel immediately up slope from Cold Spring Brook and Blackwell Brook will leave a forested buffer intact between the adjacent watercourses and potential sources of erosion and sedimentation created during Project construction.
- Additional measures are found in the August 28, 2019 memo, sections Stormwater Control and Site Stabilization, Stormwater Pollution Control Plan and Construction Sequence, and Additional Control Measures.

Eastern spadefoot (Scaphiopus holbrookii)

Pursuant to the December 18, 2019 meeting, ongoing discussions between Agency Staff and project proponents have resulted in an agreement by all parties to implement Spadefoot toad mitigation measures as outlined in the Quinebaug Solar Hepetofauna Avoidance and Mitigation Plan (April 2019), the Quinebaug Solar Project, Eastern Spadefoot Toad Protection (January 17, 2020), and the Eastern Spadefoot Toad (*Scaphiopus holbrookii*) Three-Year Monitoring Plan (submitted February 28, 2020).

These plans provide details regarding the components of spadefoot toad protection, as highlighted below. Refer to these plans for specific details.

Conservation Areas

- Wetlands and watercourses are outside the limit of work, and include 100-foot buffers, with some exceptions. See Figure 2, Eastern Spadefoot Toad (*Scaphiopus holbrookii*) Three-Year Monitoring Plan (submitted February 28, 2020).
- Conservation area (designated as 'herpetofauna protection area'); ~ 40 acres, which has been updated to include conserved areas around Pool C (~1 acre) and the edge of the gravel extraction area (~7 acres). See Figure 2, Eastern Spadefoot Toad (*Scaphiopus holbrookii*) Three-Year Monitoring Plan (submitted February 28, 2020).
- Conserved areas are to be designated as such for the life of the project, as agreed to in the letter dated January 10, 2020, signed by River Junction Estates LLC, O & G Industries, Inc. and Strategic Commercial Realty DBA Rawson Materials, and provided to DEEP (Attachment 1).

Protection Measures - Construction Activities

- Construction Timing as described in the Quinebaug Solar Herpetofauna Avoidance and Mitigation Plan, including but not limited to restricting tree clearing in vernal pool critical terrestrial habitats to winter (November to March)
- Monitoring during construction as described in the Quinebaug Solar Herpetofauna Avoidance and Mitigation Plan
- Exclusion fencing and relocation as needed as described in the Quinebaug Solar Herpetofauna Avoidance and Mitigation Plan.
- Contractor training as described in the Quinebaug Solar Herpetofauna Avoidance and Mitigation Plan, including but not limited to hiring an Environmental Monitor, who will create a training curriculum prior to commencement of construction activities.

Post-Construction

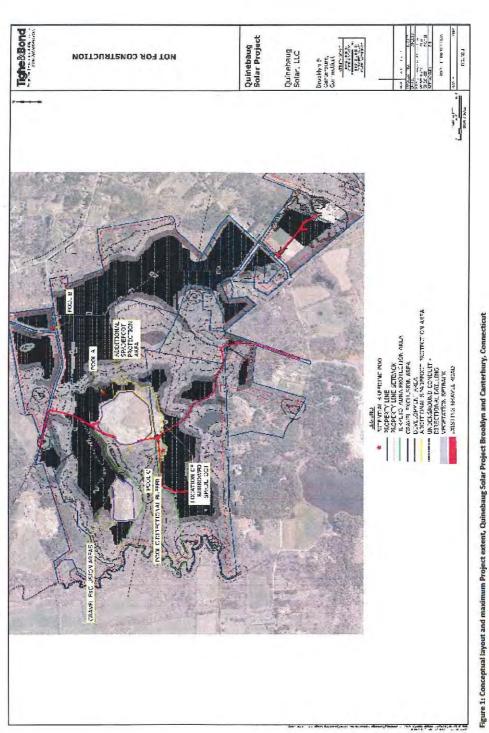
- Permanent signage around Pool C (prevent entry of mechanized maintenance equipment)
- Post-construction monitoring 3 years of monitoring, beginning in 2022 and extending to 2024, will be implemented utilizing survey methods deployed during summer 2019. Monitoring focus will be limited to surveying for breeding evidence at Pool C. Refer to the Eastern Spadefoot Toad (*Scaphiopus holbrookii*) Three-Year Monitoring Plan (submitted February 28, 2020) for details. Annual monitoring reports must be submitted to the Wildlife Division by December 31st each year.
- Note that DEEP would like to clarify the declaration found in the Eastern Spadefoot Toad (Scaphiopus holbrookii) Three-Year Monitoring Plan statement; "Therefore, if breeding of eastern spadefoot toad is not observed during the proposed three-year monitoring effort, it will not be indicative of negative impact or disturbance to the species resulting from Project development. Rather, it will be a continuation of what has been previously observed." A parsing of this sentence indicates that Quinebaug Solar is stating that a lack of breeding should not be utilized to conclude there have been negative impacts to the species from project development. DEEP notes that if breeding is not observed, there are no conclusions to be drawn regarding potential impacts to spadefoot toad breeding from project activities.

As the project moves forward, it will be important for your project leaders and herpetologists to work closely with DEEP spadefoot toad biologist, Michael Ravesi (<u>michael.ravesi@ct.gov</u>; 860-424-3104) to ensure that protection measures proposed during construction are properly implemented and that

study design for the post-construction monitoring is appropriate for the species and for acquisition of the appropriate data to assess impact associated with and site use of the Quinebaug Solar Project.

Finally, DEEP notes that impact avoidance and mitigation measures agreed to for this project are applicable to this project only and may not be appropriate or deemed acceptable for similar species and conditions at other sites.

The NDDB Determination for Quinebaug Solar Project, Wauregan Road and Rukstella Road, Canterbury and Brooklyn, as described in the submitted information is valid for two years. This determination applies only to the project as described in the submission. Please re-submit an updated Request for Review if there are additional scope of work and/or timeframe changes, including if work has not begun by March 05, 2022.


Natural Diversity Database information includes all information regarding listed species available to us at the time of the request. This information is a compilation of data collected over the years by the Department of Energy and Environmental Protection's Natural History Survey and cooperating units of DEEP, land owners, private conservation groups and the scientific community. This information is not necessarily the result of comprehensive or site-specific field investigations. Current research projects and new contributors continue to identify additional populations of species and locations of habitats of concern, as well as enhance existing data. Such new information is incorporated into the Database and as it becomes available. New information may result in additional review, and new or modified restrictions or conditions may be necessary to remain in compliance with certain state permits.

- During your work listed species may be encountered on site. A report must be submitted by the
 observer to the Natural Diversity Database promptly and additional review and restrictions or
 conditions may be necessary to remain in compliance with certain state permits.
- Your project involves the state permit application process or other state involvement, including state funding or state agency actions; please note that consultations with your permit analyst or the agency may result in additional requirements. In this situation, additional evaluation of the proposal by the DEEP Wildlife Division may be necessary and additional information, including but not limited to species-specific site surveys, may be required. Any additional review may result in specific restrictions or conditions relating to listed species that may be found at or in the vicinity of the site.

Jenny Dickson

Director CT DEEP Wildlife Division Jenny.dickson@ct.gov

Quinebaug Solar, LLC

TERA TECH

Quinebaug Solar, LLC

TETRA TECH

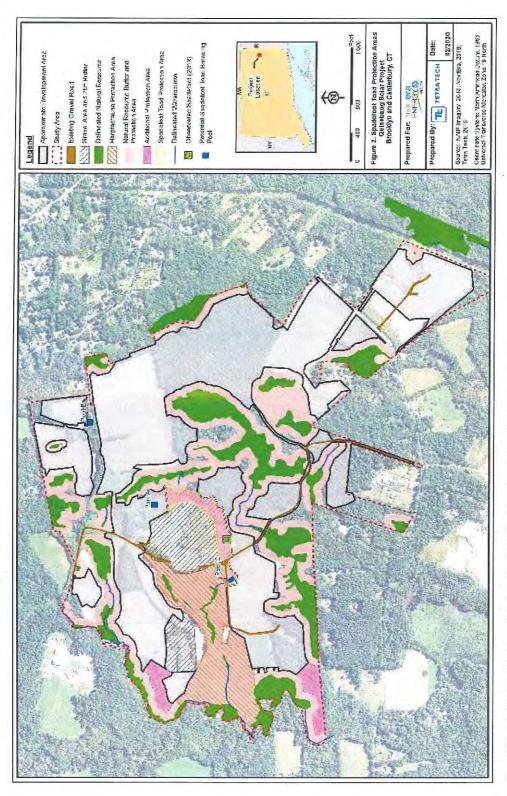


Figure 2: Spadefoot toad protection areas, Quinebaug Solar Project Brooklyn and Canterbury, Connecticut

Attachment 1. Conservation Area Protection Letter

January 10, 2029

Connecticut Department of Receip and Environmento, Protection 79 E m Street Hartford, Connectiont 06106

Re: Quincharg Solar Troject - Conservation Areas on the River Junction Estates Lord

Fe Wiean This May Concern:

Quinchaug Solar, 1.1 C ("Quinebaug Solar") is curvently proposing to consumer a solar project (0 e "Project") on several parcels of larit in the towns of Canterbury and Brooklyn, Connecticut, "Quinebaug Solar understands the value of placing certain areas of the solar project in conservation for the duration of the solar project and therefore agrees that ") will not develop solar on the areas shown in pink as fir the tended on Exhibit A, the Conservation Areas"),

Further, the landowner. River Junction Estates, LLC and the numeral rights owners O&O industries, Inc. and Strategic Commercial Realty, Inc. DBA Rawson Materials (collectively, referred to as the "Land Parties"), represent and warrant that for the duration of the solar project, the Land Part es will not develop or grant others the right to develop, the Conservation Arcas.

Quinebaug Solar and the Land Parties agree that a short form of this latter in a format acceptable to all parties, may be recorded at the request of the Connecticut Elebartment of Energy and Environmental Presention in the land records of the row is where such Convervation Areas lie.

Quinebaug Sular and the Land Parties further agree that the above referenced Conservation Areas shall be effective no earlier than the start of construction of the Froject and will get go into effect onless and until all applicable state and local permits have been duly issued.

QUINEBAUG SOLAR Spinebrug Solar, LLC Kathy Beilhaw

VP of Finance, Accounting, and Tax

LAND PARTIES Strategic Commercial Realty, Inc. dlm Rawon Materials

By:/Jeffrey Raisson Ville: President

All angle Mall angle By: Mall Oneglic Title: My 9

River Internet Estates, h. C (IIII) 77 H. Marcosolu By Allan Reven The: Manager

Tighe&Bond

APPENDIX C

SOIL EROSION AND SEDIMENT CONTROL PLAN UNDER SEPARATE COVER

Tighe&Bond

APPENDIX D

Temporary Sediment Basin and Trap Sizing Calculations

Tighe& Bond Consulting Engineer Environmental Specialist	S Prepared By: ALG Date: March 2020	
	nent Trap Sizing Calculations	
Sediment Storag	je Volume	
Drainage Area =	1.3 Acres	
Required Storage=	134 Cu. Yds / Acre	
Total Required Storage=	174 Cu. Yds	
where, $V_{UU} = \text{ the wet}$ $A_{UU} = \text{ the surf}$	be approximated as follows: $Vw = 0.85 \ge A_w \ge D_w$ t storage volume in cubic feet face area of the flooded area at the base of the stone outlet in square feet ximum depth in feet, measured from the low point in the trap to the base of the sto	one
A _w = D _w = V_w= V_w=	1,431 Sq. Ft. 2 feet 2,433 Cu. Ft. 90 Cu. Yd.	
Provided Dry Storag Dry storage volume may where,	ge be approximated as follows: $V_{d} = \frac{(A_{tw} + A_{d})}{2} x D_{d}$	
V_d = the dry A_{UU} = the sur A_d = the sur square	y storage volume rface area of the flooded area at the base of the stone outlet in square feet, rface area of the flooded area at the top of the stone outlet (over flow mechanism feet, pth in feet, measured from the base of the stone outlet to the top of the stone out	
A _w =	1,431 Sq. Ft.	
A _d = D _d =	1,939 Sq. Ft. 2 feet	
V _d = V _d =	3,370 Cu. Ft. 125 Cu. Yd.	
	• Total Storage is provided in two sediment traps 2,433 Cu. Ft. 90 Cu. Yd. 3,370 Cu. Ft.	
Total Storage	125 Cu. Yd. 5,803 Cu. Ft. 215 Cu. Yd.	

Tighe& Bonc Consulting Engineer Environmental Specialist	Project Project Descrip Prepare	t Name: Quinebaug Solar Project t Number: R0317 t Location: Brooklyn and Canterbury, Connecticut ption: Temporary Sediment Trap Sizing Calculation ed By: ALG Date: March 2020
Phase 1B - Sedir	nent Tr	rap Sizing Calculations
Sediment Stora	ge Volun	ne
Drainage Area =	5	5 Acres
Required Storage=	134	4 Cu. Yds / Acre
Total Required Storage=	670	D Cu. Yds
Provided Wet Stora	age	
Wet storage volume may	be approxim	
where,		$Vw = 0.85 \ge A_w \ge D_w$
$V_{\mathcal{W}}$ = the we $A_{\mathcal{W}}$ = the sur	face area of	lume in cubic feet. The flooded area at the base of the stone outlet in square feet th in feet, measured from the low point in the trap to the base of the stone
A _w = D _w =	5,453 2	Sq. Ft. 2 feet
V _w =		
V _w =	343	Cu. Yd.
Provided Dry Stora Dry storage volume may where, V_d = the dr	v be approxin y storage vol	$V_d = \frac{(A_{ll} + A_d)}{2} \propto D_d$
A_d the su square	rface area of e feet	of the flooded area at the base of the stone outlet in square feet. If the flooded area at the top of the stone outlet (over flow mechanism), in measured from the base of the stone outlet to the top of the stone outlet
D_d - the de A_W =		Sq. Ft.
$A_d = D_d =$		Sq. Ft. feet
V _d = V _d =	12,781 473	Cu. Ft. Cu. Yd.
Provided Storage	- Total Sto	orage is provided in two sediment traps
Wet Storage	•	Cu. Ft. Cu. Yd.
Dry Storage	•	Cu. Ft. Cu. Yd.

Tighe&Bond Consulting Engineers Environmental Specialists	Project Descript Prepare	Number: R0317 Location: Brooklyr	ug Solar Project a and Canterbury, Connecticut ary Sediment Trap Sizing Calculation Date: March 2020
Phase 1C - Sedin	ient Tr	ap Sizing C	alculations
Sediment Storag	e Volum	е	
Drainage Area =	1	Acres	
Required Storage=	134	Cu. Yds / Acre	
otal Required Storage=	134	Cu. Yds	
Provided Wet Stora	ge		
Wet storage volume may b	e approxima	ted as follows:	
a barro		Vw = 0.85 x .	$A_w \ge D_w$
	ice area of th	ne flooded area at the	base of the stone outlet in square feet m the low point in the trap to the base of the stone
A _w = D _w =	1,070 2	Sq. Ft. feet	
V _w =	1,819	Cu. Ft.	1
V _w =	67	Cu. Yd.	
Provided Dry Storag Dry storage volume may b where,	be approxim	$V_{d} = \frac{(A_{W} + A_{W})}{2}$	$\frac{A_d}{d} \propto D_d$
A_d the surf square	ace area of t ace area of t feet. th in feet, m 1,070 1,941	the flooded area at the flooded area at the	he base of the stone outlet in square feet. The top of the stone outlet (over flow mechanism), in se of the stone outlet to the top of the stone outlet
$A_{lw}^{l} = \text{ the surf}$ $A_{d} = \text{ the surf}$ square 1 $D_{d} = \text{ the dep}$ $A_{w}^{l} =$ $A_{d}^{l} =$ $D_{d}^{l} =$ $V_{d}^{l} =$	ace area of the feet of the fe	the flooded area at the flooded area at the casured from the base Sq. Ft. Sq. Ft. feet Cu. Ft.	e top of the stone outlet (over flow mechanism), in
$A_{lw}^{0} = \text{ the surf} \\ A_{d} = \text{ the surf} \\ \text{square } \\ D_{d} = \text{ the dep} \\ A_{d} = \\ D_{d} = \\ \\ \hline V_{d} = \\ \hline V_{d} = \\ \hline V_{d} = \\ \hline Provided Storage \\ \hline \end{cases}$	ace area of t face area of t feet th in feet, m 1,070 1,941 2 3,011 112	the flooded area at the the flooded area at the easured from the base Sq. Ft. Sq. Ft. feet Cu. Ft. Cu. Yd.	e top of the stone outlet (over flow mechanism), in
$A_{lw}^{l} = \text{ the surf}$ $A_{d} = \text{ the surf}$ square 1 $D_{d} = \text{ the dep}$ $A_{w}^{l} =$ $A_{d}^{l} =$ $D_{d}^{l} =$ $V_{d}^{l} =$ $V_{d}^{l} =$	ace area of t face area of t feet th in feet, m 1,070 1,941 2 3,011 112 1,819	the flooded area at the flooded area at the casured from the base Sq. Ft. Sq. Ft. feet Cu. Ft.	e top of the stone outlet (over flow mechanism), in
$A_{lw}^{0} = \text{ the surf} \\ A_{d} = \text{ the surf} \\ \text{square } \\ D_{d} = \text{ the dep} \\ A_{d} = \\ D_{d} = \\ \\ \hline V_{d} = \\ \hline V_{d} = \\ \hline V_{d} = \\ \hline Provided Storage \\ \hline \end{cases}$	ace area of 1 face area of 1 feet. th in feet, m 1,070 1,941 2 3,011 112 1,819 67 3,011	the flooded area at the flooded area at the easured from the base Sq. Ft. Sq. Ft. feet Cu. Ft. Cu. Yd.	e top of the stone outlet (over flow mechanism), in

Tighe&Bond Consulting Engineers Environmental Specialists	Prepared By: ALG Date: March 2020
Phase 1D - Sedin	nent Trap Sizing Calculations
Sediment Storag	je Volume
Drainage Area =	1 Acres
Required Storage=	134 Cu. Yds / Acre
otal Required Storage=	134 Cu. Yds
Provided Wet Stora	ge
Wet storage volume may b	e approximated as follows:
where,	$Vw = 0.85 \ge A_w \ge D_w$
$V_{W} =$ the wet $A_{W} =$ the surfa $D_{W} =$ the max outlet.	storage volume in cubic feet ace area of the flooded area at the base of the stone outlet in square feet imum depth in feet, measured from the low point in the trap to the base of the stone 1,120 Sq. Ft.
D _w =	2 feet
V _w =	1,904 Cu. Ft.
V _w =	71 Cu. Yd.
where, V_d = the dry A_{lv} = the surf A_d = the surf square	be approximated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \times D_{d}$
V _d =	119 Cu. Yd.
Provided Storage	
Wet Storage	1,904 Cu. Ft.
	71 Cu. Yd.
Dry Storage	3,224 Cu. Ft.
	119 Cu. Yd.

Tighe&Bond Consulting Engineers Environmental Specialists	Prepared By: ALG Date: March 2020
Phase 1E - Sedim	nent Trap Sizing Calculations
Sediment Storag	je Volume
Drainage Area =	1.8 Acres
Required Storage=	134 Cu. Yds / Acre
Total Required Storage=	241 Cu. Yds
Provided Wet Stora	ge
Wet storage volume may b	e approximated as follows:
where,	$Vw = 0.85 \ge A_w \ge D_w$
A_{W} = the surface	storage volume in cubic feet ace area of the flooded area at the base of the stone outlet in square feet imum depth in feet, measured from the low point in the trap to the base of the stone 4,557 Sq. Ft. 1 feet
V _w = V _w =	3,873 Cu. Ft. 143 Cu. Yd.
where, V_d = the dry	be approximated as follows: $V_{d} = \frac{(A_{tW} + A_{d})}{2} \propto D_{d}$ storage volume face area of the flooded area at the base of the stone outlet in square feet.
square	face area of the flooded area at the top of the stone outlet (over flow mechanism), in feet oth in feet, measured from the base of the stone outlet to the top of the stone outlet
$A_{W} =$	4,557 Sq. Ft.
$A_d = D_d =$	5,410 Sq. Ft. 1 feet
V _d =	4,984 Cu. Ft.
Provided Storage	185 Cu. Yd.
Wet Storage	2 972 Cu Et
wet storage	3,873 Cu. Ft. 143.46 Cu. Yd.
Dry Storage	4,984 Cu. Ft. 185 Cu. Yd.
Total Storage	8,857 Cu. Ft. 328 Cu. Yd.

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

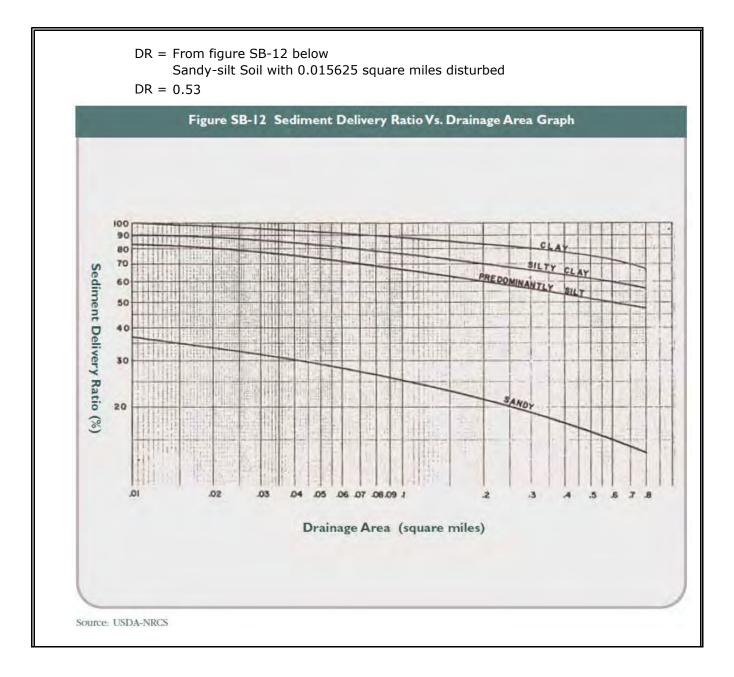
Tię	consulting Engineer Environmental Specialist	Project Descript	Number: R0317 Location: Brooklyn and Canterbury, Connecticut
Ph	ase 1F - Sedir	nent Tr	ap Sizing Calculations
	Sediment Storag	ge Volum	ne
	Drainage Area =	1.5	5 Acres
	Required Storage=	134	ł Cu. Yds / Acre
Total	Required Storage=	201	. Cu. Yds
	Provided Wet Stora	ige	
	Wet storage volume may	be approxima	
	mbara		$Vw = 0.85 \ge A_{U} \ge D_{W}$
	A_{W}^{u} = the surf	face area of th	ime in cubic feet he flooded area at the base of the stone outlet in square feet in feet, measured from the low point in the trap to the base of the stone
		2,921 2	Sq. Ft. 2 feet
[V _w =	4,966	Cu. Ft.
	V _w =	184	Cu. Yd.
	Provided Dry Stora Dry storage volume may where, $V_d = \text{the dry}$ $A_{W} = \text{the sur}$ $A_d = \text{the sur}$ square	ge be approxim y storage volu face area of face area of feet pth in feet, m 2,921 4,729 2	nated as follows: $V_d = \frac{(A_w + A_d)}{2} \times D_d$
	Provided Dry Stora Dry storage volume may $V_d = \text{the dry}$ $A_W = \text{the sur}$ $A_d = \text{the sur}$ $A_d = \text{the der}$ $D_d = \text{the der}$ $A_W =$ $A_d =$ $D_d =$ $D_d =$	ge be approxim y storage volu face area of face area of feet pth in feet, m 2,921 4,729 2 7,650	nated as follows: $V_{d} = \frac{(A_{lW} + A_{d})}{2} \times D_{d}$ unne the flooded area at the base of the stone outlet in square feet. the flooded area at the top of the stone outlet (over flow mechanism), in neasured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft.
	Provided Dry Stora Dry storage volume may V_d = the dry A_W = the su A_d = the su a_d = the su a_d = the de D_d = the de A_W = A_d = D_d = V_d = V_d = V_d =	ge be approxim y storage volu face area of face area of feet pth in feet, m 2,921 4,729 2 7,650 283	nated as follows: $V_{d} = \frac{(A_{lW} + A_{d})}{2} \times D_{d}$ unne the flooded area at the base of the stone outlet in square feet. the flooded area at the top of the stone outlet (over flow mechanism), in neasured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft.
	Provided Dry Stora Dry storage volume may V_d = the dry A_w = the su A_d = the su A_d = the su A_d = the de D_d = the de A_w = A_d = D_d = V_d = V_d = V_d = V_d =	ge be approxim / storage volu face area of face area of face area of feet pth in feet, m 2,921 4,729 2 7,650 283 4,966 183.91 7,650	nated as follows: $V_{d} = \frac{(A_{lW} + A_{d})}{2} \propto D_{d}$ unne the flooded area at the base of the stone outlet in square feet. the flooded area at the top of the stone outlet (over flow mechanism), in neasured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft. Cu. Yd.

	Consulting Engineers Environmental Specialists	Project Descrip Prepare	t Number: R0317 t Location: Brooklyn and Canterbury, Connecticut ption: Temporary Sediment Trap Sizing Calculation red By: ALG Date: March 2020		
Ph	ase 1G - Sedin	nent Tı	rap Sizing Calculations		
	Sediment Storag	e Volun	me		
	Drainage Area =	1.2	2 Acres		
	Required Storage=	134	4 Cu. Yds / Acre		
otal	Required Storage=	161	1 Cu. Yds		
	Provided Wet Stora	ge			
	Wet storage volume may b	e approxima			
	A_{W} = the surface	ice area of th	$Vw = 0.85 \ge A_{tw} \ge D_{tw}$ ume in cubic feet the flooded area at the base of the stone outlet in square feet h in feet, measured from the low point in the trap to the base of the stone		
	$A_W = 2,611$ Sq. Ft. $D_W = 1$ feet				
ĺ					
		2,219			
	V _w = V _w =		Cu. Ft. Cu. Yd.		
		82 je	Cu. Yd. mated as follows:		
	V _w = Provided Dry Storag	82 je	Cu. Yd.		
	$V_w =$ Provided Dry Storag Dry storage volume may b where, V_d = the dry A_{lv} = the surf A_d = the surf square	82 ge be approxim storage volu ace area of ace area of feet	mated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \propto D_{d}$ lume f the flooded area at the base of the stone outlet in square feet. f the flooded area at the top of the stone outlet (over flow mechanism), in		
	$V_w =$ Provided Dry Storag Dry storage volume may b where, V_d = the dry A_{lv} = the surf A_d = the surf square	82 ge storage volu face area of face area of facet wh in feet, n	mated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \propto D_{d}$ lume f the flooded area at the base of the stone outlet in square feet.		
	$V_{w} =$ Provided Dry Storag Dry storage volume may b where, $V_{d} = \text{ the dry}$ $A_{W} = \text{ the surf}$ $A_{d} = \text{ the surf}$ $square$ $D_{d} = \text{ the dep}$ $A_{w} =$ $A_{d} =$	storage volu storage volu ace area of feet th in feet, n 2,611 3,645	mated as follows: $V_d = \frac{(A_{lb} + A_d)}{2} \times D_d$ Hume If the flooded area at the base of the stone outlet in square feet. If the flooded area at the top of the stone outlet (over flow mechanism), in measured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft.		
	$V_{w} =$ Provided Dry Storag Dry storage volume may I where, $V_{d} = \text{ the dry}$ $A_{w} = \text{ the surf}$ $A_{d} = \text{ the surf}$ $square$ $D_{d} = \text{ the dep}$ $A_{w} =$ $A_{d} =$ $D_{d} =$	storage volu ace area of feet th in feet, in 2,611 3,645 1	mated as follows: $V_d = \frac{(A_{lb} + A_d)}{2} \propto D_d$ Hume If the flooded area at the base of the stone outlet in square feet. If the flooded area at the top of the stone outlet (over flow mechanism), in measured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft.		
	$V_{w} =$ Provided Dry Storag Dry storage volume may b where, $V_{d} = \text{ the dry}$ $A_{W} = \text{ the surf}$ $A_{d} = \text{ the surf}$ $square$ $D_{d} = \text{ the dep}$ $A_{w} =$ $A_{d} =$	storage volu ace area of feet th in feet, in 2,611 3,645 1	mated as follows: $V_d = \frac{(A_{lb} + A_d)}{2} \propto D_d$ Hume If the flooded area at the base of the stone outlet in square feet. If the flooded area at the top of the stone outlet (over flow mechanism), in measured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. Teet		
 	$V_{w} =$ Provided Dry Storag Dry storage volume may I where, $V_{d} = \text{ the dry}$ $A_{w} = \text{ the surf}$ $A_{d} = \text{ the surf}$ $A_{d} = \text{ the surf}$ $A_{d} = \text{ the dep}$ $A_{d} = D_{d} =$ $V_{d} =$	storage volu ace area of feet th in feet, n 2,611 3,645 1 3,128	mated as follows: $V_d = \frac{(A_{lb} + A_d)}{2} \propto D_d$ fume f the flooded area at the base of the stone outlet in square feet. f the flooded area at the top of the stone outlet (over flow mechanism), in measured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft.		
 	$V_{w} =$ Provided Dry Storag Dry storage volume may I $V_{d} = \text{ the dry}$ $A_{w} = \text{ the surf}$ $A_{d} = \text{ the surf}$ $A_{d} = \text{ the dep}$ $A_{d} = D_{d} =$ $D_{d} =$ $V_{d} = V_{d} =$	82 ge be approxim storage volu ace area of feet th in feet, n 2,611 3,645 1 3,128 116 2,219	mated as follows: $V_d = \frac{(A_{lb} + A_d)}{2} \propto D_d$ fume f the flooded area at the base of the stone outlet in square feet. f the flooded area at the top of the stone outlet (over flow mechanism), in measured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft.		
 	$V_w =$ Provided Dry StorageDry storage volume may Iwhere, $V_d =$ the dry $A_w =$ the surf $A_d =$ the surf $D_d =$ the dep $A_{d=}$ $D_d =$ $D_d =$ $V_d =$ $V_d =$ $V_d =$ Provided Storage	82 ge be approxim storage volution ace area of feet th in feet, m 2,611 3,645 1 3,128 116 2,219 82.20 3,128	mated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \propto D_{d}$ Hume f the flooded area at the base of the stone outlet in square feet. f the flooded area at the top of the stone outlet (over flow mechanism), ir measured from the base of the stone outlet to the top of the stone outlet . Sq. Ft. . Sq. Ft. . feet Cu. Ft. Cu. Ft.		

Tighe& Bonc Consulting Enginee Environmental Specialis	Prepared By: ALG Date: March 2020	n
Phase 1H - Sedi	nent Trap Sizing Calculations	
Sediment Stora	e Volume	
Drainage Area =	2.4 Acres	
Required Storage=	134 Cu. Yds / Acre	
Total Required Storage=	322 Cu. Yds	
Provided Wet Stora	ge	
Wet storage volume may	be approximated as follows: $Vw = 0.85 \ge A_m \ge D_m$	
$A_{\mathcal{W}}$ = the su	t storage volume in cubic feet face area of the flooded area at the base of the stone outlet in square feet ximum depth in feet, measured from the low point in the trap to the base of the	stone
A _w = D _w =	5,792 Sq. Ft. 1 feet	
V _w = V _w =	4,923 Cu. Ft. 182 Cu. Yd.	
•w=		
Provided Dry Stora Dry storage volume may	ge be approximated as follows:	
	$V_d = \frac{(A_w + A_d)}{2} \propto D_d$	
$A_{\mathcal{W}}^{a}$ = the survey A_{d} = the survey square	storage volume face area of the flooded area at the base of the stone outlet in square feet. face area of the flooded area at the top of the stone outlet (over flow mechanis feet. oth in feet, measured from the base of the stone outlet to the top of the stone o	
A _w =	5,792 Sq. Ft.	
$A_d = D_d =$	6,797 Sq. Ft. 1 feet	
V _d = V _d =	6,295 Cu. Ft. 233 Cu. Yd.	
Provided Storage		
Wet Storage	4,923 Cu. Ft.	
	182.34 Cu. Yd.	
Dry Storage	6,295 Cu. Ft. 233 Cu. Yd.	

Consulting Engineers Environmental Specialists	S Prepared By: ALG Date: March 2020
Phase 11 - Sedim	nent Trap Sizing Calculations
Sediment Storag	je Volume
Drainage Area =	1.3 Acres
Required Storage=	134 Cu. Yds / Acre
otal Required Storage=	174 Cu. Yds
Provided Wet Stora	ge
Wet storage volume may	be approximated as follows:
where,	$Vw = 0.85 \ge A_w \ge D_w$
$V_{\mathcal{W}}$ = the we $A_{\mathcal{W}}$ = the sur	it storage volume in cubic feet face area of the flooded area at the base of the stone outlet in square feet iximum depth in feet, measured from the low point in the trap to the base of the stor
A _W =	2,811 Sq. Ft.
D _W =	1 feet
V _w =	2,389 Cu. Ft.
v _w =	88 Cu. Yd.
Provided Dry Storage Dry storage volume may I	ge be approximated as follows:
$A_{w} = \text{ the surf} \\ A_{d} = \text{ the surf} \\ \text{square} \\ D_{d} = \text{ the dep} \\ A_{w} = \\ A_{d} = \\ D_{d} = \\ \mathbf{V}_{d} = \\ \end{bmatrix}$	2,811 Sq. Ft. 2,816 Sq. Ft. 3,456 Sq. Ft. 1 feet 3,134 Cu. Ft.
$V_d = \text{ the dry} \\ A_{lv} = \text{ the surf} \\ A_d = \text{ the surf} \\ \text{square} \\ D_d = \text{ the dep} \\ A_{W} = \\ A_d = \\ D_d = \\ D_d = $	storage volume face area of the flooded area at the base of the stone outlet in square feet. face area of the flooded area at the top of the stone outlet (over flow mechanism), feet oth in feet, measured from the base of the stone outlet to the top of the stone outlet 2,811 Sq. Ft. 3,456 Sq. Ft. 1 feet
$V_d = \text{ the dry} \\ A_{uv} = \text{ the surf} \\ A_d = \text{ the surf} \\ \text{square} \\ D_d = \text{ the dep} \\ A_w = \\ A_d = \\ D_d = \\ \mathbf{V}_d = $	storage volume face area of the flooded area at the base of the stone outlet in square feet. face area of the flooded area at the top of the stone outlet (over flow mechanism), feet oth in feet, measured from the base of the stone outlet to the top of the stone outlet 2,811 Sq. Ft. 3,456 Sq. Ft. 1 feet 3,134 Cu. Ft.
$V_d = \text{ the dry} \\ A_{lv} = \text{ the surf} \\ A_d = \text{ the surf} \\ square \\ D_d = \text{ the dep} \\ A_w = \\ A_d = \\ D_d = \\ \\ V_d = \\ V_d = \\ V_d = \\ \end{bmatrix}$	storage volume face area of the flooded area at the base of the stone outlet in square feet. face area of the flooded area at the top of the stone outlet (over flow mechanism), feet oth in feet, measured from the base of the stone outlet to the top of the stone outlet 2,811 Sq. Ft. 3,456 Sq. Ft. 1 feet 3,134 Cu. Ft.
$V_d = \text{ the dry}$ $A_{lv} = \text{ the surf}$ $A_d = \text{ the surf}$ $Square$ $D_d = \text{ the dep}$ $A_w =$ $A_d =$ $D_d =$ $V_d =$ $V_d =$ $V_d =$ Provided Storage	2 storage volume face area of the flooded area at the base of the stone outlet in square feet. face area of the flooded area at the top of the stone outlet (over flow mechanism), feet oth in feet, measured from the base of the stone outlet to the top of the stone outlet 2,811 Sq. Ft. 3,456 Sq. Ft. 1 feet 3,134 Cu. Ft. 116 Cu. Yd. 2,389 Cu. Ft.

Tighe& Bond Consulting Engineers Environmental Specialists	Prepared By: ALG Date: March 2020
Phase 1J - Sedim	ent Trap Sizing Calculations
Sediment Storag	e Volume
Drainage Area =	4.1 Acres
Required Storage=	134 Cu. Yds / Acre
Total Required Storage=	549 Cu. Yds
Provided Wet Storag	je
Wet storage volume may h	pe approximated as follows:
A_w = the surf	$Vw = 0.85 \ge A_w \ge D_w$ storage volume in cubic feet ace area of the flooded area at the base of the stone outlet in square feet timum depth in feet, measured from the low point in the trap to the base of the stone
A _w = D _w =	4,666 Sq. Ft. 2 feet
V _w = V _w =	7932.2 Cu. Ft. 294 Cu. Yd.
where, V_d = the dry : A_{tw} = the surfa A_d = the surfa square f	ace area of the flooded area at the base of the stone outlet in square feet. ace area of the flooded area at the top of the stone outlet (over flow mechanism), in
V _d = V _d =	7,558 Cu. Ft. 280 Cu. Yd.
Provided Storage	
Wet Storage	7,932 Cu. Ft. 293.79 Cu. Yd.
Dry Storage	7,558 Cu. Ft. 280 Cu. Yd.
Total Storage	15,490 Cu. Ft. 574 Cu. Yd.


Fighe&Bonc Consulting Engineer Environmental Specialist	Prepared By: ALG Date: April 2020
	ment Trap Sizing Calculations
Sediment Stora	-
Drainage Area =	5 Acres
Required Storage= otal Required Storage=	134 Cu. Yds / Acre 670 Cu. Yds
Provided Wet Stora	age
where, $V_{UU} = $ the work $A_{UU} = $ the su	y be approximated as follows: $Vw = 0.85 \ge A_w \ge D_w$ ret storage volume in cubic feet inface area of the flooded area at the base of the stone outlet in square feet aximum depth in feet, measured from the low point in the trap to the base of the stone
A _W = D _W =	5,788 Sq. Ft. 2 feet
V _w = V _w =	9839.6 Cu. Ft. 364 Cu. Yd.
where, V_d = the dry A_w = the sur A_d = the sur square	$V_{d} = \frac{(A_{W} + A_{d})}{2} \times D_{d}$ y storage volume rface area of the flooded area at the base of the stone outlet in square feet. rface area of the flooded area at the top of the stone outlet (over flow mechanism), i e feet
D_d = the dependence $A_W = A_d =$	epth in feet, measured from the base of the stone outlet to the top of the stone outlet 5,788 Sq. Ft. 5,788 Sq. Ft.
D _d =	2 feet
V _d = V _d =	11,576 Cu. Ft. 429 Cu. Yd.
Provided Storage	
Provided Storage Wet Storage	9,840 Cu. Ft. 364.43 Cu. Yd.
-	

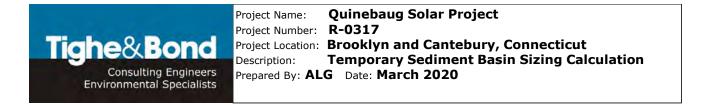
	Bonc Ilting Enginee ental Specialis	Project Descrip Prepare	Number: R0317 Location: Brooklyn and Canterbury, Conne	
Phase 2A	- Sedir	nent Tr	ap Sizing Calculations	
Sedime	nt Storag	je Volun	e	
Drainag	e Area =	4.90	Acres	
Required S	Storage=	134	Cu. Yds / Acre	
Total Required S	Storage=	657	Cu. Yds	
Provided V	Vet Storage	1		
Wet storage	volume may	be approxim	ated as follows:	
where,			$Vw = 0.85 \ge A_w \ge D_w$	
V_{u} A_{u}	= the surf	ace area of t	me in cubic feet he flooded area at the base of the stone outlet in sq in feet, measured from the low point in the trap to	
	A _w = D _w =	5,912 2	Sq. Ft. feet	
	V _w =	10,050	Cu. Ft.	
	V _w =	372	Cu. Yd.	
	ory Storage volume may	be approxir	nated as follows: $V_d = \frac{(A_W + A_d)}{2} \propto D_d$	
where,			2 4	
V_a A_u	- the sur	face area of face area of	ime the flooded area at the base of the stone outlet in ; the flooded area at the top of the stone outlet (ove	
Da	square the de		neasured from the base of the stone outlet to the to	op of the stone outlet
	A _w =		Sq. Ft.	
	$A_d = D_d =$		Sq. Ft. feet	
	V _d = V _d =	14,491 537	Cu. Ft. Cu. Yd.	
Provided				
Wet	Storage	10,050 372	Cu. Ft. Cu. Yd.	
Dry	Storage	14,491		
Total	Storage	24,541 909	Cu. Ft. Cu. Yd.	

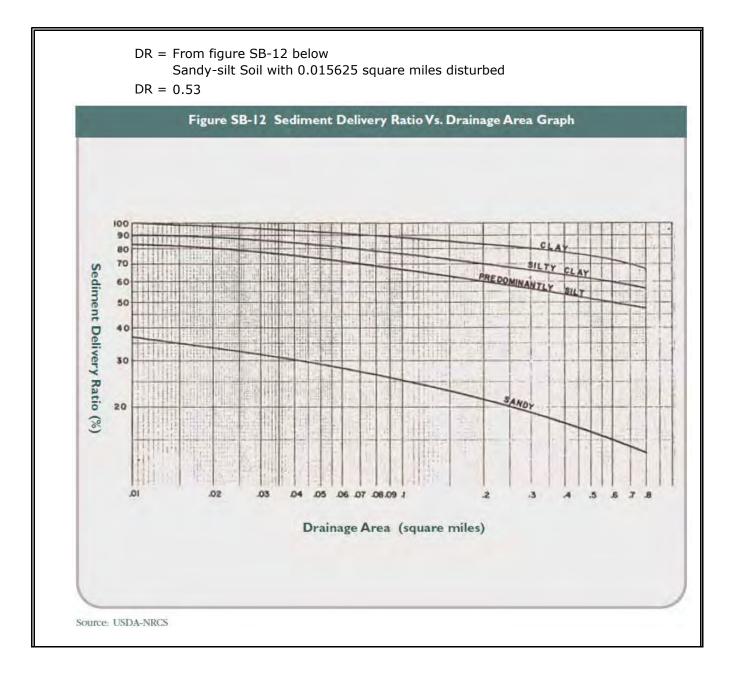
mporary Sediment Basin 2B/4B		
Sediment Storage Volume		
$V = \frac{(DA)(A)(DR)(TE)(2)}{(\gamma)(43,560 \text{ sq.})}$,000lbs./ton)	
(γ)(43,560sq.1	ft./ac)	
where:		
V = the volume of sediment trap	oped in ac. ft./yr.	
DA = the total drainage area in act	res	
A = the average annual erosion	in tons per acre per	
year using either values fro		
Loss Equation, the Revised		
Equation or the values in	Figure SB-1 for the	
listed land use.	· · · · · · · · · · · · · · · · · · ·	
DR = the delivery ratio determined	0	
TE = the trap efficiency as given a	above. (Use ().8)	
γ = the estimated sediment den	nsity in the sediment	
	nsity in the sediment	
γ = the estimated sediment den	nsity in the sediment	
γ = the estimated sediment den	nsity in the sediment	
γ = the estimated sediment der basin in lbs/cu. ft. (from Fig	nsity in the sediment gure SB-2).	
γ = the estimated sediment der basin in lbs/cu. ft. (from Fig DA = 6.1 Acres	nsity in the sediment gure SB-2). Figure SB-1 Determinin	ng Erosion Rate
$\gamma = the estimated sediment derbasin in lbs/cu. ft. (from FigDA = 6.1 AcresA = Site will be considered a$	nsity in the sediment gure SB-2).	ng Erosion Rate Ave. Annual Eros
 γ = the estimated sediment der basin in lbs/cu. ft. (from Fig DA = 6.1 Acres A = Site will be considered a 	nsity in the sediment gure SB-2). Figure SB-1 Determinin	Ave. Annual Eros 0.2
$\gamma = the estimated sediment derbasin in lbs/cu. ft. (from FigDA = 6.1 AcresA = Site will be considered a$	Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Eros 0.2
$\gamma = the estimated sediment derbasin in lbs/cu. ft. (from FigDA = 6.1 AcresA = Site will be considered a$	Figure SB-1 Determinin Land Use Wooded area Developed urban areas,	Ave. Annual Eros 0.2 ton/ac/yr
$\gamma = the estimated sediment derbasin in lbs/cu. ft. (from FigDA = 6.1 AcresA = Site will be considered a$	Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Eros 0.2 ton/ac/yr 1.0
$\gamma = the estimated sediment derbasin in lbs/cu. ft. (from FigDA = 6.1 AcresA = Site will be considered a$	Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Eros 0.2 ton/ac/yr 1.0
$\gamma = the estimated sediment derbasin in lbs/cu. ft. (from FigDA = 6.1 AcresA = Site will be considered a$	Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr
 γ = the estimated sediment der basin in lbs/cu. ft. (from Fig DA = 6.1 Acres A = Site will be considered a construction area 	Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr 10
 γ = the estimated sediment der basin in lbs/cu. ft. (from Fig DA = 6.1 Acres A = Site will be considered a construction area 	Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr

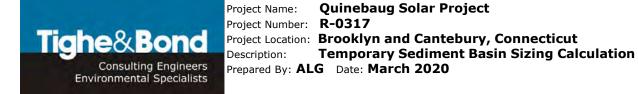
γ =	Soil Texture is Sand-silt mixtur	Figure SB-2 Estimated Sedime	ent Density
γ =	85	Soil Texture *	γ _s Submerged (Ibs/cu. ft.)
		Clay	40-60
		Silt	55-75
		Clay-silt mixtures (equal parts)	40-65
		Sand-silt mixtures (equal parts)	75-95
		Clay-silt-sand mixtures (equal parts)	50-80
		Sand	85-100
		Gravel	85-125
		Poorly sorted sand and gravel	95-130
		* Use USDA soil data from county soil surve analysis to determine soil texture.	eys or sieve
		Source: USDA-NRCS.	
	age Volume (DA)(A)(DR)(TE)(2,000lbs./t	con)	
V _S = V _S = V _S =	(DA)(A)(DR)(TE)(2,000lbs./t (γ)(43,560sq.ft./ac) 0.070 Acre Ft 3042.82 Cu. Ft 112.70 Cu. Yd.	<u>con)</u>	
V _S = V _S =	(DA)(A)(DR)(TE)(2,000lbs./t (γ)(43,560sq.ft./ac) 0.070 Acre Ft 3042.82 Cu. Ft 112.70 Cu. Yd.	<u>.on)</u>	
V _S = V _S = V _S = Wet Storag	(DA)(A)(DR)(TE)(2,000lbs./t (γ)(43,560sq.ft./ac) 0.070 Acre Ft 3042.82 Cu. Ft 112.70 Cu. Yd. 9e Volume 2 * V	<u>con)</u>	
$V_{S} =$ $V_{S} =$ $V_{S} =$ Wet Storag $V_{W} =$ $V_{W} =$	(DA)(A)(DR)(TE)(2,000lbs./t (γ)(43,560sq.ft./ac) 0.070 Acre Ft 3042.82 Cu. Ft 112.70 Cu. Yd. e Volume 2 * V 6086 Cu. Ft	<u>on)</u>	
V _S = V _S = V _S = Wet Storag V _W = V _W = Total Requ	(DA)(A)(DR)(TE)(2,000lbs./t (y)(43,560sq.ft./ac) 0.070 Acre Ft 3042.82 Cu. Ft 112.70 Cu. Yd. Je Volume 2 * V 6086 Cu. Ft 225.39 Cu Yd	<u>con)</u>	
$V_{S} =$ $V_{S} =$ $V_{S} =$ Wet Storag $V_{W} =$ $V_{W} =$ Total Requ Total Volume =	$(DA)(A)(DR)(TE)(2,000lbs./t)(\gamma)(43,560sq.ft./ac)0.070 Acre Ft3042.82 Cu. Ft112.70 Cu. Yd.Je Volume2 * V6086 Cu. Ft225.39 Cu Ydired Basin CapacityVS + Vw + Residence Storage$	idence time for a 10 year frequency	,
$V_{S} =$ $V_{S} =$ $V_{S} =$ Wet Storag $V_{W} =$ $V_{W} =$ Total Requ Total Volume =	(DA)(A)(DR)(TE)(2,000lbs./t)(Y)(43,560sq.ft./ac)0.070 Acre Ft3042.82 Cu. Ft112.70 Cu. Yd.Je Volume2 * V6086 Cu. Ft225.39 Cu Ydired Basin CapacityVs + Vw + Residence Storagevolume to provide 10 hours res	idence time for a 10 year frequency ibution storm	,

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

J:\R\R0317 Ranger Solar\R-0317-2_Quinebaug\Permitting\Permitting 2019\SWPCP\Data\Quinebaug Temporary Sediment Basin Sizing.xlsx


Ti	ghe&Bonc Consulting Enginee Environmental Specialis	Project Project Descrip Prepare	t Name: Quinebaug Solar Project t Number: R0317 t Location: Brooklyn and Canterbury, Connecticut ption: Temporary Sediment Trap Sizing Calculation red By: ALG Date: March 2020
Ph	nase 2C - Sedir	nent Tr	rap Sizing Calculations
	Sediment Storag	ge Volun	me
	Drainage Area =	3.50	0 Acres
	Required Storage=	134	4 Cu. Yds / Acre
「otal	Required Storage=	469	9 Cu. Yds
	Provided Wet Storage	2	
	Wet storage volume may l	be approxima	
	$A_w = \text{the surf}$	ace area of th	$Vw = 0.85 \ge A_{W} \ge D_{W}$ ume in cubic feet the flooded area at the base of the stone outlet in square feet h in feet, measured from the low point in the trap to the base of the stone
	A _w = D _w =	5,453 2	3 Sq. Ft. 2 feet
	V _w = V _w =	9,270 343	Cu. Ft. Cu. Yd.
		be approxim 7 storage volt face area of	$V_d = \frac{(A_{10} + A_d)}{2} \propto D_d$ lume f the flooded area at the base of the stone outlet in square feet.
	square	feet	f the flooded area at the top of the stone outlet (over flow mechanism), is
	D_d - the dep $A_w =$		measured from the base of the stone outlet to the top of the stone outlet S Sq. Ft.
	$A_d = D_d =$	7,328	9 Sq. Ft. 2 feet
	V _d = V _d =	12,781 473	
I	Provided Storage		
	Wet Storage	•) Cu. Ft. 3 Cu. Yd.
	Dry Storage		Cu. Ft. Cu. Yd.

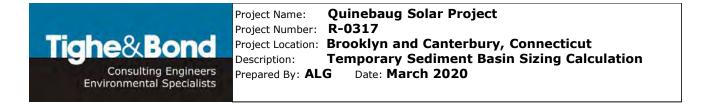

Storage rea = age= age= Storage me may be a the wet stor the surface	Volum 3.00 134 402 approxima	Acres Cu. Yds / Ac Cu. Yds Cu. Yds ted as follows: Vw = 0 me in cubic fee	85 x A _W x D _W	ons
rea = age= age= Storage me may be a the wet sto the surface the maximi outlet.	3.00 134 402 approxima orage volumetare of the	Acres Cu. Yds / Ac Cu. Yds ted as follows: Vw = 0 me in cubic fee	85 x A _W x D _W	
age= age= Storage me may be a the wet sto the surface the maxim outlet.	134 402 approxima orage volume area of th	Cu. Yds / Ac Cu. Yds ted as follows: Vw = 0 me in cubic fee	85 x A _W x D _W	
age= Storage me may be a the wet sto the surface the maxim outlet.	402 approxima orage volue : area of th	Cu. Yds ted as follows: Vw = 0 me in cubic fee	85 x A _W x D _W	
Storage me may be a the wet sto the surface the maxim outlet.	approxima orage volu : area of th	ted as follows: Vw = 0 me in cubic fee	w w	
the wet sto the surface the maximu outlet.	orage volu area of th	Ww = 0 me in cubic fee	w w	
the wet sto the surface the maximu outlet.	orage volu area of th	Ww = 0 me in cubic fee	w w	
the surface the maximu outlet.	e area of th	me in cubic fee	w w	
the surface the maximu outlet.	e area of th	me in cubic fee ne flooded area		
D _w =			at the base of the sto	one outlet in square feet t in the trap to the base of the stone
V _w = V _w =	5,800 215	Cu. Ft. Cu. Yd.		
Storage				
ume may be	approxim	ated as follows		
		$V_d = -$	$A_{W} + A_{d} = x D_{d}$	
		- 14	2 4	
the surface the surface square fee	e area of e area of st	he flooded are he flooded are	a at the top of the st	one outlet (over flow mechanism),
			ie base of the storie	outlet to the top of the stone outle
A _d =	4,973	Sq. Ft.		
$D_d =$	2	reet		
$V_d = V_d =$	8,385	Cu. Ft.		
	$V_w =$ Storage me may be the dry st the surfac square fea the depth $A_w =$ $A_d =$ $D_d =$	$V_{W} = 215$ Storage Imme may be approxim the dry storage volu the surface area of 1 square feet the depth in feet, m $A_{W} = 3,412$ $A_{d} = 4,973$ $D_{d} = 2$ $V_{d} = 8,385$	V_W =215Cu. Yd.Storageime may be approximated as follows $V_d = -$ the dry storage volumethe dry storage volumethe surface area of the flooded areasquare feetthe depth in feet, measured from theAugree 12 Sq. Ft.A_d = 4,973Sq. Ft.D_d = 2feet	V _w = 215 Cu. Yd. Storage Ime may be approximated as follows: $V_d = \frac{(A_w + A_d)}{2} \times D_d$ the dry storage volume the surface area of the flooded area at the base of the s the surface area of the flooded area at the base of the st square feet the depth in feet, measured from the base of the stone A_w = 3,412 Sq. Ft. A_d = 4,973 Sq. Ft. D_d = 2 feet V_d = 8,385 Cu. Ft.

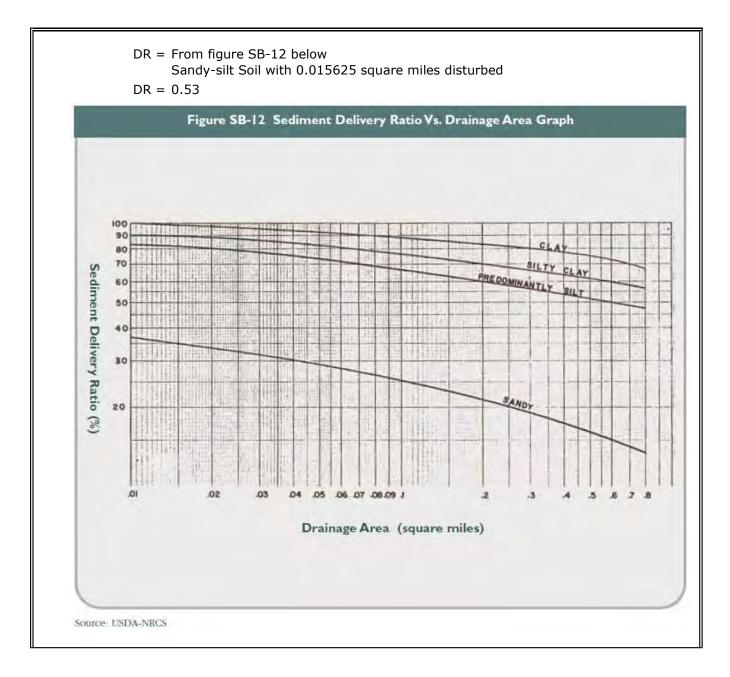

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

mporary Sediment Basin 2E/4E	-	
Sediment Storage Volume		
V = (DA)(A)(DR)(TE)(C)	2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)(A)}{(\gamma)(43,560)}$	q.ft./ac)	
where:		
V = the volume of sediment tra	pped in ac. ft./yr.	
DA = the total drainage area in a	cres	
A = the average annual erosion	n in tons per acre per	
year using either values fr		
Loss Equation, the Revise		
Equation or the values in	Figure SB-1 for the	
listed land use.	I C Dimension CD 12	
DR = the delivery ratio determine	0	
TE = the trap efficiency as given	above u se u al	
γ = the estimated sediment de basin in lbs/cu. ft. (from Fi	ensity in the sediment	
γ = the estimated sediment de	ensity in the sediment	
γ = the estimated sediment de basin in lbs/cu. ft. (from Fi	ensity in the sediment	
γ = the estimated sediment de	ensity in the sediment	
γ = the estimated sediment de basin in lbs/cu. ft. (from Fi	ensity in the sediment	ng Erosion Rate
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a 	ensity in the sediment igure SB-2).	ng Erosion Rate Ave. Annual Erosi
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a 	ensity in the sediment igure SB-2). Figure SB-1 Determinir	Ave. Annual Erosi 0.2
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a 	ensity in the sediment igure SB-2). Figure SB-1 Determinir Land Use Wooded area	Ave. Annual Erosi 0.2
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a 	ensity in the sediment igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas,	Ave. Annual Erosi 0.2
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a 	ensity in the sediment igure SB-2). Figure SB-1 Determinir Land Use Wooded area	Ave. Annual Erosi 0.2 ton/ac/yr 1.0
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a 	Figure SB-1 Determinir Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Erosi 0.2 ton/ac/yr 1.0
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a 	Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Erosi 0.2 ton/ac/yr 1.0
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a construction area 	Figure SB-1 Determinir Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosi 0.2 ton/ac/yr 1.0 ton/ac/yr 10
 γ = the estimated sediment de basin in lbs/cu. ft. (from Fi DA = 9.1 Acres A = Site will be considered a construction area 	Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Erosi 0.2 ton/ac/yr 1.0 ton/ac/yr

γ =	Soil Texture is Sand-silt mixtur	Figure SB-2 Estimated Sedim	ent Density
γ =	85	Soil Texture *	γ _s Submerged (lbs/cu. ft.)
		Clay	40-60
		Silt	55-75
		Clay-silt mixtures (equal parts)	40-65
		Sand-silt mixtures (equal parts)	75-95
		Clay-silt-sand mixtures (equal parts)	50-80
		Sand	85-100
		Gravel	85-125
		Poorly sorted sand and gravel	95-130
		* Use USDA soil data from county soil surve analysis to determine soil texture.	ys or sieve
		Source: USDA-NRCS.	
Sediment Stora	age Volume		
V _S =	(DA)(A)(DR)(TE)(2,000lbs./to (q)(43,560sq.ft./ac)	<u>(nc</u>	
V _S = V _S =			
Wet Storag	e Volume		
V _w = V _w =	2 * V 9079 Cu. Ft 336.24 Cu Yd		
Total Requi	ired Basin Capacity		
Total Volume =	$V_{S} + V_{W} + Residence Storage$		
Residence Storage =	volume to provide 10 hours resi 24 hour duration, type III distrib	dence time for a 10 year frequency bution storm	
Residence Storage =	2,613 Cu. Ft. as determir	ned by HydroCAD	
Total Volume =	16231 Cu. Ft. 601 Cu. Yd.		

 Project Name:
 Quinebaug Solar Project


 Project Number:
 R-0317


 Project Location:
 Brooklyn and Canterbury, Connecticut

 Description:
 Temporary Sediment Basin Sizing Calculation

 Prepared By:
 ALG
 Date: March 2020

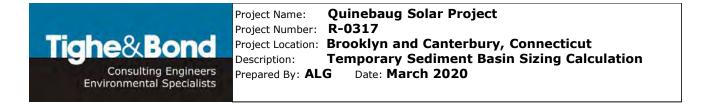
Sediment Storage Volume		
)(2.000lbc /top)	
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560)}$	sa ft /ac)	
where:	oquas acy	
V = the volume of sediment t		
DA = the total drainage area in		
 A = the average annual erosi year using either values 		
Loss Equation, the Revis		
Equation or the values		
listed land use.		
DR = the delivery ratio determine	-	
TE = the trap efficiency as give	n above (lise () 8)	
γ = the estimated sediment of	density in the sediment	
	density in the sediment	
γ = the estimated sediment basin in lbs/cu. ft. (from 1	density in the sediment	
γ = the estimated sediment of	density in the sediment	
 γ = the estimated sediment of basin in lbs/cu. ft. (from 1 DA = 9.2 Acres A = Site will be considered a 	density in the sediment Figure SB-2).	g Erosion Rate
γ = the estimated sediment of basin in lbs/cu. ft. (from 2 DA = 9.2 Acres	density in the sediment Figure SB-2).	g Erosion Rate Ave.
 γ = the estimated sediment of basin in lbs/cu. ft. (from 1 DA = 9.2 Acres A = Site will be considered a 	density in the sediment Figure SB-2). Figure SB-1 Determinin	Ave.
γ = the estimated sediment of basin in lbs/cu. ft. (from 1) DA = 9.2 Acres A = Site will be considered a	density in the sediment Figure SB-2). Figure SB-1 Determinin	Ave.
 γ = the estimated sediment of basin in lbs/cu. ft. (from 1 DA = 9.2 Acres A = Site will be considered a 	density in the sediment Figure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Eros 0.2
 γ = the estimated sediment of basin in lbs/cu. ft. (from 1 DA = 9.2 Acres A = Site will be considered a 	density in the sediment Figure SB-2). Figure SB-1 Determinin Land Use	Ave. Annual Eros 0.2
 γ = the estimated sediment of basin in lbs/cu. ft. (from 1 DA = 9.2 Acres A = Site will be considered a 	density in the sediment Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Eros 0.2 ton/ac/y 1.0
 γ = the estimated sediment of basin in lbs/cu. ft. (from 1) DA = 9.2 Acres A = Site will be considered a construction area 	density in the sediment Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Eros 0.2 ton/ac/y 1.0
 γ = the estimated sediment of basin in lbs/cu. ft. (from 1 DA = 9.2 Acres A = Site will be considered a 	density in the sediment Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Eros 0.2 ton/ac/y 1.0 ton/ac/y 10
 γ = the estimated sediment of basin in lbs/cu. ft. (from 1) DA = 9.2 Acres A = Site will be considered a construction area 	density in the sediment Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave, Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr

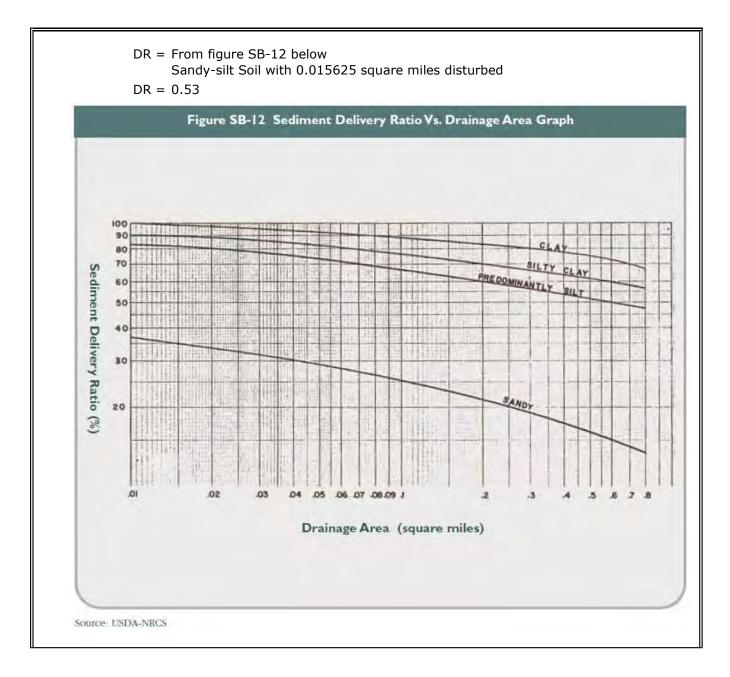
γ = Soil Texture is Sand-silt mixtu	Figure SB-2 Estimated Sedime	ent Density
γ = 85	Soll Texture *	γ _s Submerged (lbs/cu. ft.)
	Clay	40-60
	Silt	55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal parts)	50-80
	Sand	85-100
	Gravel	85-125
	Poorly sorted sand and gravel	95-130
	* Use USDA soil data from county soil surve analysis to determine soil texture.	ys or sieve
Sediment Storage Volume $V_{S} = \underbrace{(DA)(A)(DR)(TE)(2,000 bs.}{(\gamma)(43,560sq.ft./ac)}$ $V_{S} = 0.105 \text{ Acre Ft}$ $V_{S} = 4589.18 \text{ Cu. Ft}$ 169.97 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9178 \text{ Cu. Ft}$ 339.94 Cu Yd	. <u>/ton)</u>	
Total Required Basin Capacity		
Total Volume = $V_s + V_w + Residence Storage$		
Residence Storage = volume to provide 10 hours r 24 hour duration, type III dis		
Residence Storage = 2,613 Cu. Ft. as determ	mined by HydroCAD	
Total Volume = 16381 Cu. Ft.		

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

J:\R\R0317 Ranger Solar\R-0317-2_Quinebaug\Permitting\Permitting 2019\SWPCP\Data\Quinebaug Temporary Sediment Basin Sizing.xlsx

 Project Name:
 Quinebaug Solar Project

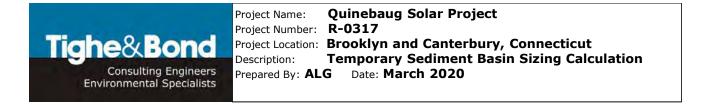

 Project Number:
 R-0317

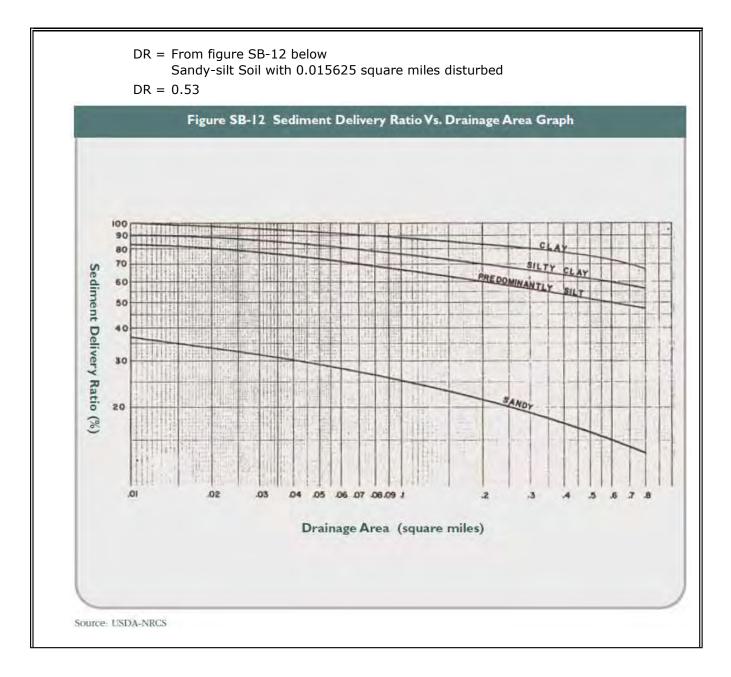

 Project Location:
 Brooklyn and Canterbury, Connecticut

 Description:
 Temporary Sediment Basin Sizing Calculation

 Prepared By:
 ALG
 Date: March 2020

Sediment Storage Volume		
U = (DA)(A)(DR)(TR)	E)(2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TR)}{(\gamma)(43,560)}$)sq.ft./ac)	
where:		
V = the volume of sediment	trapped in ac. ft./yr.	
DA = the total drainage area in	n acres	
A = the average annual eros		
	from the Universal Soil	
	ised Universal Soil Loss	
listed land use.	in Figure SB-1 for the	
DR = the delivery ratio determ	ined from Figure SB-12.	
TE = the trap efficiency as giv	-	
in the trup enterency no giv		
γ = the estimated sediment	density in the sediment	
	density in the sediment	
γ = the estimated sediment basin in lbs/cu. ft. (from	density in the sediment	
γ = the estimated sediment	density in the sediment	
γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a	density in the sediment Figure SB-2).	g Erosion Rate
γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres	density in the sediment Figure SB-2).	Ave.
γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a	density in the sediment Figure SB-2).	aller a
γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a	density in the sediment Figure SB-2).	Ave. Annual Eros 0.2
γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a	density in the sediment Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area	Ave. Annual Eros 0.2
γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a	density in the sediment Figure SB-2). Figure SB-1 Determining Land Use Wooded area Developed utban areas, grassed areas, pastures,	Ave. Annual Eros 0.2 ton/ac/yi 1.0
γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a	density in the sediment Figure SB-2). Figure SB-1 Determining Land Use Wooded area Developed utban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Eros 0.2 ton/ac/yr 1.0
 γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a construction area 	density in the sediment Figure SB-2). Figure SB-1 Determining Land Use Wooded area Developed utban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Eros 0.2 ton/ac/yr 1.0
γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a	density in the sediment Figure SB-2). Figure SB-1 Determining Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave, Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr 10
 γ = the estimated sediment basin in lbs/cu. ft. (from DA = 9.8 Acres A = Site will be considered a construction area 	density in the sediment Figure SB-2). Figure SB-1 Determining Land Use Wooded area Developed utban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Eros 0.2 ton/ac/yi 1.0 ton/ac/yi


γ = Soil Texture is Sand-silt mixt	Figure SB-2 Estimated Sedime	ent Density
γ = 85	Soll Texture *	γ _s Submerged (Ibs/cu. ft.)
	Clay	40-60
	Sih	55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal parts)	50-80
	Sand	85-100
	Gravel	85-125
	Poorly sorted sand and gravel	95-130
	 Use USDA soil data from county soil surve analysis to determine soil texture. 	ys or sieve
	Source: USDA-NRCS.	
Sediment Storage Volume		
$V_{s} = \underline{(DA)(A)(DR)(TE)(2,000)}$ $(\gamma)(43,560 \text{ sq.ft./ac})$	s./ton)	
$V_s = 0.112$ Acre Ft		
$V_{\rm S} = 4888.47$ Cu. Ft		
181.05 Cu. Yd.		
Wet Storage Volume		
$V_W = 2 * V$		
$V_{W} = 2$ V V _W = 9777 Cu. Ft		
362.11 Cu Yd		
Total Required Basin Capacity		
Total Volume = $V_s + V_w + Residence Storage$	2	
Residence Storage = volume to provide 10 hours in 24 hour duration, type III dis		
Residence Storage = volume to provide 10 hours r	stribution storm	


Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

J:\R\R0317 Ranger Solar\R-0317-2_Quinebaug\Permitting\Permitting 2019\SWPCP\Data\Quinebaug Temporary Sediment Basin Sizing.xlsx

Sediment Storage Volume		
V = (DA)(A)(DR)(TE))(2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560)}$	sq.ft./ac)	
where:		
V = the volume of sediment to	rapped in ac. ft./yr.	
DA = the total drainage area in	acres	
A = the average annual erosid		
year using either values		
Loss Equation, the Revis Equation or the values		
listed land use.	in Figure 3D-1 for the	
DR = the delivery ratio determi	ned from Figure SB-12.	
TE = the trap efficiency as give		
γ = the estimated sediment of		
γ = the estimated sediment of basin in lbs/cu. ft. (from 1		
DA = 6.8 Acres A = Site will be considered a	Figure SB-2).	g Erosion Rate
basin in lbs/cu. ft. (from D DA = 6.8 Acres	Figure SB-2). Figure SB-1 Determinin	g Erosion Rate Ave.
DA = 6.8 Acres A = Site will be considered a	Figure SB-2).	
DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave.
DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Eros
DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use	Ave. Annual Eros 0.2
DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Eros 0.2 ton/ac/yi 1.0
basin in lbs/cu. ft. (from 1 DA = 6.8 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Eros 0.2 ton/ac/yr 1.0
DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr 10
basin in lbs/cu. ft. (from 1 DA = 6.8 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave, Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr

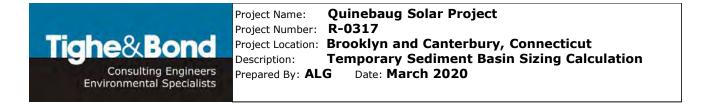
Quinebaug Solar Project Project Name: Project Number: **R-0317** Project Location: Brooklyn and Canterbury, Connecticut **Temporary Sediment Basin Sizing Calculation** Description: Prepared By: ALG Date: March 2020

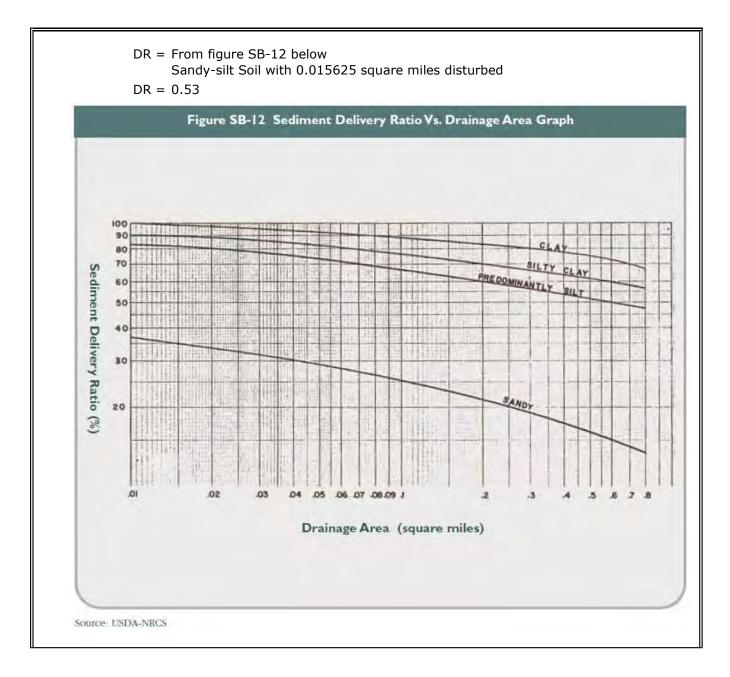
γ = Soil Texture is Sand-silt mixt	uri Figure SB-2 Estimated Sedime	ent Density
γ = 85	Soll Texture *	γ _s Submerged (Ibs/cu. ft.)
	Clay Silt	40-60 55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal pans) Sand	50-80 85-100
	Gravel	85-100 85-125
	Poorly sorted sand and gravel	95-125
	• Use USDA soil data from county soil surve analysis to determine soil texture.	ys or sieve
	Source: USDA-NRCS	
Sediment Storage Volume		
$V_{\rm S} = \underline{(DA)(A)(DR)(TE)(2,000)}$	s./ton)	
(y)(43,560sq.ft./ac)		
$V_{S} = 0.078$ Acre Ft $V_{S} = 3392.00$ Cu. Ft 125.63 Cu. Yd.		
Wet Storage Volume		
V _w = 2 * V V _w = 6784 Cu. Ft		
251.26 Cu Yd		
Total Required Basin Capacity		
Total Volume = $V_s + V_w + Residence Storage$	2	
Residence Storage = volume to provide 10 hours r 24 hour duration, type III dis		
Residence Storage = 2,613 Cu. Ft. as deter	mined by HydroCAD	

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

J:\R\R0317 Ranger Solar\R-0317-2_Quinebaug\Permitting\Permitting 2019\SWPCP\Data\Quinebaug Temporary Sediment Basin Sizing.xlsx

 Project Name:
 Quinebaug Solar Project


 Project Number:
 R-0317


 Project Location:
 Brooklyn and Canterbury, Connecticut

 Description:
 Temporary Sediment Basin Sizing Calculation

 Prepared By:
 ALG
 Date: March 2020

Sediment Storage Volume		
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560s)}$) <u>(2,000lbs./ton)</u> sq.ft./ac)	
where:		
V = the volume of sediment tr	rapped in ac. ft./yr.	
DA = the total drainage area in		
A = the average annual erosic		
year using either values Loss Equation, the Revis		
Equation or the values i		
listed land use.		
DR = the delivery ratio determine	•	
TE = the trap efficiency as give		
γ = the estimated sediment of basin in lbs/cu. ft. (from I		
DA = 7.4 Acres A = Site will be considered a	Figure SB-2).	g Erosion Rate
basin in lbs/cu. ft. (from I DA = 7.4 Acres	Figure SB-2). Figure SB-1 Determinin	-
DA = 7.4 Acres A = Site will be considered a	Figure SB-2).	g Erosion Rate Ave. Annual Erosi
basin in lbs/cu. ft. (from IDA = 7.4AcresA =Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave.
DA = 7.4 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Erosi
DA = 7.4 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Erosi 0.2 ton/ac/yr 1.0
basin in lbs/cu. ft. (from IDA = 7.4AcresA =Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosi 0.2 ton/ac/yr
basin in lbs/cu. ft. (from I DA = 7.4 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave, Annual Erosi 0,2 ton/ac/yr 1,0 ton/ac/yr
DA = 7.4 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave, Annual Eros 0,2 ton/ac/yr 1,0 ton/ac/yr 10
DA = 7.4 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave, Annual Erosi 0,2 ton/ac/yr 1,0 ton/ac/yr

γ = Soil Texture is Sand-silt mixtu	Figure SB-2 Estimated Sedime	ent Density
γ = 85	Soll Texture *	γ _s Submerged (lbs/cu. ft.)
	Clay	40-60
	Silt	55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal parts)	50-80
	Sand	85-100
	Gravel	85-125
	Poorly sorted sand and gravel	95-130
	* Use USDA soil data from county soil surve analysis to determine soil texture.	ys or sieve
Sediment Storage Volume $V_{s} = \underbrace{(DA)(A)(DR)(TE)(2,000lbs)}_{(\gamma)(43,560sq.ft./ac)}$ $V_{s} = 0.085 \text{ Acre Ft}$ $V_{s} = 3691.29 \text{ Cu. Ft}$ 136.71 Cu. Yd. Wet Storage Volume $V_{w} = 2 * V$ $V_{w} = 7383 \text{ Cu. Ft}$ 273.43 Cu Yd	./ton)	
Total Required Basin Capacity		
Total Volume = $V_s + V_w + Residence Storage$		
Residence Storage = volume to provide 10 hours r 24 hour duration, type III dis		
Residence Storage = 2,613 Cu. Ft. as determ	mined by HydroCAD	

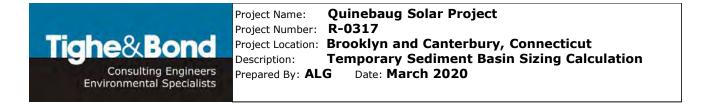
Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

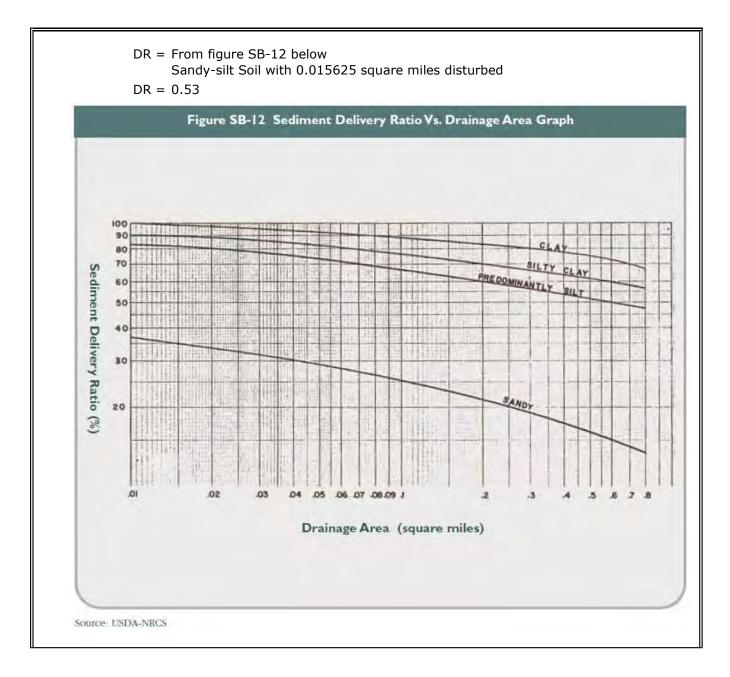
J:\R\R0317 Ranger Solar\R-0317-2_Quinebaug\Permitting\Permitting 2019\SWPCP\Data\Quinebaug Temporary Sediment Basin Sizing.xlsx

	he&Bonc Consulting Engineer Environmental Specialist	Project Project Descrip S Prepare	Name: Quinebaug Solar Project Number: R0317 Location: Brooklyn and Canterbury, Connecticut tion: Temporary Sediment Trap Sizing Calculation ed By: ALG Date: March 2020
Phas	se 2J - Sedim	ent Tr	ap Sizing Calculations
Se	ediment Storag	e Volun	ne
[Drainage Area =	5.00	Acres
Red	quired Storage=	134	Cu. Yds / Acre
tal Red	quired Storage=	670	Cu. Yds
Pro	ovided Wet Storage		
Wet	t storage volume may b	e approxima	
why	ere,		$Vw = 0.85 \ge A_w \ge D_w$
	$V_{\mathcal{W}}$ = the wet $A_{\mathcal{W}}$ = the surface	ce area of th	me in cubic feet he flooded area at the base of the stone outlet in square feet in feet, measured from the low point in the trap to the base of the stone
	A _w = D _w =	15,602 3	Sq. Ft. Breet
		39,785	
	V _w =	1 474	
		1,474	
	by b	e approxima storage volu ce area of t ce area of t eet. h in feet, m 15,602 18,366	ated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \propto D_{d}$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft.
bry	provided Dry Storage storage volume may b V_d = the dry s A_{tw} = the surfa A_d = the surfa A_d = the surfa A_d = the dept D_d = the dept A_w = A_d = D_d = V_d =	e approxima storage volu ce area of t ce area of t eet h in feet, m 15,602 18,366 1 16,984	ated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \propto D_{d}$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft.
bry	provided Dry Storage storage volume may b V_d = the dry s A_{tw} = the surfa A_d = the surfa A_d = the surfa A_d = the dept D_d = the dept A_{w} = A_d = D_d = V_d = V_d =	e approxima storage volu ce area of t ce area of t ce area of t 15,602 18,366 1 16,984 629 39,785	ated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \propto D_{d}$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft.
bry	by ided Dry Storage storage volume may b V_d = the dry + A_{W} = the surfa A_d = the surfa square fi D_d = the dept A_{W} = A_d = D_d = V_d = V_d = V_d = V_d =	e approxima storage volu ce area of t cet area of t cet area of t 15,602 18,366 1 16,984 629 39,785 1,474 16,984	ated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \times D_{d}$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. feet Cu. Ft. Cu. Ft. Cu. Ft.

Tighe& Bond Consulting Engineers Environmental Specialists	Prepared By: ALG Date: March 2020
Phase 2K - Sedim	ent Trap Sizing Calculations
Sediment Storage	e Volume
Drainage Area =	1.90 Acres
Required Storage=	134 Cu. Yds / Acre
otal Required Storage=	255 Cu. Yds
Provided Wet Storage	
Wet storage volume may be	and the second se
A_{W} = the surface	$Vw = 0.85 \ge A_{W} \ge D_{W}$ torage volume in cubic feet the area of the flooded area at the base of the stone outlet in square feet mum depth in feet, measured from the low point in the trap to the base of the stone
D	2,120 Sq. Ft. 2 feet
V _w = V _w =	3,604 Cu. Ft. 133 Cu. Yd.
Provided Dry Storage Dry storage volume may be	e approximated as follows: $V_d = \frac{(A_{lb} + A_d)}{2} \propto D_d$
A_d the surface square fe	ce area of the flooded area at the base of the stone outlet in square feet, ce area of the flooded area at the top of the stone outlet (over flow mechanism), in
A _w =	2,120 Sq. Ft.
$A_d = D_d =$	3,271 Sq. Ft. 2 feet
V _d = V _d =	5,391 Cu. Ft. 200 Cu. Yd.
Provided Storage	
Wet Storage	3,604 Cu. Ft. 133 Cu. Yd.
Dry Storage	5,391 Cu. Ft. 200 Cu. Yd.
Total Storage	8,995 Cu. Ft. 333 Cu. Yd.

 Project Name:
 Quinebaug Solar Project

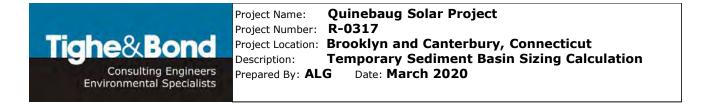

 Project Number:
 R-0317

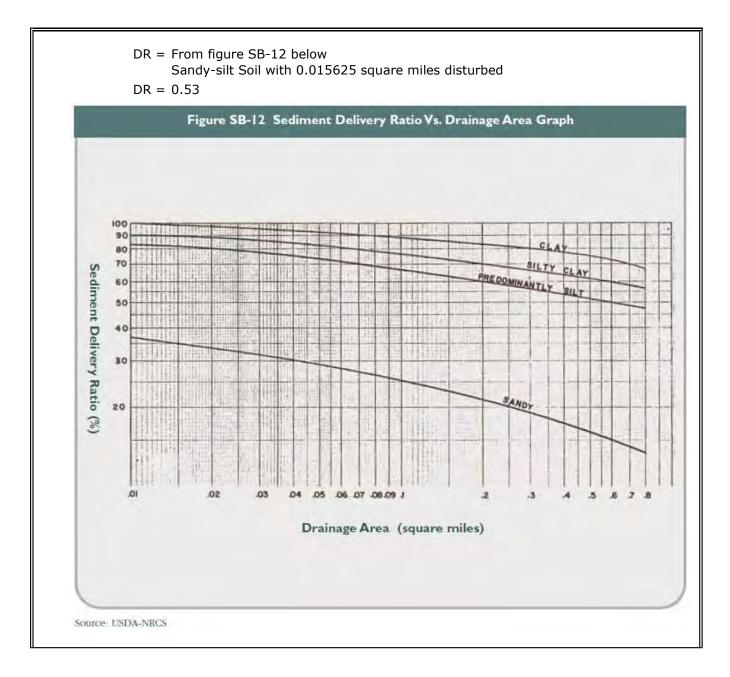

 Project Location:
 Brooklyn and Canterbury, Connecticut

 Description:
 Temporary Sediment Basin Sizing Calculation

 Prepared By:
 ALG
 Date: March 2020

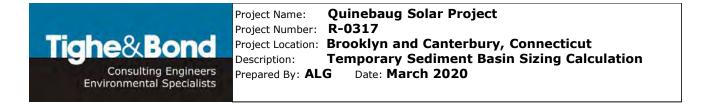
mporary Sediment Basin 2L/4	L	
Sediment Storage Volume		
(DA)(A)(DR)(TE)	(2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560s)}$	q.ft./ac)	
where:		
V = the volume of sediment tra	apped in ac. ft./yr.	
DA = the total drainage area in a		
A = the average annual erosion	on in tons per acre per	
year using either values f		
Loss Equation, the Revise		
Equation or the values in	n Figure SB-1 for the	
listed land use.	d for Planas SP 12	
DR = the delivery ratio determin TE = the trap efficiency as given		
	ensity in the sediment	
γ = the estimated sediment d basin in lbs/cu. ft. (from F	lensity in the sediment 'igure SB-2).	
basin in lbs/cu. ft. (from F		
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a		g Erosion Rate
basin in lbs/cu. ft. (from F DA = 5.8 Acres	ligure SB-2).	Ave.
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave.
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave.
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave, Annual Erosi 0,2
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed uiban areas,	Ave, Annual Erosi 0.2 ton/ac/yr
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave, Annual Erosi 0.2 ton/ac/yr 1.0
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed uiban areas,	Ave. Annual Erosi 0.2 ton/ac/yr 1.0
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Erosi 0.2 ton/ac/yr 1.0
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosi 0.2 ton/ac/yr 1.0 ton/ac/yr 10
basin in lbs/cu. ft. (from F DA = 5.8 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave, Annual Erosi 0,2 ton/ac/yr 1,0 ton/ac/yr

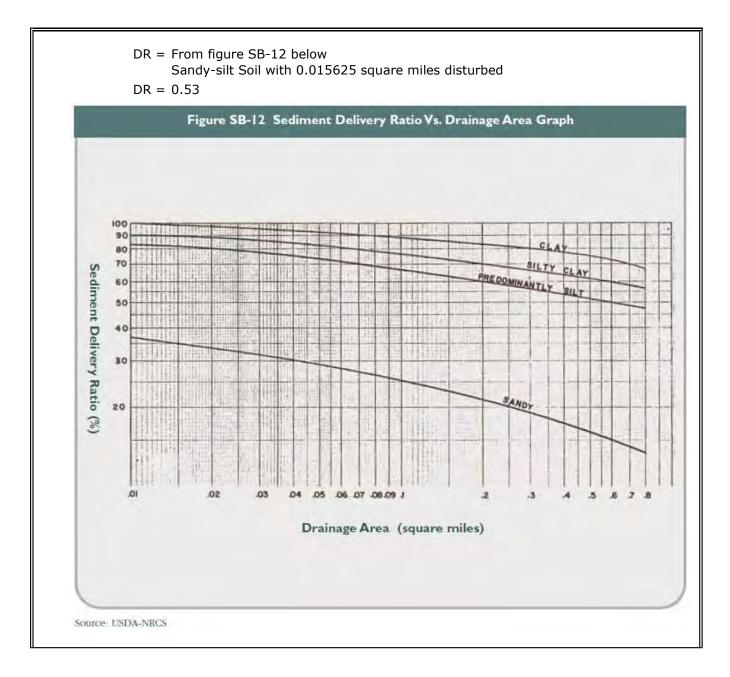



$\gamma = S$	Soil Texture is Sand-silt mixtu	Figure SB-2 Estimated Sedime	ent Density
γ = 8	35	Soll Texture *	γ _s Submerged (Ibs/cu. ft.)
		Clay	40-60
		Silt	55-75
		Clay-silt mixtures (equal parts)	40-65
		Sand-silt mixtures (equal parts)	75-95
		Clay-silt-sand mixtures (equal parts)	50-80
		Sand	85-100
		Gravel	85-125
		Poorly sorted sand and gravel	95-130
		 Use USDA soil data from county soil surve analysis to determine soil texture. 	rys or sleve
		Source: USDA-NRCS	
Sediment Storag	ge Volume		
V			
	In all all complete months	11 N	
$v_{\rm S} = 1$	(DA)(A)(DR)(TE)(2,000lbs./	(ton)	
$v_{\rm S} = 1$	(<u>DA)(A)(DR)(TE)(2,000lbs./</u> (q)(43,560sq.ft./ac)	(ton)	
V _S =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft	(ton)	
	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft	(ton)	
V _S =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft	(ton)	
V _S =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd.	<u>(ton)</u>	
V _s = V _s = Wet Storage	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. • Volume	(<u>ton)</u>	
V _S = V _S =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. • Volume	<u>(ton)</u>	
V _S = V _S = Wet Storage V _W = 2	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. 2 Volume 2 * V	<u>(ton)</u>	
V _S = V _S = Wet Storage V _W = 2 V _W =	(7)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. 2 Volume 2 * V 5786 Cu. Ft	<u>(ton)</u>	
V _S = V _S = Wet Storage V _W = 2 V _W =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. 2 * V 5786 Cu. Ft 214.31 Cu Yd	<u>(ton)</u>	
$V_{S} = V_{S} =$ $Wet Storage$ $V_{W} = 2$ $V_{W} =$ $Total Requir$ $Total Volume = V$ $Residence Storage = V$	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. Volume 2 * V 5786 Cu. Ft 214.31 Cu Yd red Basin Capacity V _s + V _w + Residence Storage	sidence time for a 10 year frequency	
$V_{S} = V_{S} =$ $Wet Storage$ $V_{W} = 2$ $V_{W} =$ $Total Requir$ $Total Volume = V$ $Residence Storage = V$	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. Volume 2 * V 5786 Cu. Ft 214.31 Cu Yd red Basin Capacity $V_{s} + V_{w} + \text{Residence Storage}$ volume to provide 10 hours re	sidence time for a 10 year frequency ribution storm	
$V_{S} = V_{S} =$ $Wet Storage$ $V_{W} = 2$ $V_{W} =$ $Total Requir$ $Total Volume = V$ $Residence Storage = V$ 2	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. Volume 2 * V 5786 Cu. Ft 214.31 Cu Yd red Basin Capacity $V_s + V_w + \text{Residence Storage}$ volume to provide 10 hours re 24 hour duration, type III dist	sidence time for a 10 year frequency ribution storm	

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

mporary Sediment Basin 2M/4	I~I	
Sediment Storage Volume		
(DA)(A)(DR)(TE)(2.000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)(A)}{(\gamma)(43,560)}$	q.ft./ac)	
where:		
V = the volume of sediment tra	apped in ac. ft./yr.	
DA = the total drainage area in a		
A = the average annual erosion	n in tons per acre per	
year using either values fr		
Loss Equation, the Revise		
Equation or the values in	Figure SB-1 for the	
listed land use.	1 C	
DR = the delivery ratio determine	-	
TE = the trap efficiency as given		
v - the estimated sediment de	ensity in the sediment	
γ = the estimated sediment de basin in lbs/cu. ft. (from Fi		
basin in lbs/cu. ft. (from Fi		
$DA = 6.1 \qquad Acres$ $A = \qquad Site will be considered a$		g Erosion Rate
basin in lbs/cu. ft. (from Fi DA = 6.1 Acres	igure SB-2).	Ave.
$DA = 6.1 \qquad Acres$ $A = \qquad Site will be considered a$	igure SB-2). Figure SB-1 Determinin	
$DA = 6.1 \qquad Acres$ $A = \qquad Site will be considered a$	igure SB-2). Figure SB-1 Determinin	Ave. Annual Eros
$DA = 6.1 \qquad Acres$ $A = \qquad Site will be considered a$	igure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Erosi 0.2
$DA = 6.1 \qquad Acres$ $A = \qquad Site will be considered a$	igure SB-2). Figure SB-1 Determinin Land Use	Ave. Annual Eros
$DA = 6.1 \qquad Acres$ $A = \qquad Site will be considered a$	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed uiban areas, grassed areas, pastures, hay fields, abandoned	Ave, Annual Erosi 0.2 ton/ac/yr 1.0
$DA = 6.1 \qquad Acres$ $A = \qquad Site will be considered a$	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave, Annual Erosi 0.2 ton/ac/yr 1.0
$DA = 6.1 \qquad Acres$ $A = \qquad Site will be considered a$	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed uiban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave, Annual Erosi 0.2 ton/ac/yr 1.0
DA = 6.1 Acres A = Site will be considered a construction area	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed uiban areas, grassed areas, pastures, hay fields, abandoned	Ave, Annual Erosi 0,2 ton/ac/yr 1.0 ton/ac/yr 10
DA = 6.1 Acres A = Site will be considered a construction area	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed utban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave, Annual Erosi 0,2 ton/ac/yr 1,0 ton/ac/yr




γ = Soil Texture is Sand-silt mixt	Figure SB-2 Estimated Sedime	ent Density
γ = 85	Soil Texture *	γ _s Submerged (lbs/cu. ft.)
	Clay	40-60
	Silt	55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal parts)	50-80
	Sand	85-100
	Gravel	85-125
	Poorly sorted sand and gravel	95-130
	* Use USDA soil data from county soil surve analysis to determine soil texture.	ys or sieve
Sediment Storage Volume $V_{S} = (DA)(A)(DR)(TE)(2,000)bs (\gamma)(43,560sq.ft./ac)$ $V_{S} = 0.070 \text{ Acre Ft}$ $V_{S} = 3042.82 \text{ Cu. Ft}$ 112.70 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 6086 \text{ Cu. Ft}$ 225.39 Cu Yd	. <u>./ton)</u>	
Total Required Basin Capacity		
Total Volume = $V_{S} + V_{W} + Residence Storage$	2	
Residence Storage = volume to provide 10 hours r 24 hour duration, type III dis		
Residence Storage = 2,613 Cu. Ft. as deter	mined by HydroCAD	

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

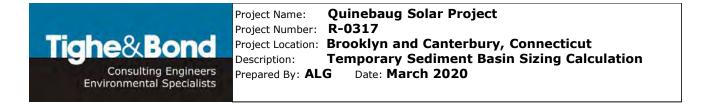
mporary Sediment Basin 2N/4	FIN	
Sediment Storage Volume		
U = (DA)(A)(DR)(TE))(2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560s)}$	sq.ft./ac)	
where:		
V = the volume of sediment to	rapped in ac. ft./yr.	
DA = the total drainage area in	acres	
A = the average annual erosic	on in tons per acre per	
year using either values	from the Universal Soil	
Loss Equation, the Revis	sed Universal Soil Loss	
Equation or the values i listed land use.	in Figure SB-1 for the	
DR = the delivery ratio determine	ned from Figure SB-12	
TE = the trap efficiency as give	-	
γ = the estimated sediment of	density in the sediment	
γ = the estimated sediment of basin in lbs/cu. ft. (from I)		
basin in lbs/cu. ft. (from l		
DA = 9.3 Acres A = Site will be considered a		g Erosion Rate
basin in lbs/cu. ft. (from I DA = 9.3 Acres	Figure SB-2). Figure SB-1 Determinin	14.00
DA = 9.3 Acres A = Site will be considered a	Figure SB-2).	g Erosion Rate Ave. Annual Erosi
DA = 9.3 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave.
DA = 9.3 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use	Ave. Annual Erosi
DA = 9.3 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas,	Ave. Annual Erosi 0,2 ton/ac/yr
DA = 9.3 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Erosi 0,2 ton/ac/yr 1,0
DA = 9.3 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas,	Ave. Annual Erosi 0,2 ton/ac/yr
DA = 9.3 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Erosi 0,2 ton/ac/yr 1,0
basin in lbs/cu. ft. (from I DA = 9.3 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosi 0.2 ton/ac/yr 1.0 ton/ac/yr
basin in lbs/cu. ft. (from I DA = 9.3 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Erosi 0.2 ton/ac/yr 1.0 ton/ac/yr 10

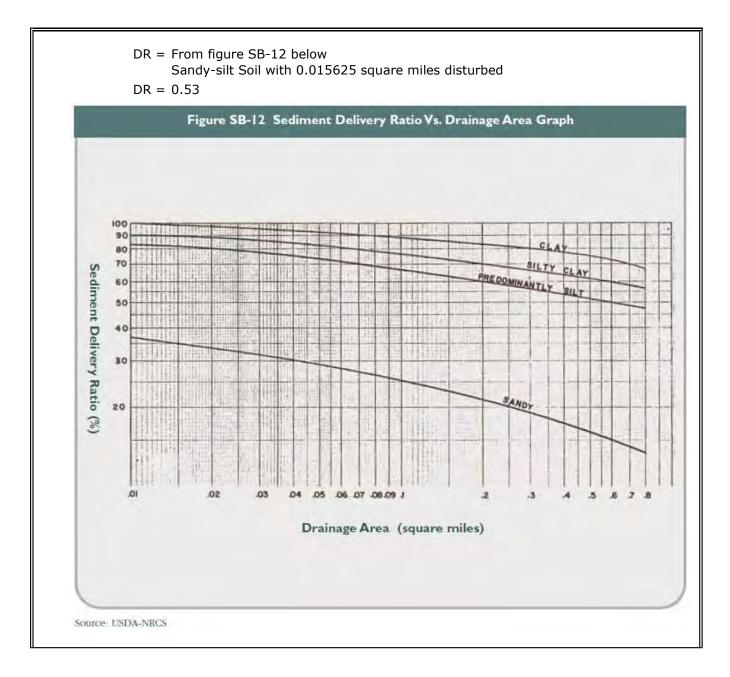
Sand-si Clay-sid Sand Gravel Poorly Use USD analysis t Source: US Sediment Storage Volume $V_{S} = (DA)(A)(DR)(TE)(2,000 bs./ton)(Q)(43,560sq.ft./ac))$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		ent Density
Sediment Storage Volume $V_{S} = (DA)(A)(DR)(TE)(2,000lbs./ton)$ $Q(43,560sq.ft./ac)$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Volume = $V_{S} + V_{W} + \text{Residence Storage}$ Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution storest	*	γ _s Submerged (Ibs/cu. ft.)
Sediment Storage Volume $V_{S} = (DA)(A)(DR)(TE)(2,000lbs./ton)$ $Q(43,560sq.ft./ac)$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Volume = $V_{S} + V_{W} + \text{Residence Storage}$ Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution storest		40-60
Sand-si Clay-sid Sand Gravel Poorly Use USD analysis t Source: US Sediment Storage Volume $V_{S} = (DA)(A)(DR)(TE)(2,000 bs./ton)(Q)(43,560sq.ft./ac))$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		55-75
Clay-sid Sand Gravel Poorly- Use USD analysis to Source: US Sediment Storage Volume $V_{S} = (\underline{DA})(\underline{A})(\underline{DR})(\underline{TE})(2,000 \underline{bS},ton))$ $(\underline{V}(43,560sq.ft./ac))$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ $171.82 \text{ Cu. Yd}.$ Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored	mixtures (equal parts)	40-65
Sand Gravel Poorly: Use USD and/ysist Source: US Sediment Storage Volume $V_{S} = (DA)(A)(DR)(TE)(2,000lbs./ton)(Y)(43,560sq.ft./ac)$ $V_{S} = 0.106 Acre Ft$ $V_{S} = 4639.06 Cu. Ft$ $171.82 Cu. Yd.$ Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 Cu. Ft$ $343.63 Cu Yd$ Total Required Basin Capacity Total Volume = V_{S} + V_{W} + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored	t mixtures (equal parts)	75-95
Gravel Poorly Use USD analysis to Source: US Sediment Storage Volume $V_{S} = (DA)(A)(DR)(TE)(2,000 bs./ton)(2)(43,560sq.ft./ac))$ $V_{S} = 0.106 \text{ Acre Ft} \\ V_{S} = 4639.06 \text{ Cu. Ft} \\ 171.82 \text{ Cu. Yd.}$ Wet Storage Volume $V_{W} = 2 * V \\ V_{W} = 9278 \text{ Cu. Ft} \\ 343.63 \text{ Cu Yd}$ Total Volume = $V_{S} + V_{W} + \text{Residence Storage}$ Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored	-sand mixtures (equal parts)	50-80
Poorly Use USD analysis to Source: US Sediment Storage Volume $V_{S} = (DA)(A)(DR)(TE)(2,000lbs./ton)(2)(43,560sq.ft./ac))$ $V_{S} = 0.106 \text{ Acre Ft} (2)(43,560sq.ft./ac))$ $V_{S} = 4639.06 \text{ Cu. Ft} (2)(43,560sq.ft./ac))$ $V_{W} = 2 * V (2)(43,560sq.$		85-100
$V_{S} = (DA)(A)(DR)(TE)(2,000 bs./ton)(Y)(43,560sq.ft./ac)V_{S} = 0.106 \text{ Acre Ft}V_{S} = 4639.06 \text{ Cu. Ft}171.82 \text{ Cu. Yd.}Wet Storage VolumeV_{W} = 2 * VV_{W} = 9278 \text{ Cu. Ft}343.63 \text{ Cu Yd}Total Required Basin CapacityTotal Volume = V_{S} + V_{W} + \text{Residence Storage}Residence Storage = volume to provide 10 hours residence tim24 hour duration, type III distribution stored$		85-125
Sediment Storage Volume $V_{S} = \underbrace{(DA)(A)(DR)(TE)(2,000lbs,/ton)}_{(Y)(43,560sq.ft./ac)}$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored	sorted sand and gravel	95-130
Sediment Storage Volume $V_{S} = \underbrace{(DA)(A)(DR)(TE)(2,000 bs./ton)}_{(\gamma/(43,560sq.ft./ac)})$ $V_{S} = 0.106 \text{ Acre Ft}}_{V_{S}} = 4639.06 \text{ Cu. Ft}}_{171.82 \text{ Cu. Yd.}}$ Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}}_{343.63 \text{ Cu Yd}}$ Total Required Basin Capacity Total Volume = V_{S} + V_{W} + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored	A soil data from county soil surve o determine soil texture,	ys or sieve
$V_{S} = \underbrace{(DA)(A)(DR)(TE)(2,000lbs./ton)}_{(\gamma)(43,560sq.ft./ac)}$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + \text{Residence Storage} Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored	DA-NRCS.	
$(\gamma)(43,560 \text{sq.ft./ac})$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + \text{Residence Storage} Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		
$(\gamma)(43,560 \text{sq.ft./ac})$ $V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + \text{Residence Storage} Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		
$V_{S} = 0.106 \text{ Acre Ft}$ $V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + \text{Residence Storage} Residence Storage = volume to provide 10 hours residence times 24 hour duration, type III distribution storestores and the storestore of the store of the storestore of the storestore of the store of the storestore of the store of the storestore of the store of the store of the storestore of the storestore of the store of the storestore of the store of the storestore of the store of t		
$V_{S} = 4639.06 \text{ Cu. Ft}$ 171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + \text{Residence Storage} Residence Storage = volume to provide 10 hours residence times 24 hour duration, type III distribution storestores and the storestore of the store of the storestore of the storestore of the storestore of the store of the store of the storestore of the store of the store of the storestore of the store		
171.82 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity $Total \text{ Volume} = V_{S} + V_{W} + \text{Residence Storage}$ Residence Storage = volume to provide 10 hours residence times 24 hour duration, type III distribution stores and the stores of the st		
Wet Storage Volume $V_W = 2 * V$ $V_W = 9278$ Cu. Ft 343.63 Cu YdTotal Required Basin CapacityTotal Volume = $V_S + V_W +$ Residence StorageResidence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		
$V_{W} = 2 * V$ $V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V_{S} + V_{W} + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		
$V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V _S + V _W + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		
$V_{W} = 9278 \text{ Cu. Ft}$ 343.63 Cu Yd Total Required Basin Capacity Total Volume = V _S + V _W + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		
Total Required Basin CapacityTotal Volume = $V_S + V_W +$ Residence StorageResidence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution stored		
Total Volume = $V_S + V_W$ + Residence Storage Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution sto		
Residence Storage = volume to provide 10 hours residence tim 24 hour duration, type III distribution sto		
24 hour duration, type III distribution sto		
Residence Storage = 2,613 Cu. Ft. as determined by Hy	droCAD	
Total Volume = 16530 Cu. Ft.		
612 Cu. Yd.		

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

Tighe&Bond Consulting Engineers Environmental Specialists	Project Name:Quinebaug Solar ProjectProject Number:R0317Project Location:Brooklyn and Canterbury, ConnecticutDescription:Temporary Sediment Trap Sizing CalculationPrepared By:ALGDate:March 2020
Phase 20 - Sedim	ent Trap Sizing Calculations
Sediment Storage	Volume
Drainage Area =	4.80 Acres
Required Storage=	134 Cu. Yds / Acre
Total Required Storage=	643 Cu. Yds
Provided Wet Storage	
Wet storage volume may be	approximated as follows: $Vw = -0.85 \ge A_{III} \ge D_{III}$
$A_{\mathcal{W}} =$ the surface $D_{\mathcal{W}} =$ the maxim outlet.	5,533 Sq. Ft. 2 feet
V _w = V _w =	9,406 Cu. Ft. 348 Cu. Yd.
Provided Dry Storage Dry storage volume may be	approximated as follows: $V_{d} = \frac{(A_{lw} + A_{d})}{2} \times D_{d}$
A_d the surface square fee	e area of the flooded area at the base of the stone outlet in square feet. e area of the flooded area at the top of the stone outlet (over flow mechanism), i
$A_W = A_d =$	5,533 Sq. Ft. 7,712 Sq. Ft.
$D_{d} =$ $V_{d} =$ $V_{d} =$	2 feet 13,245 Cu. Ft. 491 Cu. Yd.
Provided Storage	
Wet Storage	9,406 Cu. Ft. 348 Cu. Yd.
Dry Storage	13,245 Cu. Ft. 491 Cu. Yd.
Total Storage	22,651 Cu. Ft. 839 Cu. Yd.

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

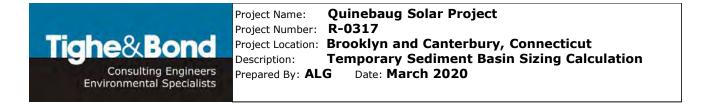

Tighe& Bond Consulting Engineer Environmental Specialist	Project Project Descrip S Prepare	t Name: Quinebaug Solar Project t Number: R0317 t Location: Brooklyn and Canterbury, Connecticut ption: Temporary Sediment Trap Sizing Calculation ed By: ALG Date: March 2020
Phase 2P - Sedin	nent Tr	rap Sizing Calculations
Sediment Storag	e Volun	ne
Drainage Area =	4.40	0 Acres
Required Storage=	134	4 Cu. Yds / Acre
otal Required Storage=	590	D Cu. Yds
Provided Wet Storage		
Wet storage volume may b	e approxima	
where,		$Vw = 0.85 \ge A_w \ge D_w$
$V_{\mathcal{W}}$ = the wet $A_{\mathcal{W}}$ = the surface	ce area of th	ume in cubic feet the flooded area at the base of the stone outlet in square feet n in feet, measured from the low point in the trap to the base of the stone
A _W =	5,533	Sq. Ft.
D _w =	2	2 feet
V _w =	9,406	Cu. Ft.
V _w =	348	Cu. Yd.
A_d the surf square	storage volu ace area of ace area of feet th in feet, n 5,533 7,712 2	$V_d = \frac{(A_{lb} + A_d)}{2} \propto D_d$
V _d =	491	
Provided Storage		
Wet Storage		Cu. Ft. Cu. Yd.
Dry Storage		Cu. Ft. Cu. Yd.

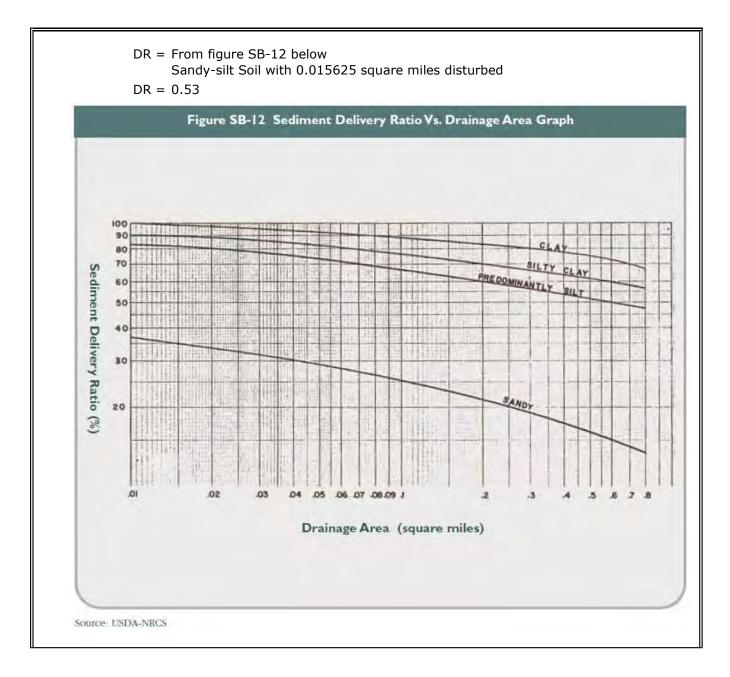

Tighe&Bo Consulting En Environmental Spe	nd Project Project Descrip Prepare	t Name: Quinebaug Solar Project t Number: R0317 t Location: Brooklyn and Canterbury, Connecticut ption: Temporary Sediment Trap Sizing Calculation ed By: ALG Date: March 2020
Phase 2Q - Se	diment Ti	rap Sizing Calculations
Sediment Sto	orage Volun	ne
Drainage Area	= 4.50	0 Acres
Required Storage	= 134	4 Cu. Yds / Acre
otal Required Storage	= 603	3 Cu. Yds
Provided Wet Sto	rage	
Wet storage volume i	nay be approxim:	
where,		$Vw = 0.85 \ge A_w \ge D_w$
$V_{\mathcal{W}} = \text{the}$ $A_{\mathcal{W}} = \text{the}$ $D_{\mathcal{W}} = \text{the}$	e wet storage volu e surface area of tl e maximum depth tlet.	ume in cubic feet the flooded area at the base of the stone outlet in square feet n in feet, measured from the low point in the trap to the base of the stone
	= 5,533 = 2	Sq. Ft. 2 feet
Vw		Cu. Ft.
V _w	= 348	Cu. Yd.
$A_{\mathcal{W}} = \text{th}$ $A_{\mathcal{d}} = \text{th}$ so	e dry storage volt e surface area of e surface area of juare feet e depth in feet, n = 5,533	$V_d = \frac{(A_{lb} + A_d)}{2} \propto D_d$
A _w A _d D _d	= 2 = 13,245	Sq. Ft. feet Cu. Ft.
A _d D _d	= 2 = 13,245	feet Cu. Ft.
A _d D _d	= 2 = 13,245 = 491	feet Cu. Ft.
A _d D _d	= 2 = 13,245 = 491 ge 9,406	feet Cu. Ft.
A _d D _d V _d Provided Storag	= 2 = 13,245 = 491 ge 9,406 348 ge 13,245	feet Cu. Ft. Cu. Yd.

Tighe&Bone Consulting Enginee Environmental Specialis	Prepared By: ALG Date: March 2020
	ment Trap Sizing Calculations
Sediment Stora	je Volume
Drainage Area =	4.50 Acres
Required Storage=	134 Cu. Yds / Acre
Total Required Storage=	603 Cu. Yds
Provided Wet Storage	2
Wet storage volume may	be approximated as follows:
	$Vw = 0.85 \ge A_W \ge D_W$
$A_{\mathcal{W}}$ = the surf	storage volume in cubic feet face area of the flooded area at the base of the stone outlet in square feet simum depth in feet, measured from the low point in the trap to the base of the stone
A _W = D _W =	4,872 Sq. Ft. 2 feet
V _w = V _w =	8,282 Cu. Ft. 307 Cu. Yd.
where, $V_d = \text{the dr}$ $A_w = \text{the su}$ $A_d = \text{the su}$ square	be approximated as follows: $V_{d} = \frac{(A_{10} + A_{d})}{2} \propto D_{d}$ r storage volume face area of the flooded area at the base of the stone outlet in square feet. face area of the flooded area at the top of the stone outlet (over flow mechanism), in
A _W =	6,583 Sq. Ft.
A _d = D _d =	6,583 Sq. Ft. 2 feet
V _d = V _d =	13,166 Cu. Ft. 488 Cu. Yd.
Provided Storage	
Wet Storage	8,282 Cu. Ft. 307 Cu. Yd.
Dry Storage	13,166 Cu. Ft. 488 Cu. Yd.
Total Storage	21,448 Cu. Ft. 794 Cu. Yd.
Calculated in accordance with th	ne 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

Sediment Storage Volume		
Sediment Storage volume		
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560s)}$	(2,000lbs./ton)	
	sq.ft./ac)	
where:		
V = the volume of sediment tr	apped in ac. ft./yr.	
DA = the total drainage area in	acres	
A = the average annual erosic	on in tons per acre per	
year using either values		
Loss Equation, the Revis		
Equation or the values i	n Figure SB-1 for the	
listed land use.		
DR = the delivery ratio determin TE = the trap efficiency as given		
1 1 0		
V = the estimated sediment of	ensity in the sediment	
γ = the estimated sediment of basin in lbs/cu. ft. (from I		
γ = the estimated sediment of basin in lbs/cu. ft. (from I		
basin in lbs/cu. ft. (from I		
basin in lbs/cu. ft. (from I		g Erosion Rates
DA = 7.8 Acres A = Site will be considered a	Figure SB-2).	Ave.
DA = 7.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin	
DA = 7.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave. Annual Erosio 0.2
DA = 7.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determining Land Use Wooded area	Ave. Annual Erosid
DA = 7.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use	Ave. Annual Erosio 0.2
DA = 7.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosk 0,2 ton/ac/yr
DA = 7.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Erosk 0.2 ton/ac/yr 1.0
DA = 7.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Erosk 0.2 ton/ac/yr 1.0
basin in lbs/cu. ft. (from I DA = 7.8 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Erosto 0,2 ton/ac/yr 1,0 ton/ac/yr
basin in lbs/cu. ft. (from I DA = 7.8 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Erosic 0,2 ton/ac/yr 1,0 ton/ac/yr 10

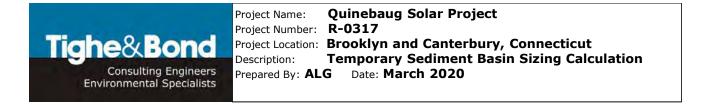
γ = Soil Texture is Sand-silt m	Figure SB-2 Estimated Sedime	ent Density
γ = 85	Soll Texture *	γ _s Submerged (lbs/cu. ft.)
	Clay	40-60
	Silt	55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal parts)	50-80
	Sand	85-100
	Gravel	85-125
	Poorly sorted sand and gravel	95-130
	* Use USDA soil data from county soil surver analysis to determine soil texture.	ys or sieve
	Source: USDA-NRCS.	
Sediment Storage Volume		
$V_{s} = (DA)(A)(DR)(TE)(2,000)$		
$V_{s} = \frac{(DA)(A)(DR)(TE)(2,000)}{(\gamma)(43,560 \text{ sq.ft./a})}$		
$V_{s} = (DA)(A)(DR)(TE)(2,000)$ (γ)(43,560sq.ft./a) $V_{s} = 0.089$ Acre Ft		
$V_{s} = \frac{(DA)(A)(DR)(TE)(2,000)}{(\gamma)(43,560 \text{ sq.ft./a})}$ $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$		
$V_{s} = (DA)(A)(DR)(TE)(2,000)$ (\gamma)(43,560sq.ft./a) $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$ 144.10 Cu. Yd.		
$V_{s} = (DA)(A)(DR)(TE)(2,000)$ (\(\alpha\)(43,560sq.ft./a) $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$		
$V_{s} = (DA)(A)(DR)(TE)(2,000)$ (γ)(43,560sq.ft./a) $V_{s} = 0.089$ Acre Ft $V_{s} = 3890.82$ Cu. Ft 144.10 Cu. Yd. Wet Storage Volume		
$V_{s} = \underbrace{(DA)(A)(DR)(TE)(2,000)}_{(\gamma)(43,560 \text{ sq.ft./a})}$ $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$ 144.10 Cu. Yd. Wet Storage Volume $V_{w} = 2 * V$		
$V_{s} = \underbrace{(DA)(A)(DR)(TE)(2,000)}_{(\gamma)(43,560 \text{ sq.ft./a})}$ $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$ 144.10 Cu. Yd. Wet Storage Volume $V_{w} = 2 * V$		
$V_{s} = \underbrace{(DA)(A)(DR)(TE)(2,000)}_{(\gamma)(43,560 \text{ sq.ft./a})}$ $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$ 144.10 Cu. Yd. Wet Storage Volume $V_{w} = 2 * V$ $V_{w} = 7782 \text{ Cu. Ft}$		
$V_{s} = \underbrace{(DA)(A)(DR)(TE)(2,000)}_{(\gamma)(43,560 \text{ sq.ft./a})}$ $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$ 144.10 Cu. Yd. Wet Storage Volume $V_{w} = 2 * V$ $V_{w} = 7782 \text{ Cu. Ft}$ 288.21 Cu Yd	c)	
$V_{s} = \underbrace{(DA)(A)(DR)(TE)(2,000)}_{(\gamma)(43,560 \text{ sq.ft./a})}$ $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$ 144.10 Cu. Yd. Wet Storage Volume $V_{w} = 2 * V$ $V_{w} = 7782 \text{ Cu. Ft}$ 288.21 Cu Yd Total Required Basin Capacity	c) age rs residence time for a 10 year frequency	
$V_{s} = \underbrace{(DA)(A)(DR)(TE)(2,000)}_{(p)(43,560sq.ft./a)}$ $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$ 144.10 Cu. Yd. Wet Storage Volume $V_{w} = 2 * V$ $V_{w} = 7782 \text{ Cu. Ft}$ 288.21 Cu Yd Total Required Basin Capacity Total Volume = V_{s} + V_{w} + \text{Residence Storage} Residence Storage = volume to provide 10 hour 24 hour duration, type III	c) age rs residence time for a 10 year frequency	
$V_{s} = \underbrace{(DA)(A)(DR)(TE)(2,000)}_{(p)(43,560sq.ft./a)}$ $V_{s} = 0.089 \text{ Acre Ft}$ $V_{s} = 3890.82 \text{ Cu. Ft}$ 144.10 Cu. Yd. Wet Storage Volume $V_{w} = 2 * V$ $V_{w} = 7782 \text{ Cu. Ft}$ 288.21 Cu Yd Total Required Basin Capacity Total Volume = V_{s} + V_{w} + \text{Residence Storage} Residence Storage = volume to provide 10 hour 24 hour duration, type III	age rs residence time for a 10 year frequency distribution storm	

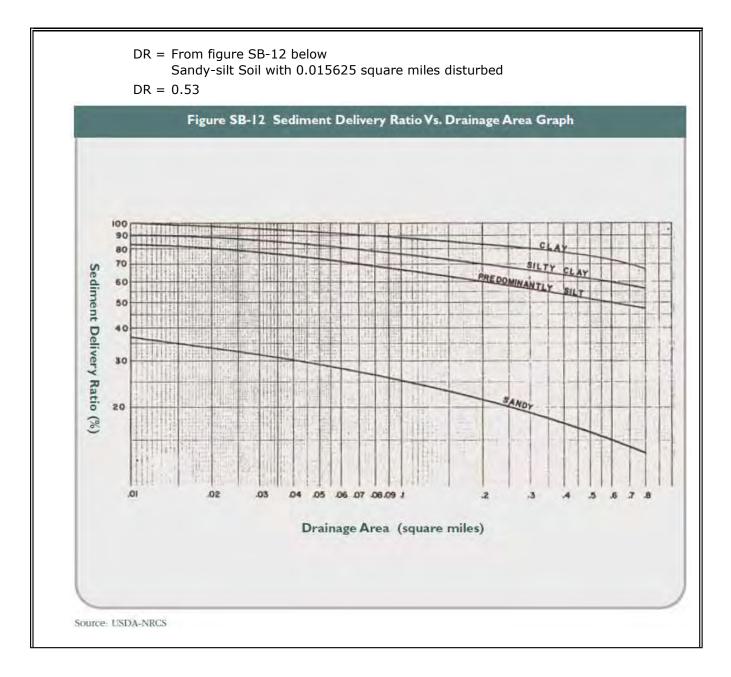

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11


	e&Bon Consulting Engine ronmental Speciali	Project Descrip Prepare	Number: Location:	R0317 Brooklyn Tempora		ry, Connecticut rap Sizing Calcula	ation
Phase	3C - Sedi	ment Tr	ap Si	zing Ca	lculations	;	
Sedi	ment Stora	ge Volun	ıe				
Dra	iinage Area =	3.40	Acres				
Requi	red Storage=	134	Cu. Yds	s / Acre			
Total Requi	red Storage=	456	Cu. Yds	5			
Provid	led Wet Storag	e					
Wet sto	orage volume may	be approxima					
where,	$V_{\mathcal{W}}$ = the we $A_{\mathcal{W}}$ = the sur	face area of th	me in cub ne flooded	d area at the	base of the stone of	outlet in square feet the trap to the base of	the stone
	A _w = D _w =	3,619 2	Sq. Ft. feet				
	V _w = V _w =	•	Cu. Ft. Cu. Yd				
	ded Dry Storage prage volume may			bllows: $d = \frac{(A_{U} + A_{U})}{2}$	$(\frac{4}{d}) \times D_d$		
where,	$\begin{array}{rcl} V_d &=& \mathrm{the}\mathrm{dr}\\ A_{tW} &=& \mathrm{the}\mathrm{su}\\ A_d &=& \mathrm{the}\mathrm{su}\\ Square\\ D_d &=& \mathrm{the}\mathrm{de}\\ A_W &=& \\ A_d &=& \end{array}$	rface area of rface area of e feet pth in feet, n 3,619 5,518	the floode the floode neasured f Sq. Ft. Sq. Ft.	ed area at th	e top of the stone	e outlet in square feer, outlet (over flow mec et to the top of the st	hanism), in
	D _d =	2	feet				
	V _d = V _d =	9,137 338	Cu. Ft. Cu. Yd				
Provic	led Storage						
	Wet Storage		Cu. Ft. Cu. Yd.				
	Dry Storage		Cu. Ft. Cu. Yd.				
T	otal Storage	15,289 566	Cu. Ft. Cu. Yd				

0	Consulting Engineer	Project Descript rs Prepare	Number: Location:	Brooklyn and Ca Femporary Sedi	r Project anterbury, Connect ment Trap Sizing (March 2020	
Phase	3D - Sedin	nent Tr	ap Si	zing Calcula	ations	
Sedir	ment Storag	e Volum	ne			
Drai	nage Area =	4.60	Acres			
Requir	ed Storage=	134	Cu. Yds	/ Acre		
Fotal Requir	ed Storage=	616	Cu. Yds			
Provide	ed Wet Storage					
Wet stor	rage volume may b	e approxima		ows: - 0.85 x A ₁₀ x D ₁₀		
where,		ace area of th	me in cub ne floodec	c feet area at the base of t	he stone outlet in square point in the trap to the	
	A _w = D _w =		Sq. Ft. feet			
	V _w = V _w =	8,791 326				
Dry stor		326	Cu. Ft. Cu. Yd		d	
	$V_w =$ ed Dry Storage rage volume may l V_d = the dry A_w = the surf A_d = the surf square	326 be approxim storage volu face area of face area of feet	Cu. Ft. Cu. Yd	lows: $= \frac{(A_{ID} + A_{d})}{2} \times D$ I area at the base of d area at the top of	d the stone outlet in squa the stone outlet (over flo stone outlet to the top o	ow mechanism), in
Dry stor	$V_w =$ ed Dry Storage rage volume may l V_d = the dry A_w = the surf A_d = the surf square	326 be approxim storage volu face area of face area of feet oth in feet, m 5,171 7,036	Cu. Ft. Cu. Yd	lows: $= \frac{(A_{ID} + A_{d})}{2} \times D$ I area at the base of d area at the top of	the stone outlet in squa the stone outlet (over flo	ow mechanism), in
Dry stor	$V_{w} =$ ed Dry Storage rage volume may l V_{d} = the dry A_{w} = the surf A_{d} = the surf A_{d} = the surf A_{d} = the dep $A_{w} =$ $A_{d} =$ $D_{d} =$ $V_{d} =$	326 be approxim storage volu face area of face area of feet oth in feet, m 5,171 7,036 2 12,207	Cu. Ft. Cu. Yd ated as fo V ime the floode the floode t	lows: $= \frac{(A_{ID} + A_{d})}{2} \times D$ I area at the base of d area at the top of	the stone outlet in squa the stone outlet (over flo	ow mechanism), in
Dry stor	$V_{w} =$ ed Dry Storage rage volume may l V_{d} = the dry A_{w} = the surf A_{d} = the surf A_{d} = the surf A_{d} = the dep $A_{w} =$ $A_{d} =$ D_{d} = $V_{d} =$ $V_{d} =$ $V_{d} =$	326 be approxim storage volu face area of face area of face area of face area of face area of face area of face area of face face area of face face area of face face face face face face face fac	Cu. Ft. Cu. Yd	lows: $= \frac{(A_{ID} + A_{d})}{2} \times D$ I area at the base of d area at the top of	the stone outlet in squa the stone outlet (over flo	ow mechanism), in
Dry stor where,	$V_{w} =$ ed Dry Storage rage volume may l V_{d} = the dry A_{w} = the surf A_{d} = the surf A_{d} = the surf A_{d} = the dep $A_{w} =$ $A_{d} =$ $D_{d} =$ $V_{d} =$	326 be approxim storage volu face area of feet oth in feet, m 5,171 7,036 2 12,207 452 8,791	Cu. Ft. Cu. Yd ated as fo V ime the floode the floode t	lows: $= \frac{(A_{ID} + A_{d})}{2} \times D$ I area at the base of d area at the top of	the stone outlet in squa the stone outlet (over flo	ow mechanism), in
Dry stor where,	$V_{w} =$ ed Dry Storage rage volume may l V_{d} = the dry A_{w} = the surf A_{d} = the surf A_{d} = the surf A_{d} = the dep $A_{d} =$ D_{d} = the dep $A_{d} =$ D_{d} = the dep $A_{d} =$ $V_{d} =$ $V_{d} =$ $V_{d} =$ $V_{d} =$ $V_{d} =$	326 be approxim storage volu face area of feet oth in feet, m 5,171 7,036 2 12,207 452 8,791 326 12,207	Cu. Ft. Cu. Yd ated as fo V he floode he flood	lows: $= \frac{(A_{ID} + A_{d})}{2} \times D$ I area at the base of d area at the top of	the stone outlet in squa the stone outlet (over flo	ow mechanism), in

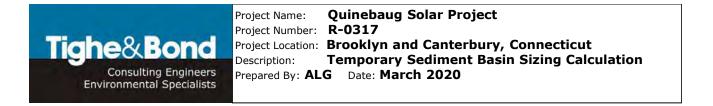
The provided HTML Storage Volume $V = \frac{(DA)(A)(DR)(TE)(2,000lbs./ton)}{(\gamma)(43,560sq.ft./ac)}$ where: V = the volume of sediment trapped in ac. ft./yr. $DA = the total drainage area in acres$ $A = the average annual erosion in tons per acre per year using either values from the Universal Soil Loss Equation, the Revised Universal Soil Loss Equation or the values in Figure SB-1 for the listed land use.$ $DR = the delivery ratio determined from Figure SB-12.$
 where: V = the volume of sediment trapped in ac. ft./yr. DA = the total drainage area in acres A = the average annual erosion in tons per acre per year using either values from the Universal Soil Loss Equation, the Revised Universal Soil Loss Equation or the values in Figure SB-1 for the listed land use.
 where: V = the volume of sediment trapped in ac. ft./yr. DA = the total drainage area in acres A = the average annual erosion in tons per acre per year using either values from the Universal Soil Loss Equation, the Revised Universal Soil Loss Equation or the values in Figure SB-1 for the listed land use.
 DA = the total drainage area in acres A = the average annual erosion in tons per acre per year using either values from the Universal Soil Loss Equation, the Revised Universal Soil Loss Equation or the values in Figure SB-1 for the listed land use.
 DA = the total drainage area in acres A = the average annual erosion in tons per acre per year using either values from the Universal Soil Loss Equation, the Revised Universal Soil Loss Equation or the values in Figure SB-1 for the listed land use.
 A = the average annual erosion in tons per acre per year using either values from the Universal Soil Loss Equation, the Revised Universal Soil Loss Equation or the values in Figure SB-1 for the listed land use.
year using either values from the Universal Soil Loss Equation, the Revised Universal Soil Loss Equation or the values in Figure SB-1 for the listed land use.
Loss Equation, the Revised Universal Soil Loss Equation or the values in Figure SB-1 for the listed land use.
listed land use.
DR - the delivery ratio determined from Figure 3B-12.
TE = the trap efficiency as given above. (Use 0.8)
γ = the estimated sediment density in the sediment
basin in lbs/cu. ft. (from Figure SB-2).
DA = 5.8 Acres
A = Site will be considered a
A = Site will be considered a construction area Figure SB-1 Determining Erosion R
Figure SB-1 Determining Frasion R
construction area Land Use Avi Annual E
Construction area Land Use Wooded area 0,2
Construction area Land Use Aw Annual E Wooded area 0,, ton/a Developed urban areas,
Construction area Land Use Aw Annual E Wooded area 0,, ton/a Developed urban areas, grassed areas, pastures, 1,0
Construction area Figure SB-1 Determining Erosion R Land Use Aw Mooded area 0 Developed urban areas, grassed areas, pastures, 1.0
Construction area Figure SB-1 Determining Erosion R Land Use Aw Mooded area 0 Wooded area 0 Developed urban areas, grassed areas, pastures, grassed areas, pastures, 1.0. hay fields, abandoned ton/a
Construction area Figure SB-T Determining Erosion R Land Use Aw Mooded area 0 Wooded area 0 Developed urban areas, grassed areas, pastures, 1.0. 1.0. hay fields, abandoned ton/a fields with good cover 1.0.

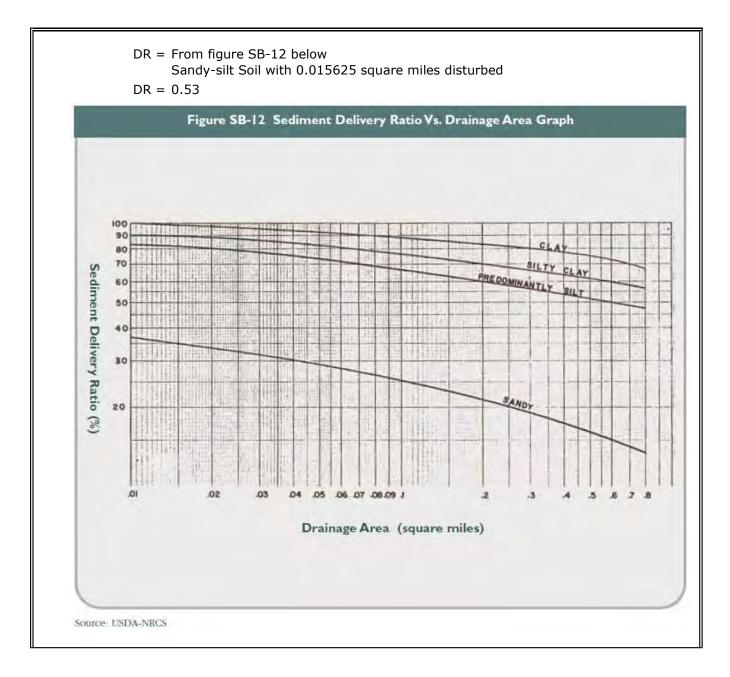



$\gamma = S$	Soil Texture is Sand-silt mixtu	Figure SB-2 Estimated Sedime	ent Density
γ = 8	35	Soll Texture *	γ _s Submerged (Ibs/cu. ft.)
		Clay	40-60
		Silt	55-75
		Clay-silt mixtures (equal parts)	40-65
		Sand-silt mixtures (equal parts)	75-95
		Clay-silt-sand mixtures (equal parts)	50-80
		Sand	85-100
		Gravel	85-125
		Poorly sorted sand and gravel	95-130
		 Use USDA soil data from county soil surve analysis to determine soil texture. 	rys or sleve
		Source: USDA-NRCS	
Sediment Storag	ge Volume		
V			
	In all all complete months	11 N	
$v_{\rm S} = 1$	(DA)(A)(DR)(TE)(2,000lbs./	(ton)	
$v_{\rm S} = 1$	(<u>DA)(A)(DR)(TE)(2,000lbs./</u> (q)(43,560sq.ft./ac)	(ton)	
V _S =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft	(ton)	
	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft	(ton)	
V _S =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft	(ton)	
V _S =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd.	<u>(ton)</u>	
V _s = V _s = Wet Storage	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. • Volume	(<u>ton)</u>	
V _S = V _S =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. • Volume	<u>(ton)</u>	
V _S = V _S = Wet Storage V _W = 2	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. 2 Volume 2 * V	<u>(ton)</u>	
V _S = V _S = Wet Storage V _W = 2 V _W =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. 2 Volume 2 * V 5786 Cu. Ft	<u>(ton)</u>	
V _S = V _S = Wet Storage V _W = 2 V _W =	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. 2 * V 5786 Cu. Ft 214.31 Cu Yd	<u>(ton)</u>	
$V_{S} = V_{S} =$ $Wet Storage$ $V_{W} = 2$ $V_{W} =$ $Total Requir$ $Total Volume = V$ $Residence Storage = V$	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. Volume 2 * V 5786 Cu. Ft 214.31 Cu Yd red Basin Capacity V _s + V _w + Residence Storage	sidence time for a 10 year frequency	
$V_{S} = V_{S} =$ $Wet Storage$ $V_{W} = 2$ $V_{W} =$ $Total Requir$ $Total Volume = V$ $Residence Storage = V$	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. Volume 2 * V 5786 Cu. Ft 214.31 Cu Yd red Basin Capacity $V_{s} + V_{w} + \text{Residence Storage}$ volume to provide 10 hours re	sidence time for a 10 year frequency ribution storm	
$V_{S} = V_{S} =$ $Wet Storage$ $V_{W} = 2$ $V_{W} =$ $Total Requir$ $Total Volume = V$ $Residence Storage = V$ 2	(γ)(43,560sq.ft./ac) 0.066 Acre Ft 2893.18 Cu. Ft 107.15 Cu. Yd. Volume 2 * V 5786 Cu. Ft 214.31 Cu Yd red Basin Capacity $V_s + V_w + \text{Residence Storage}$ volume to provide 10 hours re 24 hour duration, type III dist	sidence time for a 10 year frequency ribution storm	

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

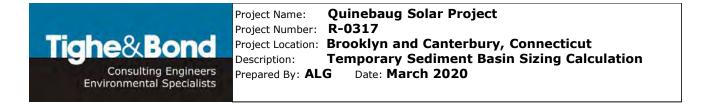
Sediment Storage Volume		
(DA)(A)(DR)(TF)	(2.000 lbs /ton)	
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560s)}$	(1,000,000,000)	
where:	1	
V = the volume of sediment tr	apped in as ft /ur	
DA = the total drainage area in		
A = the average annual erosic		
year using either values		
Loss Equation, the Revis		
Equation or the values i listed land use.		
DR = the delivery ratio determine	ned from Figure SB-12.	
TE = the trap efficiency as given	-	
γ = the estimated sediment d	lensity in the sediment	
γ = the estimated sediment of basin in lbs/cu. ft. (from F		
A second seco		
basin in lbs/cu. ft. (from H		
basin in lbs/cu. ft. (from F DA = 5.9 Acres A = Site will be considered a		g Erosion Rate
basin in lbs/cu. ft. (from F DA = 5.9 Acres	Figure SB-2).	Ave.
basin in lbs/cu. ft. (from FDA = 5.9A =Site will be considered a	Figure SB-2). Figure SB-1 Determinin, Land Use	Ave. Annual Eros
basin in lbs/cu. ft. (from FDA = 5.9A =Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave. Annual Eros 0.2
basin in lbs/cu. ft. (from FDA = 5.9A =Site will be considered a	Figure SB-2). Figure SB-1 Determinin; Land Use Wooded area Developed urban areas,	Ave. Annual Eros 0,2 ton/ac/y
basin in lbs/cu. ft. (from F DA = 5.9 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Eros 0,2 ton/ac/y 1,0
basin in lbs/cu. ft. (from F DA = 5.9 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin; Land Use Wooded area Developed urban areas,	Ave. Annual Eros 0.2 ton/ac/y 1.0
basin in lbs/cu. ft. (from F DA = 5.9 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Eros 0.2 ton/ac/y 1.0 ton/ac/y
basin in lbs/cu. ft. (from F DA = 5.9 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed uiban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Eros 0.2 ton/ac/y 1.0 ton/ac/y 10
basin in lbs/cu. ft. (from F DA = 5.9 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determining Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Eros 0.2 ton/ac/yi 1.0 ton/ac/yi

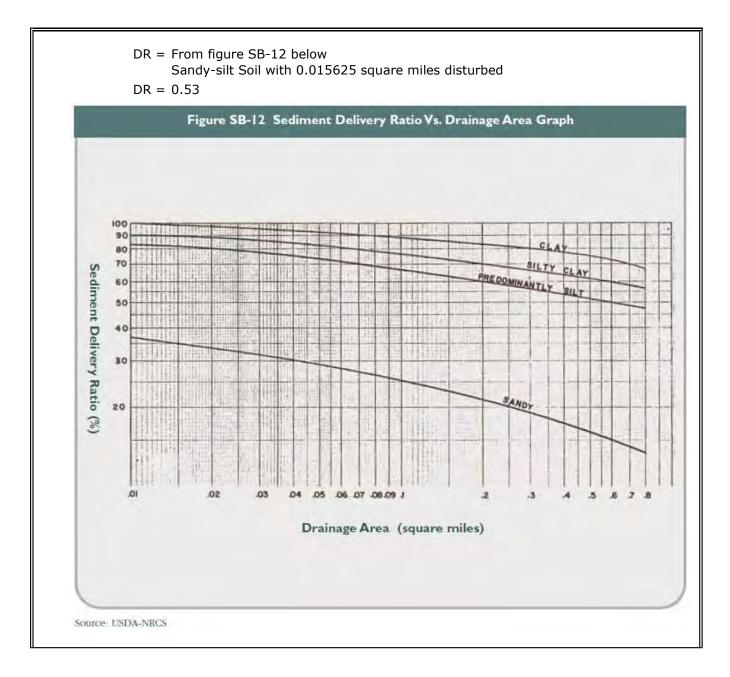



	Υ _s Submerged (Ibs/cu. ft.)
	40-60
	55-75
aures (equal parts)	40-65
xtures (equal parts)	75-95
d mixtures (equal parts)	50-80
	85-100
	85-125
d sand and gravel	95-130
l data from county soil surve ermine soil texture,	rys of sleve
IRCS.	
or a 10 year frequency	
CAD	
	OCAD

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

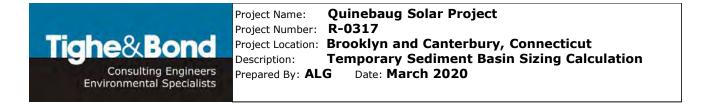
orary Sediment Basin 3G		
liment Storage Volume		
(DA)(A)(DR)(TE)	(2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560s)}$	q.ft./ac)	
where:		
V = the volume of sediment tra	apped in ac. ft./yr.	
DA = the total drainage area in a	acres	
A = the average annual erosio	n in tons per acre per	
year using either values f		
Loss Equation, the Revise		
Equation or the values in	h Figure SB-1 for the	
listed land use. DR = the delivery ratio determin	ed from Figure SB.12	
DR = the delivery ratio determin		
<i>DR</i> = the delivery ratio determin <i>TE</i> = the trap efficiency as given	above. (Use 0.8)	
DR = the delivery ratio determin	n above. (Use 0.8) ensity in the sediment	
DR = the delivery ratio determin TE = the trap efficiency as given γ = the estimated sediment d	n above. (Use 0.8) ensity in the sediment	
DR = the delivery ratio determin TE = the trap efficiency as given γ = the estimated sediment d	n above. (Use 0.8) ensity in the sediment	
DR = the delivery ratio determin TE = the trap efficiency as given γ = the estimated sediment d basin in lbs/cu. ft. (from F	n above. (Use 0.8) ensity in the sediment	
DR = the delivery ratio determin TE = the trap efficiency as given γ = the estimated sediment d basin in lbs/cu. ft. (from F	n above. (Use 0.8) ensity in the sediment	ng Erosion Rate
$DR = \text{the delivery ratio determin}$ $TE = \text{the trap efficiency as giver}$ $\gamma = \text{the estimated sediment d}$ $\text{basin in lbs/cu. ft. (from F}$ $DA = 6.1 \qquad \text{Acres}$ $A = \qquad \text{Site will be considered a}$	a above. (Use 0.8) ensity in the sediment igure SB-2).	Ave.
$DR = \text{the delivery ratio determin}$ $TE = \text{the trap efficiency as giver}$ $\gamma = \text{the estimated sediment d}$ $\text{basin in lbs/cu. ft. (from F}$ $DA = 6.1 \qquad \text{Acres}$ $A = \qquad \text{Site will be considered a}$	a above. (Use 0.8) ensity in the sediment igure SB-2). Figure SB-1 Determinir	Ave. Annual Erosi 0.2
$DR = \text{the delivery ratio determin}$ $TE = \text{the trap efficiency as giver}$ $\gamma = \text{the estimated sediment d}$ $\text{basin in lbs/cu. ft. (from F}$ $DA = 6.1 \qquad \text{Acres}$ $A = \qquad \text{Site will be considered a}$	a above. (Use 0.8) ensity in the sediment igure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Erosi 0.2
$DR = \text{the delivery ratio determin}$ $TE = \text{the trap efficiency as giver}$ $\gamma = \text{the estimated sediment d}$ $\text{basin in lbs/cu. ft. (from F}$ $DA = 6.1 \qquad \text{Acres}$ $A = \qquad \text{Site will be considered a}$	a above. (Use 0.8) ensity in the sediment igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave, Annual Erosi 0.2 ton/ac/yr 1.0
$DR = \text{the delivery ratio determin}$ $TE = \text{the trap efficiency as giver}$ $\gamma = \text{the estimated sediment d}$ $\text{basin in lbs/cu. ft. (from F}$ $DA = 6.1 \qquad \text{Acres}$ $A = \qquad \text{Site will be considered a}$	Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosi 0.2 ton/ac/yr 1.0
DR = the delivery ratio determin TE = the trap efficiency as giver $\gamma = \text{the estimated sediment delivery}$ $DA = 6.1 \qquad \text{Acres}$ $A = \qquad \text{Site will be considered a construction area}$	a above. (Use 0.8) ensity in the sediment igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave, Annual Erosi 0.2 ton/ac/yr 1.0
$DR = \text{the delivery ratio determin}$ $TE = \text{the trap efficiency as giver}$ $\gamma = \text{the estimated sediment d}$ $\text{basin in lbs/cu. ft. (from F}$ $DA = 6.1 \qquad \text{Acres}$ $A = \qquad \text{Site will be considered a}$	A above. (Use 0.8) ensity in the sediment igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave, Annual Erosi 0,2 ton/ac/yr 1.0 ton/ac/yr 10
DR = the delivery ratio determin TE = the trap efficiency as giver $\gamma = \text{the estimated sediment delivery}$ $DA = 6.1 \qquad \text{Acres}$ $A = \qquad \text{Site will be considered a construction area}$	a above. (Use 0.8) ensity in the sediment igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave, Annual Erosi 0,2 ton/ac/yr 1,0 ton/ac/yr

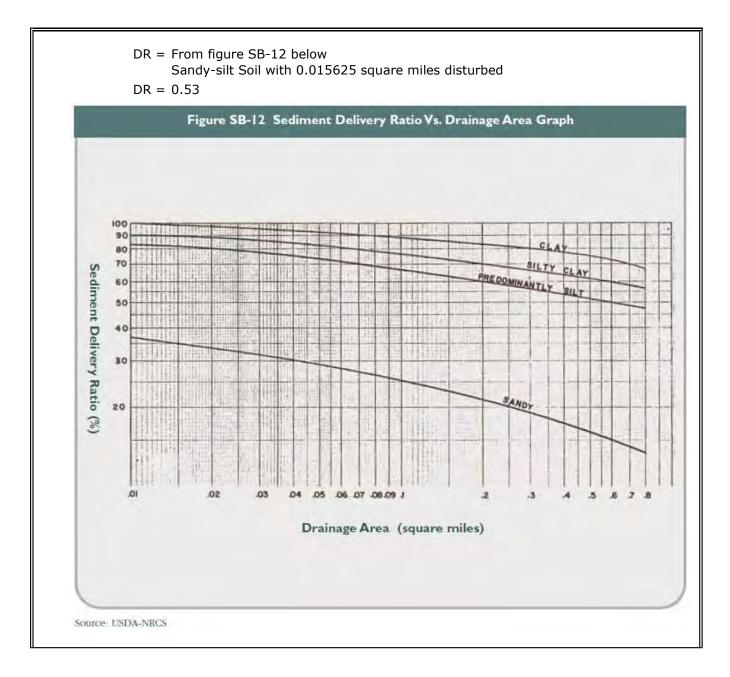

γ = Soil Texture is Sand-silt mixture	Figure SB-2 Estimated Sedime	ent Density
γ = 85	Soll Texture *	Υ _s Submerged (Ibs/cu. ft.)
	Clay	40-60
	Silt	55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal parts)	50-80
	Sand	85-100
	Gravel	85-125
	Poorly sorted sand and gravel	95-130
	* Use USDA soil data from county soil surve analysis to determine soil texture.	ys or sieve
	Source: USDA-NRCS	
Sediment Storage Volume		
$V_{s} = (DA)(A)(DR)(TE)(2,000)$ lbs./t	22	
$(\gamma)(43,560 \text{ sq.ft./ac})$	011/	
$V_{S} = 0.070$ Acre Ft $V_{S} = 3042.82$ Cu. Ft 112.70 Cu. Yd.		
Wet Storage Volume		
V 2*V		
$V_{W} = 2 * V$ $V_{W} = 6086$ Cu. Ft		
$v_{\rm W} = 0000 {\rm Cu}$. Ft 225.39 Cu Yd		
225.55 Cu Tu		
Total Required Basin Canacity		
Total Required Basin Capacity		
Total Required Basin Capacity Total Volume = $V_s + V_w + Residence Storage$		
Total Volume = $V_S + V_W + Residence Storage$ Residence Storage = volume to provide 10 hours res	ibution storm	
Total Volume = $V_S + V_W + Residence Storage$ Residence Storage = volume to provide 10 hours res 24 hour duration, type III distri	ibution storm	


Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

Tighe&Bond Consulting Enginee Environmental Specialis	Project Descript	Number: Location:	R0317 Brooklyn a Temporar	ng Solar Project and Canterbury, Connecticut ry Sediment Trap Sizing Calculation Date: March 2020
Phase 3H - Sedir	nent Tr	ap S	izing Ca	lculations
Sediment Storag	je Volum	ıe		
Drainage Area =	4.60	Acres		
Required Storage=	134	Cu. Yd	s / Acre	
Fotal Required Storage=	616	Cu. Yd	S	
Provided Wet Storage	2			
Wet storage volume may l	be approxima			
	face area of th	me in cul ne floode	d area at the b	base of the stone outlet in square feet the low point in the trap to the base of the stone
A _W = D _W =	4,990 2	Sq. Ft. feet		
V _w = V _w =	8,483 314	Cu. Ft Cu. Yc		
A_d the sur square	be approxim v storage volu face area of face area of face area of feet pth in feet, m 4,990 7,506	W Ime the flood the flood	$d = \frac{(A_{10} + A)}{2}$ ed area at the ed area at the from the base	$\frac{1}{d} \propto D_d$ base of the stone outlet in square feet. top of the stone outlet (over flow mechanism), in the stone outlet to the top of the stone outlet
V _d = V _d =	12,496 463	Cu. Ft Cu. Yc		
Provided Storage				
Wet Storage		Cu. Ft. Cu. Yd		
Dry Storage	12,496 463	Cu. Ft. Cu. Yd		
Total Storage	20,979 777	Cu. Ft Cu. Yc		

Sadimant Starzga Valuma		
Sediment Storage Volume		
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560s)}$	(2,000lbs./ton)	
	sq.ft./ac)	
where:		
V = the volume of sediment tr	apped in ac. ft./yr.	
DA = the total drainage area in		
A = the average annual erosic	on in tons per acre per	
year using either values	from the Universal Soil	
Loss Equation, the Revis		
Equation or the values i	n Figure SB-1 for the	
listed land use.		
DR = the delivery ratio determin		
TE = the trap efficiency as given		
N - the entirented andirect	langity in the codiment	
γ = the estimated sediment of basin in lbs/cu. ft. (from I		
γ = the estimated sediment of basin in lbs/cu. ft. (from I		
basin in lbs/cu. ft. (from I		
basin in lbs/cu. ft. (from I	Figure SB-2).	- F B
basin in lbs/cu. ft. (from I DA = 6.8 Acres	Figure SB-2). Figure SB-1 Determinin	100
basin in lbs/cu. ft. (from I DA = 6.8 Acres A = Site will be considered a	Figure SB-2).	Ave.
DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use	Ave. Annual Eros
DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave. Annual Eros 0.2
basin in lbs/cu. ft. (from I DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas,	Ave. Annual Eros 0.2 ton/ac/y
$basin in lbs/cu. ft. (from II)$ $DA = 6.8 \qquad Acres$ $A = \qquad Site will be considered a$	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Eros 0.2 ton/ac/yr 1.0
DA = 6.8 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas,	Ave. Annual Eros 0.2 ton/ac/yr 1.0
$basin in lbs/cu. ft. (from II)$ $DA = 6.8 \qquad Acres$ $A = \qquad Site will be considered a$	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Eros 0.2 ton/ac/yi
basin in lbs/cu. ft. (from I DA = 6.8 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Eros 0.2 ton/ac/yi 1.0 ton/ac/yi
basin in lbs/cu. ft. (from I DA = 6.8 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr 10


$\gamma = Sc$	il Texture is Sand-silt mixtu	Figure SB-2 Estimated Sedime	ent Density
γ = 85	5	Soll Texture *	γ _s Submerged (Ibs/cu. ft.)
		Clay	40-60
		Silt	55-75
		Clay-silt mixtures (equal parts)	40-65
		Sand-silt mixtures (equal parts)	75-95
		Clay-silt-sand mixtures (equal parts)	50-80
		Sand	85-100
		Gravel	85-125
		Poorly sorted sand and gravel	95-130
		* Use USDA soil data from county soil surve analysis to determine soil texture.	rys or sieve
		Source: USDA-NRCS.	
Sediment Storage	Volumo		
	volume		
	DA)(A)(DR)(TE)(2,000lbs.	./ton)	
		. <u>/ton)</u>	
$V_s = \underline{\Omega}$ $V_s =$	DA)(A)(DR)(TE)(2,000lbs. (γ)(43,560sq.ft./ac) 0.078 Acre Ft 3392.00 Cu. Ft 125.63 Cu. Yd.	./ton)	
V _s = V _s = V _s = Wet Storage	DA)(A)(DR)(TE)(2,000lbs. (y)(43,560sq.ft./ac) 0.078 Acre Ft 3392.00 Cu. Ft 125.63 Cu. Yd. Volume	. <u>/ton)</u>	
$V_{s} = \mathbf{\underline{\Omega}}$ $V_{s} = V_{s} =$ $Wet Storage$ $V_{w} = 2$	DA)(A)(DR)(TE)(2,000lbs. (y)(43,560sq.ft./ac) 0.078 Acre Ft 3392.00 Cu. Ft 125.63 Cu. Yd. Volume * V	./ton)	
V _s = V _s = V _s = Wet Storage	DA)(A)(DR)(TE)(2,000lbs. (γ)(43,560sq.ft./ac) 0.078 Acre Ft 3392.00 Cu. Ft 125.63 Cu. Yd. Volume * V 6784 Cu. Ft	. <u>/ton)</u>	
$V_{s} = $ $V_{s} =$ $V_{s} =$ $Wet Storage$ $V_{w} = 2$ $V_{w} =$	DA)(A)(DR)(TE)(2,000lbs. (y)(43,560sq.ft./ac) 0.078 Acre Ft 3392.00 Cu. Ft 125.63 Cu. Yd. Volume * V	./ton)	
$V_{s} = \mathbf{n}$ $V_{s} =$ $V_{s} =$ Wet Storage $V_{w} = 2$ $V_{w} =$ Total Require	DA)(A)(DR)(TE)(2,000lbs. (γ)(43,560sq.ft./ac) 0.078 Acre Ft 3392.00 Cu. Ft 125.63 Cu. Yd. Volume * V 6784 Cu. Ft 251.26 Cu Yd		
$V_{S} = \square$ $V_{S} =$ $V_{S} =$ $Wet Storage$ $V_{W} = 2$ $V_{W} =$ $Total Require$ $Total Volume = V_{S}$ $Residence Storage = VO$	2A)(A)(DR)(TE)(2,000lbs. (Y)(43,560sq.ft./ac) 0.078 Acre Ft 3392.00 Cu. Ft 125.63 Cu. Yd. Volume * V 6784 Cu. Ft 251.26 Cu Yd ed Basin Capacity + V _w + Residence Storage	esidence time for a 10 year frequency	
$V_{S} = \square$ $V_{S} =$ $V_{S} =$ $Wet Storage$ $V_{W} = 2$ $V_{W} =$ $Total Require$ $Total Volume = V_{S}$ $Residence Storage = VO$	2A)(A)(DR)(TE)(2,000lbs. (y)(43,560sq.ft./ac) 0.078 Acre Ft 3392.00 Cu. Ft 125.63 Cu. Yd. Volume * V 6784 Cu. Ft 251.26 Cu Yd ed Basin Capacity + V _w + Residence Storage	esidence time for a 10 year frequency tribution storm	


Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

Ti	ghe& Bonc Consulting Engineer Environmental Specialist	Project Project Descrip S Prepare	t Name: Quinebaug Solar Project t Number: R0317 t Location: Brooklyn and Canterbury, Connecticut t Location: Temporary Sediment Trap Sizing Calculation ed By: ALG Date: March 2020
Ph	ase 3J - Sedim	ent Tr	rap Sizing Calculations
	Sediment Storag	e Volun	ne
	Drainage Area =	4.60	0 Acres
	Required Storage=	134	4 Cu. Yds / Acre
otal	Required Storage=	616	5 Cu. Yds
	Provided Wet Storage		
	Wet storage volume may b	e approxima	
	where, $V_{UU} = \text{ the wet}$ $A_{UU} = \text{ the surfa}$ $D_{UU} = \text{ the maxisoutlet.}$	ce area of th	$Vw = 0.85 \ge A_w \ge D_w$ ume in cubic feet the flooded area at the base of the stone outlet in square feet in in feet, measured from the low point in the trap to the base of the stone
	A _w = D _w =	5,859 2	Sq. Ft. 2 feet
	V _w = V _w =	9,960 369	Cu. Ft. Cu. Yd.
	Provided Dry Storage Dry storage volume may b where, V_d - the dry		$V_d = \frac{(A_{lb} + A_d)}{2} \propto D_d$
	$A_{ll} =$ the surf $A_{d} =$ the surf square 1	ace area of ace area of feet	The flooded area at the base of the stone outlet in square feet. The flooded area at the top of the stone outlet (over flow mechanism), in measured from the base of the stone outlet to the top of the stone outlet
	$A_{W} =$		Sq. Ft.
	$A_d = D_d =$	- /	Sq. Ft. feet
	V _d = V _d =	14,142 524	Cu. Ft. Cu. Yd.
l	Provided Storage		
	Wet Storage	•	Cu. Ft. Cu. Yd.
	Dry Storage	14,142	Cu. Ft.
	Dry Storage	524	Cu. Yd.

Sediment Storage Volume		
U = (DA)(A)(DR)(TE)((2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)(A)}{(\gamma)(43,560s)}$	q.ft./ac)	
where:		
V = the volume of sediment tra	apped in ac. ft./yr.	
DA = the total drainage area in a		
A = the average annual erosio		
year using either values f	from the Universal Soil	
Loss Equation, the Revise		
Equation or the values in listed land use.	n Figure SB-1 for the	
DR = the delivery ratio determin	ed from Figure SB-12.	
TE = the trap efficiency as given	0	
γ = the estimated sediment d	ensity in the sediment	
γ = the estimated sediment debasin in lbs/cu. ft. (from F		
basin in lbs/cu. ft. (from F		
DA = 9.2 Acres A = Site will be considered a		g Erosion Rate
basin in lbs/cu. ft. (from F DA = 9.2 Acres	igure SB-2).	
DA = 9.2 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin	g Erosion Rate Ave. Annual Eros
DA = 9.2 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin	Ave.
$DA = 9.2 \qquad Acres$ $A = \qquad Site will be considered a$	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Eros 0.2
DA = 9.2 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas,	Ave. Annual Eros 0.2 ton/ac/yi
DA = 9.2 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Eros 0.2 ton/ac/yr 1.0
DA = 9.2 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Eros 0.2 ton/ac/yi
basin in lbs/cu. ft. (from FDA = 9.2AcresA =Site will be considered a	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed uiban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr
basin in lbs/cu. ft. (from F DA = 9.2 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed utban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Eros 0.2 ton/ac/yi 1.0
basin in lbs/cu. ft. (from F DA = 9.2 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr 10

γ = Soil Texture is Sand-silt mixtu	Figure SB-2 Estimated Sedim	ent Density
γ = 85	Soll Texture *	γ _s Submerged (lbs/cu. ft.)
	Clay	40-60
	Silt	55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal parts)	50-80
	Sand	85-100
	Gravel	85-125
	Poorly sorted sand and gravel	95-130
	 Use USDA soil data from county soil surve analysis to determine soil texture. 	rys or sieve
Sediment Storage Volume $V_{S} = \underbrace{(DA)(A)(DR)(TE)(2,000 bs./}{(\gamma)(43,560sq.ft./ac)}$ $V_{S} = 0.105 \text{ Acre Ft}$ $V_{S} = 4589.18 \text{ Cu. Ft}$ 169.97 Cu. Yd. Wet Storage Volume $V_{W} = 2 * V$ $V_{W} = 9178 \text{ Cu. Ft}$ 339.94 Cu Yd	<u>(ton)</u>	
Total Required Basin Capacity		
Total Volume = $V_s + V_w + Residence Storage$		
Residence Storage = volume to provide 10 hours re 24 hour duration, type III dist		
Residence Storage = 2,613 Cu. Ft. as determ	nined by HydroCAD	
Total Volume = 16381 Cu. Ft. 607 Cu. Yd.		

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

Tighe& Bonc Consulting Engineer Environmental Specialist	S Prepared By: ALG Date: March 2020	
Phase 3L - Sedim	ient Trap Sizing Calculations	
Sediment Storag	e Volume	
Drainage Area =	3.80 Acres	
Required Storage=	134 Cu. Yds / Acre	
Total Required Storage=	509 Cu. Yds	
Provided Wet Storage		
Wet storage volume may b	e approximated as follows:	
where,	$Vw = 0.85 \ge A_{tb} \ge D_{tb}$	
$A_{\mathcal{W}}$ = the surface	storage volume in cubic feet ce area of the flooded area at the base of the stone outlet in square feet mum depth in feet, measured from the low point in the trap to the base of the stone	
A _w = D _w =	4,233 Sq. Ft. 2 feet	
Vw= Vw=	7,196 Cu. Ft. 267 Cu. Yd.	
where, $V_d = \text{ the dry}$ $A_w = \text{ the surf}$ $A_d = \text{ the surf}$ square	ace area of the flooded area at the base of the stone outlet in square feet. ace area of the flooded area at the top of the stone outlet (over flow mechanism), i feet	
	th in feet, measured from the base of the stone outlet to the top of the stone outlet	
A _w = A _d = D _d =	4,233 Sq. Ft. 6,452 Sq. Ft. 2 feet	
V _d = V _d =	10,685 Cu. Ft. 396 Cu. Yd.	
Provided Storage		
Wet Storage	7,196 Cu. Ft. 267 Cu. Yd.	
Dry Storage	10,685 Cu. Ft. 396 Cu. Yd.	
Total Storage	17,881 Cu. Ft. 662 Cu. Yd.	

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

Tighe& Bonc Consulting Engineer Environmental Specialist	Project L Descript S Prepared	Number: R0317 Location: Brooklyn and Canterbury, Connecticut
		rap Sizing Calculations
Sediment Storag		
Drainage Area =	5.00) Acres
Required Storage=	134	I Cu. Yds / Acre
Total Required Storage=	670	Cu. Yds
A_{W}^{u} = the sur	t storage volu face area of 1	mated as follows: $Vw = 0.85 \ge A_{W} \ge D_{W}$ lume in cubic feet i the flooded area at the base of the stone outlet in square feet th in feet, measured from the low point in the trap to the base of the stone
A _w = D _w =	5,788 2	Sq. Ft. 2 feet
V _w = V _w =	9,840 364	Cu. Ft. Cu. Yd.
A_d the surf square	storage volu ace area of t ace area of t leet. th in feet, m 5,788 7,723	$V_{d} = \frac{(A_{tw} + A_{d})}{2} \times D_{d}$ unne the flooded area at the base of the stone outlet in square feet. the flooded area at the top of the stone outlet (over flow mechanism), in neasured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. feet
$V_d = V_d$		Cu. Yd.
Provided Storage Wet Storage	,	Cu. Ft.
_	364 13,511	Cu. Yd.

Tighe& Bond Consulting Engineers Environmental Specialists	Project Descrip Prepare	Number: R0317 Location: Brookly	aug Solar Project n and Canterbury, Connecticut rary Sediment Trap Sizing Calculation Date: March 2020
Phase 3N - Sedim	nent Ti	ap Sizing	Calculations
Sediment Storage	e Volun	ıe	
Drainage Area =	5.00	Acres	
Required Storage=	134	Cu. Yds / Acre	
Total Required Storage=	670	Cu. Yds	
Provided Wet Storage			
Wet storage volume may be	e approxima		
	ce area of tl	ne flooded area at tl	A $_{W}$ $\stackrel{\times}{_{w}}$ $_{W}$ $_{W}$ he base of the stone outlet in square feet om the low point in the trap to the base of the stone
A _w = D _w =	10,953 1	Sq. Ft. feet	
V _w = V _w =		Cu. Ft. Cu. Yd.	
A_d the surface square f	storage volu ice area of ice area of eet. h in feet, n 10,953 12,523	$V_{d} = \frac{\langle A_{W} \rangle}{2}$ ime the flooded area at the flooded area at heasured from the b Sq. Ft. Sq. Ft. Sq. Ft. feet	$\frac{A_d}{2} \propto D_d$ the base of the stone outlet in square feet. the top of the stone outlet (over flow mechanism), in ase of the stone outlet to the top of the stone outlet
V_d=	435	Cu. Yd.	
Provided Storage			
Wet Storage	,	Cu. Ft. Cu. Yd.	
Dry Storage		Cu. Ft. Cu. Yd.	
Total Storage	21,048 780	Cu. Ft. Cu. Yd.	

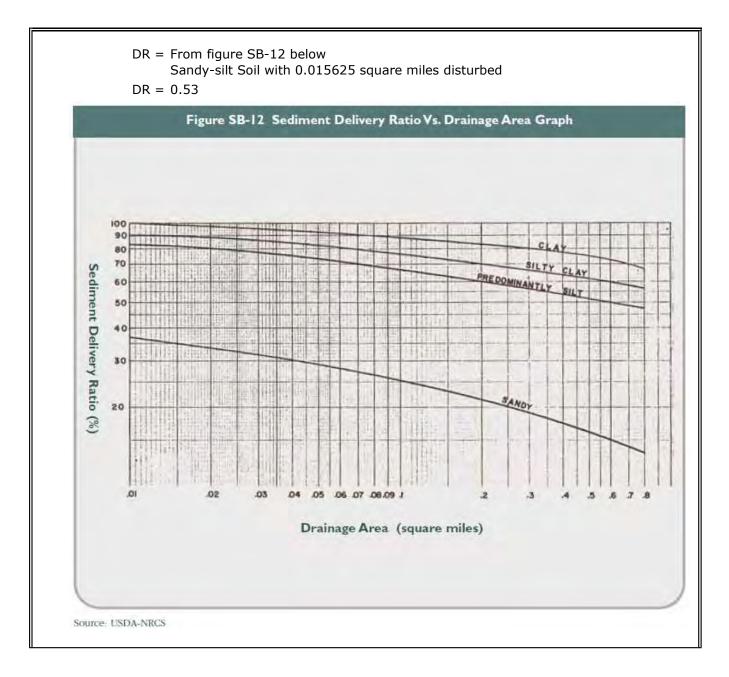
c	Bonc Consulting Engineer Conmental Specialist	Project Descript S Prepare	Number: Location:	R0317 Brooklyn Temporar	y Sediment	bury, Conne	cticut Calculation	
	30 - Sedin		-	zing Ca	lculatio	ns		
Sedir	ment Storag	e Volum	ne					
Drai	nage Area =	3.40	Acres					
Require	ed Storage=	134	Cu. Yds	/ Acre				
Fotal Require	ed Storage=	456	Cu. Yds					
Provide	ed Wet Storage							
Wet stor	age volume may b	e approxima		ows: = 0.85 x A,				
where,	V_W = the wet A_W = the surfa D_W = the maxi outlet.	ice area of th	me in cubi ne flooded	c feet area at the b	base of the stor		ire feet ie base of the ston	3
	A _w = D _w =		Sq. Ft. feet					
			Teet					
	V _w = V _w =	•	Cu. Ft. Cu. Yd.					
	$V_w =$ ed Dry Storage rage volume may b $V_d = \text{ the dry}$ $A_w = \text{ the suff}$ $A_d = \text{ the suff}$ $Square I$ $D_d = \text{ the dep}$ $A_w =$ $A_d =$ $D_d =$	228 be approxim storage volu ace area of feet th in feet, m 3,615 5,328 2	Cu. Ft. Cu. Yd. ated as fo V_d ime the floode the floode the floode the floode sq. Ft. Sq. Ft. Sq. Ft. feet	Hows: = $\frac{(A_{10} + A)}{2}$ d area at the d area at the	base of the st top of the sto	one outlet (over	uare feet. flow mechanism) of the stone outle	
Dry stor	$V_{w} =$ ed Dry Storage rage volume may b V_{d} = the dry A_{w} = the suff A_{d} = the suff Square I D_{d} = the dep $A_{w} =$ $A_{d} =$	228 be approxim storage volu ace area of feet th in feet, m 3,615 5,328	Cu. Ft. Cu. Yd. ated as fo V_d ime the floode the floode the floode sq. Ft. Sq. Ft.	Hows: $= \frac{(A_{W} + A)^2}{2}$ d area at the d area at the base	base of the st top of the sto	one outlet (over	flow mechanism).	
Dry stor where,	$V_w =$ ed Dry Storage rage volume may b V_d = the dry A_w = the suff A_d = the suff A_d = the suff A_d = the dep $A_d =$ D_d = the dep $A_w =$ $A_d =$ $D_d =$	228 be approxim storage volu ace area of feet th in feet, m 3,615 5,328 2 8,943	Cu. Ft. Cu. Yd. ated as fo V_d ime the floode the fl	Hows: $= \frac{(A_{W} + A)^2}{2}$ d area at the d area at the base	base of the st top of the sto	one outlet (over	flow mechanism).	
Dry stor where,	$V_w =$ ed Dry Storage rage volume may b $V_d = \text{ the dry}$ $A_w = \text{ the surf}$ $A_d = \text{ the surf}$ $A_d = \text{ the dep}$ $A_d = D_d =$ $V_d =$ $V_d =$ $V_d =$	228 be approxim storage volu ace area of feet th in feet, m 3,615 5,328 2 8,943 331 6,146	Cu. Ft. Cu. Yd. ated as fo V_d ime the floode the fl	Hows: $= \frac{(A_{W} + A)^2}{2}$ d area at the d area at the base	base of the st top of the sto	one outlet (over	flow mechanism).	
Dry stor where,	$V_{w} =$ ed Dry Storage rage volume may b V_{d} = the dry A_{tw} = the suff A_{d} = the suff square 1 D_{d} = the dep $A_{w} =$ $A_{d} =$ $D_{d} =$ $V_{d} =$ $V_{d} =$ $V_{d} =$ $V_{d} =$	228 be approxim storage volu ace area of 1 ace area of 1 ace area of 1 feet th in feet, m 3,615 5,328 2 8,943 331 6,146 228 8,943	Cu. Ft. Cu. Yd. ated as fo Va the floode the	Hows: $= \frac{(A_{W} + A)^2}{2}$ d area at the d area at the base	base of the st top of the sto	one outlet (over	flow mechanism).	

	Consulting Enginee	Project Project Descrip Prepare	Name: Quinebaug Solar Project Number: R0317 Location: Brooklyn and Canterbury, Connecticut tion: Temporary Sediment Trap Sizing Calcu d By: ALG Date: March 2020	
Phase	e 3P - Sedii	ment Tr	ap Sizing Calculations	
Sed	liment Stora	ge Volun	16	
Dr	ainage Area =	4.60	Acres	
Requ	ired Storage=	134	Cu. Yds / Acre	
otal Requ	ired Storage=	616	Cu. Yds	
Prov	ided Wet Storag	e		
Wet s	torage volume may	be approxima		
where			$Vw = 0.85 \ge A_w \ge D_w$	
	$V_{\mathcal{W}}$ = the we $A_{\mathcal{W}}$ = the sur	face area of th	me in cubic feet he flooded area at the base of the stone outlet in square feet in feet, measured from the low point in the trap to the base	
	A _w = D _w =	4,913 2	Sq. Ft. feet	
	V _w =	8,352		
	V _w =	309	Cu. Yd.	
	V_d = the dr A_w = the su A_d = the su square	be approxim y storage volu fface area of fface area of fect pth in feet, n 4,913 6,762 2 11,675	$V_{d} = \frac{(A_{10} + A_{d})}{2} \propto D_{d}$ ime the flooded area at the base of the stone outlet in square for the flooded area at the top of the stone outlet (over flow m heasured from the base of the stone outlet to the top of the Sq. Ft. Sq. Ft. feet	nechanism), in
Provi	ded Storage			
	Wet Storage		Cu. Ft. Cu. Yd.	
	Dry Storage	11,675 432	Cu. Ft. Cu. Yd.	
	Total Storage	20,027 742	Cu. Ft. Cu. Yd.	

Tighe& Bond Consulting Engineers Environmental Specialists	Prepared By: ALG Date: March 2020
Phase 3Q - Sedim	ent Trap Sizing Calculations
Sediment Storage	2 Volume
Drainage Area =	1.50 Acres
Required Storage=	134 Cu. Yds / Acre
otal Required Storage=	201 Cu. Yds
Provided Wet Storage	
Wet storage volume may be	The second se
where,	$Vw = 0.85 \ge A_{tw} \ge D_{tw}$
V_{W} = the wet st A_{W} = the surfac D_{W} = the maximoutlet.	torage volume in cubic feet e area of the flooded area at the base of the stone outlet in square feet num depth in feet, measured from the low point in the trap to the base of the stone
A _w = D _w =	1,630 Sq. Ft. 2 feet
V _w =	2,771 Cu. Ft.
V _w =	103 Cu. Yd.
A_d the surface square fermion of the second sec	$V_{d} = \frac{(A_{lll} + A_{d})}{2} \times D_{d}$ torage volume ce area of the flooded area at the base of the stone outlet in square feet. ce area of the flooded area at the top of the stone outlet (over flow mechanism), in
Provided Storage	
Wet Storage	2,771 Cu. Ft. 103 Cu. Yd.
Dry Storage	4,419 Cu. Ft. 164 Cu. Yd.

 Project Name:
 Quinebaug Solar Project

 Project Number:
 R-0317


 Project Location:
 Brooklyn and Canterbury, Connecticut

 Description:
 Temporary Sediment Basin Sizing Calculation

 Prepared By:
 ALG
 Date: March 2020

mporary Sediment Basin 3R		
Sediment Storage Volume		
$\frac{(DA)(A)(DR)(TE)(CA)(DR)(TE)(CA)}{(DR)(TE)(CA)}$	2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)(A)}{(\gamma)(43,560)}$	q.ft./ac)	
where:		
V = the volume of sediment tra	pped in ac. ft./yr.	
DA = the total drainage area in a		
A = the average annual erosion	n in tons per acre per	
year using either values fr	rom the Universal Soil	
Loss Equation, the Revise	ed Universal Soil Loss	
Equation or the values in	Figure SB-1 for the	
listed land use.		
DR = the delivery ratio determine		
TE = the trap efficiency as given		
v - the estimated sediment de	ensity in the sediment	
γ = the estimated sediment de		
basin in lbs/cu. ft. (from Fi		
basin in lbs/cu. ft. (from Fi DA = 10 Acres		
basin in lbs/cu. ft. (from Fi		g Erosion Rate
DA = 10 Acres A = Site will be considered a	igure SB-2).	g Erosion Rate Ave. Annual Erosi
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin Land Use	Ave. Annual Erosid
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin	Ave, Annual Erosi 0,2
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin Land Use	Ave, Annual Erosi 0,2
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Erosi 0.2 ton/ac/yr 1.0
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosi 0,2 ton/ac/yr 1,0
basin in lbs/cu. ft. (from Fi DA = 10 Acres A = Site will be considered a construction area	igure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Erosi 0,2 ton/ac/yr
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave, Annual Erosi 0,2 ton/ac/yr 1,0 ton/ac/yr 10
basin in lbs/cu. ft. (from Fi DA = 10 Acres A = Site will be considered a construction area	igure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave, Annual Erosi 0,2 ton/ac/yr 1,0 ton/ac/yr
basin in lbs/cu. ft. (from Fi DA = 10 Acres A = Site will be considered a construction area	igure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave, Annual Erosi 0,2 ton/ac/yr 1,0 ton/ac/yr 10

Project Name:Quinebaug Solar ProjectProject Number:R-0317Project Location:Brooklyn and Canterbury, ConnecticutDescription:Temporary Sediment Basin Sizing CalculationPrepared By:ALGDate:March 2020

γ = 5	oil Texture is Sand-silt mixt	Figure SB-2 Estimated Sedime	ent Density
γ = δ	35	Soll Texture *	Υ _s Submerged (Ibs/cu. ft.)
		Clay	40-60
		Silt	55-75
		Clay-silt mixtures (equal parts)	40-65
		Sand-silt mixtures (equal parts)	75-95
		Clay-silt-sand mixtures (equal parts)	50-80
		Sand	85-100
		Gravel	85-125
		Poorly sorted sand and gravel	95-130
		* Use USDA soil data from county soil surve analysis to determine soil texture.	rys or sleve
		Source: USDA-NRCS.	
Sediment Storag	je Volume		
	(DA)(A)(DR)(TE)(2,000lbs	./ton)	
		/ton)	
$V_{s} = $ $V_{s} =$	<u>(DA)(A)(DR)(TE)(2,000lbs</u> (Y)(43,560sq.ft./ac) 0.115 Acre Ft	./ton)	
V _s =	<u>DA)(A)(DR)(TE)(2,000lbs</u> (Y)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft	/ton)	
$V_{s} = $ $V_{s} =$	<u>(DA)(A)(DR)(TE)(2,000lbs</u> (Y)(43,560sq.ft./ac) 0.115 Acre Ft	./ton)	
$V_{s} = $ $V_{s} =$	<i>DA)(A)(DR)(TE)(</i> 2,000lbs (γ)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd.	<u>/ton)</u>	
$V_{S} =$ $V_{S} =$ $V_{S} =$	DA)(A)(DR)(TE)(2,000lbs (y)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume	. <u>/ton)</u>	
V _s = V _s = V _s = Wet Storage	DA)(A)(DR)(TE)(2,000lbs (y)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume	. <u>/ton)</u>	
$V_{s} = V_{s} = V_{s} = V_{s}$ Wet Storage $V_{w} = 2$	<i>DA)(A)(DR)(TE)(</i> 2,000lbs (7)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume	./ton)	
$V_{S} = V_{S} = V_{S} = V_{S} = V_{W} = 2$ $V_{W} = 2$ $V_{W} = 2$	<u>DA)(A)(DR)(TE)(2,000lbs</u> (γ)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume 2 * V 9976 Cu. Ft	./ton)	
V _S = V _S = V _S = Wet Storage V _W = 2 V _W =	DA)(A)(DR)(TE)(2,000lbs (y)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume * V 9976 Cu. Ft 369.50 Cu Yd ed Basin Capacity		
$V_{S} = V_{S} = V_{S$	<i>DA)(A)(DR)(TE)(</i> 2,000lbs (7)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume 2 * V 9976 Cu. Ft 369.50 Cu Yd ed Basin Capacity V _s + V _w + Residence Storage		
$V_{S} = \frac{1}{V_{S}}$ $V_{S} = \frac{1}{V_{S}}$ $Wet Storage$ $V_{W} = 2$ $V_{W} = \frac{1}{V_{W}}$ $Total Require$ $Total Volume = N$ $Residence Storage = N$	<i>DA)(A)(DR)(TE)(</i> 2,000lbs (7)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume 2 * V 9976 Cu. Ft 369.50 Cu Yd ed Basin Capacity V _s + V _w + Residence Storage	esidence time for a 10 year frequency	
$V_{S} = \frac{1}{V_{S}}$ $V_{S} = \frac{1}{V_{S}}$ $Wet Storage$ $V_{W} = 2$ $V_{W} = \frac{1}{V_{W}}$ $Total Require$ $Total Volume = N$ $Residence Storage = N$	$\frac{DA)(A)(DR)(TE)(2,000lbs}{(\gamma)(43,560sq.ft./ac)}$ 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume * V 9976 Cu. Ft 369.50 Cu Yd ed Basin Capacity $V_{s} + V_{w} + \text{Residence Storage}$ rolume to provide 10 hours r	esidence time for a 10 year frequency tribution storm	
$V_{S} = \frac{1}{V_{S}}$ $V_{S} = \frac{1}{V_{S}}$ $V_{W} = \frac{1}{V_{W}}$ $V_{W} = \frac{1}{V_{W}}$ $Total Volume = \sqrt{1}$ $Residence Storage = \sqrt{1}$	$\frac{DA)(A)(DR)(TE)(2,000lbs}{(p)(43,560sq.ft./ac)}$ 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume	esidence time for a 10 year frequency tribution storm	

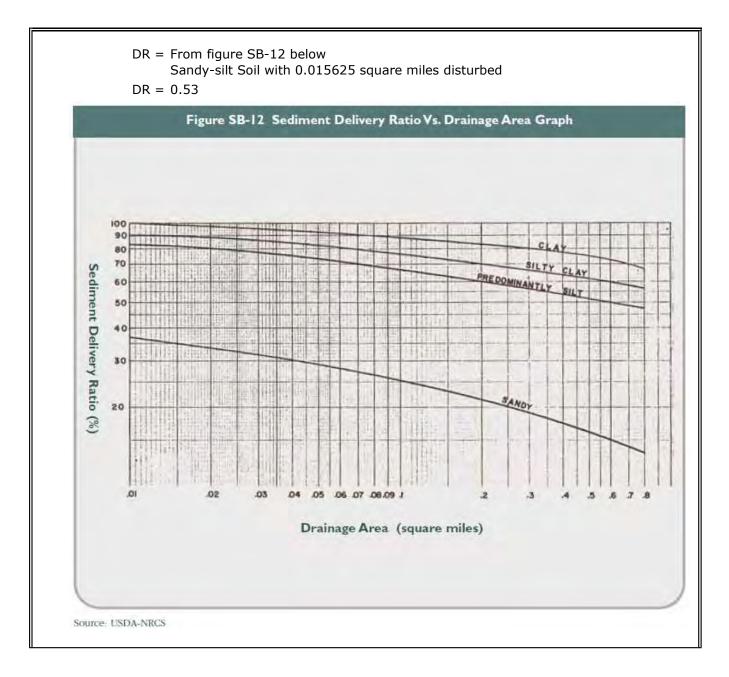
Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

J:\R\R0317 Ranger Solar\R-0317-2_Quinebaug\Permitting\Permitting 2019\SWPCP\Data\Quinebaug Temporary Sediment Basin Sizing.xlsx

Tighe&Bond Consulting Engineers Environmental Specialists	Project L Descript Prepared	Number: R0317 Location: Brooklyn and Canterbury, Connecticut
Phase 3S - Sedim	ent Tra	ap Sizing Calculations
Sediment Storage	e Volum	le
Drainage Area =	2.60	Acres
Required Storage=	134	Cu. Yds / Acre
otal Required Storage=	348	Cu. Yds
Provided Wet Storage		
Wet storage volume may be	approxima	
where,		$Vw = 0.85 \ge A_{lb} \ge D_{lb}$
	e area of th	me in cubic feet ne flooded area at the base of the stone outlet in square feet in feet, measured from the low point in the trap to the base of the stone
D	2,921 2	Sq. Ft. feet
V _w =	4,966	Cu. Ft.
V _w =	184	Cu. Yd.
A_d the surface square fe	torage volu ce area of t ce area of t ce area of t ret n in feet, m 2,921 4,729 2 7,650	ated as follows: $V_{d} = \frac{(A_{lll} + A_{d})}{2} \times D_{d}$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft.
bry storage volume may be V_d = the dry s A_w = the surfact A_d = the surfact A_d = the surfact B_d = the dept A_w = A_d = D_d = V_d = V_d = V_d =	torage volu ce area of t ce area of t ce area of t ret n in feet, m 2,921 4,729 2 7,650	ated as follows: $V_d = \frac{(A_{lb} + A_d)}{2} \times D_d$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft.
Dry storage volume may be where, $V_d = \text{the dry s}$ $A_w = \text{the surfa}$ $A_d = \text{the surfa}$ square fe $D_d = \text{the dept}$ $A_w =$ $A_d =$ $D_d =$ $V_d =$ $V_d =$ $V_d =$ $V_d =$	torage volu ce area of t ce area of t tet a in feet, m 2,921 4,729 2 7,650 283	ated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \times D_{d}$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft. Cu. Yd.
bry storage volume may be V_d = the dry s A_w = the surfact A_d = the surfact A_d = the surfact B_d = the dept A_w = A_d = D_d = V_d = V_d = V_d =	torage volu ce area of t ce area of t ce area of t 2,921 4,729 2 7,650 283	ated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \times D_{d}$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft. Cu. Yd.
Dry storage volume may be where, $V_d = \text{the dry s}$ $A_w = \text{the surfa}$ $A_d = \text{the surfa}$ square fe $D_d = \text{the dept}$ $A_w =$ $A_d =$ $D_d =$ $V_d =$ $V_d =$ $V_d =$ $V_d =$	e approxima torage volu ce area of t ce area of t et a in feet, m 2,921 4,729 2 7,650 283 4,966 184 7,650	ated as follows: $V_{d} = \frac{(A_{W} + A_{d})}{2} \times D_{d}$ me he flooded area at the base of the stone outlet in square feet. he flooded area at the top of the stone outlet (over flow mechanism), in easured from the base of the stone outlet to the top of the stone outlet Sq. Ft. Sq. Ft. Sq. Ft. feet Cu. Ft. Cu. Yd.

 Project Name:
 Quinebaug Solar Project

 Project Number:
 R-0317


 Project Location:
 Brooklyn and Canterbury, Connecticut

 Description:
 Temporary Sediment Basin Sizing Calculation

 Prepared By:
 ALG
 Date: March 2020

Sediment Storage Volume		
	(2000lbs /top)	
$V = \frac{(DA)(A)(DR)(TE)}{(\gamma)(43,560s)}$	(2.000003.7000)	
where:	iquiti, uc)	
V = the volume of sediment tr		
DA = the total drainage area in		
A = the average annual erosic		
year using either values		
Loss Equation, the Revis Equation or the values i		
listed land use.	in rigure ob-1 for the	
DR = the delivery ratio determine	ned from Figure SB-12.	
TE = the trap efficiency as given	-	
γ = the estimated sediment of	lensity in the sediment	
γ = the estimated sediment of basin in lbs/cu. ft. (from I		
basin in lbs/cu. ft. (from I		
basin in lbs/cu. ft. (from IDA = 8.9AcresA =Site will be considered a		g Erosion Rate
basin in lbs/cu. ft. (from I DA = 8.9 Acres	Figure SB-2).	g Erosion Rate Ave.
basin in lbs/cu. ft. (from IDA = 8.9AcresA =Site will be considered a	Figure SB-2). Figure SB-1 Determinin	
DA = 8.9 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin	Ave.
DA = 8.9 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin; Land Use Wooded area	Ave. Annual Eros 0.2
DA = 8.9 Acres A = Site will be considered a	Figure SB-2). Figure SB-1 Determinin; Land Use Wooded area Developed urban areas,	Ave. Annual Eros 0.2 ton/ac/y
basin in lbs/cu. ft. (from IDA = 8.9AcresA =Site will be considered a	Figure SB-2). Figure SB-1 Determinin; Land Use Wooded area	Ave. Annual Eros 0.2 ton/ac/y 1.0
basin in lbs/cu. ft. (from IDA = 8.9AcresA =Site will be considered a	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed urban areas, grassed areas, pastures,	Ave. Annual Eros 0.2 ton/ac/yr 1.0
basin in lbs/cu. ft. (from IDA = 8.9AcresA =Site will be considered a	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed uiban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Eros 0.2 ton/ac/yi
basin in lbs/cu. ft. (from I DA = 8.9 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determinin, Land Use Wooded area Developed uiban areas, grassed areas, pastures, hay fields, abandoned	Ave, Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr
basin in lbs/cu. ft. (from I DA = 8.9 Acres A = Site will be considered a construction area	Figure SB-2). Figure SB-1 Determining Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave, Annual Eros 0.2 ton/ac/yr 1.0 ton/ac/yr 10

Project Name:Quinebaug Solar ProjectProject Number:R-0317Project Location:Brooklyn and Canterbury, ConnecticutDescription:Temporary Sediment Basin Sizing CalculationPrepared By:ALGDate:March 2020

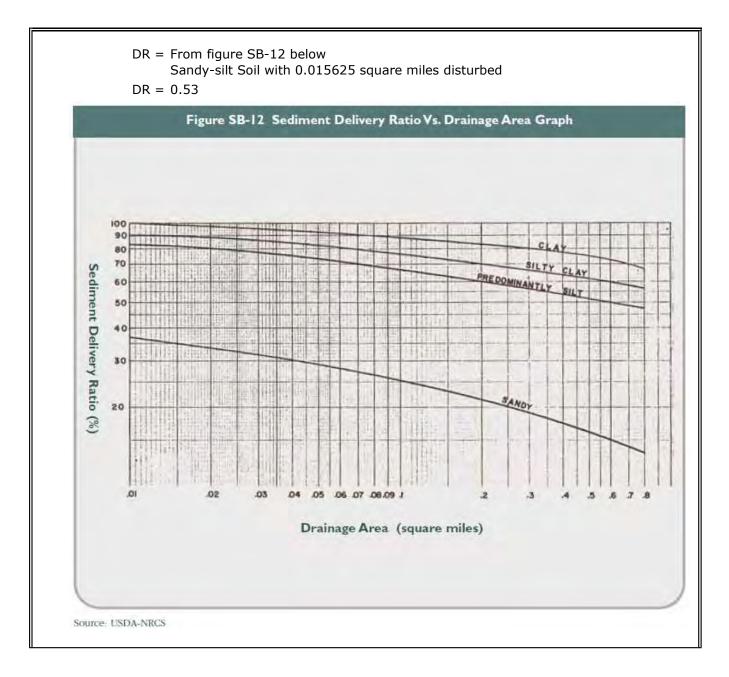
y = 85	the second se	
γ = 05	Soll Texture *	γ _s Submerged (Ibs/cu. ft.)
	Clay	40-60
	Silt	55-75
	Clay-silt mixtures (equal parts)	40-65
	Sand-silt mixtures (equal parts)	75-95
	Clay-silt-sand mixtures (equal parts)	50-80
	Sand	85-100
	Gravel	85-125
	Poorly sorted sand and gravel	95-130
	 Use USDA soil data from county soil surve analysis to determine soil texture. 	ys or sieve
	Source; USDA-NRCS.	
Sediment Storage Volume		
$V_{\rm S} = (DA)(A)(DR)(TE)(2,000)$	(100)	
(y)(43,560sq.ft./ac)	5./1011/	
$V_{S} = 0.102$ Acre Ft $V_{S} = 4439.53$ Cu. Ft 164.43 Cu. Yd.		
Wet Storage Volume		
_		
V _W = 2 * V V _W = 8879 Cu. Ft		
$v_{\rm W} = 8879$ Cu. Ft 328.85 Cu Yd		
Total Required Basin Capacity		
Total Volume = $V_{s} + V_{w}$ + Residence Storage	2	
Residence Storage = volume to provide 10 hours r 24 hour duration, type III dis	<i>i i i</i>	
Residence Storage = 2,613 Cu. Ft. as deter	mined by HydroCAD	

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

J:\R\R0317 Ranger Solar\R-0317-2_Quinebaug\Permitting\Permitting 2019\SWPCP\Data\Quinebaug Temporary Sediment Basin Sizing.xlsx

 Project Name:
 Quinebaug Solar Project

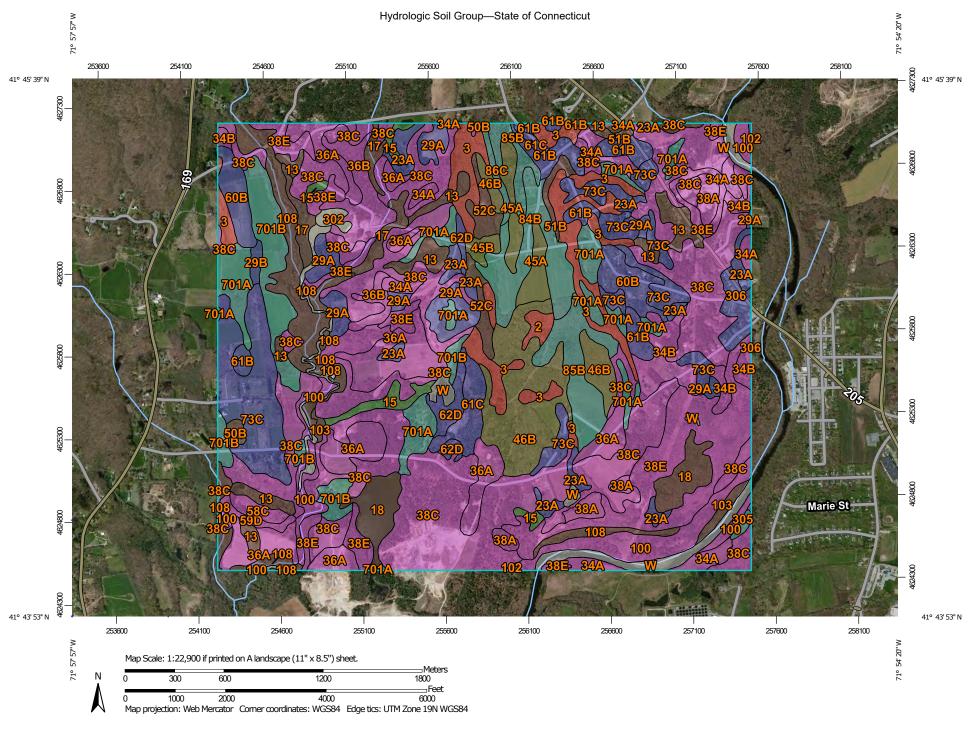
 Project Number:
 R-0317


 Project Location:
 Brooklyn and Canterbury, Connecticut

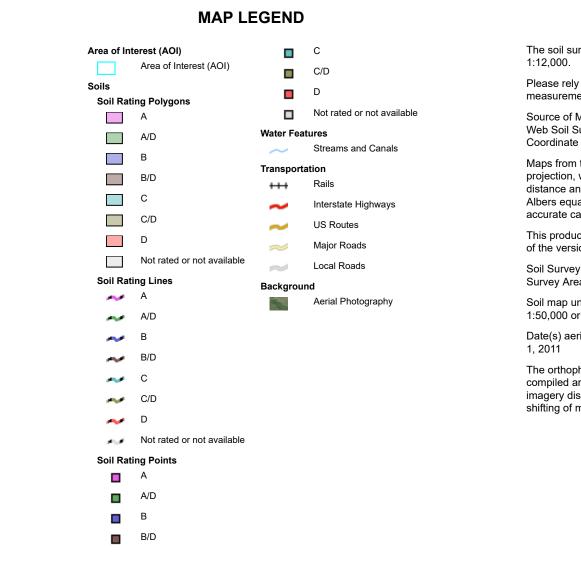
 Description:
 Temporary Sediment Basin Sizing Calculation

 Prepared By:
 ALG
 Date: March 2020

mporary Sediment Basin 3U		
Sediment Storage Volume		
(DA)(A)(DR)(TE)(2,000lbs./ton)	
$V = \frac{(DA)(A)(DR)(TE)(A)}{(\gamma)(43,560)}$	q.ft./ac)	
where:		
V = the volume of sediment tra	pped in ac. ft./yr.	
DA = the total drainage area in a	icres	
A = the average annual erosion	n in tons per acre per	
year using either values fr		
Loss Equation, the Revise		
Equation or the values in	Figure SB-1 for the	
listed land use.	1.6	
DR = the delivery ratio determine	-	
TE = the trap efficiency as given		
γ = the estimated sediment de basin in lbs/cu. ft. (from Fi		
basin in lbs/cu. ft. (from Fi		
basin in lbs/cu. ft. (from Fi		
DA = 10 Acres A = Site will be considered a		g Erosion Rates
basin in lbs/cu. ft. (from Fi DA = 10 Acres	igure SB-2).	Ave.
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin	
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin	Ave. Annual Erosic 0.2
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin Land Use Wooded area	Ave. Annual Erosid
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin Land Use	Ave. Annual Erosic 0.2
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosic 0.2 ton/ac/yr
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed utban areas, grassed areas, pastures,	Ave. Annual Erosic 0.2 ton/ac/yr 1.0
DA = 10 Acres A = Site will be considered a	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed urban areas, grassed areas, pastures, hay fields, abandoned	Ave. Annual Erosic 0.2 ton/ac/yr 1.0
basin in lbs/cu. ft. (from Fi DA = 10 Acres A = Site will be considered a construction area	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed utban areas, grassed areas, pastures, hay fields, abandoned fields with good cover	Ave. Annual Erosic 0,2 ton/ac/yr 1,0 ton/ac/yr
basin in lbs/cu. ft. (from Fi DA = 10 Acres A = Site will be considered a construction area	igure SB-2). Figure SB-1 Determinin Land Use Wooded area Developed utban areas, grassed areas, pastures, hay fields, abandoned fields with good cover Clean tilled cropland	Ave. Annual Erosic 0,2 ton/ac/yr 1,0 ton/ac/yr 10


Project Name:Quinebaug Solar ProjectProject Number:R-0317Project Location:Brooklyn and Canterbury, ConnecticutDescription:Temporary Sediment Basin Sizing CalculationPrepared By:ALGDate:March 2020

γ = 5	oil Texture is Sand-silt mixt	Figure SB-2 Estimated Sedime	ent Density
γ = δ	35	Soll Texture *	Υ _s Submerged (Ibs/cu. ft.)
		Clay	40-60
		Silt	55-75
		Clay-silt mixtures (equal parts)	40-65
		Sand-silt mixtures (equal parts)	75-95
		Clay-silt-sand mixtures (equal parts)	50-80
		Sand	85-100
		Gravel	85-125
		Poorly sorted sand and gravel	95-130
		* Use USDA soil data from county soil surve analysis to determine soil texture.	rys or sleve
		Source: USDA-NRCS.	
Sediment Storag	je Volume		
	(DA)(A)(DR)(TE)(2,000lbs	./ton)	
		./ton)	
$V_{s} = $ $V_{s} =$	<u>(DA)(A)(DR)(TE)(2,000lbs</u> (Y)(43,560sq.ft./ac) 0.115 Acre Ft	./ton)	
V _s =	<u>DA)(A)(DR)(TE)(2,000lbs</u> (Y)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft	/ton)	
$V_{s} = $ $V_{s} =$	<u>(DA)(A)(DR)(TE)(2,000lbs</u> (Y)(43,560sq.ft./ac) 0.115 Acre Ft	./ton)	
$V_{s} = $ $V_{s} =$	<i>DA)(A)(DR)(TE)(</i> 2,000lbs (γ)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd.	<u>/ton)</u>	
$V_{S} =$ $V_{S} =$ $V_{S} =$	DA)(A)(DR)(TE)(2,000lbs (y)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume	. <u>/ton)</u>	
V _s = V _s = V _s = Wet Storage	DA)(A)(DR)(TE)(2,000lbs (y)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume	. <u>/ton)</u>	
$V_{s} = V_{s} = V_{s} = V_{s}$ Wet Storage $V_{w} = 2$	<i>DA)(A)(DR)(TE)(</i> 2,000lbs (7)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume	./ton)	
$V_{S} = V_{S} = V_{S} = V_{S} = V_{W} = 2$ $V_{W} = 2$ $V_{W} = 2$	<u>DA)(A)(DR)(TE)(2,000lbs</u> (γ)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume 2 * V 9976 Cu. Ft	./ton)	
V _S = V _S = V _S = Wet Storage V _W = 2 V _W =	DA)(A)(DR)(TE)(2,000lbs (y)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume * V 9976 Cu. Ft 369.50 Cu Yd ed Basin Capacity		
$V_{S} = V_{S} = V_{S$	<i>DA)(A)(DR)(TE)(</i> 2,000lbs (7)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume 2 * V 9976 Cu. Ft 369.50 Cu Yd ed Basin Capacity V _s + V _w + Residence Storage		
$V_{S} = \frac{1}{V_{S}}$ $V_{S} = \frac{1}{V_{S}}$ $Wet Storage$ $V_{W} = 2$ $V_{W} = \frac{1}{V_{W}}$ $Total Require$ $Total Volume = N$ $Residence Storage = N$	<i>DA)(A)(DR)(TE)(</i> 2,000lbs (7)(43,560sq.ft./ac) 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume 2 * V 9976 Cu. Ft 369.50 Cu Yd ed Basin Capacity V _s + V _w + Residence Storage	esidence time for a 10 year frequency	
$V_{S} = \frac{1}{V_{S}}$ $V_{S} = \frac{1}{V_{S}}$ $Wet Storage$ $V_{W} = 2$ $V_{W} = \frac{1}{V_{W}}$ $Total Require$ $Total Volume = N$ $Residence Storage = N$	$\frac{DA)(A)(DR)(TE)(2,000lbs}{(\gamma)(43,560sq.ft./ac)}$ 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume * V 9976 Cu. Ft 369.50 Cu Yd ed Basin Capacity $V_{s} + V_{w} + \text{Residence Storage}$ rolume to provide 10 hours r	esidence time for a 10 year frequency tribution storm	
$V_{S} = \frac{1}{V_{S}}$ $V_{S} = \frac{1}{V_{S}}$ $V_{W} = \frac{1}{V_{W}}$ $V_{W} = \frac{1}{V_{W}}$ $Total Volume = \sqrt{1}$ $Residence Storage = \sqrt{1}$	$\frac{DA)(A)(DR)(TE)(2,000lbs}{(p)(43,560sq.ft./ac)}$ 0.115 Acre Ft 4988.24 Cu. Ft 184.75 Cu. Yd. Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume	esidence time for a 10 year frequency tribution storm	


Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

J:\R\R0317 Ranger Solar\R-0317-2_Quinebaug\Permitting\Permitting 2019\SWPCP\Data\Quinebaug Temporary Sediment Basin Sizing.xlsx

NRCS Soils Report

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut Survey Area Data: Version 18, Dec 6, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 30, 2011—May 1, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
2	Ridgebury fine sandy loam, 0 to 3 percent slopes	D	6.6	0.3%
3	Ridgebury, Leicester, and Whitman soils, 0 to 8 percent slopes, extremely stony	D	91.7	4.2%
13	Walpole sandy loam, 0 to 3 percent slopes	B/D	48.7	2.2%
15	Scarboro muck, 0 to 3 percent slopes	A/D	18.9	0.9%
17	Timakwa and Natchaug soils, 0 to 2 percent slopes	B/D	25.1	1.2%
18	Catden and Freetown soils, 0 to 2 percent slopes	B/D	44.9	2.1%
23A	Sudbury sandy loam, 0 to 5 percent slopes	В	37.0	1.7%
29A	Agawam fine sandy loam, 0 to 3 percent slopes	В	46.6	2.1%
29B	Agawam fine sandy loam, 3 to 8 percent slopes	В	3.8	0.2%
34A	Merrimac fine sandy loam, 0 to 3 percent slopes	A	35.4	1.6%
34B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	41.1	1.9%
36A	Windsor loamy sand, 0 to 3 percent slopes	A	130.8	6.0%
36B	Windsor loamy sand, 3 to 8 percent slopes	A	38.5	1.8%
38A	Hinckley loamy sand, 0 to 3 percent slopes	A	21.0	1.0%
38C	Hinckley loamy sand, 3 to 15 percent slopes	A	510.1	23.5%
38E	Hinckley loamy sand, 15 to 45 percent slopes	A	152.7	7.0%
45A	Woodbridge fine sandy loam, 0 to 3 percent slopes	C/D	27.1	1.3%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
45B	Woodbridge fine sandy loam, 3 to 8 percent slopes	C/D	6.7	0.3%
46B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	C/D	98.7	4.6%
50B	Sutton fine sandy loam, 3 to 8 percent slopes	B/D	4.4	0.2%
51B	Sutton fine sandy loam, 0 to 8 percent slopes, very stony	B/D	8.5	0.4%
52C	Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony	B/D	20.6	1.0%
58C	Gloucester gravelly sandy loam, 8 to 15 percent slopes, very stony	A	7.7	0.4%
59D	Gloucester gravelly sandy loam, 15 to 35 percent slopes, extremely stony	A	5.8	0.3%
60B	Canton and Charlton fine sandy loams, 3 to 8 percent slopes	В	40.9	1.9%
61B	Canton and Charlton fine sandy loams, 0 to 8 percent slopes, very stony	В	42.2	1.9%
61C	Canton and Charlton fine sandy loams, 8 to 15 percent slopes, very stony	В	23.8	1.1%
62D	Canton and Charlton fine sandy loams, 15 to 35 percent slopes, extremely stony	В	17.6	0.8%
73C	Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky	В	133.2	6.1%
84B	Paxton and Montauk fine sandy loams, 3 to 8 percent slopes	С	50.3	2.3%
85B	Paxton and Montauk fine sandy loams, 3 to 8 percent slopes, very stony	С	55.7	2.6%
86C	Paxton and Montauk fine sandy loams, 3 to 15 percent slopes, extremely stony	С	5.9	0.3%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
100	Suncook loamy fine sand	A	64.4	3.0%
102	Pootatuck fine sandy loam	В	1.0	0.0%
103	Rippowam fine sandy loam	B/D	7.8	0.4%
108	Saco silt loam	B/D	82.9	3.8%
302	Dumps		5.0	0.2%
305	Udorthents-Pits complex, gravelly	С	2.3	0.1%
306	Udorthents-Urban land complex	В	15.9	0.7%
701A	Ninigret fine sandy loam, 0 to 3 percent slopes	С	75.8	3.5%
701B	Ninigret fine sandy loam, 3 to 8 percent slopes	С	63.9	2.9%
W	Water		46.2	2.1%
Totals for Area of Inter	rest	1	2,167.3	100.0%

Description

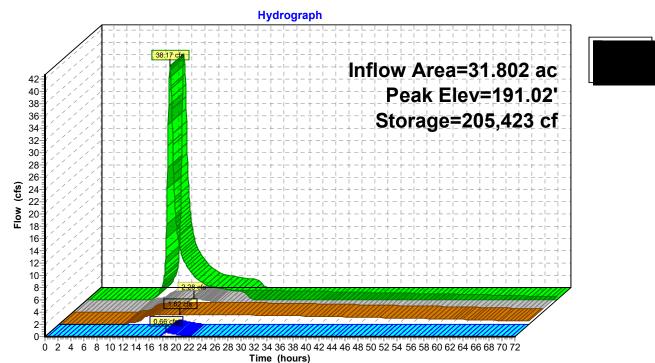
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

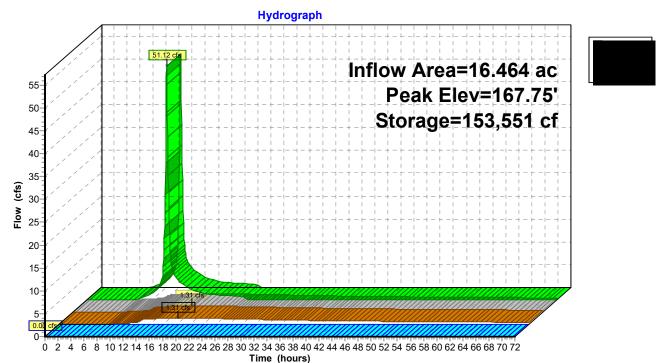
Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher **Long-Term** Existing Conditions Hydrology

Pond 3P: Existing Depression

Summary for Pond 4P: Existing Depression

Inflow Area =	16.464 ac,	0.65% Impervious, I	nflow Depth = 3.43"	for 25-year event
Inflow =	51.12 cfs @	12.19 hrs, Volume=	= 4.708 af	
Outflow =	1.31 cfs @	18.19 hrs, Volume=	 4.268 af, Atter 	n= 97%, Lag= 360.1 min
Discarded =	1.31 cfs @	18.19 hrs, Volume=	= 4.268 af	
Primary =	0.00 cfs @	0.00 hrs, Volume=	e 0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.75' @ 18.19 hrs Surf.Area= 55,611 sf Storage= 153,551 cf


Plug-Flow detention time= 1,361.8 min calculated for 4.268 af (91% of inflow) Center-of-Mass det. time= 1,315.6 min (2,138.0 - 822.4)

Volume	Invert	Avail.St	orage	Storage Description	on		
#1	162.00'	1,773,2	203 cf	Custom Stage D	ata (Irregular)Liste	ed below (Recalc)	
Elevation (feet)		(sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
162.00		8,040	387.0	0	0	8,040	
164.00		20,064	890.0	27,203	27,203	59,171	
166.00	3	31,393	894.0	51,036	78,239	61,043	
168.00	Ę	59,552 1	,582.0	89,455	167,695	196,625	
170.00	10	06,611 3	,162.0	163,895	331,590	793,118	
172.00	14	12,449 3	,012.0	248,196	579,786	867,073	
174.00	18	32,259 2	,708.0	323,891	903,678	1,005,567	
176.00	22	22,778 3	,083.0	404,360	1,308,037	1,178,477	
178.00	24	12,528 3	,031.0	465,166	1,773,203	1,204,505	
#1 [Routing Discarded Primary	Invert 162.00' 177.00'	1.02 23.0 Hea	d (feet) 0.20 0.40	adth Broad-Crest 0.60 0.80 1.00	ed Rectangular Wei 1.20 1.40 1.60	r
			Coe	f. (English) 2.68 2	.70 2.70 2.64 2.6	63 2.64 2.64 2.63	

Discarded OutFlow Max=1.31 cfs @ 18.19 hrs HW=167.75' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.31 cfs)

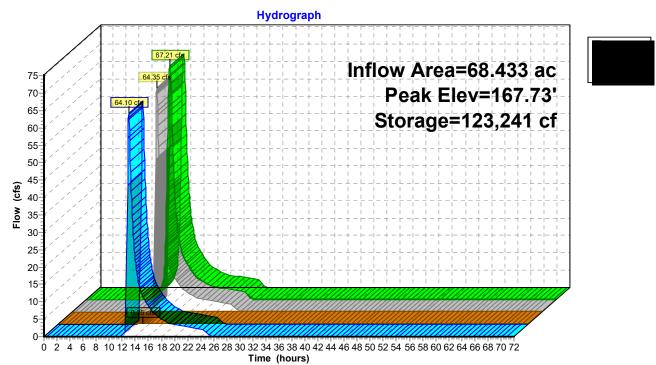
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=162.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 4P: Existing Depression

Summary for Pond 5P: Existing Depression

Inflow Area =	68.433 ac, 2	2.71% Impervious, Inf	low Depth = 2.13 "	for 25-year event
Inflow =	67.21 cfs @	12.81 hrs, Volume=	12.131 af	
Outflow =	64.35 cfs @	12.96 hrs, Volume=	10.540 af, Att	en= 4%, Lag= 8.7 min
Discarded =	0.25 cfs @	12.96 hrs, Volume=	1.086 af	-
Primary =	64.10 cfs @	12.96 hrs, Volume=	9.454 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.73' @ 12.96 hrs Surf.Area= 40,503 sf Storage= 123,241 cf


Plug-Flow detention time= 255.8 min calculated for 10.540 af (87% of inflow) Center-of-Mass det. time= 195.7 min (1,087.1 - 891.3)

Volume	Inver	t Avail.	Storage	Storage Description	on	
#1	162.00	' 134	4,374 cf	Custom Stage Da	ata (Irregular)Liste	ed below (Recalc)
Elevation (feet 162.0 164.0 166.0 166.0	t) 0 0 0	Surf.Area (sq-ft) 1,686 17,454 29,548 42,358	Perim. (feet) 164.0 653.0 840.0 938.0	Inc.Store (cubic-feet) 0 16,376 46,474 71,523	Cum.Store (cubic-feet) 0 16,376 62,851 134,374	Wet.Area (sq-ft) 1,686 33,489 55,756 69,736
Device						
#1	Discarded	162.0	0.27 '0.27	0 in/hr Exfiltration	over Surface ar	ea
#2 Primary 167.25' 71.0' long x 38.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.64 2.63						
Discarded OutFlow Max=0.25 cfs @ 12.96 hrs HW=167.73' (Free Discharge)						

1=Exfiltration (Exfiltration Controls 0.25 cfs)

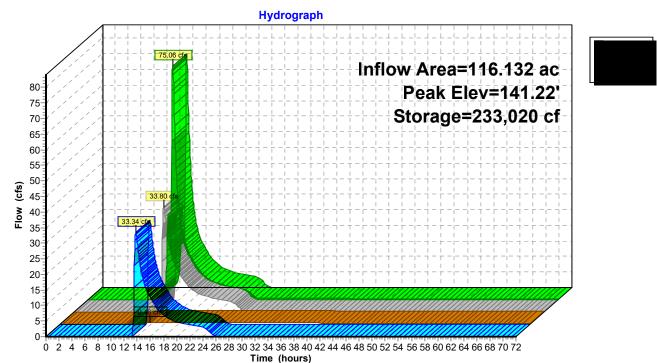
Primary OutFlow Max=63.85 cfs @ 12.96 hrs HW=167.73' (Free Discharge) ☐ 2=Broad-Crested Rectangular Weir (Weir Controls 63.85 cfs @ 1.87 fps)

Pond 5P: Existing Depression

Summary for Pond 6P: Existing Wetland

Inflow Area =	116.132 ac, 22.20% Impervious, Inflow	Depth = 1.42" for 25-year event
Inflow =	75.06 cfs @ 12.96 hrs, Volume=	13.708 af
Outflow =	33.80 cfs @ 13.77 hrs, Volume=	10.493 af, Atten= 55%, Lag= 48.9 min
Discarded =	0.46 cfs @ 13.77 hrs, Volume=	2.071 af
Primary =	33.34 cfs @ 13.77 hrs, Volume=	8.422 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 141.22' @ 13.77 hrs Surf.Area= 116,048 sf Storage= 233,020 cf


Plug-Flow detention time= 468.9 min calculated for 10.486 af (76% of inflow) Center-of-Mass det. time= 380.3 min (1,302.0 - 921.8)

Volume	Invert	Avail.Ste	orage	Storage Description	on	
#1	138.00'	330,4	71 cf	Custom Stage Da	ata (Irregular)List	ted below (Recalc)
Elevatio	et)	(sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
138.0 140.0		23,460 91,023 1	686.0 816.0	0 107,129	0 107,129	23,460 248,460
142.0)0 1	33,681 2	277.0	223,342	330,471	398,668
Device	Routing	Invert	Outl	et Devices		
#1	Discarded	138.00'	0.17	0 in/hr Exfiltratior	over Surface a	rea
#2	Primary	141.00'	121.	0' long x 19.0' bre	eadth Broad-Cre	sted Rectangular Weir
			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60
			Coe	f. (English) 2.68 2	.70 2.70 2.64 2.	63 2.64 2.64 2.63

Discarded OutFlow Max=0.46 cfs @ 13.77 hrs HW=141.22' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.46 cfs)

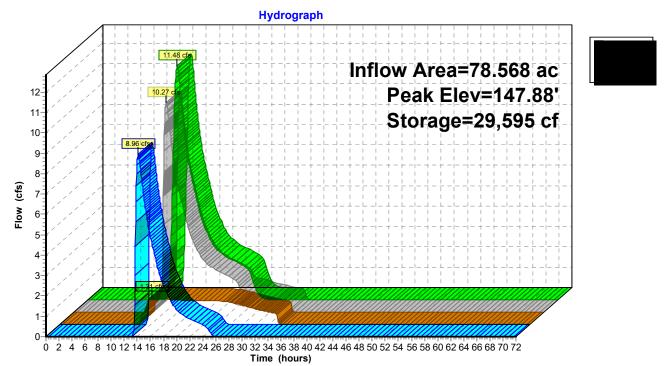
Primary OutFlow Max=33.15 cfs @ 13.77 hrs HW=141.22' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 33.15 cfs @ 1.25 fps)

Pond 6P: Existing Wetland

Summary for Pond 7P: Existing Depression

Inflow Area =	78.568 ac, 13.25% Impervious, Inflow	w Depth = 0.67" for 25-year event
Inflow =	11.48 cfs @ 13.70 hrs, Volume=	4.369 af
Outflow =	10.27 cfs @ 14.14 hrs, Volume=	4.369 af, Atten= 11%, Lag= 26.5 min
Discarded =	1.31 cfs @ 14.14 hrs, Volume=	1.777 af
Primary =	8.96 cfs @ 14.14 hrs, Volume=	2.591 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 147.88' @ 14.14 hrs Surf.Area= 23,512 sf Storage= 29,595 cf


Plug-Flow detention time= 119.3 min calculated for 4.366 af (100% of inflow) Center-of-Mass det. time= 119.5 min (1,130.5 - 1,011.0)

Volume	Inver	t Avai	I.Storage	Storage Description	on		
#1	146.00	' (32,409 cf	Custom Stage Da	ata (Irregular)Listed	d below (Recalc)	
Elevatio (fee		ourf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
146.0	00	9,050	771.0	0	0	9,050	
148.0	00	24,633	1,236.0	32,409	32,409	83,343	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	147	.50' 14.0	' long x 90.0' brea	dth Broad-Creste	d Rectangular Weir	,
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1.	20 1.40 1.60	
				f. (English) 2.68 2.			
#2	Discarded	146	.00' 2.41	0 in/hr Exfiltration	over Surface area	a	
Discarded OutFlow Max=1.31 cfs @ 14.14 hrs HW=147.88' (Free Discharge)							

2=Exfiltration (Exfiltration Controls 1.31 cfs)

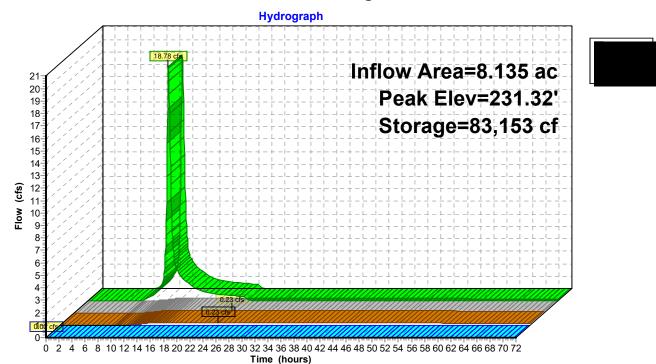
Primary OutFlow Max=8.95 cfs @ 14.14 hrs HW=147.88' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 8.95 cfs @ 1.67 fps)

Pond 7P: Existing Depression

Summary for Pond 8P: Existing Wetland

Inflow Area =	8.135 ac, 26.48% Impervious, Inflow	Depth = 3.14" for 25-year event
Inflow =	18.78 cfs @ 12.33 hrs, Volume=	2.129 af
Outflow =	0.23 cfs @ 24.27 hrs, Volume=	0.973 af, Atten= 99%, Lag= 716.7 min
Discarded =	0.23 cfs @ 24.27 hrs, Volume=	0.973 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 231.32' @ 24.27 hrs Surf.Area= 57,919 sf Storage= 83,153 cf


Plug-Flow detention time= 1,700.0 min calculated for 0.973 af (46% of inflow) Center-of-Mass det. time= 1,580.6 min (2,419.9 - 839.2)

Volume	Invert	Avail.	Storage	Storage Description	on		
#1	228.00'	130),034 cf	Custom Stage Da	ata (Irregular) Liste	d below (Recalc)	
Elevatio (fee 228.0 230.0 232.0)0)0	urf.Area (sq-ft) 5,806 25,974 79,559	Perim. (feet) 459.0 862.0 1,189.0	Inc.Store (cubic-feet) 0 29,374 100,661	Cum.Store (cubic-feet) 0 29,374 130,034	Wet.Area (sq-ft) 5,806 48,191 101,601	
Device	Routing	Inve	ert Outle	et Devices			
#1	Discarded	228.0	0' 0.17	0 in/hr Exfiltration	over Surface are	a	
#2	Primary	231.5	Head	19.0' long x 196.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60			
Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63							

Discarded OutFlow Max=0.23 cfs @ 24.27 hrs HW=231.32' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.23 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=228.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

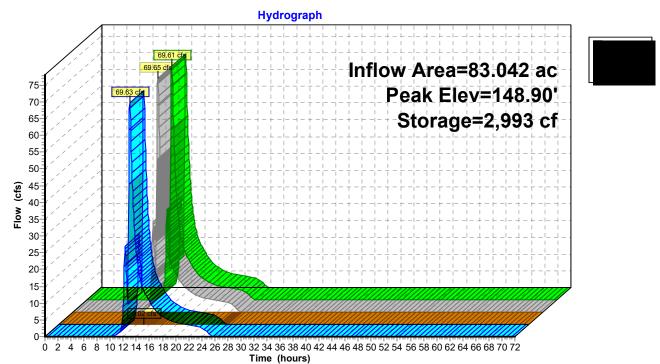
Pond 8P: Existing Wetland

Summary for Pond 9P: Existing Wetland

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =	83.042 ac, 24.98% Impervious, Inflow Depth = 1.7	76" for 25-year event
Inflow =	69.61 cfs @ 12.95 hrs, Volume= 12.185 af	-
Outflow =	69.65 cfs @ 12.96 hrs, Volume= 12.185 af,	Atten= 0%, Lag= 0.7 min
Discarded =	0.02 cfs @ 12.96 hrs, Volume= 0.012 af	
Primary =	69.63 cfs @ 12.96 hrs, Volume= 12.173 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 148.90'@ 12.96 hrs Surf.Area= 4,687 sf Storage= 2,993 cf


Plug-Flow detention time= 0.9 min calculated for 12.177 af (100% of inflow) Center-of-Mass det. time= 0.9 min (915.5 - 914.6)

Volume	Inve	ert Avai	I.Storage	Storage Descripti	on		
#1	148.0	0' 8	34,530 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
148.0 150.0	-	2,138 9,156	180.0 387.0	0 10,479	0 10,479	2,138 11,495	
152.0	00	135,719	2,199.0	120,084	130,563	384,391	
154.0 156.0	-	178,250 213,235	2,327.0 2,588.0	313,004 390,963	443,567 834,530	430,714 532,915	
Device	Routing	In	vert Outl	et Devices			
#1	Discarde	d 148	.00' 0.17	0 in/hr Exfiltratio	n over Surface ar	ea	
2		Hea	1.0' long x 49.0' breadth Broad-Crested Rectangular Weir lead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63				

Discarded OutFlow Max=0.02 cfs @ 12.96 hrs HW=148.90' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=69.39 cfs @ 12.96 hrs HW=148.90' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 69.39 cfs @ 2.50 fps)

Pond 9P: Existing Wetland

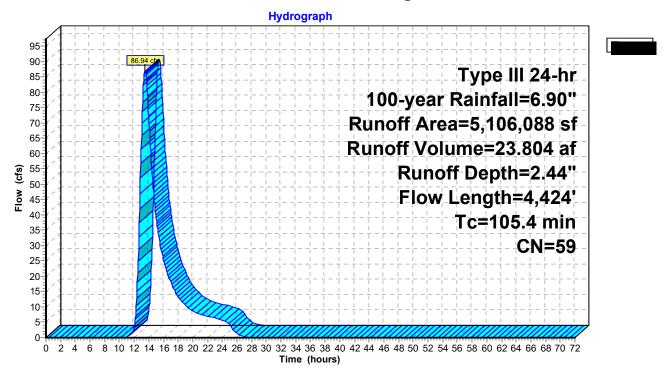
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Drainage Area 1	Runoff Area=5,106,088 sf 8.17% Impervious Runoff Depth=2.44" Flow Length=4,424' Tc=105.4 min CN=59 Runoff=86.94 cfs 23.804 af
Subcatchment2S: Drainage Area 2	Runoff Area=233,007 sf 0.00% Impervious Runoff Depth=1.11" Flow Length=289' Tc=12.1 min CN=44 Runoff=3.98 cfs 0.495 af
Subcatchment3S: Drainage Area 3	Runoff Area=1,385,288 sf 3.69% Impervious Runoff Depth=3.54" Flow Length=2,001' Tc=51.4 min CN=70 Runoff=56.51 cfs 9.369 af
Subcatchment4S: Drainage Area 4	Runoff Area=717,184 sf 0.65% Impervious Runoff Depth=4.71" Flow Length=974' Tc=13.9 min CN=81 Runoff=69.69 cfs 6.465 af
Subcatchment5S: Drainage Area 5	Runoff Area=2,626,591 sf 22.21% Impervious Runoff Depth=3.54" Flow Length=2,517' Tc=58.5 min CN=70 Runoff=99.66 cfs 17.765 af
Subcatchment6S: Drainage Area 6	Runoff Area=1,441,381 sf 15.21% Impervious Runoff Depth=1.11" Flow Length=1,544' Tc=44.6 min CN=44 Runoff=14.84 cfs 3.061 af
Subcatchment7S: Drainage Area 7	Runoff Area=3,422,419 sf 13.25% Impervious Runoff Depth=1.27" Flow Length=3,232' Tc=99.9 min CN=46 Runoff=26.08 cfs 8.328 af
Subcatchment8S: Drainage Area 8	Runoff Area=354,352 sf 26.48% Impervious Runoff Depth=4.38" Flow Length=883' Tc=23.6 min CN=78 Runoff=26.18 cfs 2.972 af
Subcatchment9S: Drainage Area 9	Runoff Area=636,379 sf 35.61% Impervious Runoff Depth=3.33" Flow Length=601' Tc=17.1 min CN=68 Runoff=40.53 cfs 4.053 af
Subcatchment10S: Drainage Area	10 Runoff Area=1,327,824 sf 10.63% Impervious Runoff Depth=3.23" Flow Length=1,752' Tc=42.6 min CN=67 Runoff=54.43 cfs 8.198 af
Subcatchment11S: Drainage Area	11 Runoff Area=2,488,023 sf 8.41% Impervious Runoff Depth=3.23" Flow Length=1,904' Tc=43.3 min CN=67 Runoff=101.13 cfs 15.362 af
Subcatchment12S: Drainage Area	12 Runoff Area=2,329,724 sf 9.84% Impervious Runoff Depth=3.64" Flow Length=1,596' Tc=52.4 min CN=71 Runoff=96.96 cfs 16.221 af
Subcatchment13S: Drainage Area	13 Runoff Area=1,408,782 sf 0.05% Impervious Runoff Depth=3.13" Flow Length=1,813' Tc=9.8 min CN=66 Runoff=102.00 cfs 8.425 af
Reach DP-1: Off-Site West	Inflow=125.52 cfs 33.178 af Outflow=125.52 cfs 33.178 af
Reach DP-2: Off-Site South	Inflow=126.03 cfs 25.599 af Outflow=126.03 cfs 25.599 af
Reach DP-3: Off-Site East	Inflow=96.96 cfs 16.221 af Outflow=96.96 cfs 16.221 af

Quinebaug Existing Hydrology	Type III 24-hr	100-year Rainfall=6.90"
Prepared by Tighe & Bond		Printed 10/3/2019
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solution	ons LLC	Page 147

Reach DP-4: Off-Site Southeast

Inflow=136.92 cfs 23.787 af Outflow=136.92 cfs 23.787 af

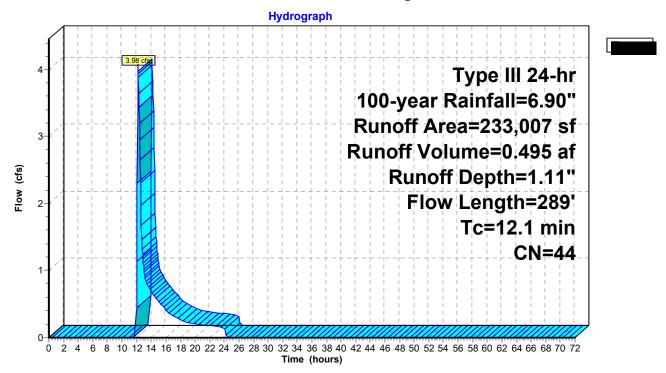

Pond 2P: Existing Depression	Peak Elev=168.68' Storage=8,932 cf Inflow=3.98 cfs 0.495 af Outflow=0.46 cfs 0.495 af
	Peak Elev=191.19' Storage=217,532 cf Inflow=56.51 cfs 9.369 af s 6.050 af Primary=14.79 cfs 2.939 af Outflow=16.45 cfs 8.989 af
Pond 4P: Existing Depression Discarded=1.75	Peak Elev=168.69' Storage=213,410 cf Inflow=69.69 cfs 6.465 af cfs 5.602 af Primary=0.00 cfs 0.000 af Outflow=1.75 cfs 5.602 af
	Peak Elev=167.89' Storage=129,896 cf Inflow=99.66 cfs 18.304 af 1.099 af Primary=98.49 cfs 15.612 af Outflow=98.75 cfs 16.711 af
	Peak Elev=141.45' Storage=260,446 cf Inflow=122.30 cfs 22.712 af 2.093 af Primary=98.73 cfs 17.400 af Outflow=99.21 cfs 19.493 af
	Peak Elev=148.31' Storage=32,409 cf Inflow=26.08 cfs 8.328 af s 1.894 af Primary=27.17 cfs 6.434 af Outflow=28.55 cfs 8.328 af
Pond 8P: Existing Wetland Discarded=0.25	Peak Elev=231.53' Storage=96,168 cf Inflow=26.18 cfs 2.972 af cfs 1.095 af Primary=1.68 cfs 0.539 af Outflow=1.93 cfs 1.634 af
Pond 9P: Existing Wetland Discarded=0.02 cfs 0.0	Peak Elev=149.20' Storage=4,572 cf Inflow=107.83 cfs 19.665 af 14 af Primary=107.77 cfs 19.651 af Outflow=107.79 cfs 19.665 af
	ac Runoff Volume = 124.519 af Average Runoff Depth = 2.77" 8.80% Pervious = 478.589 ac 11.20% Impervious = 60.370 ac

Summary for Subcatchment 1S: Drainage Area 1

Runoff 86.94 cfs @ 13.48 hrs, Volume= 23.804 af, Depth= 2.44" =

	Area (sf)	CN I	Description		
	684,739	30 I	Meadow, n	on-grazed,	HSG A
	599,154			on-grazed,	
	1,561,585		,	on-grazed,	
	0			on-grazed,	
	636,961			od, HSG A	
	755,130			od, HSG B	
	382,108			od, HSG C	
	10,840		,	od, HSG D	
*	33,102		Gravel pit, l		
т ×	0		Gravel pit, I		
*	0		Gravel pit, I		
^ +	0		Gravel pit, I		
*	417,330		Water body		
*	25,139		Gravel road	1	
	0		Structure		
	5,106,088		Weighted A		
4	4,688,758 417,330			rvious Area	
	417,330	C	5.1770 IMP	ervious Are	d
Т	c Length	Slope	Velocity	Capacity	Description
(miı		(ft/ft)	(ft/sec)	(cfs)	l l
9.	.3 50	0.0400	0.09	· · · · ·	Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
11.	.3 356	0.0110	0.52		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
23	.1 433	0.0020	0.31		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
4	.3 222	0.0300	0.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
10	.5 766	0.0300	1.21		Shallow Concentrated Flow,
<i>i</i> -					Short Grass Pasture Kv= 7.0 fps
46	.9 2,597	0.0340	0.92		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
105	.4 4,424	Total			

Subcatchment 1S: Drainage Area 1

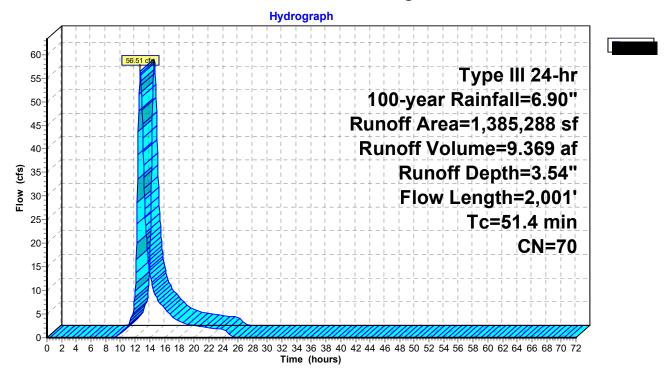

Summary for Subcatchment 2S: Drainage Area 2

Page 150

Runoff 3.98 cfs @ 12.22 hrs, Volume= 0.495 af, Depth= 1.11" =

	Area (sf) CN Description					
125,846 30 Meadow, non-grazed, HSG A 32,427 58 Meadow, non-grazed, HSG B						HSG A
						HSG B
		0	71	Meadow, no	HSG C	
		0	78	Meadow, no	on-grazed,	HSG D
		16,114	30	Woods, Go		
		0	55	Woods, Go	od, HSG B	
		0	70	Woods, Go	od, HSG C	
		0	77	Woods, Go	od, HSG D	
*		58,620	70	Gravel pit, I		
*		0	81	Gravel pit, I		
*		0	88	Gravel pit, I	HSG C	
*		0	92	Gravel pit, I	HSG D	
*		0	98	Water body	,	
*		0	96	Gravel road	ł	
*		0	98	Structure		
	2	33,007	44	Weighted A	verage	
	2	33,007		100.00% P	ervious Are	a
	Тс	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	6.8	50	0.090	0 0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	5.3	239	0.023	0 0.76		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	12.1	289	Total			

Subcatchment 2S: Drainage Area 2

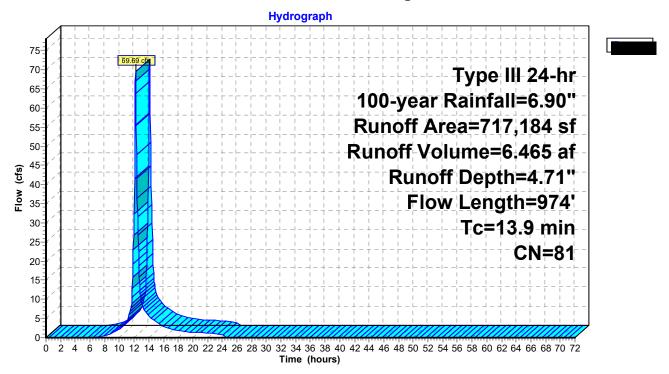


Summary for Subcatchment 3S: Drainage Area 3

Runoff 56.51 cfs @ 12.72 hrs, Volume= 9.369 af, Depth= 3.54" =

	А	rea (sf)	CN	Description							
_		0	30	Meadow, no	on-grazed,	HSG A					
		99,790	58	Meadow, no	Meadow, non-grazed, HSG B						
	8	811,823	71	Meadow, no	on-grazed,	HSG C					
		0	78	Meadow, no	on-grazed,	HSG D					
		1,798	30	Woods, Go	od, HSG A						
	1	07,172	55	Woods, Go	od, HSG B						
	1	42,868	70	Woods, Go	od, HSG C						
		14,571	77	Woods, Go	,						
*		59,918	70	Gravel pit, I							
*		96,280	81	Gravel pit, I							
*		0	88	Gravel pit, I							
*		0	92	Gravel pit, I							
*		51,068	98	Water body							
*		0	96	Gravel road							
<u>*</u>		0	98	Structure							
		85,288	70	Weighted A							
	,	34,220		96.31% Per							
		51,068		3.69% Impe	ervious Are	a					
	Тс	Length	Slope	e Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft		(cfs)	Decemption					
	17.8	50	0.008	, (,	()	Sheet Flow,					
			0.000			Woods: Light underbrush n= 0.400 P2= 3.20"					
	3.8	166	0.021	1 0.73		Shallow Concentrated Flow,					
						Woodland $Kv = 5.0$ fps					
	22.7	1,110	0.013	5 0.81		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	7.1	675	0.099	3 1.58		Shallow Concentrated Flow,					
						Woodland Kv= 5.0 fps					
	51.4	2,001	Total								

Subcatchment 3S: Drainage Area 3

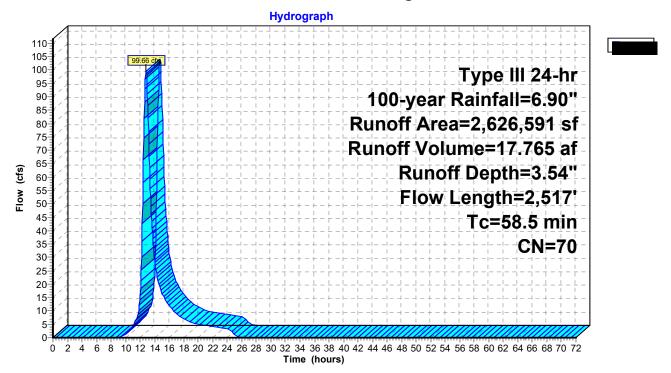

Summary for Subcatchment 4S: Drainage Area 4

Page 154

Runoff 69.69 cfs @ 12.19 hrs, Volume= 6.465 af, Depth= 4.71" =

	Ai	rea (sf)	CN	Description		
	0 30 Meadow, non-grazed, HS 0 58 Meadow, non-grazed, HS 0 71 Meadow, non-grazed, HS 0 78 Meadow, non-grazed, HS					HSG A
		0		Woods, Go		
		18,016		Woods, Go		
		19,532	70	Woods, Go	od, HSG C	
		5,054		Woods, Go		
*		34,397	70	Gravel pit, l	HSG A	
*		00,725	81	Gravel pit, l	HSG B	
*	1	34,831	88	Gravel pit, l	HSG C	
*		0	92	Gravel pit, l	HSG D	
*	4,629 98 Water body					
*		0 96 Gravel road				
*	* 0 98 Structure 717,184 81 Weighted Average					
					verage	
	7	12,555	9	99.35% Pei	vious Area	L
		4,629		0.65% Impe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	50	0.0200	1.20		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.20"
	3.9	384	0.0102	1.63		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	45	0.2700	8.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.8	269	0.0010	0.51		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.4	226	0.3100	8.96		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	13.9	974	Total			

Subcatchment 4S: Drainage Area 4

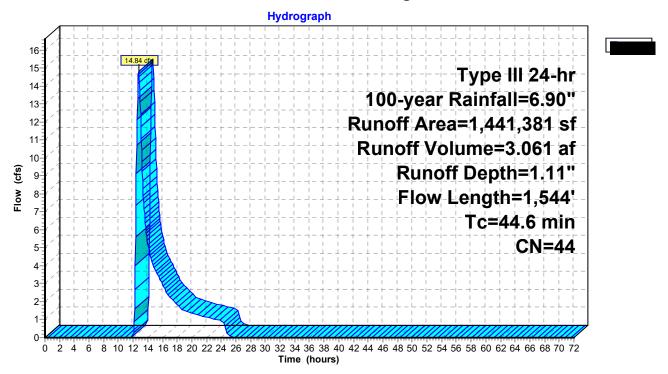


Summary for Subcatchment 5S: Drainage Area 5

Runoff 99.66 cfs @ 12.80 hrs, Volume= 17.765 af, Depth= 3.54" =

	Ai	rea (sf)	CN I	Description		
		84,917	30 I	Aeadow, no	on-grazed,	HSG A
	50,852 58 Meadow, non-grazed, HS 93,447 71 Meadow, non-grazed, HS 4,623 78 Meadow, non-grazed, HS					
						HSG C
						HSG D
		0	30 \	Voods, Go	od, HSG A	
	8	98,129	55 \	Voods, Go	od, HSG B	
		61,597	70 \	Voods, Go	od, HSG C	
	2	25,490	77 \	Voods, Go	od, HSG D	
*		15,001	70 (Gravel pit, I	HSG A	
*		0	81 (Gravel pit, I	HSG B	
*		0	88 (Gravel pit, I	HSG C	
*		0	92 (Gravel pit, I	HSG D	
*	5	83,239		Vater body		
*		9,296		Gravel road	l	
*		0	98 3	Structure		
	2,6	2,626,591 70 Weighted Average			verage	
	2,0	43,352	7	7.79% Pei	vious Area	
	5	83,239	2	22.21% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.3	50	0.0100	0.05		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	3.4	238	0.0550	1.17		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	26.6	1,240	0.0242	0.78		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	7.6	509	0.0500	1.12		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	4.6	480	0.1200	1.73		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	58.5	2,517	Total			

Subcatchment 5S: Drainage Area 5

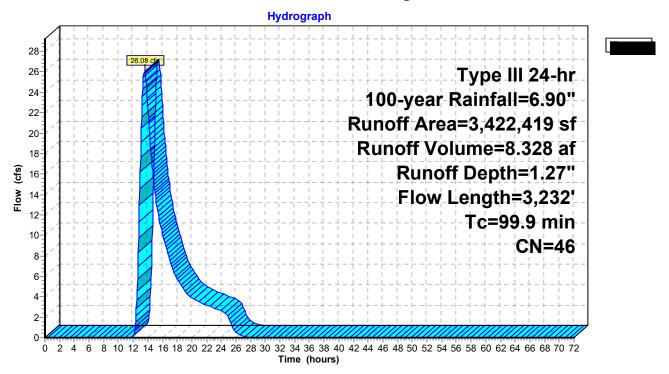


Summary for Subcatchment 6S: Drainage Area 6

Runoff = 14.84 cfs @ 12.76 hrs, Volume= 3.061 af, Depth= 1.11"

	Ai	rea (sf)	CN	Description						
	4	99,950	30	Meadow, no	on-grazed,	HSG A				
		97,724	58	Meadow, no	on-grazed,	HSG B				
		0	71	Meadow, non-grazed, HSG C Meadow, non-grazed, HSG D						
		0	78							
	5	64,963	30	Woods, Go	od, HSG A					
		50,036	55	Woods, Go	od, HSG B					
		0	70	Woods, Go	od, HSG C					
		0		Woods, Go	,					
*		0		Gravel pit, l						
*		0		Gravel pit, l						
*		0		Gravel pit, l						
*	_	0		Gravel pit, l						
*	2	19,272		Water body						
*		9,436		Gravel road						
*		0		Structure						
		41,381		Weighted A						
	,	22,109		84.79% Pei						
	2	19,272		15.21% Imp	pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)		(cfs)					
	4.3	50	0.0400			Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.20"				
	13.5	538	0.0090	0.66		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	10.1	601	0.0391	0.99		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	16.7	355	0.0050	0.35		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	44.6	1,544	Total							

Subcatchment 6S: Drainage Area 6

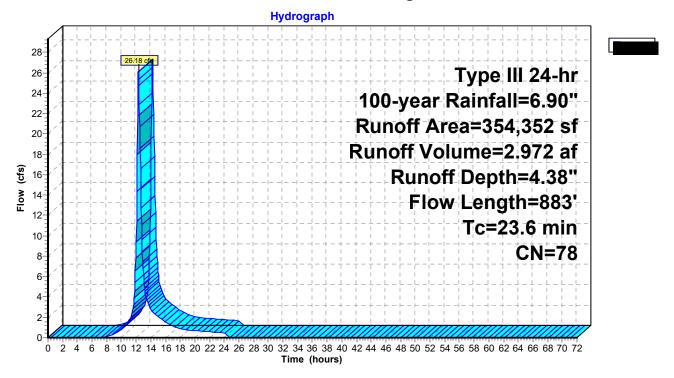


Summary for Subcatchment 7S: Drainage Area 7

Runoff 26.08 cfs @ 13.56 hrs, Volume= 8.328 af, Depth= 1.27" =

	Area (sf)	CN	Description						
	882,165	30 I	Meadow, n	on-grazed,	HSG A				
	137,268	58 I	Meadow, non-grazed, HSG B						
	0		Meadow, n						
	0		Meadow, non-grazed, HSG D						
	1,413,258		Woods, Good, HSG A						
	231,279		Woods, Good, HSG B						
	0			Voods, Good, HSG C					
	0		Woods, Go						
*	172,138		Gravel pit, I						
*	88,866		Gravel pit, I						
*	0		Gravel pit, l						
*	0		Gravel pit, I						
*	453,314		Water body						
*	44,131		Gravel road	1					
	0		Structure						
	3,422,419		Weighted A						
4	2,969,105		86.75% Pe						
	453,314		13.25% Imp	Jervious Ar	ea				
Т	c Length	Slope	Velocity	Capacity	Description				
(mir		(ft/ft)		(cfs)					
5.	.4 50	0.1600	0.16		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 3.20"				
5.	.6 346	0.0430	1.04		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
88.	.9 2,836	0.0113	0.53		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
99.	.9 3,232	Total							

Subcatchment 7S: Drainage Area 7

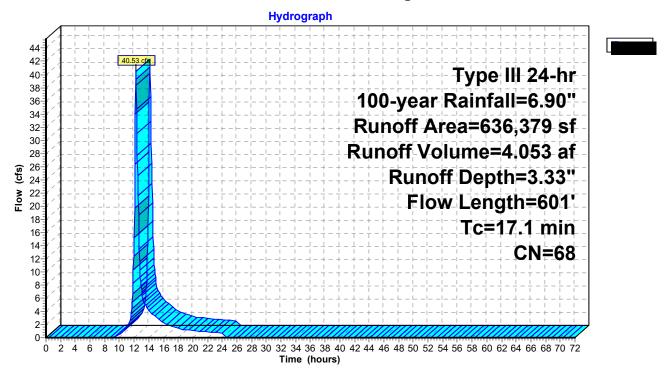


Summary for Subcatchment 8S: Drainage Area 8

Runoff = 26.18 cfs @ 12.32 hrs, Volume= 2.972 af, Depth= 4.38"

	А	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0	58	Meadow, no	on-grazed,	HSG B
		14,757	71	Meadow, no	on-grazed,	HSG C
		6,627	78	Meadow, no	on-grazed,	HSG D
		0		Woods, Go	,	
		7,700		Woods, Go	,	
		88,712	70	Woods, Go	,	
		40,001		Woods, Go	,	
*		0	70	Gravel pit, I		
*		0	81	Gravel pit, I		
*		0		Gravel pit, I		
*		0	92	Gravel pit, I		
*		93,828	98	Water body		
*		2,727		Gravel road		
		0		Structure		
		54,352	78	Weighted A		
		.60,524 93,828		73.52% Per		
		93,020		26.48% Imp	Del VIOUS AI	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·
	8.5	50	0.0500	0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	8.8	390	0.0220	0.74		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	2.9	271	0.1000	0 1.58		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	172	0.0280	0.84		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	23.6	883	Total			

Subcatchment 8S: Drainage Area 8

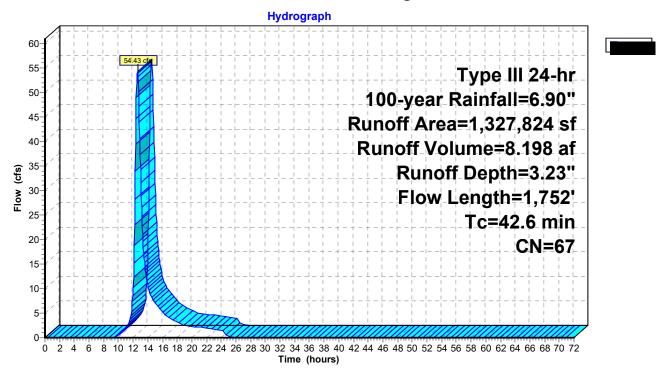


Summary for Subcatchment 9S: Drainage Area 9

Runoff 40.53 cfs @ 12.24 hrs, Volume= 4.053 af, Depth= 3.33" =

80,860 30 Meadow, non-grazed, HSG A	
29,044 58 Meadow, non-grazed, HSG B	
8,254 71 Meadow, non-grazed, HSG C	
0 78 Meadow, non-grazed, HSG D	
24,186 30 Woods, Good, HSG A	
229,102 55 Woods, Good, HSG B	
19,896 70 Woods, Good, HSG C	
0 77 Woods, Good, HSG D	
* 0 70 Gravel pit, HSG A	
* 0 81 Gravel pit, HSG B	
* 0 88 Gravel pit, HSG C	
* 0 92 Gravel pit, HSG D	
* 226,618 98 Water body	
* 18,419 96 Gravel road	
* 0 98 Structure	
636,379 68 Weighted Average	
409,761 64.39% Pervious Area	
226,618 35.61% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
10.5 50 0.0300 0.08 Sheet Flow,	
Woods: Light underbrush n= 0.400	P2= 3 20"
1.4 106 0.0610 1.23 Shallow Concentrated Flow,	1 2- 0.20
Woodland Kv= 5.0 fps	
3.4 184 0.0330 0.91 Shallow Concentrated Flow,	
Woodland Kv= 5.0 fps	
1.8 261 0.2470 2.48 Shallow Concentrated Flow,	
Woodland Kv= 5.0 fps	
17.1 601 Total	

Subcatchment 9S: Drainage Area 9

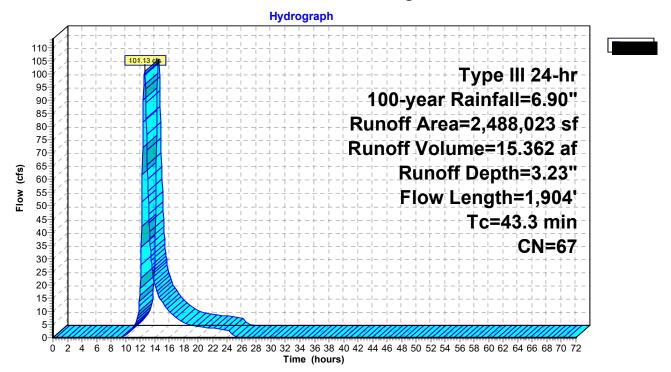


Summary for Subcatchment 10S: Drainage Area 10

Runoff 54.43 cfs @ 12.60 hrs, Volume= 8.198 af, Depth= 3.23" =

	A	rea (sf)	CN	Description						
13,076 30 Meadow, non-grazed						HSG A				
		0		Meadow, no	•					
	1	10,782		Meadow, non-grazed, HSG C						
		7,154	78	Meadow, no	on-grazed,	HSG D				
	1	10,901	30	Woods, Go	od, HSG A					
	3	14,648	55	Woods, Go	od, HSG B					
	5	10,207	70	Woods, Go	od, HSG C					
		87,476		Woods, Go	,					
*		0		Gravel pit, I						
*		0		Gravel pit, I						
*		0		Gravel pit, I						
*		0		Gravel pit, I						
	* 141,195 98 Water body									
*		32,385		Gravel road						
_		0		Structure						
		27,824		Weighted A						
	,	86,629		89.37% Per						
	1	41,195		10.63% Imp	pervious Ar	ea				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)					
_	4.3	50	0.0400	0.20		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.20"				
	29.4	1,139	0.0167	0.65		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	0.4	72	0.0417	7 3.29		Shallow Concentrated Flow,				
						Unpaved Kv= 16.1 fps				
	8.5	491	0.0367	0.96		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	42.6	1,752	Total							

Subcatchment 10S: Drainage Area 10

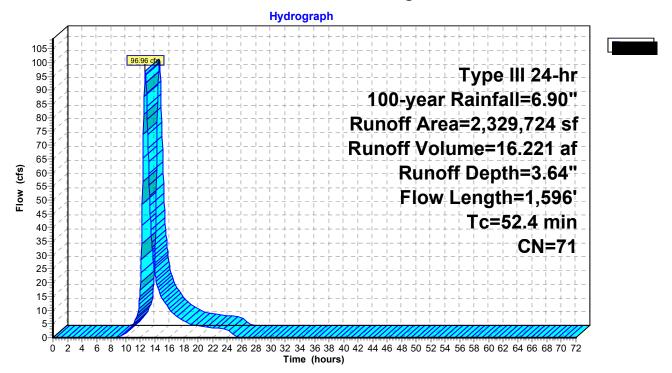


Summary for Subcatchment 11S: Drainage Area 11

Runoff 101.13 cfs @ 12.61 hrs, Volume= 15.362 af, Depth= 3.23" =

	Area (sf) CN Description						
324,786 30 Meadow, non-grazed, HSG A 74,662 58 Meadow, non-grazed, HSG B 1,249,959 71 Meadow, non-grazed, HSG C						HSG A	
						HSG B	
						HSG C	
		22,189	78	Meadow, no	on-grazed,	HSG D	
5,299 30 Woods, Good, HSG Á 38,194 55 Woods, Good, HSG B							
	4	71,495	70	Woods, Go	od, HSG C		
		72,253	77	Woods, Go	od, HSG D		
*		0	70	Gravel pit, I			
*		0	81	Gravel pit, I	HSG B		
*		0	88	Gravel pit, I			
*		0	92	Gravel pit, I	HSG D		
*	2	01,207	98	Water body	,		
*		19,973	96	Gravel road	1		
*		8,006	98	Structure			
	2,4	88,023	67	Weighted A	verage		
	2,2	78,810		91.59% Pei	rvious Area		
	2	09,213		8.41% Impe	ervious Are	а	
	Тс	Length	Slope		Capacity	Description	
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	9.3	50	0.0400	0.09		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 3.20"	
	34.0	1,854	0.0330	0.91		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	43.3	1,904	Total				

Subcatchment 11S: Drainage Area 11

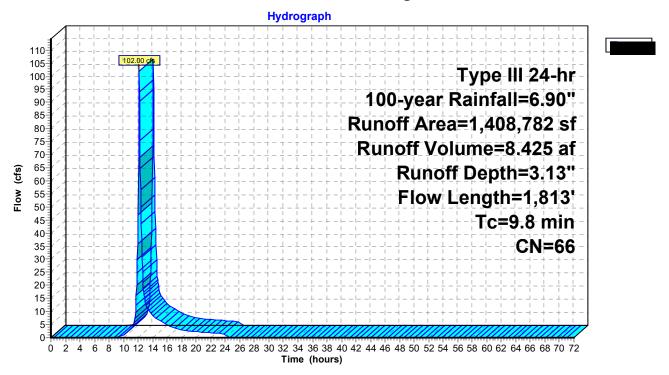


Summary for Subcatchment 12S: Drainage Area 12

Runoff = 96.96 cfs @ 12.73 hrs, Volume= 16.221 af, Depth= 3.64"

	A	rea (sf)	CN	Description						
		0	30	Meadow, no	eadow, non-grazed, HSG A					
		9,439	58	Meadow, non-grazed, HSG B						
	3	51,871	71	Meadow, non-grazed, HSG C						
		38,083	78	Meadow, non-grazed, HSG D						
		62,057		Woods, Go						
		183,438 55		Woods, Good, HSG B						
		30,812		Woods, Good, HSG C						
	2	24,776		Woods, Go						
*		0		Gravel pit, l						
*		0		Gravel pit, l						
	 * 0 88 Gravel pit, HSG C * 0 92 Gravel pit, HSG D * 229,248 98 Water body 									
*		0		Gravel road	ł					
*		0		Structure						
		29,724		Weighted A						
		00,476		90.16% Pei						
	2	29,248	9	9.84% Impe	ervious Are	а				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)		(cfs)	'				
	14.2	50	0.0140	0.06	· · ·	Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	7.5	626	0.0780	1.40		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	30.7	920	0.0100	0.50		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	52.4	1,596	Total							

Subcatchment 12S: Drainage Area 12

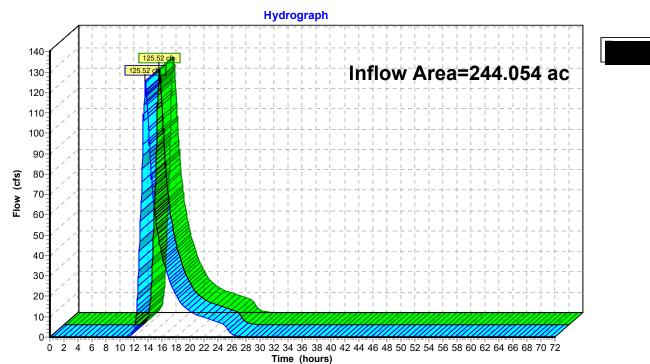


Summary for Subcatchment 13S: Drainage Area 13

Runoff 102.00 cfs @ 12.15 hrs, Volume= 8.425 af, Depth= 3.13" =

	A	rea (sf)	CN	Description		
	1	37,390	30	Meadow, no	on-grazed,	HSG A
		0	58 I	Meadow, no	on-grazed,	HSG B
		0	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
		0	30	Noods, Go	od, HSG A	
		0	55	Noods, Go	od, HSG B	
		0	70	Noods, Go	od, HSG C	
		0		Noods, Go		
*	1,2	66,167		Gravel pit, l		
*		4,469		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		756		Nater body		
*		0		Gravel roac	1	
*		0	98	Structure		
		08,782		Neighted A		
	1,4	08,026		99.95% Pei		
		756	(0.05% Impe	ervious Are	а
	_					
	Tc	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	
	0.7	50	0.0200	1.20		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.20"
	9.1	1,763	0.0403	3.23		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	9.8	1,813	Total			

Subcatchment 13S: Drainage Area 13

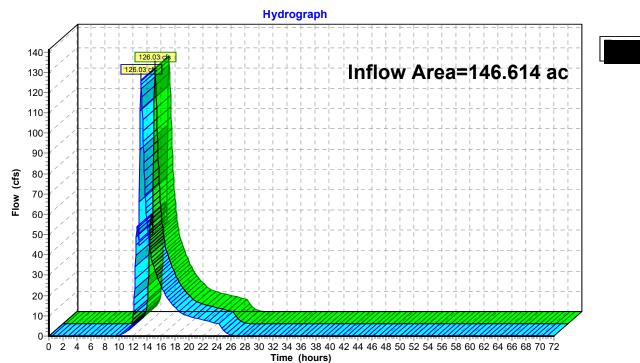


Summary for Reach DP-1: Off-Site West

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	244.054 ac,	8.71% Impervious, Inflow	Depth = 1.63"	for 100-year event
Inflow	=	125.52 cfs @	13.60 hrs, Volume=	33.178 af	
Outflow	=	125.52 cfs @	13.60 hrs, Volume=	33.178 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

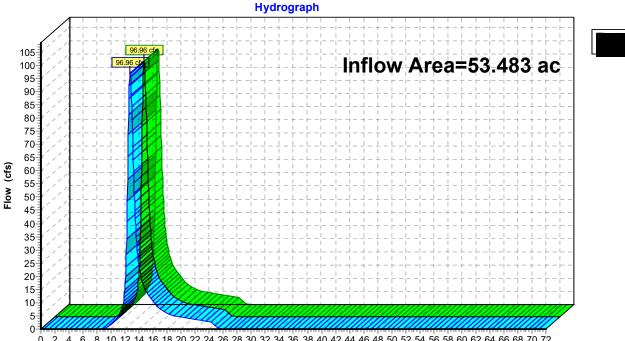

Reach DP-1: Off-Site West

Summary for Reach DP-2: Off-Site South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	146.614 ac, 19.79% Impervious, Inflow Depth = 2.10" for 100-year event	t
Inflow	=	126.03 cfs @ 13.12 hrs, Volume= 25.599 af	
Outflow	=	126.03 cfs @ 13.12 hrs, Volume= 25.599 af, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach DP-2: Off-Site South

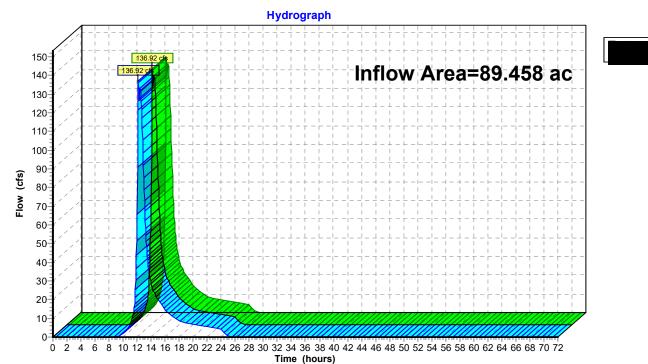
Summary for Reach DP-3: Off-Site East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	53.483 ac,	9.84% Impervious, Inflow	Depth = 3.64"	for 100-year event
Inflow	=	96.96 cfs @	12.73 hrs, Volume=	16.221 af	
Outflow	=	96.96 cfs @	12.73 hrs, Volume=	16.221 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-3: Off-Site East


0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Reach DP-4: Off-Site Southeast

[40] Hint: Not Described (Outflow=Inflow)

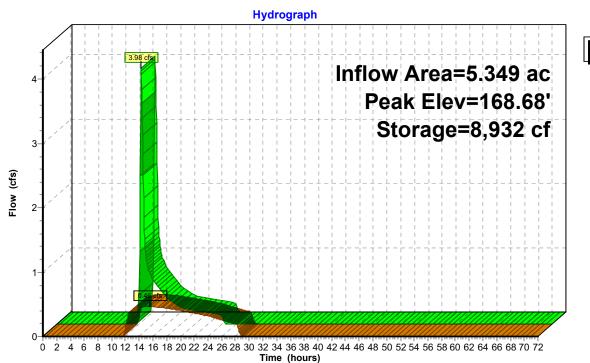
Inflow Are	a =	89.458 ac,	5.39% Impervious, Inflow	Depth = 3.19"	for 100-year event
Inflow	=	136.92 cfs @	12.17 hrs, Volume=	23.787 af	
Outflow	=	136.92 cfs @	12.17 hrs, Volume=	23.787 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-4: Off-Site Southeast

Summary for Pond 2P: Existing Depression

Inflow Area =	5.349 ac,	0.00% Impervious, Inflow De	epth = 1.11" for 100-year event
Inflow =	3.98 cfs @	12.22 hrs, Volume=	0.495 af
Outflow =	0.46 cfs @	15.61 hrs, Volume=	0.495 af, Atten= 88%, Lag= 203.6 min
Discarded =	0.46 cfs @	15.61 hrs, Volume=	0.495 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 168.68' @ 15.61 hrs Surf.Area= 19,586 sf Storage= 8,932 cf

Plug-Flow detention time= 252.4 min calculated for 0.494 af (100% of inflow) Center-of-Mass det. time= 252.4 min (1,163.2 - 910.8)

Volume	Invert	Ava	il.Storage	Storage Description	on		
#1	168.00'		58,289 cf	Custom Stage Da	ata (Irregular) Listed	below (Recalc)	
Elevation (feet)	Su	ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
168.00 170.00		7,570 58,771	407.0 1,048.0	0 58,289	0 58,289	7,570 81,803	
	Routing Discarded			et Devices 0 in/hr Exfiltratior	over Surface area		

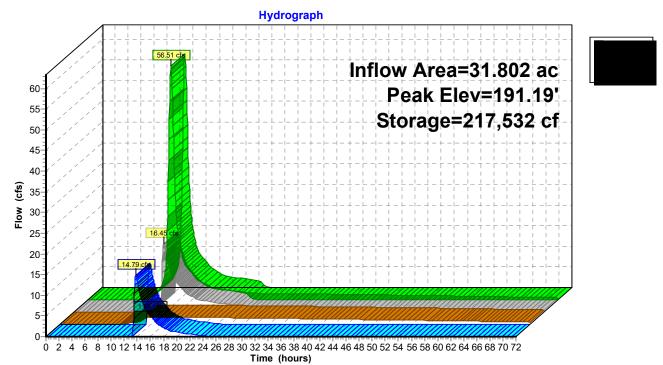
Discarded OutFlow Max=0.46 cfs @ 15.61 hrs HW=168.68' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.46 cfs)

Pond 2P: Existing Depression

Summary for Pond 3P: Existing Depression

Inflow Area =	31.802 ac,	3.69% Impervious, Inflow D	epth = 3.54" for 100-year event
Inflow =	56.51 cfs @	12.72 hrs, Volume=	9.369 af
Outflow =	16.45 cfs @	13.78 hrs, Volume=	8.989 af, Atten= 71%, Lag= 63.8 min
Discarded =	1.66 cfs @	13.78 hrs, Volume=	6.050 af
Primary =	14.79 cfs @	13.78 hrs, Volume=	2.939 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 191.19' @ 13.78 hrs Surf.Area= 70,166 sf Storage= 217,532 cf


Plug-Flow detention time= 954.2 min calculated for 8.989 af (96% of inflow) Center-of-Mass det. time= 931.5 min (1,805.2 - 873.6)

Volume	Inver	t Avail	.Storage	Storage Descripti	on			
#1	186.00	' 27	77,396 cf	Custom Stage D	Custom Stage Data (Irregular)Listed below (Recalc)			
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>		
186.0)0	11,737	422.0	0	0	11,737		
188.0	00	36,683	753.0	46,113	46,113	42,709		
190.0	00	58,742	1,001.0	94,563	140,677	77,369		
192.0	00	78,452	1,254.0	136,720	277,396	122,825		
Device	Routing	Inv	vert Outl	et Devices				
#1	Discarded	186	.00' 1.02	0 in/hr Exfiltration	n over Surface ar	ea		
#2	Primary	191	.00' 64.0	64.0' long x 16.0' breadth Broad-Crested Rectangular Weir				
-			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60		
Coe				f. (English) 2.68 2	.70 2.70 2.64 2.	63 2.64 2.64 2.63		
Discarded OutFlow Max=1.66 cfs @ 13.78 hrs HW=191.19' (Free Discharge)								

1=Exfiltration (Exfiltration Controls 1.66 cfs)

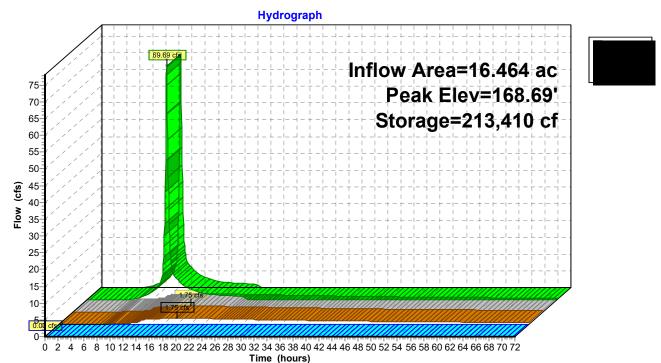
Primary OutFlow Max=14.63 cfs @ 13.78 hrs HW=191.19' (Free Discharge) ☐ 2=Broad-Crested Rectangular Weir (Weir Controls 14.63 cfs @ 1.18 fps)

Pond 3P: Existing Depression

Summary for Pond 4P: Existing Depression

Inflow Area =	16.464 ac,	0.65% Impervious, In	flow Depth = 4.71" for 100-year event
Inflow =	69.69 cfs @	12.19 hrs, Volume=	6.465 af
Outflow =	1.75 cfs @	18.09 hrs, Volume=	5.602 af, Atten= 97%, Lag= 354.1 min
Discarded =	1.75 cfs @	18.09 hrs, Volume=	5.602 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 168.69' @ 18.09 hrs Surf.Area= 74,143 sf Storage= 213,410 cf


Plug-Flow detention time= 1,361.5 min calculated for 5.602 af (87% of inflow) Center-of-Mass det. time= 1,302.0 min (2,115.4 - 813.4)

Volume	Invert	Avail.Ste	orage	Storage Description	on		
#1	162.00'	1,773,2	203 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)	
Elevatior (feet		rf.Area I (sq-ft)	[⊃] erim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
162.00)	8,040	387.0	0	0	8,040	
164.00) :	20,064	890.0	27,203	27,203	59,171	
166.00) :	31,393	894.0	51,036	78,239	61,043	
168.00) ÷	59,552 1	,582.0	89,455	167,695	196,625	
170.00) 10	06,611 3	,162.0	163,895	331,590	793,118	
172.00) 14	42,449 3	,012.0	248,196	579,786	867,073	
174.00	D 18	82,259 2	,708.0	323,891	903,678	1,005,567	
176.00) 22	22,778 3	,083.0	404,360	1,308,037	1,178,477	
178.00) 24	42,528 3	,031.0	465,166	1,773,203	1,204,505	
#1	Routing Discarded Primary	Invert 162.00' 177.00'	1.02 23.0 Hea	et Devices 0 in/hr Exfiltration ' long x 99.0' brea d (feet) 0.20 0.40 f. (English) 2.68 2	adth Broad-Crest 0.60 0.80 1.00 1	ed Rectangular We	ir

Discarded OutFlow Max=1.75 cfs @ 18.09 hrs HW=168.69' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.75 cfs)

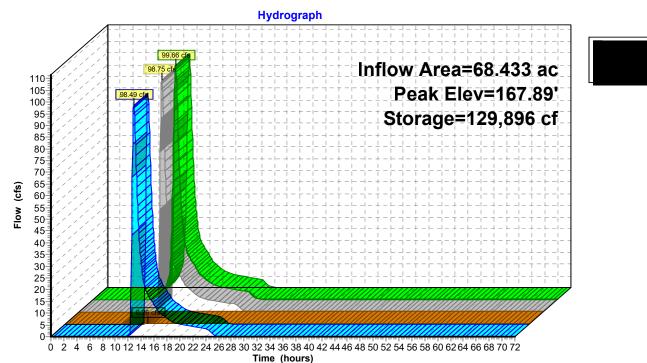
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=162.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 4P: Existing Depression

Summary for Pond 5P: Existing Depression

Inflow Area =	68.433 ac, 22.71% Impervious, Inflow I	Depth = 3.21" for 100-year event
Inflow =	99.66 cfs @ 12.80 hrs, Volume=	18.304 af
Outflow =	98.75 cfs @ 12.86 hrs, Volume=	16.711 af, Atten= 1%, Lag= 3.4 min
Discarded =	0.26 cfs @ 12.86 hrs, Volume=	1.099 af
Primary =	98.49 cfs @ 12.86 hrs, Volume=	15.612 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.89' @ 12.86 hrs Surf.Area= 41,617 sf Storage= 129,896 cf


Plug-Flow detention time= 169.8 min calculated for 16.699 af (91% of inflow) Center-of-Mass det. time= 128.2 min (1,014.2 - 886.0)

Volume	Inver	t Avail.	Storage	Storage Description	on		
#1	162.00)' 13	4,374 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
162.0	0	1,686	164.0	0	0	1,686	
164.0	0	17,454	653.0	16,376	16,376	33,489	
166.0	0	29,548	840.0	46,474	62,851	55,756	
168.0	0	42,358	938.0	71,523	134,374	69,736	
Device Routing Invert		ert Outl	Outlet Devices				
#1	Discarded	viscarded 162.00' 0.270 in/hr Exfiltration over Surface area					
#2 Primary 167.25' 71.0' long x 38.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 Coef. (English) 2.68 2.70 2.64 2.63 2.64 2.63							
Discarded OutFlow Max=0.26 cfs @ 12.86 hrs HW=167.89' (Free Discharge)							

1=Exfiltration (Exfiltration Controls 0.26 cfs)

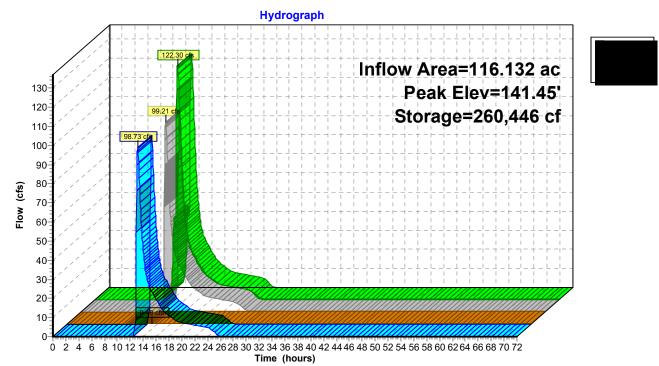
Primary OutFlow Max=98.33 cfs @ 12.86 hrs HW=167.89' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 98.33 cfs @ 2.15 fps)

Pond 5P: Existing Depression

Summary for Pond 6P: Existing Wetland

Inflow Area =	116.132 ac, 2	2.20% Impervious, I	nflow Depth = 2.35" for 100-year event
Inflow =	122.30 cfs @	12.82 hrs, Volume=	22.712 af
Outflow =	99.21 cfs @	13.16 hrs, Volume=	19.493 af, Atten= 19%, Lag= 20.2 min
Discarded =	0.48 cfs @	13.16 hrs, Volume=	2.093 af
Primary =	98.73 cfs @	13.16 hrs, Volume=	17.400 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 141.45' @ 13.16 hrs Surf.Area= 121,139 sf Storage= 260,446 cf


Plug-Flow detention time= 273.7 min calculated for 19.479 af (86% of inflow) Center-of-Mass det. time= 212.3 min (1,119.0 - 906.8)

Volume	Invert	Avail.Sto	rage	Storage Description	on	
#1	138.00'	330,4	71 cf	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet)			erim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
138.00	2	3,460	686.0	0	0	23,460
140.00	9	1,023 1,8	816.0	107,129	107,129	248,460
142.00	13	3,681 2,2	277.0	223,342	330,471	398,668
-	Routing	Invert	-	et Devices		
	Discarded	138.00'	-	0 in/hr Exfiltratior		
#2 I	Primary	141.00'		•		sted Rectangular Weir
				d (feet) 0.20 0.40		
			Coe	f. (English) 2.68 2	.70 2.70 2.64 2.	63 2.64 2.64 2.63
						,

Discarded OutFlow Max=0.48 cfs @ 13.16 hrs HW=141.45' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.48 cfs)

Primary OutFlow Max=98.44 cfs @ 13.16 hrs HW=141.45' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 98.44 cfs @ 1.81 fps)

Pond 6P: Existing Wetland

Summary for Pond 7P: Existing Depression

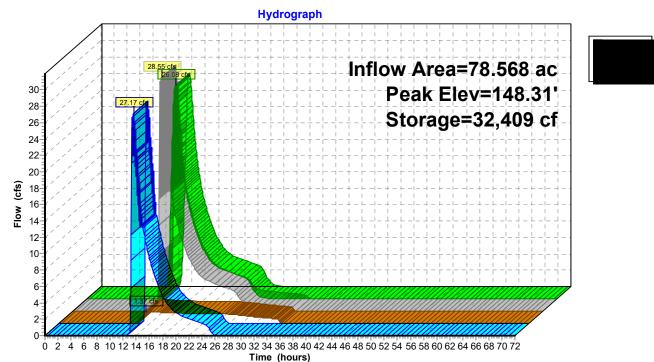
[93] Warning: Storage range exceeded by 0.31'

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=13)

Inflow Area =	78.568 ac, 13.2	25% Impervious, Inflow D	epth = 1.27" for 100-year event
Inflow =	26.08 cfs @ 13	3.56 hrs, Volume=	8.328 af
Outflow =	28.55 cfs @ 13	3.60 hrs, Volume=	8.328 af, Atten= 0%, Lag= 2.2 min
Discarded =	1.37 cfs @ 13	3.30 hrs, Volume=	1.894 af
Primary =	27.17 cfs @ 13	3.60 hrs, Volume=	6.434 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 148.31' @ 13.60 hrs Surf.Area= 24,633 sf Storage= 32,409 cf


Plug-Flow detention time= 70.2 min calculated for 8.328 af (100% of inflow) Center-of-Mass det. time= 70.2 min (1,053.8 - 983.6)

Volume	Inve	ert Avail.	.Storage	age Storage Description							
#1	146.0	0' 3	2,409 cf	Custom Stage Data (Irregular)Listed below (Recalc)							
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>					
146.0 148.0		9,050 24,633	771.0 1,236.0	0 32,409	0 32,409	9,050 83,343					
Device	Routing	Inv	ert Outle	et Devices							
#1	Primary 147.5		Hea	14.0' long x 90.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63							
#2	Discarde	d 146.	00' 2.41	0 in/hr Exfiltration	n over Surface are	ea					

Discarded OutFlow Max=1.37 cfs @ 13.30 hrs HW=148.28' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.37 cfs)

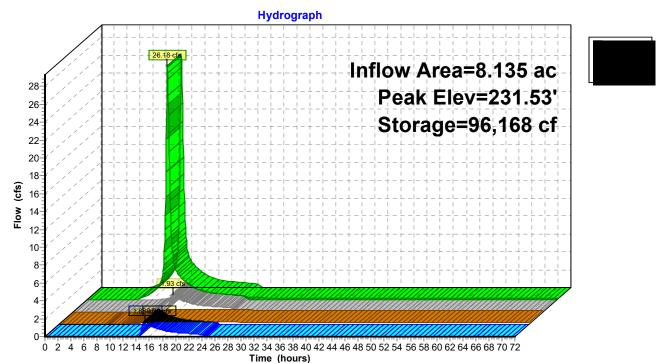
Primary OutFlow Max=27.15 cfs @ 13.60 hrs HW=148.31' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 27.15 cfs @ 2.38 fps)

Pond 7P: Existing Depression

Summary for Pond 8P: Existing Wetland

Inflow Area =	8.135 ac, 26.48% Impervious, Inflow	Depth = 4.38" for 100-year event
Inflow =	26.18 cfs @ 12.32 hrs, Volume=	2.972 af
Outflow =	1.93 cfs @ 15.25 hrs, Volume=	1.634 af, Atten= 93%, Lag= 175.7 min
Discarded =	0.25 cfs @ 15.25 hrs, Volume=	1.095 af
Primary =	1.68 cfs @ 15.25 hrs, Volume=	0.539 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 231.53' @ 15.25 hrs Surf.Area= 64,285 sf Storage= 96,168 cf


Plug-Flow detention time= 1,240.6 min calculated for 1.634 af (55% of inflow) Center-of-Mass det. time= 1,130.5 min (1,960.1 - 829.7)

Volume	Invert	Avail.St	orage	Storage Description					
#1	228.00'	130,0)34 cf	Custom Stage Data (Irregular)Listed below (Recalc)					
Elevatio (feet		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
228.0	-	5,806	459.0	0	0	5,806			
230.0	0	25,974	862.0	29,374	29,374	48,191			
232.0	0	79,559 1	,189.0	100,661	130,034	101,601			
Device Routing Invert Outlet Devices #1 Discarded 228.00' 0.170 in/hr Exfiltration over Surface area									
#2	Primary	231.50	Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	ested Rectangular Weir 1.20 1.40 1.60 63 2.64 2.64 2.63			

Discarded OutFlow Max=0.25 cfs @ 15.25 hrs HW=231.53' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.25 cfs)

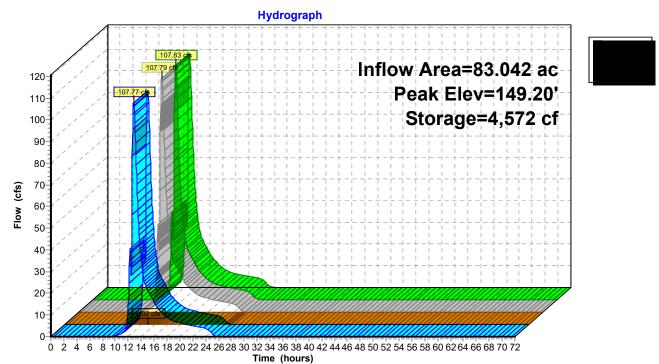
Primary OutFlow Max=1.51 cfs @ 15.25 hrs HW=231.53' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 1.51 cfs @ 0.45 fps)

Pond 8P: Existing Wetland

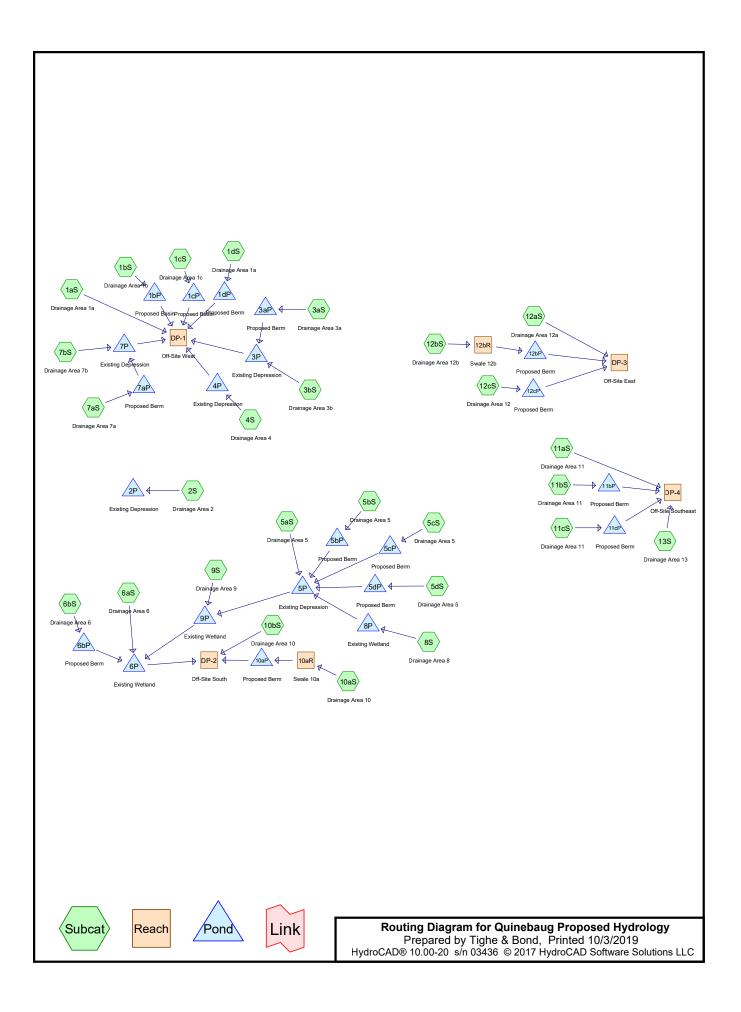
Summary for Pond 9P: Existing Wetland

Inflow Area =	83.042 ac, 24.98% Impervious, Inflow Depth = 2.84" for 100-year event	
Inflow =	107.83 cfs @ 12.83 hrs, Volume= 19.665 af	
Outflow =	107.79 cfs @ 12.84 hrs, Volume= 19.665 af, Atten= 0%, Lag= 0.7 mir	n
Discarded =	0.02 cfs @ 12.84 hrs, Volume= 0.014 af	
Primary =	107.77 cfs @ 12.84 hrs, Volume= 19.651 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 149.20' @ 12.84 hrs Surf.Area= 5,767 sf Storage= 4,572 cf


Plug-Flow detention time= 0.8 min calculated for 19.652 af (100% of inflow) Center-of-Mass det. time= 0.8 min (901.5 - 900.7)

Volume	Inver	t Avail.	Storage	Storage Descripti	on		
#1	148.00)' 834	4,530 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc)	
		Gurf.Area (sq-ft) 2,138 9,156 135,719 178,250	Perim. (feet) 180.0 387.0 2,199.0 2,327.0	Inc.Store (cubic-feet) 0 10,479 120,084 313,004	Cum.Store (cubic-feet) 0 10,479 130,563 443,567	Wet.Area (sq-ft) 2,138 11,495 384,391 430,714	
156.0	0	213,235	2,588.0	390,963	834,530	532,915	
Device	Routing	Inve	ert Outle	et Devices			
#2 Primary 148.00' 3 H				d (feet) 0.20 0.40	adth Broad-Cres 0.60 0.80 1.00	ted Rectangular Weir	
Discarded OutFlow Max=0.02 cfs @ 12.84 hrs HW=149.20' (Free Discharge)							


Primary OutFlow Max=107 66 cfs @ 12 84 brs HW=149 20' (Free Dis

Primary OutFlow Max=107.66 cfs @ 12.84 hrs HW=149.20' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 107.66 cfs @ 2.89 fps)

Pond 9P: Existing Wetland

Long-Term Proposed Conditions Hydrology

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	
(acres)		(subcatchment-numbers)
6.091	98	Basin (1bS, 1cS, 1dS, 5bS, 5cS, 5dS, 6bS, 10aS, 12bS, 12cS)
0.274	98	Equipment pad (1aS, 1dS, 3aS, 5aS, 5dS, 6bS, 7bS, 11aS, 12bS)
37.634	70	Gravel pit, HSG A (1aS, 2S, 3bS, 4S, 5aS, 7aS, 7bS, 13S)
15.848	81	Gravel pit, HSG B (3bS, 4S, 7aS, 7bS, 13S)
3.095	88	Gravel pit, HSG C (4S)
8.951	96	Gravel road (1aS, 1cS, 1dS, 2S, 3aS, 5aS, 5dS, 6aS, 6bS, 7aS, 7bS, 8S, 9S, 10aS, 10bS, 11aS, 11bS, 11cS, 12aS, 12bS, 12cS)
64.972	30	Meadow, non-grazed, HSG A (1aS, 1bS, 2S, 5aS, 6aS, 6bS, 7aS, 7bS, 9S, 10bS, 11aS, 11bS, 11cS, 12aS, 13S)
28.106	58	Meadow, non-grazed, HSG B (1aS, 1bS, 2S, 3bS, 5aS, 5bS, 5cS, 6bS, 7bS, 9S, 10aS, 10bS, 11aS, 12aS)
133.456	71	Meadow, non-grazed, HSG C (1aS, 1cS, 1dS, 3aS, 3bS, 5aS, 5bS, 5cS, 5dS, 8S, 9S, 10aS, 10bS, 11aS, 11bS, 11cS, 12aS, 12bS, 12cS)
8.959	78	Meadow, non-grazed, HSG D (5aS, 5cS, 8S, 10bS, 11aS, 12aS)
2.562	98	Panels (1aS, 1bS, 1cS, 1dS, 2S, 3aS, 5aS, 5bS, 5cS, 5dS, 6bS, 7aS, 7bS, 9S, 10aS, 11bS, 11cS, 12aS, 12bS)
1.154	98	Paved (1aS, 1cS, 1dS)
0.184	98	Structure (11aS)
60.186	98	Water body (1aS, 1cS, 3bS, 4S, 5aS, 5cS, 6aS, 7bS, 8S, 9S, 10bS, 11aS, 12aS, 13S)
56.762	30	Woods, Good, HSG A (1aS, 2S, 3bS, 6aS, 7bS, 9S, 10bS, 11aS, 12aS)
55.096	55	Woods, Good, HSG B (1aS, 3bS, 4S, 5aS, 5cS, 6aS, 7bS, 8S, 9S, 10aS, 10bS, 11aS, 12aS)
41.631	70	Woods, Good, HSG C (1aS, 1cS, 1dS, 3bS, 4S, 5aS, 5cS, 8S, 9S, 10aS, 10bS, 11aS, 12aS)
8.287	77	Woods, Good, HSG D (1aS, 3bS, 4S, 5aS, 5cS, 8S, 10bS, 11aS, 12aS)
533.249	64	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
159.369	HSG A	1aS, 1bS, 2S, 3bS, 4S, 5aS, 6aS, 6bS, 7aS, 7bS, 9S, 10bS, 11aS, 11bS, 11cS, 12aS, 13S
99.050	HSG B	1aS, 1bS, 2S, 3bS, 4S, 5aS, 5bS, 5cS, 6aS, 6bS, 7aS, 7bS, 8S, 9S, 10aS, 10bS, 11aS, 12aS, 13S
178.182	HSG C	1aS, 1cS, 1dS, 3aS, 3bS, 4S, 5aS, 5bS, 5cS, 5dS, 8S, 9S, 10aS, 10bS, 11aS, 11bS, 11cS, 12aS, 12bS, 12cS
17.246	HSG D	1aS, 3bS, 4S, 5aS, 5cS, 8S, 10bS, 11aS, 12aS
79.402	Other	1aS, 1bS, 1cS, 1dS, 2S, 3aS, 3bS, 4S, 5aS, 5bS, 5cS, 5dS, 6aS, 6bS, 7aS, 7bS, 8S, 9S, 10aS, 10bS, 11aS, 11bS, 11cS, 12aS, 12bS, 12cS, 13S
533.249		TOTAL AREA

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 10/3/2019 Page 4

11cS. 12aS.

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	0.000	6.091	6.091	Basin	1bS, 1cS, 1dS, 5bS, 5cS, 5dS, 6bS, 10aS,
0.000	0.000	0.000	0.000	0.274	0.274	Equipment pad	12bS, 12cS 1aS, 1dS, 3aS, 5aS,
							5dS, 6bS, 7bS, 11aS, 12bS
37.634	15.848	3.095	0.000	0.000	56.577	Gravel pit	1aS, 2S, 3bS, 4S, 5aS, 7aS, 7bS, 13S
0.000	0.000	0.000	0.000	8.951	8.951	Gravel road	1aS, 1cS, 1dS, 2S, 3aS, 5aS, 5dS, 6aS,
04.070	00.400		0.050	0.000	005 400	Maadamaaaad	6bS, 7aS, 7bS, 8S, 9S, 10aS, 10bS, 11aS, 11bS, 11cS, 12aS, 12bS, 12cS
64.972	28.106	133.456	8.959	0.000	235.493	Meadow, non-grazed	1aS, 1bS, 1cS, 1dS, 2S, 3aS, 3bS, 5aS, 5bS, 5cS, 5dS, 6aS, 6bS, 7aS,
							7bS, 8S, 9S, 10aS, 10bS, 11aS, 11bS, 11cS, 12aS, 12bS, 12cS, 13S
0.000	0.000	0.000	0.000	2.562	2.562	Panels	1aS, 1bS, 1cS, 1dS, 2S, 3aS, 5aS, 5bS, 5cS, 5dS, 6bS, 7aS, 7bS, 9S, 10aS, 11bS,

Ground Covers (all nodes)

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.000	1.154	1.154	Paved	1aS, 1cS, 1dS
0.000	0.000	0.000	0.000	0.184	0.184	Structure	11aS
0.000	0.000	0.000	0.000	60.186	60.186	Water body	1aS, 1cS, 3bS, 4S, 5aS, 5cS, 6aS, 7bS, 8S, 9S, 10bS, 11aS, 12aS, 13S
56.762	55.096	41.631	8.287	0.000	161.776	Woods, Good	1aS, 1cS, 1dS, 2S, 3bS, 4S, 5aS, 5cS, 6aS, 7bS, 8S, 9S, 10aS, 10bS, 11aS, 12aS
159.369	99.050	178.182	17.246	79.402	533.249	TOTAL AREA	

Ground Covers (all nodes) (continued)

Quinebaug Proposed Hydrolog Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 H	Printed 10/3/2019
Runoff by SC	0.00-72.00 hrs, dt=0.05 hrs, 1441 points S TR-20 method, UH=SCS, Weighted-CN d+Trans method - Pond routing by Stor-Ind method
Subcatchment1aS: Drainage Area 1a	Runoff Area=3,964,196 sf 11.60% Impervious Runoff Depth=0.37" Flow Length=4,424' Tc=105.4 min CN=59 Runoff=7.10 cfs 2.837 af
Subcatchment1bS: Drainage Area 1b	Runoff Area=146,589 sf 28.06% Impervious Runoff Depth=0.11" Flow Length=342' Tc=9.9 min CN=49 Runoff=0.05 cfs 0.030 af
Subcatchment1cS: Drainage Area 1c	Runoff Area=408,420 sf 8.65% Impervious Runoff Depth=0.98" Flow Length=1,734' Tc=30.4 min CN=73 Runoff=5.66 cfs 0.768 af
Subcatchment1dS: Drainage Area 1a	Runoff Area=341,088 sf 7.37% Impervious Runoff Depth=1.04" Flow Length=4,424' Tc=105.4 min CN=74 Runoff=2.43 cfs 0.677 af
Subcatchment2S: Drainage Area 2	Runoff Area=233,007 sf 1.98% Impervious Runoff Depth=0.07" Flow Length=289' Tc=12.1 min CN=47 Runoff=0.05 cfs 0.033 af
Subcatchment3aS: Drainage Area 3a	Runoff Area=359,815 sf 3.27% Impervious Runoff Depth=0.98" Flow Length=794' Tc=19.3 min CN=73 Runoff=6.03 cfs 0.677 af
Subcatchment3bS: Drainage Area 3b	Runoff Area=1,022,537 sf 4.99% Impervious Runoff Depth=0.83" Flow Length=1,119' Tc=14.7 min CN=70 Runoff=15.24 cfs 1.620 af
Subcatchment4S: Drainage Area 4	Runoff Area=717,184 sf 0.65% Impervious Runoff Depth=1.47" Flow Length=974' Tc=13.9 min CN=81 Runoff=21.75 cfs 2.016 af
Subcatchment5aS: Drainage Area 5	Runoff Area=2,242,858 sf 25.20% Impervious Runoff Depth=0.93" Flow Length=2,517' Tc=49.6 min CN=72 Runoff=22.64 cfs 3.989 af
Subcatchment5bS: Drainage Area 5	Runoff Area=52,534 sf 64.34% Impervious Runoff Depth=1.68" Tc=6.0 min CN=84 Runoff=2.33 cfs 0.169 af
Subcatchment5cS: Drainage Area 5	Runoff Area=271,995 sf 13.40% Impervious Runoff Depth=0.93" Flow Length=1,346' Tc=29.3 min CN=72 Runoff=3.58 cfs 0.484 af
Subcatchment5dS: Drainage Area 5	Runoff Area=59,233 sf 44.82% Impervious Runoff Depth=1.76" Flow Length=157' Tc=9.1 min CN=85 Runoff=2.47 cfs 0.199 af
Subcatchment6aS: Drainage Area 6	Runoff Area=972,255 sf 22.55% Impervious Runoff Depth=0.07" Flow Length=1,544' Tc=44.6 min CN=47 Runoff=0.21 cfs 0.136 af
Subcatchment6bS: Drainage Area 6	Runoff Area=469,126 sf 17.08% Impervious Runoff Depth=0.09" Flow Length=549' Tc=19.6 min CN=48 Runoff=0.13 cfs 0.081 af
Subcatchment7aS: Drainage Area 7a	Runoff Area=264,166 sf 2.54% Impervious Runoff Depth=0.00" Flow Length=3,124' Tc=95.4 min CN=37 Runoff=0.00 cfs 0.000 af
Subcatchment7bS: Drainage Area 7b	Runoff Area=3,158,253 sf 14.64% Impervious Runoff Depth=0.09" Flow Length=3,232' Tc=99.9 min CN=48 Runoff=0.83 cfs 0.544 af

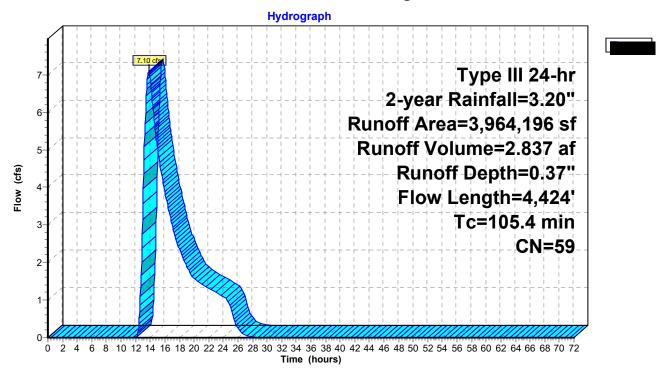
Quinebaug Proposed Hydrology Prepared by Tighe & Bond	Type III 24-hr 2-year Rainfall=3.20" Printed 10/3/2019
HydroCAD® 10.00-20 s/n 03436 © 2017 Hydr	roCAD Software Solutions LLC Page 7
Subcatchment8S: Drainage Area 8	Runoff Area=354,352 sf 26.48% Impervious Runoff Depth=1.34" Flow Length=883' Tc=23.6 min CN=79 Runoff=7.84 cfs 0.906 af
Subcatchment9S: Drainage Area 9	Runoff Area=636,379 sf 35.74% Impervious Runoff Depth=0.73" Flow Length=601' Tc=17.1 min CN=68 Runoff=7.63 cfs 0.892 af
Subcatchment10aS: Drainage Area 10	Runoff Area=255,546 sf 13.96% Impervious Runoff Depth=0.98" Flow Length=378' Tc=17.2 min CN=73 Runoff=4.49 cfs 0.480 af
	Runoff Area=1,072,278 sf 13.17% Impervious Runoff Depth=0.69" ow Length=1,752' Tc=40.2 min CN=67 Runoff=8.19 cfs 1.409 af
	Runoff Area=2,062,963 sf 10.23% Impervious Runoff Depth=0.78" w Length=1,904' Tc=38.3 min CN=69 Runoff=19.13 cfs 3.077 af
Subcatchment11bS: Drainage Area 11 Flo	Runoff Area=234,184 sf 1.97% Impervious Runoff Depth=0.48" ow Length=1,011' Tc=16.2 min CN=62 Runoff=1.50 cfs 0.215 af
Subcatchment11cS: Drainage Area 11	Runoff Area=190,846 sf 1.10% Impervious Runoff Depth=0.64" Flow Length=957' Tc=14.0 min CN=66 Runoff=2.03 cfs 0.235 af
	Runoff Area=1,702,429 sf 14.03% Impervious Runoff Depth=0.98" w Length=1,596' Tc=44.7 min CN=73 Runoff=19.51 cfs 3.201 af
Subcatchment12bS: Drainage Area 12b	Runoff Area=484,189 sf 7.70% Impervious Runoff Depth=1.04" Flow Length=902' Tc=14.5 min CN=74 Runoff=9.71 cfs 0.961 af
Subcatchment12cS: Drainage Area 12	Runoff Area=143,106 sf 8.38% Impervious Runoff Depth=1.09" Tc=6.0 min CN=75 Runoff=3.97 cfs 0.299 af
Subcatchment13S: Drainage Area 13 Flo	Runoff Area=1,408,782 sf 0.05% Impervious Runoff Depth=0.64" ow Length=1,813' Tc=9.8 min CN=66 Runoff=17.07 cfs 1.733 af
	Avg. Flow Depth=0.27' Max Vel=3.13 fps Inflow=4.49 cfs 0.480 af 36.0' S=0.0299 '/' Capacity=51.58 cfs Outflow=4.28 cfs 0.480 af
	Avg. Flow Depth=0.44' Max Vel=3.61 fps Inflow=9.71 cfs 0.961 af 82.0' S=0.0234 '/' Capacity=45.66 cfs Outflow=9.01 cfs 0.961 af
Reach DP-1: Off-Site West	Inflow=8.22 cfs 3.425 af Outflow=8.22 cfs 3.425 af
Reach DP-2: Off-Site South	Inflow=8.19 cfs 1.409 af Outflow=8.19 cfs 1.409 af
Reach DP-3: Off-Site East	Inflow=19.51 cfs 3.201 af Outflow=19.51 cfs 3.201 af
Reach DP-4: Off-Site Southeast	Inflow=26.63 cfs 4.810 af Outflow=26.63 cfs 4.810 af

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroC/	<i>Type III 24-hr 2-year Rainfa</i> Printed 10 AD Software Solutions LLC	
		<u></u>
Pond 1bP: Proposed Basin Discarded=0.05 cfs(Peak Elev=152.00' Storage=18 cf Inflow=0.05 cfs 0.030 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs	
	Peak Elev=227.14' Storage=10,637 cf Inflow=5.66 cfs 0.283 af Primary=3.31 cfs 0.485 af Outflow=3.38 cfs	
	Peak Elev=257.55' Storage=21,001 cf Inflow=2.43 cfs 0.438 af Primary=0.26 cfs 0.104 af Outflow=0.36 cfs	
Pond 2P: Existing Depression	Peak Elev=168.01' Storage=43 cf Inflow=0.05 cfs Outflow=0.05 cfs	
	Peak Elev=272.67' Storage=20,362 cf Inflow=6.03 cfs 0.677 af Primary=0.00 cfs 0.000 af Outflow=0.22 cfs	
	eak Elev=187.90' Storage=42,410 cf Inflow=15.24 cfs 1.620 af Primary=0.00 cfs 0.000 af Outflow=0.83 cfs	
	eak Elev=165.45' Storage=61,993 cf Inflow=21.75 cfs 2.015 af Primary=0.00 cfs 0.000 af Outflow=0.66 cfs	
Pond 5bP: Proposed Berm Discarded=0.19 cfs(Peak Elev=230.67' Storage=3,384 cf Inflow=2.33 cfs 0.169 af Primary=0.00 cfs 0.000 af Outflow=0.19 cfs	
	Peak Elev=209.52' Storage=20,270 cf Inflow=3.58 cfs 0.092 af Primary=0.00 cfs 0.000 af Outflow=0.02 cfs	
Pond 5dP: Proposed Berm Discarded=0.10 cfs(Peak Elev=284.36' Storage=5,256 cf Inflow=2.47 cfs 0.199 af Primary=0.00 cfs 0.000 af Outflow=0.10 cfs	
	ak Elev=167.32' Storage=107,171 cf Inflow=22.64 cfs 1.064 af Primary=3.79 cfs 1.343 af Outflow=4.02 cfs	
Pond 6bP: Proposed Berm Discarded=0.13 cfs(Peak Elev=164.00' Storage=46 cf Inflow=0.13 cfs 0.081 af Primary=0.00 cfs 0.000 af Outflow=0.13 cfs	
0	Peak Elev=139.81' Storage=91,037 cf Inflow=7.58 cfs 1.333 af Primary=0.00 cfs 0.000 af Outflow=0.33 cfs	
Pond 7aP: Proposed Berm Discarded=0.00 cfs(Peak Elev=166.00' Storage=0 cf Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs	
0 1	Peak Elev=146.28' Storage=2,821 cf Inflow=0.83 cfs 0.544 af Primary=0.00 cfs 0.000 af Outflow=0.60 cfs	
0	Peak Elev=230.19' Storage=34,670 cf Inflow=7.84 cfs 0.485 af Primary=0.00 cfs 0.000 af Outflow=0.12 cfs	
Pond 9P: Existing Wetland Discarded=0.01 cfs(Peak Elev=148.20' Storage=476 cf Inflow=7.63 cfs 0.008 af Primary=7.58 cfs 2.227 af Outflow=7.59 cfs	

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 Hydrod	<i>Type III 24-hr 2-year Rainfall=3.20"</i> Printed 10/3/2019 CAD Software Solutions LLC Page 9
Pond 10aP: Proposed Berm Discarded=0.28 cfs	Peak Elev=211.99' Storage=12,122 cf Inflow=4.28 cfs 0.480 af 0.480 af Primary=0.00 cfs 0.000 af Outflow=0.28 cfs 0.480 af
Pond 11bP: Proposed Berm Discarded=1.36 cfs	Peak Elev=220.02' Storage=488 cf Inflow=1.50 cfs 0.215 af 0.215 af Primary=0.00 cfs 0.000 af Outflow=1.36 cfs 0.215 af
Pond 11cP: Proposed Berm Discarded=0.55 cfs	Peak Elev=222.24' Storage=2,325 cf Inflow=2.03 cfs 0.235 af 0.235 af Primary=0.00 cfs 0.000 af Outflow=0.55 cfs 0.235 af
Pond 12bP: Proposed Berm Discarded=0.14 cfs	Peak Elev=252.57' Storage=35,755 cf Inflow=9.01 cfs 0.961 af 0.630 af Primary=0.00 cfs 0.000 af Outflow=0.14 cfs 0.630 af
Pond 12cP: Proposed Berm Discarded=0.05 cfs	Peak Elev=252.14' Storage=10,963 cf Inflow=3.97 cfs 0.299 af 0.208 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.208 af

Total Runoff Area = 533.249 ac Runoff Volume = 27.667 af Average Runoff Depth = 0.62" 86.79% Pervious = 462.798 ac 13.21% Impervious = 70.450 ac

Summary for Subcatchment 1aS: Drainage Area 1a

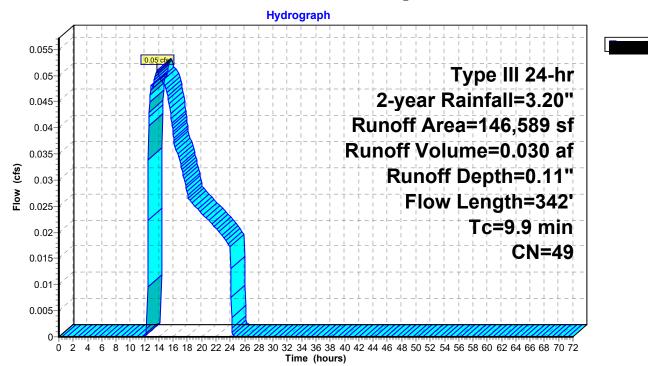

Runoff = 7.10 cfs @ 13.81 hrs, Volume= 2.837 af, Depth= 0.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	Area (sf)	CN	Description		
	482,442	30	Meadow, no	on-grazed,	HSG A
	538,022		Meadow, no		
	942,184	71	Meadow, no	on-grazed,	HSG C
	0	78	Meadow, no	on-grazed,	HSG D
	515,616		Woods, Go		
	704,263	55	Woods, Go	od, HSG B	
	225,155	70	Woods, Go	od, HSG C	
	10,840	77	Woods, Go	od, HSG D	
*	33,102	70	Gravel pit, I	HSG A	
*	0	81	Gravel pit, I	HSG B	
*	0	88	Gravel pit, I	HSG C	
*	0	92	Gravel pit, I	HSG D	
*	414,914	98	Water body	,	
*	52,839		Gravel road	1	
*	0		Structure		
*	1,438		Panels		
*	4,403		Equipment	pad	
*	38,978	98	Paved		
	3,964,196		Weighted A		
:	3,504,463		88.40% Pei		
	459,733		11.60% Imp	pervious Ar	ea
-	- Longth	Clane	Valacity	Consoitu	Description
(mi	C Length	Slope (ft/ft)		Capacity (cfs)	Description
				(05)	
9	.3 50	0.0400	0.09		Sheet Flow,
	0 050	0.0440	0.50		Woods: Light underbrush n= 0.400 P2= 3.20"
11	.3 356	0.0110	0.52		Shallow Concentrated Flow,
00	4 400	0 0000	0.04		Woodland Kv= 5.0 fps
23	.1 433	0.0020	0.31		Shallow Concentrated Flow,
4	2 222	0 0 0 0 0	0.07		Short Grass Pasture Kv= 7.0 fps
4	.3 222	0.0300	0.87		Shallow Concentrated Flow,
10	E 766	0 0 0 0 0 0	1 01		Woodland Kv= 5.0 fps
10	.5 766	0.0300) 1.21		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
46	.9 2,597	0.0340	0.92		Short Grass Pasture KV- 7.0 lps Shallow Concentrated Flow,
40	.9 2,097	0.0340	0.92		Woodland Kv= 5.0 fps
105	1 1 121	Total			

105.4 4,424 Total

Subcatchment 1aS: Drainage Area 1a

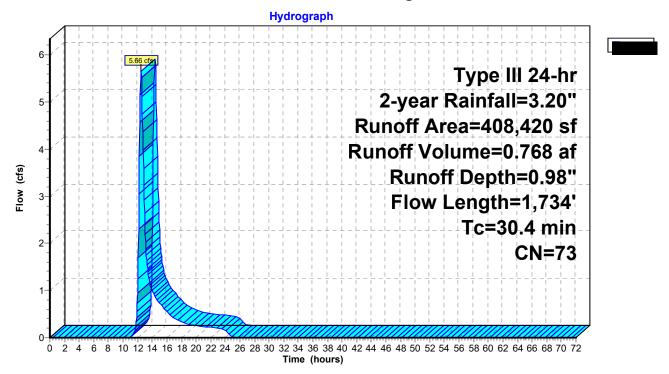

Summary for Subcatchment 1bS: Drainage Area 1b

Runoff = 0.05 cfs @ 13.72 hrs, Volume= 0.030 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	A	rea (sf)	CN [Description							
	1	03,427	30 I	Meadow, non-grazed, HSG A							
		2,036	58 I	Meadow, no	on-grazed,	HSG B					
*		7,140	98 F	Panels	•						
*		33,986	98 E	Basin							
	1	46,589	49 \	Veighted A	verage						
	1	05,463			rvious Area						
		41,126	2	28.06% Imp	pervious Ar	ea					
				-							
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	7.4	50	0.0100	0.11		Sheet Flow,					
						Grass: Short n= 0.150 P2= 3.20"					
	2.5	292	0.0762	1.93		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	9.9	342	Total								

Subcatchment 1bS: Drainage Area 1b

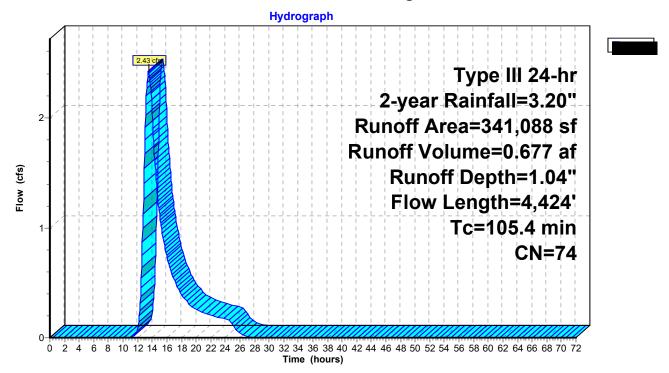

Summary for Subcatchment 1cS: Drainage Area 1c

Runoff = 5.66 cfs @ 12.47 hrs, Volume= 0.768 af, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	Area (sf)	CN	Description				
	0	30	Meadow, n	on-grazed,	HSG A		
	0			on-grazed,			
	351,878	71	Meadow, n	on-grazed,	HSG C		
	0	78	Meadow, n	on-grazed,	HSG D		
	0	30	Woods, Go	od, HSG A			
	0	55	Woods, Go	od, HSG B			
	18,313	70	Woods, Go	od, HSG C			
	0	77	Woods, Go	od, HSG D			
*	0		Gravel pit, l	HSG A			
*	0		Gravel pit, l				
*	0		Gravel pit, l				
*	0		Gravel pit, l				
*	2,416		Water body				
*	2,918		Gravel road	ł			
*	0		Structure				
*	5,460		Panels				
*	0		Equipment	pad			
*	10,197		Paved				
*	17,238		Basin				
	408,420		Weighted A				
	373,109			rvious Area			
	35,311		3.65% Impe	ervious Are	a		
Т	c Length	Slope	Velocity	Capacity	Description		
(min	•	(ft/ft)	(ft/sec)	(cfs)	Description		
 7.*		0.0800		(013)	Shoot Flow		
7.	1 50	0.0600	0.12		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.20"		
23.3	3 1,684	0.0297	1.21		Shallow Concentrated Flow,		
20.0	,004	0.0297	1.21		Short Grass Pasture Kv= 7.0 fps		
30.4	1,734	Total					
00	. ,,,,,,,	, otal					

Subcatchment 1cS: Drainage Area 1c

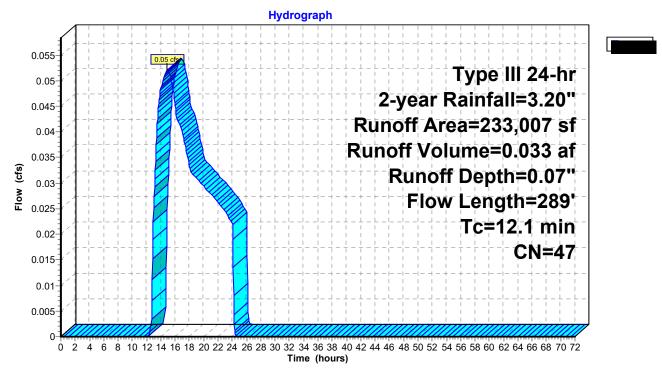

Summary for Subcatchment 1dS: Drainage Area 1a

Runoff = 2.43 cfs @ 13.49 hrs, Volume= 0.677 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	Ai	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0	58	Meadow, no	on-grazed,	HSG B
	2	69,007	71	Meadow, no	on-grazed,	HSG C
		0	78	Meadow, no	on-grazed,	HSG D
		0	30	Woods, Go	od, HSG A	
		0	55	Woods, Go	od, HSG B	
		34,713	70	Woods, Go	od, HSG C	
		0	77	Woods, Go	od, HSG D	
*		0	70	Gravel pit, I	ISG A	
*		0	81	Gravel pit, I	ISG B	
*		0	88	Gravel pit, I	ISG C	
*		0		Gravel pit, I	ISG D	
*		0	98	Water body		
*		12,239	96	Gravel road		
*		0	98	Structure		
*		7,140	98	Panels		
*		629		Equipment	pad	
*		1,074	98	Paved		
*		16,286	98	Basin		
	3	41,088	74	Weighted A	verage	
	3	15,959	9	92.63% Pei	vious Area	
		25,129		7.37% Impe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	
	9.3	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	11.3	356	0.0110	0.52		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	23.1	433	0.0020	0.31		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	4.3	222	0.0300	0.87		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	10.5	766	0.0300	1.21		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	46.9	2,597	0.0340	0.92		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	105.4	4,424	Total			

Subcatchment 1dS: Drainage Area 1a



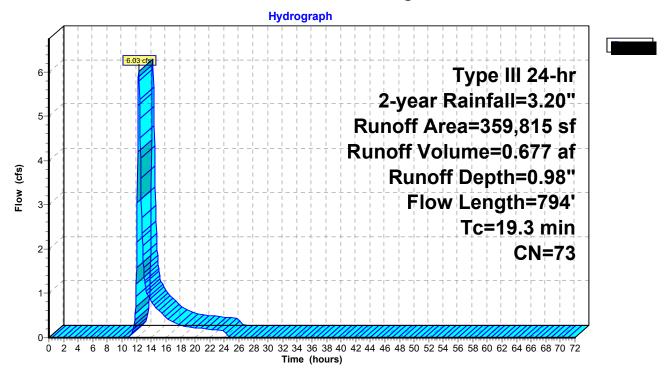
Summary for Subcatchment 2S: Drainage Area 2

Runoff = 0.05 cfs @ 14.89 hrs, Volume= 0.033 af, Depth= 0.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	A	rea (sf)	CN	Description			
	1	17,788	30	Meadow, n	on-grazed,	HSG A	
		29,605	58	Meadow, non-grazed, HSG B			
		0	71	Meadow, no	on-grazed,	HSG C	
		0	78	Meadow, no	on-grazed,	HSG D	
		16,114	30	Woods, Go	od, HSG A		
		0		Woods, Go			
		0		Woods, Go			
		0		Woods, Go			
*		58,620		Gravel pit, l			
*		0		Gravel pit, I			
*		0		Gravel pit, I			
*		0		Gravel pit, l			
*		0		Water body			
*		6,260		Gravel road	1		
т х		0		Structure			
<u>~</u>		4,620		Panels			
		33,007		Weighted A			
	2	28,387		98.02% Pe			
		4,620		1.98% Impe	ervious Area	a	
	Тс	Length	Slope	e Velocity	Capacity	Description	
((min)	(feet)	(ft/ft)		(cfs)	Decemption	
	6.8	50	0.0900			Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 3.20"	
	5.3	239	0.0230	0.76		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	12.1	289	Total				

Subcatchment 2S: Drainage Area 2

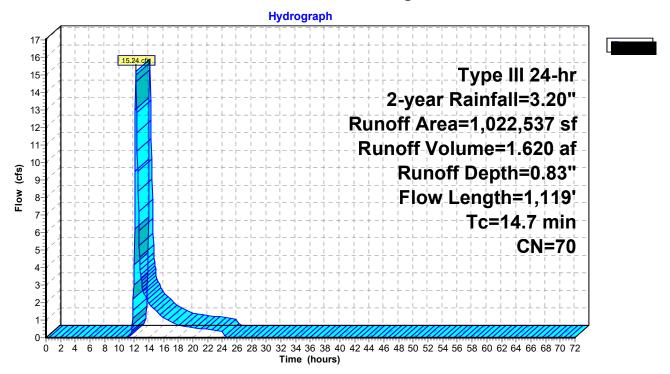

Summary for Subcatchment 3aS: Drainage Area 3a

Runoff = 6.03 cfs @ 12.29 hrs, Volume= 0.677 af, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	A	rea (sf)	CN	Description					
		0	30	Meadow, non-grazed, HSG A Meadow, non-grazed, HSG B					
		0	58						
	3	37,756	71	Meadow, non-grazed, HSG C					
		0		Meadow, n					
		0		Woods, Go					
		0		Woods, Go					
		0		Woods, Go					
		0		Woods, Go					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Water body					
*		10,301		Gravel road	1				
*		0		Structure					
*		10,500		Panels					
<u>*</u>		1,258		Equipment	•				
		59,815		Weighted A					
		48,057		96.73% Pe					
		11,758		3.27% Impe	ervious Are	a			
	Тс	Longth	Slope	Valaaity	Conosity	Description			
	(min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
			0.0100		(013)	Shoot Flow			
	7.4	50	0.0100	0.11		Sheet Flow, Grass: Short n= 0.150 P2= 3.20"			
	11.9	744	0.0222	1.04		Shallow Concentrated Flow,			
	11.9	/44	0.0222	1.04		Short Grass Pasture Kv= 7.0 fps			
	19.3	794	Total						
	19.5	194	TUIAI						

Subcatchment 3aS: Drainage Area 3a

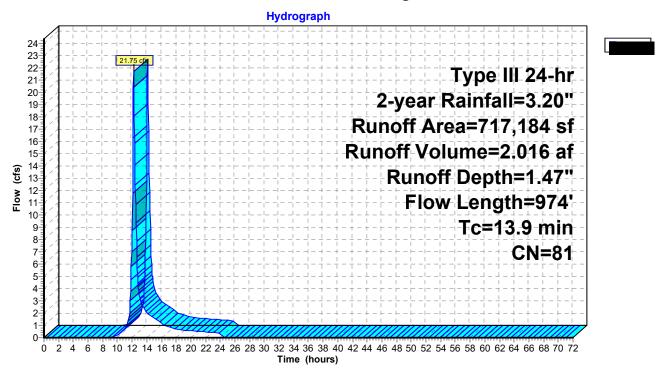

Summary for Subcatchment 3bS: Drainage Area 3b

Runoff = 15.24 cfs @ 12.23 hrs, Volume= 1.620 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	A	rea (sf)	CN	Description					
		0	30	Meadow, no	on-grazed,	HSG A			
		99,790	58	Meadow, non-grazed, HSG B Meadow, non-grazed, HSG C					
	5	32,219							
		0		Meadow, no					
		1,798		Woods, Go					
		07,172		Woods, Go					
		59,721		Woods, Go					
		14,571		Woods, Go					
*		59,918		Gravel pit, I					
*		96,280		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		51,068		Water body					
*		0		Gravel road					
*		0		Structure					
*		0		Panels					
<u>×</u>		0		Equipment					
		22,537		Weighted A					
		71,469		95.01% Per					
		51,068		4.99% Impe	ervious Area	а			
	То	Longth	Slope		Conocity	Description			
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
		, ,			(015)				
	5.6	50	0.0200	0.15		Sheet Flow, Grass: Short n= 0.150 P2= 3.20"			
	9.1	1 060	0.0776	6 1.95					
	9.1	1,069	0.0776	0 1.90		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			
_	147	1 1 1 0	Total			0101 01233 1 23 CULC 1 (V - 1.0 1p3			
	14.7	1,119	Total						

Subcatchment 3bS: Drainage Area 3b

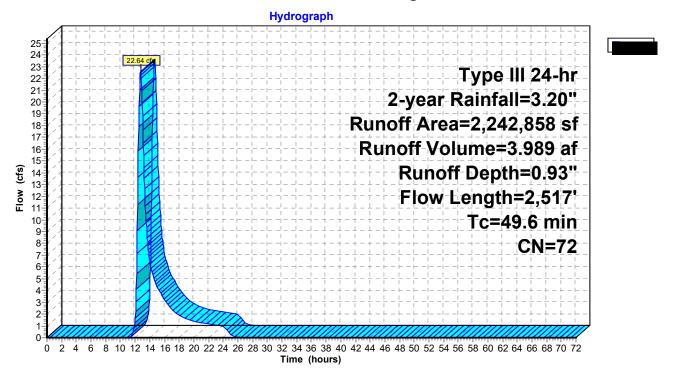

Summary for Subcatchment 4S: Drainage Area 4

Runoff = 21.75 cfs @ 12.20 hrs, Volume= 2.016 af, Depth= 1.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	Ai	rea (sf)	CN I	Description					
		0	30 I	Meadow, no	on-grazed,	HSG A			
		0		Meadow, no					
		0		Meadow, non-grazed, HSG C					
		0		Meadow, non-grazed, HSG D					
		0		Noods, Go					
		18,016		Noods, Go					
		19,532		Noods, Go					
		5,054		Noods, Go					
*		34,397	70 (Gravel pit, I	HSG A				
*		00,725	81 (Gravel pit, I	HSG B				
*	1	34,831	88 (Gravel pit, I	HSG C				
*		0	92 (Gravel pit, I	HSG D				
*		4,629	98	Nater body					
*		0	96 (Gravel road	l				
*		0	98 3	Structure					
	7	17,184	81 \	Neighted A	verage				
		12,555	ę	99.35% Pei	vious Area	l de la constante d			
		4,629	().65% Impe	ervious Are	а			
	Тс	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.7	50	0.0200	1.20		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.20"			
	3.9	384	0.0102	1.63		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.1	45	0.2700	8.37		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	8.8	269	0.0010	0.51		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.4	226	0.3100	8.96		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	13.9	974	Total						

Subcatchment 4S: Drainage Area 4

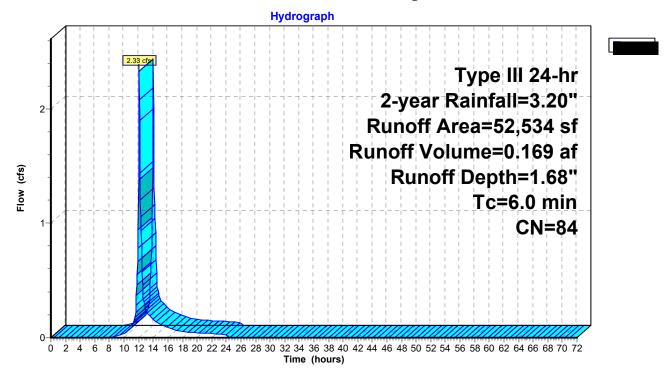

Summary for Subcatchment 5aS: Drainage Area 5

Runoff = 22.64 cfs @ 12.74 hrs, Volume= 3.989 af, Depth= 0.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.20"

	Area (sf)		CN Description				
		84,391	30 Meadow, non-grazed, H			HSG A	
	1	17,637	58 Meadow, non-grazed, H			HSG B	
	2	239,197 7 ⁷ 91,068 78		Meadow, non-grazed, HSG C			
		91,068		Meadow, non-grazed, HSG D			
		0		Woods, Good, HSG A			
		597,427		Woods, Good, HSG B			
		404,182		Woods, Good, HSG C			
		103,749		Woods, Good, HSG D			
*		15,001		0 Gravel pit, HSG A			
*					HSG B		
*		0					
*	_	0					
* 562,885 98 Water body							
*	25,012 96 Gravel road			-	1		
*	* 0 98 Structure						
* 1,680 98 Panels							
* 629 98 Equipment pad							
		42,858					
		77,664			rvious Area		
	5	565,194		25.20% Impervious Area			
	Тс	Length	Slope	Velocitv	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•	
	7.4	50	0.0100	0.11		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.20"	
	3.4	238	0.0550	1.17		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	26.6	1,240	0.0242	0.78		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	7.6	509	0.0500	1.12		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	4.6	480	0.1200	1.73		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	49.6	2,517	Total				

Subcatchment 5aS: Drainage Area 5

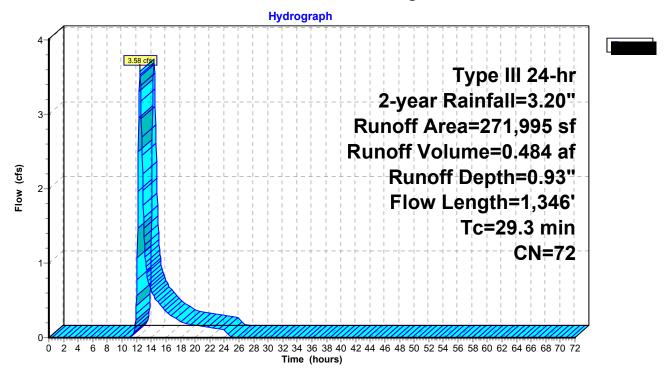


Summary for Subcatchment 5bS: Drainage Area 5

Runoff = 2.33 cfs @ 12.09 hrs, Volume= 0.169 af, Depth= 1.68"

Area (s	f) CN	Description
	0 30	Meadow, non-grazed, HSG A
18,46	5 58	Meadow, non-grazed, HSG B
26	67 71	Meadow, non-grazed, HSG C
	0 78	Meadow, non-grazed, HSG D
	0 30	Woods, Good, HSG A
	0 55	Woods, Good, HSG B
	0 70	Woods, Good, HSG C
	0 77	Woods, Good, HSG D
*	0 70	Gravel pit, HSG A
*	0 81	Gravel pit, HSG B
*	0 88	Gravel pit, HSG C
*	0 92	Gravel pit, HSG D
*	0 98	Water body
*	0 96	Gravel road
*	0 98	Structure
* 5,04		Panels
*	0 98	Equipment pad
* 28,76	62 98	Basin
52,53	84 84	Weighted Average
18,73	32	35.66% Pervious Area
33,80)2	64.34% Impervious Area
Tc Leng	gth Slo	pe Velocity Capacity Description
(min) (fe		ft) (ft/sec) (cfs)
<u> (IIIII) (Ie</u> 6.0	er) (11	Direct Entry,
0.0		Diroct Littiy,

Subcatchment 5bS: Drainage Area 5

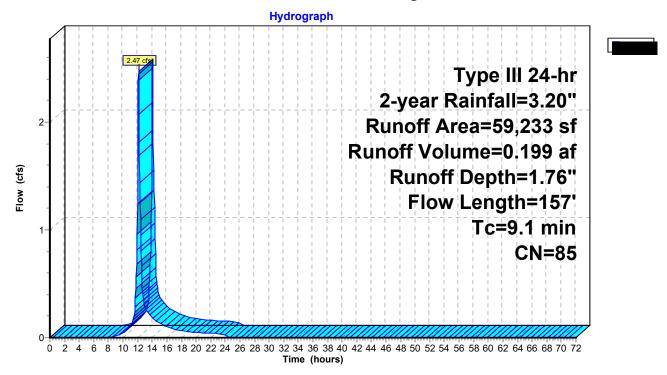


Summary for Subcatchment 5cS: Drainage Area 5

Runoff = 3.58 cfs @ 12.45 hrs, Volume= 0.484 af, Depth= 0.93"

	A	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		53,847	58	Meadow, no	on-grazed,	HSG B
		27,788	71	Meadow, no	on-grazed,	HSG C
		8,123	78	Meadow, no	on-grazed,	HSG D
		0	30	Woods, Go	od, HSG A	
		2,622	55	Woods, Go	od, HSG B	
	1	23,893		Woods, Go		
		19,268		Woods, Go		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		20,354		Water body		
*		0		Gravel road	l	
*		0		Structure		
*		5,460		Panels		
*		0		Equipment	pad	
*		10,640		Basin		
		71,995		Weighted A		
		35,541		86.60% Pei		
		36,454		13.40% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	Decemption
	9.3	50	0.0400		()	Sheet Flow,
	0.0		0.0.00	0100		Woods: Light underbrush n= 0.400 P2= 3.20"
	17.9	1,030	0.0369	0.96		Shallow Concentrated Flow,
		.,				Woodland Kv= 5.0 fps
	2.1	266	0.0902	2.10		Shallow Concentrated Flow,
		-				Short Grass Pasture Kv= 7.0 fps
	29.3	1,346	Total			· · · · ·

Subcatchment 5cS: Drainage Area 5



Summary for Subcatchment 5dS: Drainage Area 5

Runoff = 2.47 cfs @ 12.13 hrs, Volume= 0.199 af, Depth= 1.76"

0 30 Meadow, non-grazed, HSG A	
0 58 Meadow, non-grazed, HSG B	
28,213 71 Meadow, non-grazed, HSG C	
0 78 Meadow, non-grazed, HSG D	
0 30 Woods, Good, HSG A	
0 55 Woods, Good, HSG B	
0 70 Woods, Good, HSG C	
0 77 Woods, Good, HSG D	
* 0 70 Gravel pit, HSG A	
* 0 81 Gravel pit, HSG B	
* 0 88 Gravel pit, HSG C	
* 0 92 Gravel pit, HSG D	
* 0 98 Water body	
* 4,470 96 Gravel road	
* 0 98 Structure	
* 5,460 98 Panels	
* 629 98 Equipment pad	
* 20,461 98 Basin	
59,233 85 Weighted Average	
32,683 55.18% Pervious Area	
26,550 44.82% Impervious Area	
To Longth Clans Malasity Consists Description	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
7.4 50 0.0100 0.11 Sheet Flow,	
Grass: Short n= 0.150 P2= 3.20"	
1.7 107 0.0234 1.07 Shallow Concentrated Flow, Shart Grass Desture Kirr 7.0 free	
Short Grass Pasture Kv= 7.0 fps	
9.1 157 Total	

Subcatchment 5dS: Drainage Area 5

Summary for Subcatchment 6aS: Drainage Area 6

Runoff = 0.21 cfs @ 15.39 hrs, Volume= 0.136 af, Depth= 0.07"

	А	rea (sf)	CN [Description					
	3	01,060	30 N	leadow, no	on-grazed,	HSG A			
		0	58 N	leadow, no	on-grazed,	HSG B			
		0	71 N	/leadow, non-grazed, HSG C					
		0			on-grazed,				
	3	90,620	30 V	Voods, Go	od, HSG A				
		50,036	55 V	Voods, Go	od, HSG B				
		0			od, HSG C				
		0			od, HSG D				
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*	2	19,272		Vater body					
*		11,267		Gravel road	1				
*		0		Structure					
*		0		Panels					
<u>~</u>		0		Equipment					
		72,255		Veighted A					
		52,983		-	rvious Area				
	2	19,272	2	2.55% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	Slope (ft/ft)	(ft/sec)	(cfs)	Description			
	4.3	. ,	0.0400	0.20	(013)	Shoot Flow			
	4.3	50	0.0400	0.20		Sheet Flow, Grass: Short n= 0.150 P2= 3.20"			
	13.5	538	0.0090	0.66		Shallow Concentrated Flow,			
	13.5	550	0.0090	0.00		Short Grass Pasture Kv= 7.0 fps			
	10.1	601	0.0391	0.99		Shallow Concentrated Flow,			
	10.1	001	0.0001	0.33		Woodland Kv= 5.0 fps			
	16.7	355	0.0050	0.35		Shallow Concentrated Flow,			
	10.7	000	0.0000	0.00		Woodland Kv= 5.0 fps			
	44.6	1,544	Total						

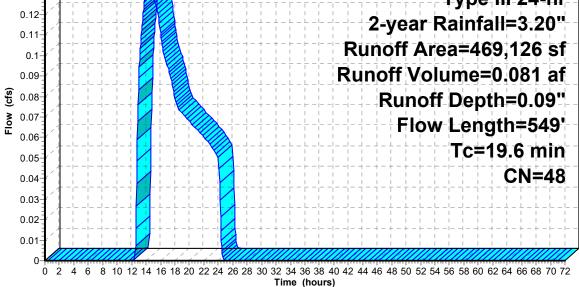
Hydrograph 0.24-0.23-0.22-Type III 24-hr 0.21 0.2-2-year Rainfall=3.20" 0.19 0.18-Runoff Area=972,255 sf 0.17-0.16 Runoff Volume=0.136 af 0.15 0.14 (s) 0.14-0.13-Runoff Depth=0.07" 0.12 Flow Flow Length=1,544' 0.11 0.1 Tc=44.6 min 0.09 0.08 CN=47 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Subcatchment 6aS: Drainage Area 6

Time (hours)

Summary for Subcatchment 6bS: Drainage Area 6

Runoff = 0.13 cfs @ 14.76 hrs, Volume= 0.081 af, Depth= 0.09"

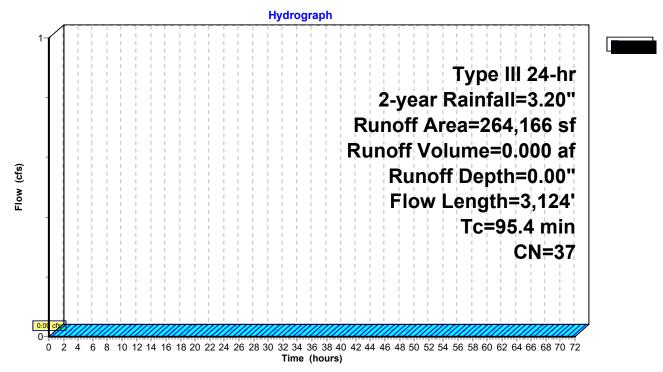

288,32530Meadow, non-grazed, HSG A91,05058Meadow, non-grazed, HSG B071Meadow, non-grazed, HSG C078Meadow, non-grazed, HSG D030Woods, Good, HSG A055Woods, Good, HSG B070Woods, Good, HSG C077Woods, Good, HSG D
91,05058Meadow, non-grazed, HSG B071Meadow, non-grazed, HSG C078Meadow, non-grazed, HSG D030Woods, Good, HSG A055Woods, Good, HSG B070Woods, Good, HSG C
0 78 Meadow, non-grazed, HSG D 0 30 Woods, Good, HSG A 0 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C
0 30 Woods, Good, HSG Å 0 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C
0 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C
0 70 Woods, Good, HSG C
0 77 Woods Good HSG D
* 0 70 Gravel pit, HSG A
* 0 81 Gravel pit, HSG B
* 0 88 Gravel pit, HSG C
* 0 92 Gravel pit, HSG D
* 0 98 Water body
* 9,625 96 Gravel road
* 0 98 Structure
* 12,660 98 Panels
* 629 98 Equipment pad
<u>* 66,837 98 Basin</u>
469,126 48 Weighted Average
389,000 82.92% Pervious Area
80,126 17.08% Impervious Area
To Longth Clans Malasity Conseits Description
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
6.3 50 0.0150 0.13 Sheet Flow,
Grass: Short n= 0.150 P2= 3.20"
13.3 499 0.0080 0.63 Shallow Concentrated Flow, Chart Group Destroy King 7.0 from
Short Grass Pasture Kv= 7.0 fps
19.6 549 Total

0.14

0.13

Hydrograph

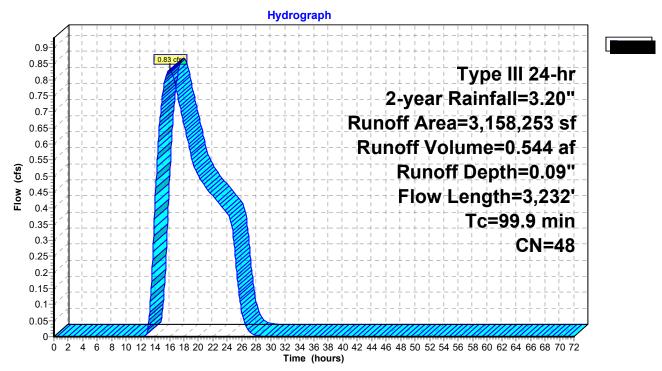
Summary for Subcatchment 7aS: Drainage Area 7a


[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume=

0.000 af, Depth= 0.00"

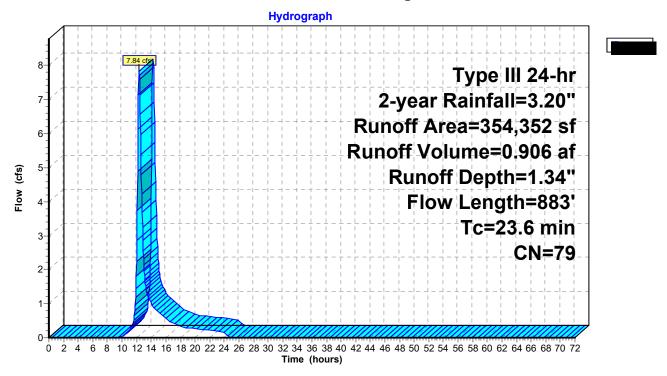
	A	rea (sf)	CN	Description						
	2	31,002	30	Meadow, n	on-grazed,	HSG A				
		0	58	Meadow, non-grazed, HSG B						
		0	71	Meadow, non-grazed, HSG C						
		0			on-grazed,					
		0	30	Woods, Go	od, HSG A					
		0	55	Woods, Go	od, HSG B					
		0	70	Woods, Go	od, HSG C					
		0	77	Woods, Go	od, HSG D					
*		7,059	70	Gravel pit, l	HSG A					
*		9,519	81	Gravel pit, l	HSG B					
*		0		Gravel pit, l						
*		0		Gravel pit, l						
*		0		Water body						
*		9,866		Gravel road	ł					
*		0		Structure						
*		6,720		Panels						
*		0	98	Equipment	pad					
	2	64,166		Weighted A						
	2	57,446		97.46% Pe	rvious Area					
		6,720		2.54% Impe	ervious Area	а				
	Тс	Length	Slope		Capacity	Description				
(n	nin)	(feet)	(ft/ft)		(cfs)					
	3.6	50	0.0600	0.23		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.20"				
	2.9	238	0.0380	1.36		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
8	38.9	2,836	0.0113	0.53		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
ç	95.4	3,124	Total							


Subcatchment 7aS: Drainage Area 7a

Summary for Subcatchment 7bS: Drainage Area 7b

Runoff = 0.83 cfs @ 16.05 hrs, Volume= 0.544 af, Depth= 0.09"

	А	rea (sf)	CN I	Description		
	6	48,318	30 I	Meadow, no	on-grazed,	HSG A
	1	10,037	58 I	Meadow, no	on-grazed,	HSG B
		0	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
	1,3	85,107	30	Noods, Go	od, HSG A	
	2	30,359	55	Noods, Go	od, HSG B	
		0	70	Noods, Go	od, HSG C	
		0	77 \	Noods, Go	od, HSG D	
*	1	65,079	70 (Gravel pit, I	HSG A	
*		79,347	81 (Gravel pit, I	HSG B	
*		0		Gravel pit, I	HSG C	
*		0		Gravel pit, I	HSG D	
*	4	53,314		Nater body		
*		77,609		Gravel road	1	
*		0		Structure		
*		8,454		Panels		
*		629	98 I	Equipment	pad	
	3,1	58,253	48	Neighted A	verage	
	2,6	95,856	8	35.36% Pei	rvious Area	
	4	62,397		14.64% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	5.4	50	0.1600		(010)	Sheet Flow,
	5.4	50	0.1000	0.10		Woods: Light underbrush n= 0.400 P2= 3.20"
	5.6	346	0.0430	1.04		Shallow Concentrated Flow,
	0.0	040	0.0400	1.04		Woodland Kv= 5.0 fps
	88.9	2,836	0.0113	0.53		Shallow Concentrated Flow,
		_,	5.0.10	0.00		Woodland Kv= 5.0 fps
	99.9	3,232	Total			· · ·


Subcatchment 7bS: Drainage Area 7b

Summary for Subcatchment 8S: Drainage Area 8

Runoff = 7.84 cfs @ 12.34 hrs, Volume= 0.906 af, Depth= 1.34"

	A	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0	58	Meadow, no	on-grazed,	HSG B
		14,757	71	Meadow, no	on-grazed,	HSG C
		6,627	78	Meadow, no	on-grazed,	HSG D
		0	30	Woods, Go	od, HSG A	
		7,700	55	Woods, Go	od, HSG B	
	1	75,484	70	Woods, Go	od, HSG C	
		40,001	77	Woods, Go	od, HSG D	
*		0	70	Gravel pit, I		
*		0	81	Gravel pit, I		
*		0	88	Gravel pit, I		
*		0	92	Gravel pit, I		
*		93,828	98	Water body		
*		15,955	96	Gravel road		
*		0	98	Structure		
		54,352	79	Weighted A		
		60,524		73.52% Per		
		93,828		26.48% Imp	pervious Ar	ea
	Тс	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft		(cfs)	Decemption
	8.5	50	0.050	/ (/		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	8.8	390	0.022	0 0.74		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	2.9	271	0.100	0 1.58		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	172	0.028	0 0.84		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	23.6	883	Total			

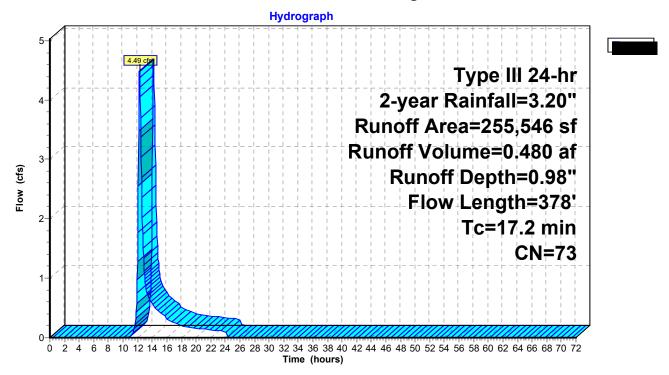
Subcatchment 8S: Drainage Area 8

Summary for Subcatchment 9S: Drainage Area 9

Runoff = 7.63 cfs @ 12.27 hrs, Volume= 0.892 af, Depth= 0.73"

	Ar	rea (sf)	CN I	Description		
		80,020	30 I	Meadow, no	on-grazed,	HSG A
		29,044	58 I	Meadow, no	on-grazed,	HSG B
		8,254	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
		24,186	30 \	Noods, Go	od, HSG A	
	2	29,102	55 \	Noods, Go	od, HSG B	
		19,896	70 \	Noods, Go	od, HSG C	
		0	77 \	Noods, Go	od, HSG D	
*		0	70 (Gravel pit, I	HSG A	
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		26,618		Nater body		
*		18,419		Gravel road	l	
*		0		Structure		
*		840		Panels		
		36,379		Neighted A		
		08,921		64.26% Pei		
	2	27,458		35.74% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Becchpiton
_	10.5	50	0.0300	, ,	()	Sheet Flow,
	10.0	00	0.0000	0.00		Woods: Light underbrush n= 0.400 P2= 3.20"
	1.4	106	0.0610	1.23		Shallow Concentrated Flow,
		100	0.0010	1120		Woodland $Kv=5.0$ fps
	3.4	184	0.0330	0.91		Shallow Concentrated Flow,
						Woodland $Kv=5.0$ fps
	1.8	261	0.2470	2.48		Shallow Concentrated Flow,
						Woodland $Kv = 5.0 \text{ fps}$
	17.1	601	Total			·

Subcatchment 9S: Drainage Area 9

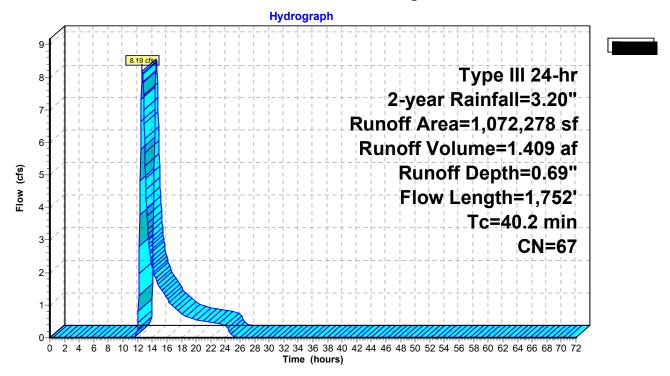


Summary for Subcatchment 10aS: Drainage Area 10

Runoff = 4.49 cfs @ 12.26 hrs, Volume= 0.480 af, Depth= 0.98"

	Area (sf)	CN	Description		
	0	30	Meadow, n	on-grazed,	HSG A
	40,805	58	Meadow, n	on-grazed,	HSG B
	126,615	71	Meadow, n	on-grazed,	HSG C
	0	78	Meadow, n	on-grazed,	HSG D
	0			od, HSG A	
	9,453			od, HSG B	
	37,133			od, HSG C	
	0			od, HSG D	
*	0		Gravel pit, l		
*	0		Gravel pit, l		
*	0		Gravel pit, l		
*	0		Gravel pit, l		
*	0		Water body		
*	5,861		Gravel road	ł	
*	0		Structure		
*	3,360		Panels		
*	32,319		Basin		
	255,546		Weighted A		
	219,867			rvious Area	
	35,679		13.96% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	0	(ft/ft)		(cfs)	Description
12.3	()	0.0200		(013)	Sheet Flow,
12.0	50	0.0200	0.07		Woods: Light underbrush n= 0.400 P2= 3.20"
4.9	328	0.0488	1.10		Shallow Concentrated Flow,
4.5	020	0.0400	1.10		Woodland Kv= 5.0 fps
17.2	378	Total			·

Subcatchment 10aS: Drainage Area 10

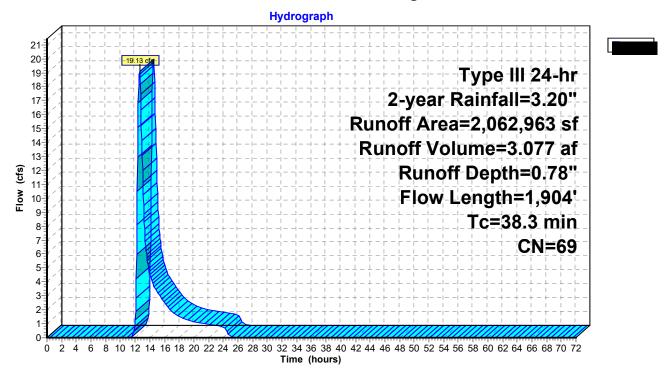


Summary for Subcatchment 10bS: Drainage Area 10

Runoff = 8.19 cfs @ 12.65 hrs, Volume= 1.409 af, Depth= 0.69"

	A	rea (sf)	CN	Description		
		13,076	30	Meadow, no	on-grazed,	HSG A
		9,872	58	Meadow, no	on-grazed,	HSG B
	1	62,839	71	Meadow, no	on-grazed,	HSG C
		21,857	78	Meadow, no	on-grazed,	HSG D
	1	10,901	30	Woods, Go	od, HSG A	
		22,199		Woods, Go		
		84,517		Woods, Go		
		72,773		Woods, Go		
*		0		Gravel pit, l		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, l		
*		41,195		Water body		
*		33,049		Gravel road	1	
^ +		0		Structure		
		0		Panels		
		72,278		Weighted A		
		31,083		86.83% Pei		
	1	41,195		13.17% Imp	pervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	
	4.3	50	0.0400	0.20		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	29.4	1,139	0.0167	0.65		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.4	72	0.0417	3.29		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	6.1	491	0.0367	' 1.34		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	40.2	1,752	Total			

Subcatchment 10bS: Drainage Area 10

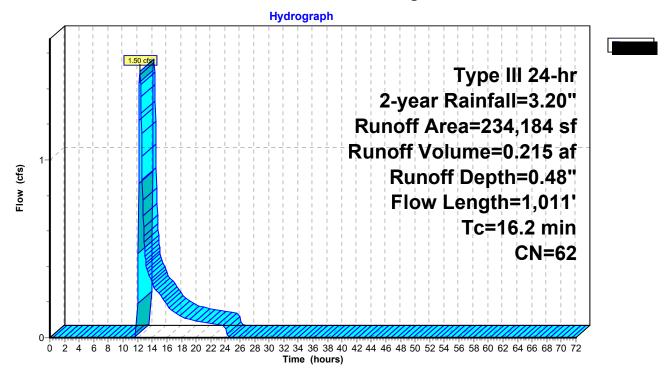


Summary for Subcatchment 11aS: Drainage Area 11

Runoff = 19.13 cfs @ 12.60 hrs, Volume= 3.077 af, Depth= 0.78"

	A	rea (sf)	CN	Description		
	2	30,381	30	Meadow, no	on-grazed,	HSG A
		74,662	58	Meadow, no	on-grazed,	HSG B
	1,2	45,920	71	Meadow, no	on-grazed,	HSG C
		51,732		Meadow, no		HSG D
		5,299		Woods, Go		
		38,194		Woods, Go		
		16,983		Woods, Go	,	
		42,710		Woods, Go		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*	0	0		Gravel pit, I		
*		01,207		Water body		
*		45,982		Gravel road		
*		8,006		Structure	nod	
*		1,887 0		Equipment Panels	pau	
		-				
		62,963		Weighted A		
		51,863		89.77% Pei		
	Z	11,100		10.23% Imp	bervious An	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	Decemption
	4.3	50	0.0400			Sheet Flow,
			0.0.00			Grass: Short n= 0.150 P2= 3.20"
	34.0	1,854	0.0330	0.91		Shallow Concentrated Flow,
		,				Woodland Kv= 5.0 fps
_	38.3	1,904	Total			

Subcatchment 11aS: Drainage Area 11

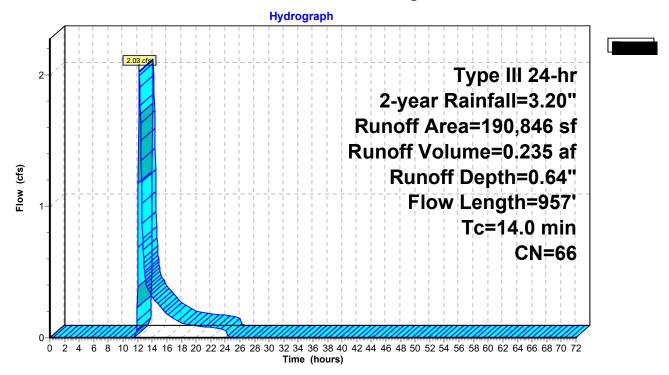


Summary for Subcatchment 11bS: Drainage Area 11

Runoff = 1.50 cfs @ 12.31 hrs, Volume= 0.215 af, Depth= 0.48"

	Α	rea (sf)	CN	Description					
		62,296 30 Meadow, non-grazed, l				HSG A			
		0		Meadow, non-grazed, HSG B					
	1	53,054	71	Meadow, no	on-grazed,	HSG C			
		0	78	Meadow, no	HSG D				
		0	30	Woods, Go	od, HSG A				
		0		Woods, Go					
		0		Woods, Go					
		0		Woods, Go					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Water body					
*		14,214		Gravel road					
*		0		Structure					
*		0		Equipment	pad				
*		4,620		Panels					
	234,184 62 Weighted Average								
	2	29,564		98.03% Pei					
		4,620		1.97% Impe	ervious Area	a			
	т.	1	01.000) (- : t	0	Description			
	Tc	Length	Slope			Description			
_	(min)	(feet)	(ft/ft		(cfs)				
	5.6	50	0.0200	0.15		Sheet Flow,			
	10.0	004	0.0400			Grass: Short n= 0.150 P2= 3.20"			
	10.6	961	0.0468	3 1.51		Shallow Concentrated Flow,			
_	10.0	4.044	T . 4 . 1			Short Grass Pasture Kv= 7.0 fps			
	16.2	1,011	Total						

Subcatchment 11bS: Drainage Area 11

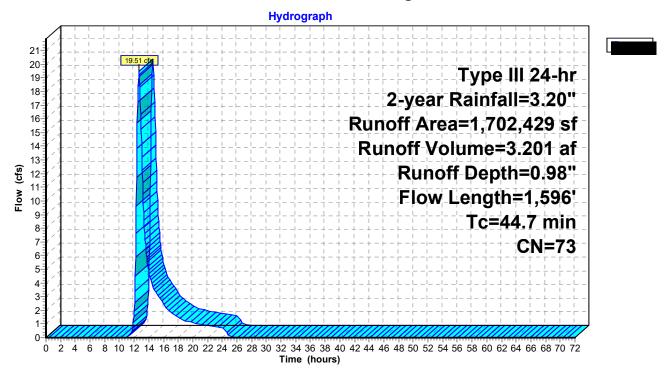


Summary for Subcatchment 11cS: Drainage Area 11

Runoff = 2.03 cfs @ 12.23 hrs, Volume= 0.235 af, Depth= 0.64"

	A	rea (sf)	CN	Description		
		27,259	30	Meadow, n	on-grazed,	HSG A
	0 58 Meadow, non-grazed, H				on-grazed,	HSG B
158,821 71 Meadow, non-grazed, HSG						HSG C
		0	78	Meadow, n	on-grazed,	HSG D
		0			od, HSG A	
		0		Woods, Go		
		0			od, HSG C	
		0			od, HSG D	
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, I		
*		0		Water body		
~ _		2,666		Gravel road	1	
*		0		Structure		
*		0		Equipment	pad	
		2,100		Panels		
	190,846 66 Weighted Average					
	1	88,746			rvious Area	
		2,100		1.10% impe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	
	4.3	50	0.0400			Sheet Flow,
		- •				Grass: Short n= 0.150 P2= 3.20"
	9.7	907	0.0496	1.56		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	14.0	957	Total			

Subcatchment 11cS: Drainage Area 11

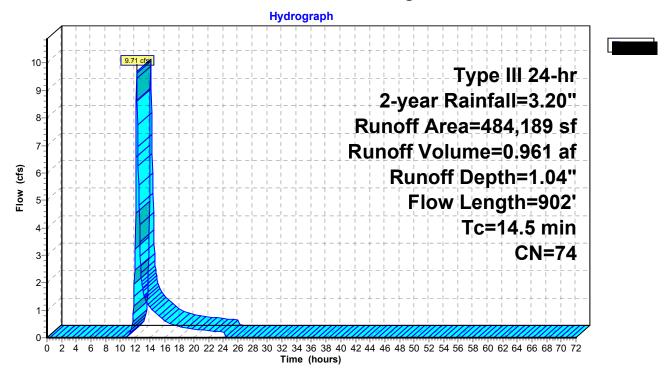


Summary for Subcatchment 12aS: Drainage Area 12a

Runoff = 19.51 cfs @ 12.67 hrs, Volume= 3.201 af, Depth= 0.98"

	A	rea (sf)	CN	Description						
		23,018	30	Meadow, no	on-grazed,	HSG A				
		9,439	58	Meadow, no	on-grazed,	HSG B				
	6	54,323	71	Meadow, non-grazed, HSG C						
210,828 78 Meadow, non-grazed, HSG D										
		22,923	30	Woods, Go	od, HSG A					
	1	83,438	55	Woods, Go	od, HSG B					
	2	93,907	70	Woods, Go	od, HSG C					
		52,031	77	Woods, Go	od, HSG D					
*		0	70	Gravel pit, l	HSG A					
*		0	81	Gravel pit, I	HSG B					
*		0		Gravel pit, I	HSG C					
*		0		Gravel pit, l						
*	2	29,248		Water body						
*		13,614		Gravel roac	1					
*		0		Structure						
*		9,660		Panels						
*		0		Equipment	•					
	,	02,429		Weighted A	0					
	1,463,521 85.97% Pervious Area									
	238,908 14.03% Impervious Area				pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)		(cfs)	Description				
_		()		. ,	(015)	Cheet Flow				
	6.5	50	0.0140	0.13		Sheet Flow,				
	7.5	626	0.0780	1.40		Grass: Short n= 0.150 P2= 3.20"				
	7.5	020	0.0760	1.40		Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
	30.7	920	0.0100	0.50		Shallow Concentrated Flow,				
	50.7	520	0.0100	0.50		Woodland Kv= 5.0 fps				
	44.7	1,596	Total							

Subcatchment 12aS: Drainage Area 12a

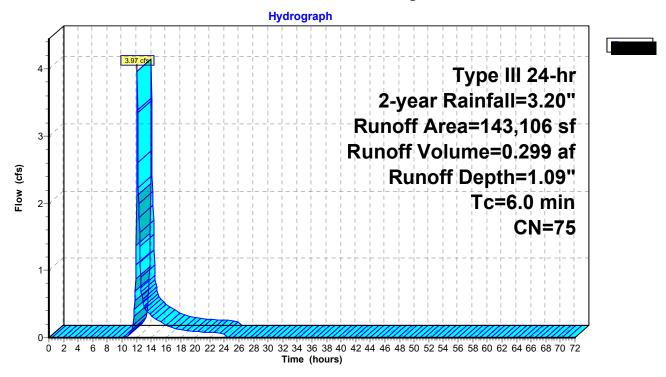


Summary for Subcatchment 12bS: Drainage Area 12b

Runoff = 9.71 cfs @ 12.22 hrs, Volume= 0.961 af, Depth= 1.04"

	A	rea (sf)	CN	Description						
		0	30	Meadow, non-grazed, HSG A						
		0	HSG B							
	4	38,020								
		0	78 I	Meadow, non-grazed, HSG D						
		0			od, HSG A					
		0		Woods, Good, HSG B						
0 70 Woods, Good, HSG C										
		0			od, HSG D					
*		0		Gravel pit, l						
*		0		Gravel pit, I						
*		0		Gravel pit, I						
*		0		Gravel pit, I						
*		0		Water body						
*		8,877		Gravel road	1					
÷		0		Structure						
*		9,240		Panels						
*		1,258		Equipment	pad					
		26,794		Basin						
		84,189		Weighted A						
		46,897			rvious Area					
		37,292		7.70% impe	ervious Area	a				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption				
	4.3	50	0.0400		(0.0)	Sheet Flow,				
	4.0	00	0.0400	0.20		Grass: Short n= 0.150 P2= 3.20"				
	10.2	852	0.0393	1.39		Shallow Concentrated Flow,				
		002	510000			Short Grass Pasture Kv= 7.0 fps				
	14.5	902	Total							

Subcatchment 12bS: Drainage Area 12b

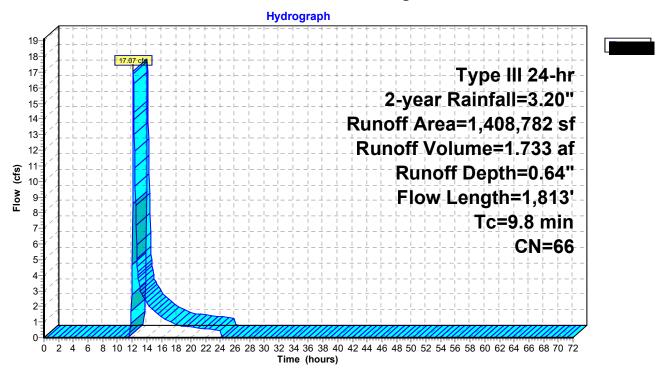


Summary for Subcatchment 12cS: Drainage Area 12

Runoff = 3.97 cfs @ 12.10 hrs, Volume= 0.299 af, Depth= 1.09"

Area (sf) CN	Description					
	0 30	Meadow, non-grazed, HSG A					
	0 58	Meadow, non-grazed, HSG B					
122,2	34 71	Meadow, non-grazed, HSG C					
	0 78	Meadow, non-grazed, HSG D					
	0 30	Woods, Good, HSG A					
	0 55	Woods, Good, HSG B					
	0 70	Woods, Good, HSG C					
	0 77	Woods, Good, HSG D					
*	0 70	Gravel pit, HSG A					
*	0 81	Gravel pit, HSG B					
*	0 88	Gravel pit, HSG C					
*	0 92	Gravel pit, HSG D					
*	0 98	Water body					
* 8,8		Gravel road					
*	0 98	Structure					
*	0 98	Panels					
*	0 98	Equipment pad					
<u>* 11,9</u>	97 98	Basin					
143,1	06 75	Weighted Average					
131,1		91.62% Pervious Area					
11,9	97	8.38% Impervious Area					
Tc Ler	ngth Slo	pe Velocity Capacity Description					
		ft) (ft/sec) (cfs)					
6.0		Direct Entry,					

Subcatchment 12cS: Drainage Area 12



Summary for Subcatchment 13S: Drainage Area 13

Runoff = 17.07 cfs @ 12.17 hrs, Volume= 1.733 af, Depth= 0.64"

	Area (sf) CN Description								
137,390 30 Meadow, non-grazed, HSG A						HSG A			
	0 58 Meadow, non-grazed, HSG B								
	0 71 Meadow, non-grazed, HSG C 0 78 Meadow, non-grazed, HSG D								
	0 30 Woods, Good, HSG A								
	0 55 Woods, Good, HSG B								
	0 70 Woods, Good, HSG C								
		0			od, HSG D				
*	1,2	66,167		Gravel pit, I					
*		4,469		Gravel pit, I					
*		0		Gravel pit, l					
*		0		92 Gravel pit, HSG D					
*		756 0		98 Water body 96 Gravel road					
*									
*		0 98 Structure							
		08,782		Neighted A					
	1,408,026 99.95% Pervious Area 756 0.05% Impervious Area								
					ervious Are	а			
	_				_				
	Tc	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.7	50	0.0200	1.20		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.20"			
	9.1	1,763	0.0403	3.23		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	9.8	1,813	Total						

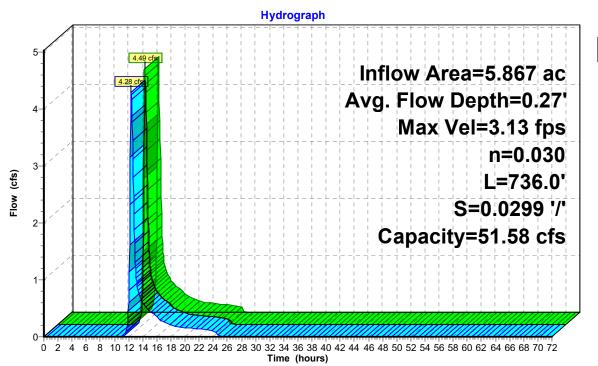
Subcatchment 13S: Drainage Area 13

Summary for Reach 10aR: Swale 10a

 Inflow Area =
 5.867 ac, 13.96% Impervious, Inflow Depth =
 0.98" for 2-year event

 Inflow =
 4.49 cfs @
 12.26 hrs, Volume=
 0.480 af

 Outflow =
 4.28 cfs @
 12.38 hrs, Volume=
 0.480 af, Atten= 5%, Lag= 7.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 3.13 fps, Min. Travel Time= 3.9 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 11.8 min

Peak Storage= 1,017 cf @ 12.31 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 51.58 cfs

4.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 736.0' Slope= 0.0299 '/' Inlet Invert= 236.00', Outlet Invert= 214.00'

±

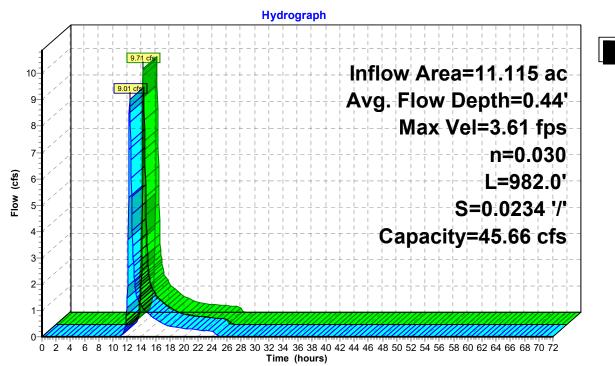
Reach 10aR: Swale 10a

Summary for Reach 12bR: Swale 12b

 Inflow Area =
 11.115 ac,
 7.70% Impervious,
 Inflow Depth =
 1.04"
 for 2-year event

 Inflow =
 9.71 cfs @
 12.22 hrs,
 Volume=
 0.961 af

 Outflow =
 9.01 cfs @
 12.36 hrs,
 Volume=
 0.961 af,
 Atten= 7%,
 Lag= 8.5 min

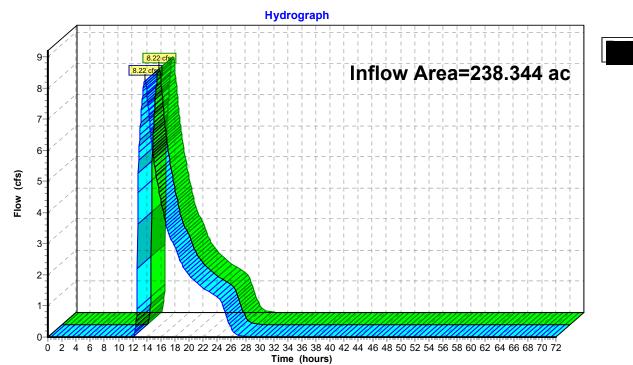

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 3.61 fps, Min. Travel Time= 4.5 min Avg. Velocity = 1.12 fps, Avg. Travel Time= 14.6 min

Peak Storage= 2,461 cf @ 12.28 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 45.66 cfs

4.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 982.0' Slope= 0.0234 '/' Inlet Invert= 276.00', Outlet Invert= 253.00'

±

Reach 12bR: Swale 12b

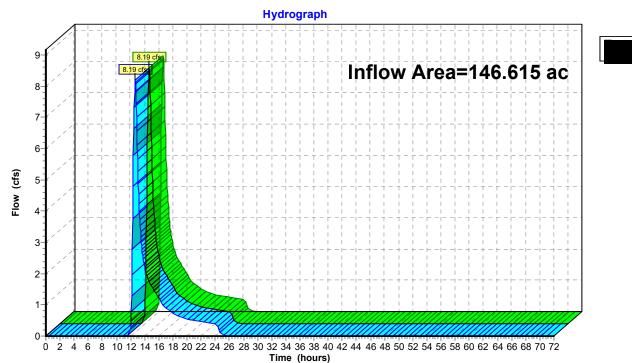


Summary for Reach DP-1: Off-Site West

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	238.344 ac, 10.57% Impervious, Inflow Depth = 0.17" for 2-yea	r event
Inflow	=	8.22 cfs @ 13.72 hrs, Volume= 3.425 af	
Outflow	=	8.22 cfs $\overline{@}$ 13.72 hrs, Volume= 3.425 af, Atten= 0%, La	ag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

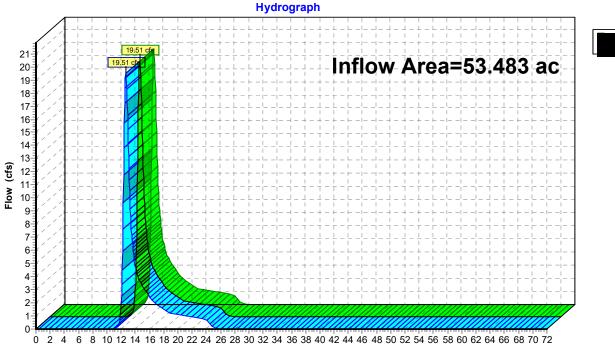

Reach DP-1: Off-Site West

Summary for Reach DP-2: Off-Site South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	146.615 ac, 22.85% Impervious, Inflow Depth = 0.12" for 2-year event	
Inflow	=	8.19 cfs @ 12.65 hrs, Volume= 1.409 af	
Outflow	=	8.19 cfs @ 12.65 hrs, Volume= 1.409 af, Atten= 0%, Lag= 0.0 m	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach DP-2: Off-Site South

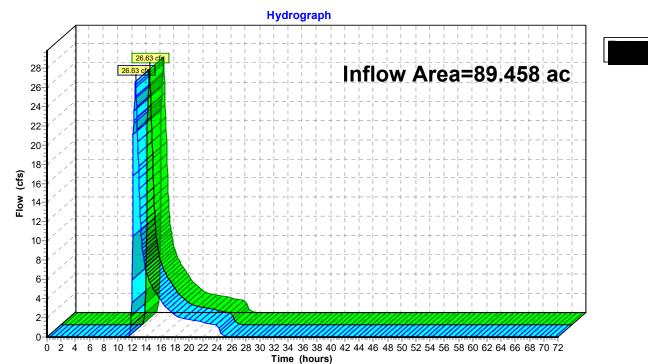
Summary for Reach DP-3: Off-Site East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	53.483 ac, 12.37% Impervious, Inflow Depth = 0.72" for 2-year	event
Inflow	=	19.51 cfs @ 12.67 hrs, Volume= 3.201 af	
Outflow	=	19.51 cfs @ 12.67 hrs, Volume= 3.201 af, Atten= 0%, La	g= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-3: Off-Site East


32 34 36 38 40 4 Time (hours)

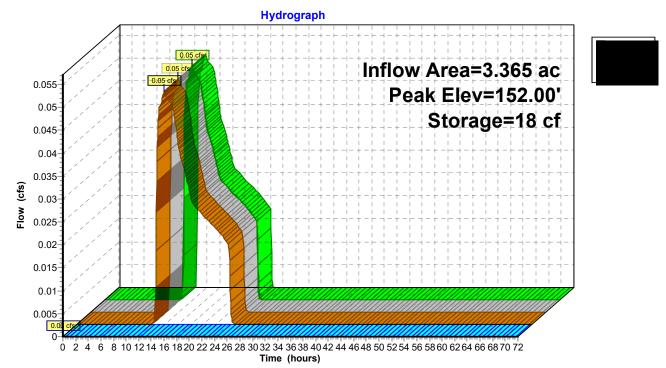
Summary for Reach DP-4: Off-Site Southeast

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	89.458 ac,	5.61% Impervious,	Inflow Depth = 0.65	' for 2-year event
Inflow	=	26.63 cfs @	12.48 hrs, Volume	e= 4.810 af	
Outflow	=	26.63 cfs @	12.48 hrs, Volume	e= 4.810 af, A	tten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-4: Off-Site Southeast

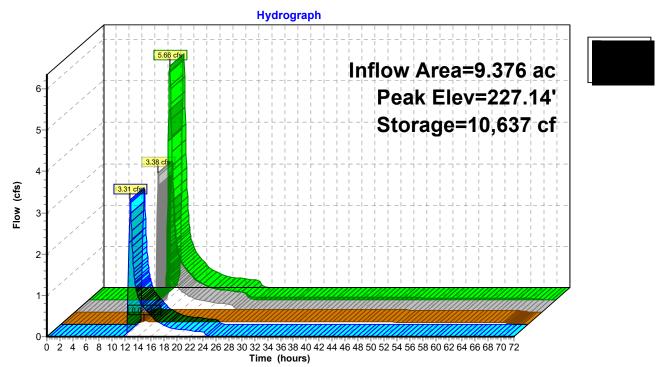

Summary for Pond 1bP: Proposed Basin

Inflow Area Inflow Outflow Discarded Primary	= = =	0.05 cfs @ 13 0.05 cfs @ 13 0.05 cfs @ 13	3.72 hrs 3.83 hrs 3.83 hrs	, Volume= , Volume=	epth = 0.11" for 0.030 af 0.030 af, Atten= 0 0.030 af 0.000 af	-
				0.00-72.00 hrs, dt ea= 21,734 sf Sto		
Center-of-N	Mass det	. time= 6.0 min	ı (1,034			
Volume				Storage Description		
#1	152.00	55,26		Sustom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation (feet)	S		erim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
152.00			581.0	0	0	21,729
154.00		,	317.0	55,260	55,260	38,010
		,			00,200	
Device R	Routing	Invert	Outlet	Devices		
#1 P	rimary	153.50'	20.0' I	ong x 8.0' breadt	h Broad-Crested F	Rectangular Weir
	,					0 1.40 1.60 1.80 2.00
			2.50 3	3.00 3.50 4.00 4.	50 5.00 5.50	
						2.68 2.66 2.64 2.64
					66 2.68 2.70 2.74	
#2 D	iscarded	152.00'	2.410	in/hr Exfiltration of	over Surface area	
Discarded OutFlow Max=1.21 cfs @ 13.83 hrs HW=152.00' (Free Discharge)						

2=Exfiltration (Exfiltration Controls 1.21 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=152.00' (Free Discharge)

Pond 1bP: Proposed Basin

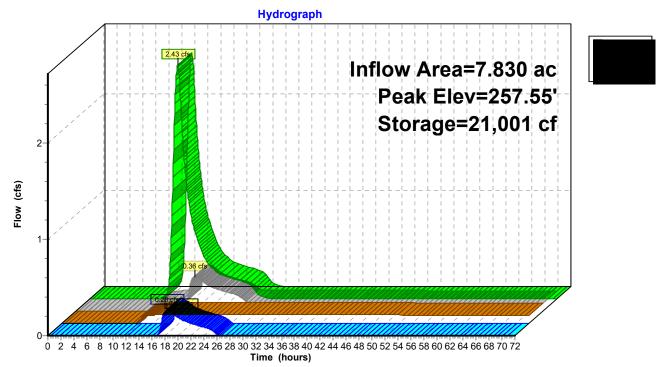

Summary for Pond 1cP: Proposed Basin

Inflow Area = Inflow = Outflow = Discarded = Primary =	5.66 cfs @ 3.38 cfs @ 0.08 cfs @	12.47 hrs 12.83 hrs 12.83 hrs	, Volume= , Volume=	epth = 0.98" for 0.768 af 0.768 af, Atten= 4 0.283 af 0.485 af	2-year event 40%, Lag= 22.2 min
			0.00-72.00 hrs, dt ea= 12,142 sf Sto		
Center-of-Mass c	let. time= 535.8	3 min (1,4	ulated for 0.768 af 23.9 - 888.0) Storage Descriptior		
#1 226.	00' 23,	156 ct (Custom Stage Dat	ta (Irregular)Listed	below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
226.00	6,727	408.0	0	0	6,727
228.00	17,238	601.0	23,156	23,156	22,256
Device Routing	Inver	rt Outlet	Devices		
#1 Primary 227.00' 25.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.0 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74					
#2 Discard	ed 226.00)' 0.270	in/hr Exfiltration	over Surface area	
Discarded OutFlow Max=0.08 cfs @ 12.83 hrs. HW=227.14' (Free Discharge)					

Discarded OutFlow Max=0.08 cfs @ 12.83 hrs HW=227.14' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=3.29 cfs @ 12.83 hrs HW=227.14' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 3.29 cfs @ 0.92 fps)

Pond 1cP: Proposed Basin


Summary for Pond 1dP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	2.43 cfs @ 0.36 cfs @	13.49 hi 18.40 hi 18.40 hi	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume= rs, Volume=	0.677 af	2-year event 85%, Lag= 294.5 min
			= 0.00-72.00 hrs, dt area= 15,242 sf Sto		
Center-of-Mass of	det. time= 1,29	0.0 min (alculated for 0.541 a 2,244.5 - 954.4)		
Volume Inv	vert Avail.S	Storage	Storage Description	1	
#1 256	.00' 28	,065 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
256.00	11,894	466.0	0	0	11,894
258.00	16,286	530.0	28,065	28,065	17,063
Device Routing	j Inve	rt Outle	et Devices		
#1 Primary	/ 257.5		ong x 8.0' breadth		
					0 1.40 1.60 1.80 2.00
			3.00 3.50 4.00 4.		
					2.68 2.66 2.64 2.64
			2.65 2.65 2.66 2.		
#2 Discard	led 256.0	0 0.270	0 in/hr Exfiltration	over Surface area	
Discarded OutFlow Max=0.10 cfs @ 18.40 hrs HW=257.55' (Free Discharge)					

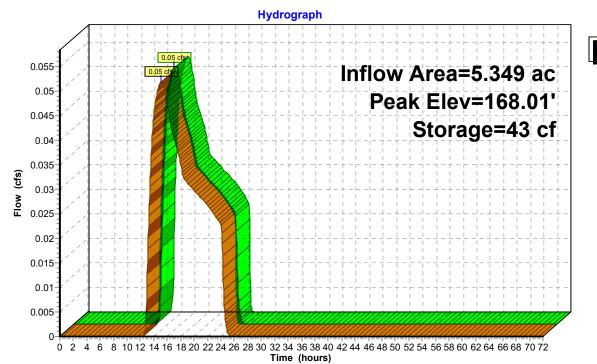
Discarded OutFlow Max=0.10 cfs @ 18.40 hrs HW=257.55' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=0.26 cfs @ 18.40 hrs HW=257.55' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 0.26 cfs @ 0.55 fps)

Pond 1dP: Proposed Berm

Summary for Pond 2P: Existing Depression

Inflow Area =	5.349 ac,	1.98% Impervious, Inflow D	epth = 0.07" for 2-year event
Inflow =	0.05 cfs @	14.89 hrs, Volume=	0.033 af
Outflow =	0.05 cfs @	15.12 hrs, Volume=	0.033 af, Atten= 1%, Lag= 13.5 min
Discarded =	0.05 cfs @	15.12 hrs, Volume=	0.033 af

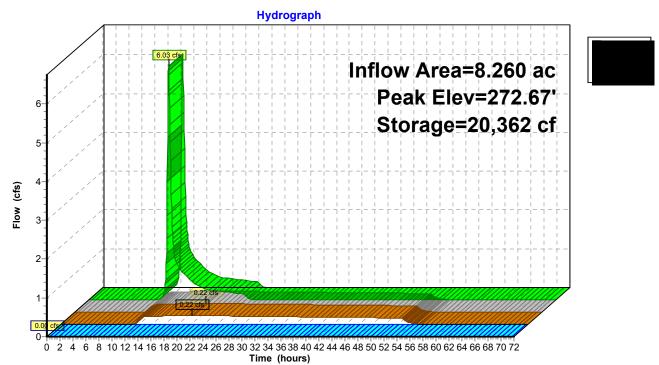

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 168.01' @ 15.12 hrs Surf.Area= 7,646 sf Storage= 43 cf

Plug-Flow detention time= 13.8 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 13.9 min (1,080.1 - 1,066.2)

Volume	Invert	Ava	il.Storage	Storage Description	on		
#1	168.00'		58,289 cf	Custom Stage Da	ata (Irregular) Listed	below (Recalc)	
Elevation (feet)		rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
168.00 170.00		7,570 58,771	407.0 1,048.0	0 58,289	0 58,289	7,570 81,803	
Device F	Routing	In	nvert Outle	et Devices			
#1 Discarded 168.00' 1.0 2			3.00' 1.02	0 in/hr Exfiltratior	over Surface area		

Discarded OutFlow Max=0.18 cfs @ 15.12 hrs HW=168.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.18 cfs)

Pond 2P: Existing Depression


Summary for Pond 3aP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	6.03 cfs @ 0.22 cfs @	12.29 h 20.14 h 20.14 h	mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume= rs, Volume=	Depth = 0.98" for 0.677 af 0.677 af, Atten= 9 0.677 af 0.000 af	2-year event 96%, Lag= 470.9 min
			= 0.00-72.00 hrs, d Area= 35,098 sf St		
Center-of-Mass	det. time= 1,01	18.9 min (1,896.6 - 877.7)	af (100% of inflow)	
			Storage Descriptio		
#1 272	2.00' 8	1,503 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
272.00	25,677	871.0	0	0	25,677
274.00	57,990	1,103.0	81,503	81,503	62,174
Device Routing	g Inve	ert Outle	et Devices		
#1 Primary 273.75' 8.0' long x 8.0' breadth Broad-Crested Rectangula Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1. 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74				20 1.40 1.60 1.80 2.00 2.68 2.66 2.64 2.64	
#2 Discare	ded 272.0	00' 0.27	0 in/hr Exfiltration	over Surface area	
Discarded OutFlow Max=0.22 cfs @ 20.14 hrs HW=272.67' (Free Discharge)					

Discarded OutFlow Max=0.22 cfs @ 20.14 hrs HW=272.67' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.22 cfs)

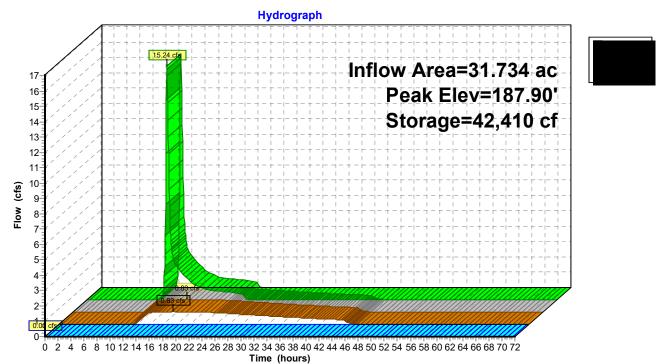
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=272.00' (Free Discharge)

Pond 3aP: Proposed Berm

Summary for Pond 3P: Existing Depression

Inflow Area =	31.734 ac,	4.54% Impervious, I	nflow Depth = 0.61" for 2-	year event
Inflow =	15.24 cfs @	12.23 hrs, Volume=	1.620 af	
Outflow =	0.83 cfs @	17.41 hrs, Volume=	1.620 af, Atten= 959	%, Lag= 311.1 min
Discarded =	0.83 cfs @	17.41 hrs, Volume=	1.620 af	
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 187.90' @ 17.41 hrs Surf.Area= 35,056 sf Storage= 42,410 cf


Plug-Flow detention time= 652.4 min calculated for 1.619 af (100% of inflow) Center-of-Mass det. time= 652.9 min (1,536.7 - 883.8)

Volume	Invert	: Avail	.Storage	Storage Descripti	on		
#1	186.00'	27	7,396 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)	
Elevatio (fee 186.0 188.0	t) O	urf.Area (sq-ft) 11,737 36,683	Perim. (feet) 422.0 753.0	Inc.Store (cubic-feet) 0 46,113	Cum.Store (cubic-feet) 0 46,113	Wet.Area (sq-ft) 11,737 42,709	
190.0	0	58,742	1,001.0	94,563	140,677	77,369	
192.0	0	78,452	1,254.0	136,720	277,396	122,825	
Device	Routing	Inv	vert Outl	et Devices			
#1	Discarded	186.	00' 1.02	020 in/hr Exfiltration over Surface area			
#2 Primary 191.00' 64.0' long x 16.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 Coef. (English) 2.68 2.70 2.64 2.63 2.64 2.63							
Discarded OutFlow Max=0.83 cfs @ 17.41 hrs HW=187.90' (Free Discharge)							

1=Exfiltration (Exfiltration Controls 0.83 cfs)

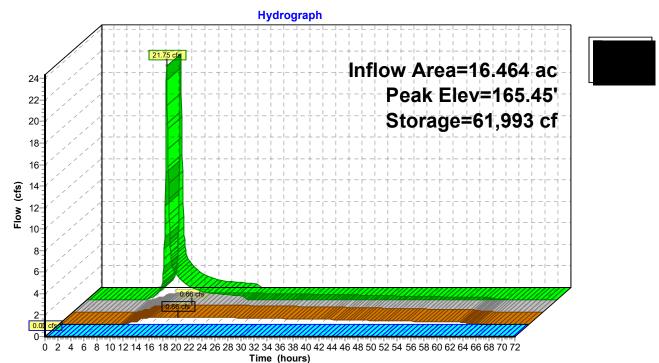
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=186.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 3P: Existing Depression

Summary for Pond 4P: Existing Depression

Inflow Area =	16.464 ac, 0.65%	Impervious, Inflow D	epth = 1.47"	for 2-year event
Inflow =	21.75 cfs @ 12.20	hrs, Volume=	2.016 af	
Outflow =	0.66 cfs @ 18.17	hrs, Volume=	2.015 af, Atte	en= 97%, Lag= 358.3 min
Discarded =	0.66 cfs @ 18.17	hrs, Volume=	2.015 af	
Primary =	0.00 cfs @ 0.00	hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 165.45' @ 18.17 hrs Surf.Area= 28,044 sf Storage= 61,993 cf


Plug-Flow detention time= 1,116.3 min calculated for 2.014 af (100% of inflow) Center-of-Mass det. time= 1,117.4 min (1,964.2 - 846.9)

Volume	Invert	Avail.Sto	orage	Storage Description	on		
#1	162.00'	1,773,2	203 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)	
Elevatio (fee		ırf.Area F (sq-ft)	[⊃] erim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
162.0	0	8,040	387.0	0	0	8,040	
164.0	0	20,064	890.0	27,203	27,203	59,171	
166.0	0	31,393	894.0	51,036	78,239	61,043	
168.0	0	59,552 1	,582.0	89,455	167,695	196,625	
170.0	0 1	06,611 3	,162.0	163,895	331,590	793,118	
172.0	0 1	42,449 3	,012.0	248,196	579,786	867,073	
174.0		82,259 2	,708.0	323,891	903,678	1,005,567	
176.0	0 2	22,778 3	,083.0	404,360	1,308,037	1,178,477	
178.0	0 2	42,528 3	,031.0	465,166	1,773,203	1,204,505	
Device #1	Routing Discarded	Invert 162.00'		et Devices 0 in/hr Exfiltratior	n over Surface are	a	
#2	Primary	177.00'	23.0	' long x 99.0' brea	adth Broad-Crest	ed Rectangular Weir	
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1	.20 1.40 1.60	
			Coe	f. (English) 2.68 2	.70 2.70 2.64 2.6	3 2.64 2.64 2.63	

Discarded OutFlow Max=0.66 cfs @ 18.17 hrs HW=165.45' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.66 cfs)

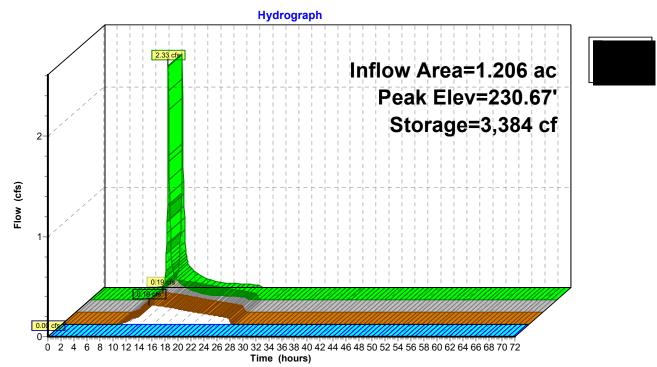
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=162.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 4P: Existing Depression

Summary for Pond 5bP: Proposed Berm

Inflow Area =	1.206 ac, 64.34% Impervious, Inflow D	epth = 1.68" for 2-year event
Inflow =	2.33 cfs @ 12.09 hrs, Volume=	0.169 af
Outflow =	0.19 cfs @ 13.48 hrs, Volume=	0.169 af, Atten= 92%, Lag= 83.2 min
Discarded =	0.19 cfs @ 13.48 hrs, Volume=	0.169 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 230.67' @ 13.48 hrs Surf.Area= 8,126 sf Storage= 3,384 cf


Plug-Flow detention time= 211.4 min calculated for 0.169 af (100% of inflow) Center-of-Mass det. time= 211.4 min (1,040.9 - 829.6)

Volume	Invert	Avail.	Storage	Storage Descriptio	n	
#1	230.00	2	6,529 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
230.0 232.0		2,519 28,762	275.0 1,204.0	0 26,529	0 26,529	2,519 111,868
Device	Routing	Inve	ert Outle	et Devices		
#1 #2	Discarded Primary	230.0 231.5	50' 10.0 Head 2.50 Coef	d (feet) 0.20 0.40 3.00 3.50 4.00 4	th Broad-Crested 0.60 0.80 1.00 1 .50 5.00 5.50 54 2.70 2.69 2.6	Rectangular Weir .20 1.40 1.60 1.80 2.00 8 2.68 2.66 2.64 2.64

Discarded OutFlow Max=0.19 cfs @ 13.48 hrs HW=230.67' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.19 cfs)

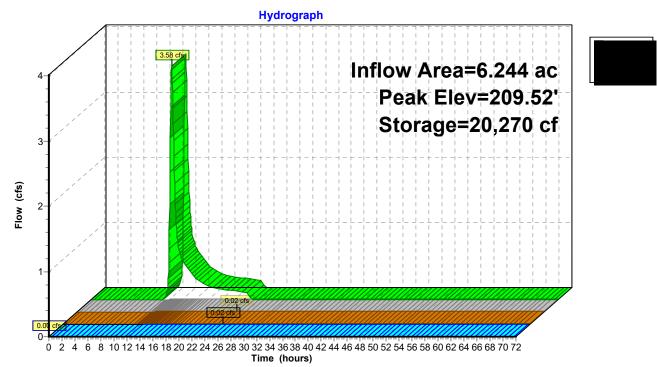
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=230.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 5bP: Proposed Berm

Summary for Pond 5cP: Proposed Berm

Inflow Area =	6.244 ac, 13.40% Impervious, Inflow De	epth = 0.93" for 2-year event
Inflow =	3.58 cfs @ 12.45 hrs, Volume=	0.484 af
Outflow =	0.02 cfs @ 24.62 hrs, Volume=	0.092 af, Atten= 99%, Lag= 730.0 min
Discarded =	0.02 cfs @ 24.62 hrs, Volume=	0.092 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 209.52' @ 24.62 hrs Surf.Area= 9,475 sf Storage= 20,270 cf


Plug-Flow detention time= 1,797.3 min calculated for 0.092 af (19% of inflow) Center-of-Mass det. time= 1,641.8 min (2,532.2 - 890.4)

Volume	Invert	Avail	.Storage	Storage Description	on	
#1	206.00	' 3	37,107 cf	Custom Stage Da	ata (Irregular) Liste	d below (Recalc)
Elevatio (fee 206.0 208.0 210.0	200 200 200 200	urf.Area (sq-ft) 2,702 6,061 10,702	Perim. (feet) 340.0 500.0 660.0	Inc.Store (cubic-feet) 0 8,540 16,545	Cum.Store (cubic-feet) 0 8,540 25,084	Wet.Area (sq-ft) 2,702 13,430 28,245 21,004
211.0	00	13,393	685.0	12,022	37,107	31,004
Device	Routing	Inv	vert Outle	et Devices		
#1 #2	Discarded Primary	206. 210.	.25' 4.0' Head 2.50 Coel	d (feet) 0.20 0.40 3.00 3.50 4.00 4	h Broad-Crested 0.60 0.80 1.00 1 4.50 5.00 5.50 .54 2.70 2.69 2.6	Rectangular Weir .20 1.40 1.60 1.80 2.00 8 2.68 2.66 2.64 2.64
Discarded OutFlow Max=0.02 cfs @ 24.62 hrs. HW=209.52' (Free Discharge)						

Discarded OutFlow Max=0.02 cfs @ 24.62 hrs HW=209.52' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

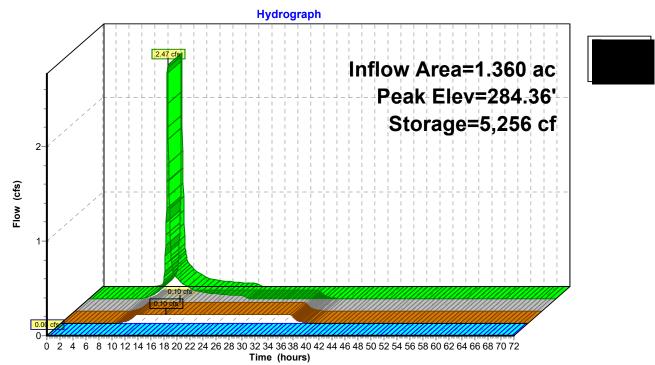
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=206.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 5cP: Proposed Berm

Summary for Pond 5dP: Proposed Berm

Inflow Area =	1.360 ac, 44.82% Impervious, Inflow D	epth = 1.76" for 2-year event
Inflow =	2.47 cfs @ 12.13 hrs, Volume=	0.199 af
Outflow =	0.10 cfs @ 16.13 hrs, Volume=	0.199 af, Atten= 96%, Lag= 240.0 min
Discarded =	0.10 cfs @ 16.13 hrs, Volume=	0.199 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 284.36' @ 16.13 hrs Surf.Area= 15,247 sf Storage= 5,256 cf


Plug-Flow detention time= 571.8 min calculated for 0.199 af (100% of inflow) Center-of-Mass det. time= 572.1 min (1,401.0 - 829.0)

Volume	Invert	Avail.St	orage	Storage Descriptio	n	
#1	284.00	34,4	488 cf	Custom Stage Da	i ta (Irregular) Liste	d below (Recalc)
Elevatio (fee 284.0 286.0	et) 00	urf.Area <u>(sq-ft)</u> 14,216 20,461	Perim. (feet) 751.0 810.0	Inc.Store (cubic-feet) 0 34,488	Cum.Store (cubic-feet) 0 34,488	Wet.Area (sq-ft) 14,216 21,709
Device	Routing	Invert	t Outle	et Devices		
#1 #2	Discarded Primary	284.00 285.00	' 8.0' Head 2.50 Coet	3.00 3.50 4.00 4	h Broad-Crested 0.60 0.80 1.00 1 .50 5.00 5.50 54 2.70 2.69 2.6	Rectangular Weir .20 1.40 1.60 1.80 2.00 8 2.68 2.66 2.64 2.64

Discarded OutFlow Max=0.10 cfs @ 16.13 hrs HW=284.36' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.10 cfs)

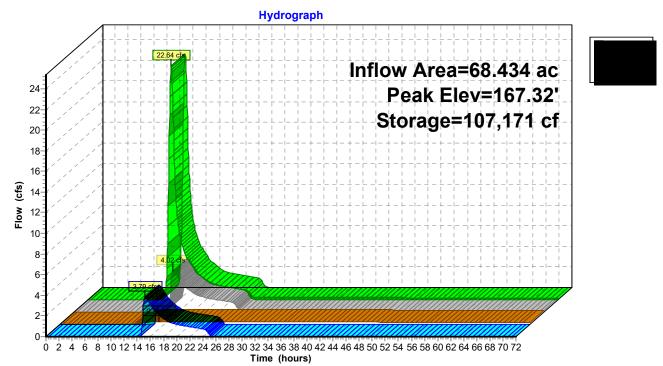
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=284.00' (Free Discharge) ☐ 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 5dP: Proposed Berm

Summary for Pond 5P: Existing Depression

Inflow Area =	68.434 ac, 25.36% Impervious, Inflow	Depth = 0.70" for 2-year event
Inflow =	22.64 cfs @ 12.74 hrs, Volume=	3.989 af
Outflow =	4.02 cfs @ 15.21 hrs, Volume=	2.407 af, Atten= 82%, Lag= 147.9 min
Discarded =	0.24 cfs @ 15.21 hrs, Volume=	1.064 af
Primary =	3.79 cfs @ 15.21 hrs, Volume=	1.343 af

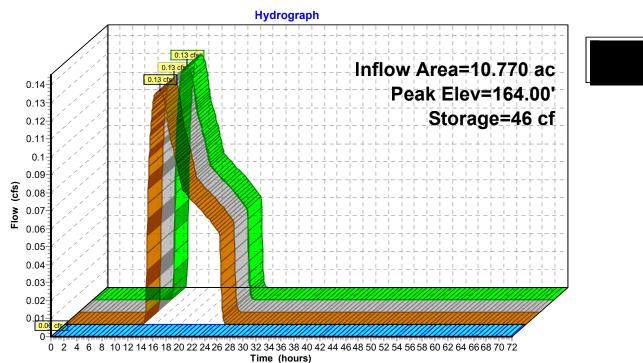
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.32' @ 15.21 hrs Surf.Area= 37,747 sf Storage= 107,171 cf


Plug-Flow detention time= 920.3 min calculated for 2.405 af (60% of inflow) Center-of-Mass det. time= 799.0 min (1,708.2 - 909.2)

Volume	Inver	t Avail.	Storage	Storage Description	on		
#1	162.00	' 13	4,374 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio	t)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
162.0	-	1,686	164.0	0	0	1,686	
164.0	0	17,454	653.0	16,376	16,376	33,489	
166.0	0	29,548	840.0	46,474	62,851	55,756	
168.0	0	42,358	938.0	71,523	134,374	69,736	
Device	Routing	Inv	ert Outl	et Devices			
#1	Discarded	162.0	00' 0.27	0 in/hr Exfiltratior	over Surface ar	ea	
#2 Primary 167.25' 71.0' long x 38.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 Coef. (English) 2.68 2.70 2.64 2.63 2.64 2.63							
Discarde	Discarded OutFlow Max=0.24 cfs @ 15.21 hrs HW=167.32' (Free Discharge)						

1=Exfiltration (Exfiltration Controls 0.24 cfs)

Primary OutFlow Max=3.56 cfs @ 15.21 hrs HW=167.32' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 3.56 cfs @ 0.71 fps)


Pond 5P: Existing Depression

Summary for Pond 6bP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	0.13 cfs @ 0.13 cfs @ 0.13 cfs @	7.08% Impervious 14.76 hrs, Volum 14.85 hrs, Volum 14.85 hrs, Volum 0.00 hrs, Volum	e= 0 e= 0 e= 0	.081 af	2-year event 0%, Lag= 5.3 min	
		e Span= 0.00-72 Surf.Area= 20,6				
Plug-Flow detention time= 5.9 min calculated for 0.081 af (100% of inflow) Center-of-Mass det. time= 5.9 min(1,060.1 - 1,054.2)						
Volume In	vert Avail.St	orage Storage [Description			
#1 164	l.00' 83,0	016 cf Custom	Stage Data	(Irregular)Listed	below (Recalc)	
Elevation	Surf.Area	Perim. In	c.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)		ic-feet)	(cubic-feet)	(sq-ft)	
164.00	20,590	712.0	0	0	20,590	
166.00		-	83,016	83,016	194,035	
100.00	00,007 1	,000.0	55,010	00,010	194,000	
Device Routing	g Invert	Outlet Devices				
#1 Primar	y 165.00'	' 10.0' long x 8	.0' breadth	Broad-Crested F	Rectangular Weir	
		Head (feet) 0.	20 0.40 0.6	0 0.80 1.00 1.2	0 1.40 1.60 1.80 2.00)
		2.50 3.00 3.5	0 4.00 4.50	5.00 5.50		
		Coef. (English)	2.43 2.54	2.70 2.69 2.68	2.68 2.66 2.64 2.64	
		2.64 2.65 2.6	5 2.66 2.66	2.68 2.70 2.74		
#2 Discard	ded 164.00	2.410 in/hr Ex	filtration ov	er Surface area		
Discarded OutFlow Max=1.15 cfs @ 14.85 hrs HW=164.00' (Free Discharge) 2=Exfiltration (Exfiltration Controls 1.15 cfs)						

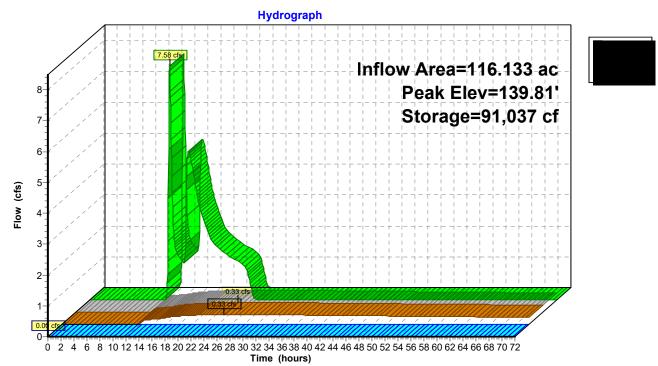
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=164.00' (Free Discharge) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Pond 6bP: Proposed Berm

Summary for Pond 6P: Existing Wetland

Inflow Area =	116.133 ac, 25.36% Impervious, Inflow I	Depth = 0.24" for 2-year event
Inflow =	7.58 cfs @ 12.29 hrs, Volume=	2.363 af
Outflow =	0.33 cfs @ 24.93 hrs, Volume=	1.333 af, Atten= 96%, Lag= 758.4 min
Discarded =	0.33 cfs @ 24.93 hrs, Volume=	1.333 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 139.81' @ 24.93 hrs Surf.Area= 82,917 sf Storage= 91,037 cf

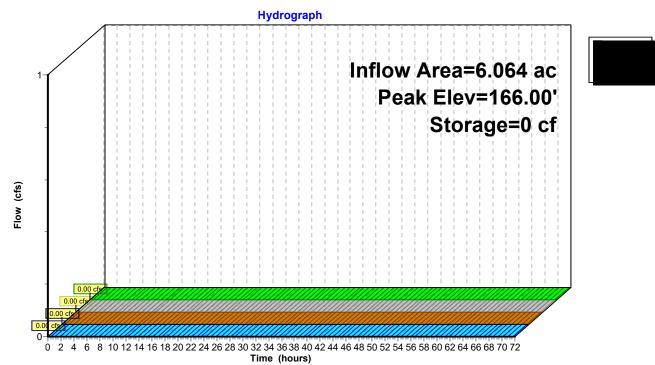

Plug-Flow detention time= 1,614.6 min calculated for 1.333 af (56% of inflow) Center-of-Mass det. time= 1,465.3 min (2,488.3 - 1,023.0)

Volume	Invert	Avail.St	orage	Storage Description	on		
#1	138.00'	330,4	171 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)	
Elevatio (fee		f.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
138.0	00 2	23,460	686.0	0	0	23,460	
140.0	90 90	91,023 1	,816.0	107,129	107,129	248,460	
142.0	00 13	33,681 2	,277.0	223,342	330,471	398,668	
Device	Routing	Invert	Outl	et Devices			
#1	Discarded	138.00	0.17	0 in/hr Exfiltration	over Surface are	ea	
#2	Primary	141.00	121.	0' long x 19.0' bre	adth Broad-Cres	ted Rectangular Weir	
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1	1.20 1.40 1.60	
			Coe	f. (English) 2.68 2.	70 2.70 2.64 2.6	63 2.64 2.64 2.63	
Disconded OutFlow May-0.00 at @ 04.00 km UW/-400.04U (Frag Discharge)							

Discarded OutFlow Max=0.33 cfs @ 24.93 hrs HW=139.81' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.33 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=138.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 6P: Existing Wetland

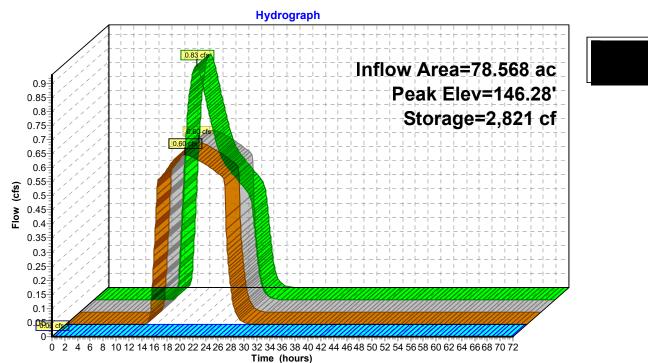

Summary for Pond 7aP: Proposed Berm

Inflow Area = 6.064 ac , 2.54% Impervious, Inflow Depth = 0.00 " for 2-year eventInflow = 0.00 cfs 0.00 hrs , Volume= 0.000 af Outflow = 0.00 cfs 0.00 hrs , Volume= 0.000 af , Atten= 0%, Lag= 0.0 minDiscarded = 0.00 cfs 0.00 hrs , Volume= 0.000 af Primary = 0.00 cfs 0.00 hrs , Volume= 0.000 af Routing by Stor-Ind method, Time Span= $0.00-72.00 \text{ hrs}$, dt= 0.05 hrs									
Peak Elev= 166.	00' @ 0.00 hrs	s Surf.Ar	ea= 5,638 sf Stora	ige= 0 cf					
			d: initial storage exe	ceeds outflow)					
Center-of-Mass	det. time= (not	calculate	ed: no inflow)						
Volume In	vert Avail.	Storage	Storage Description	n					
#1 166	.00' 38	3,794 cf	Custom Stage Da	ta (Irregular) Listed	below (Recalc)				
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)				
166.00	5,638	286.0	0	0	5,638				
168.00	37,929	753.0	38,794	38,794	44,264				
Device Routing	g Inve	ert Outle	et Devices						
#1 Primary 167.50'			8.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.66 2.64 2.64 2.64 2.65 2.66 2.66 2.68 2.70 2.74						
#2 Discard	ded 166.0	00' 0.27	0 in/hr Exfiltration	over Surface area					
Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=166.00' (Free Discharge)									

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=166.00' (Free Discharge) **2=Exfiltration** (Passes 0.00 cfs of 0.04 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=166.00' (Free Discharge)

Pond 7aP: Proposed Berm



Summary for Pond 7P: Existing Depression

Inflow Area = Inflow = Outflow = Discarded = Primary =	0.83 cfs @ 1 0.60 cfs @ 1 0.60 cfs @ 1	.71% Imperviou 6.05 hrs, Volu 8.60 hrs, Volu 8.60 hrs, Volu 0.00 hrs, Volu	me= me= me=	0.544 af	for 2-year event en= 27%, Lag= 152.9 min			
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 146.28' @ 18.60 hrs Surf.Area= 10,801 sf Storage= 2,821 cf								
Plug-Flow detention time= 47.4 min calculated for 0.544 af (100% of inflow) Center-of-Mass det. time= 47.3 min(1,176.0-1,128.7)								
Volume Inv	ert Avail.Sto	orage Storage	Description					
#1 146.00' 32,409 cf Custom Stage Data (Irregular) Listed below (Recalc)								
Elevation	Surf.Area F	Perim.	nc.Store	Cum.Store	Wet.Area			
(feet)	(sq-ft)		ibic-feet)	(cubic-feet)				
146.00		771.0	0	0	9,050			
148.00	,	236.0	32,409	32,409	,			
Device Routing	Invert	Outlet Device	es					
#1 Primary	147.50'	14.0' long x	90.0' breadt	h Broad-Cres	sted Rectangular Weir			
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60								
					2.63 2.64 2.64 2.63			
#2 Discard	ed 146.00'	2.410 in/hr Exfiltration over Surface area						
Discarded OutFlow Max=0.60 cfs @ 18.60 hrs HW=146.28' (Free Discharge)								

2=Exfiltration (Exfiltration Controls 0.60 cfs)

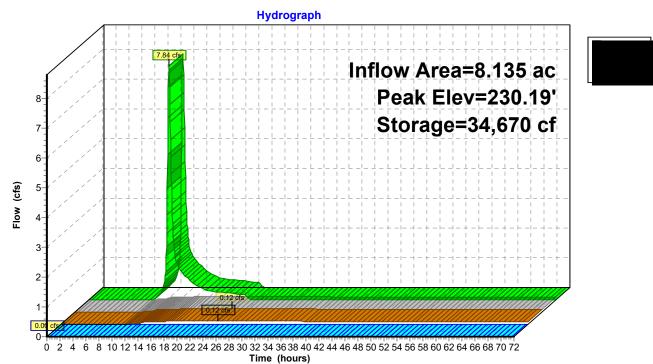
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=146.00' (Free Discharge)

Pond 7P: Existing Depression

Summary for Pond 8P: Existing Wetland

Inflow Area =	8.135 ac, 26.48% Impervious, Inflow De	epth = 1.34" for 2-year event
Inflow =	7.84 cfs @ 12.34 hrs, Volume=	0.906 af
Outflow =	0.12 cfs @ 24.27 hrs, Volume=	0.485 af, Atten= 99%, Lag= 715.4 min
Discarded =	0.12 cfs @ 24.27 hrs, Volume=	0.485 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 230.19' @ 24.27 hrs Surf.Area= 29,809 sf Storage= 34,670 cf


Plug-Flow detention time= 1,672.5 min calculated for 0.485 af (54% of inflow) Center-of-Mass det. time= 1,552.7 min (2,415.0 - 862.3)

Volume	Invert	Avail.St	orage	Storage Descripti	ion		
#1	228.00'	130,0)34 cf	Custom Stage D)ata (Irregular) List	ed below (Recalc)	
Elevation (feet) 228.00 230.00 232.00	 	(sq-ft) 5,806 25,974	Perim. (feet) 459.0 862.0 ,189.0	Inc.Store (cubic-feet) 0 29,374 100,661	Cum.Store (cubic-feet) 0 29,374 130,034	Wet.Area (sq-ft) 5,806 48,191 101,601	
Device	Routing	Invert	Outl	et Devices			
	Discarded Primary	228.00 231.50	158. Hea	d (feet) 0.20 0.40	oreadth Broad-Cr 0.60 0.80 1.00	ested Rectangular Weir	

Discarded OutFlow Max=0.12 cfs @ 24.27 hrs HW=230.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=228.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 8P: Existing Wetland

Summary for Pond 9P: Existing Wetland

Inflow Area =	83.043 ac, 27.18% Impervious, Inflow De	epth = 0.32" for 2-year event
Inflow =	7.63 cfs @ 12.27 hrs, Volume=	2.235 af
Outflow =	7.59 cfs @ 12.29 hrs, Volume=	2.235 af, Atten= 1%, Lag= 1.0 min
Discarded =	0.01 cfs @ 12.29 hrs, Volume=	0.008 af
Primary =	7.58 cfs @ 12.29 hrs, Volume=	2.227 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 148.20'@ 12.29 hrs Surf.Area= 2,621 sf Storage= 476 cf

Plug-Flow detention time= 1.4 min calculated for 2.233 af (100% of inflow) Center-of-Mass det. time= 1.4 min (1,018.7 - 1,017.3)

Volume	Inver	t Avail	.Storage	Storage Descripti	on		
#1	148.00)' 83	34,530 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)	
Elevation (feet 148.00 150.00 152.00 154.00 156.00	:) 0 0 0 0	Surf.Area (sq-ft) 2,138 9,156 135,719 178,250 213,235	Perim. (feet) 180.0 387.0 2,199.0 2,327.0 2,588.0	Inc.Store (cubic-feet) 0 10,479 120,084 313,004 390,963	Cum.Store (cubic-feet) 0 10,479 130,563 443,567 834,530	Wet.Area (sq-ft) 2,138 11,495 384,391 430,714 532,915	
	Routing	,		et Devices	,		
	Discarded Primary	l 148. 148.	.00' 31.0 Hea	d (feet) 0.20 0.40	adth Broad-Crest 0.60 0.80 1.00	ed Rectangular Wei	r
Discarded OutFlow Max=0.01 cfs @ 12.29 hrs HW=148.20' (Free Discharge)							

^T—1=Exfiltration (Exfiltration Controls 0.01 cfs)

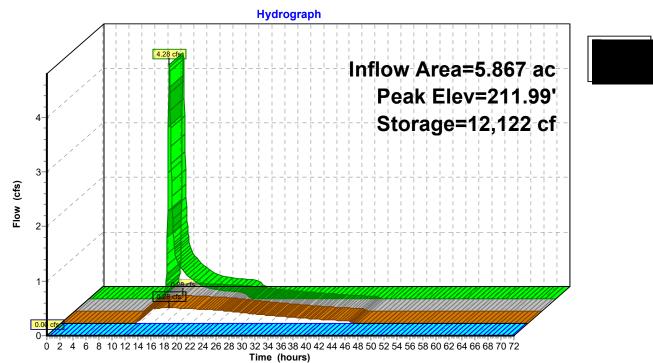
Primary OutFlow Max=7.43 cfs @ 12.29 hrs HW=148.20' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 7.43 cfs @ 1.20 fps)

Pond 9P: Existing Wetland

Summary for Pond 10aP: Proposed Berm

Inflow Area =	5.867 ac, 13.96% Impervious, Inflow De	epth = 0.98" for 2-year event
Inflow =	4.28 cfs @ 12.38 hrs, Volume=	0.480 af
Outflow =	0.28 cfs @ 16.62 hrs, Volume=	0.480 af, Atten= 93%, Lag= 254.1 min
Discarded =	0.28 cfs @ 16.62 hrs, Volume=	0.480 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 211.99' @ 16.62 hrs Surf.Area= 12,024 sf Storage= 12,122 cf

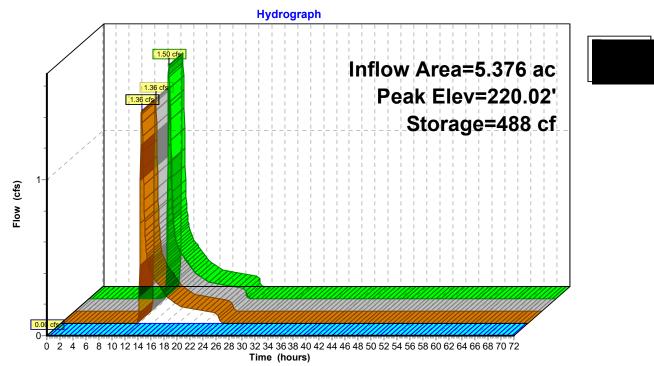

Plug-Flow detention time= 575.4 min calculated for 0.480 af (100% of inflow) Center-of-Mass det. time= 575.8 min (1,463.1 - 887.3)

Volume	Inve	rt Avail.	Storage	Storage Descriptio	n	
#1	210.0	0' 5	5,040 cf	Custom Stage Da	ta (Irregular) Listed	d below (Recalc)
Elevatio (fee 210.0	et)	Surf.Area (sq-ft) 1,713	Perim. (feet) 254.0	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 1,713
210.0	-	12,100	654.0	12,244	12,244	30,630
214.0	00	32,319	899.0	42,796	55,040	60,948
Device #1 #2	Routing Discarded Primary		00' 1.02 50' 10.0 Head 2.50 Coef	3.00 3.50 4.00 4.	th Broad-Crested 0.60 0.80 1.00 1. 50 5.00 5.50 54 2.70 2.69 2.68	Rectangular Weir 20 1.40 1.60 1.80 2.00 3 2.68 2.66 2.64 2.64
Discard	ed OutFlo	w Max=0.2	8 cfs @ 1	6.62 hrs HW=211.9	9' (Free Dischar	ge)

^T—1=Exfiltration (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=210.00' (Free Discharge) —2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 10aP: Proposed Berm

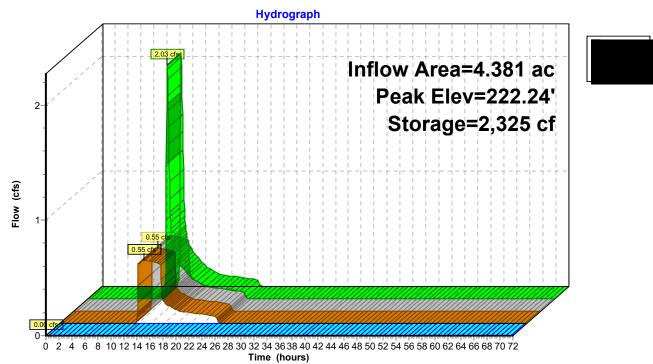


Summary for Pond 11bP: Proposed Berm

Outflow = Discarded =	= 1.50 cfs @ = 1.36 cfs @	 12.31 hr 12.45 hr 12.45 hr 12.45 hr 	npervious, Inflow E s, Volume= s, Volume= s, Volume= s, Volume=	0.215 af	2-year event 9%, Lag= 8.0 min
			= 0.00-72.00 hrs, d rea= 25,228 sf St		
Center-of-M	lass det. time= 6.0	min (924.		,	
Volume	Invert Avail	.Storage	Storage Descriptio	n	
#1	220.00' 6	6,163 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
			-		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
220.00	25,086	664.0	0	0	25,086
222.00	41,783	802.0	66,163	66,163	41,252
	,		,	,	. ,
Device Ro	outing Inv	ert Outle	t Devices		
-	imary 221.	00' 30 0'	long x 8 0' bread	th Broad-Crested I	Rectangular Weir
<i>"</i> ····					20 1.40 1.60 1.80 2.00
			3.00 3.50 4.00 4		
					2.68 2.66 2.64 2.64
				.66 2.68 2.70 2.74	
#2 Di:	scarded 220.			over Surface area	
	OutFlow Max=1.4 ration (Exfiltration			02' (Free Discharge	e)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=220.00' (Free Discharge)

Pond 11bP: Proposed Berm

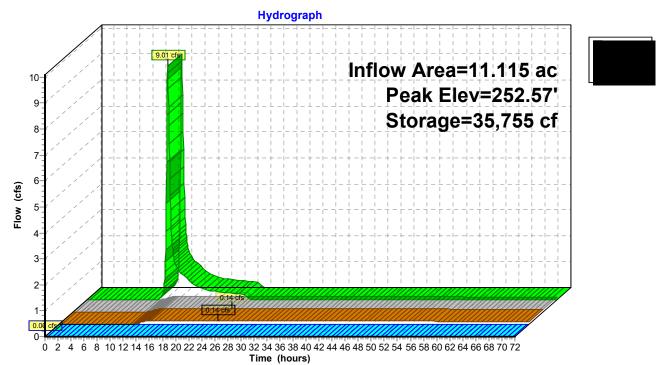

Summary for Pond 11cP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	2.03 cfs @ 0.55 cfs @	12.23 h 12.88 h 12.88 h	mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= rs, Volume=	0.235 af	2-year event 73%, Lag= 38.6 min
			= 0.00-72.00 hrs, dt Area= 9,848 sf Stora		
Plug-Flow detent Center-of-Mass d			ulated for 0.235 af (0.5 - 898.5)	100% of inflow)	
Volume Inv	vert Avail.S	Storage	Storage Description	1	
#1 222.	00' 24	,481 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
222.00	9,148	421.0	0	0	9,148
224.00	15,620	537.0	24,481	24,481	18,043
Device Routing	Inve	rt Outle	et Devices		
#1 Primary	223.7		long x 8.0' breadt		
					0 1.40 1.60 1.80 2.00
			3.00 3.50 4.00 4.		
					2.68 2.66 2.64 2.64
			2.65 2.65 2.66 2.0		
#2 Discard	ed 222.0	0 2.41	0 in/hr Exfiltration o	over Surface area	
Discarded OutF	l ow Max=0.55	cfs @ 1	2.88 hrs HW=222.2	4' (Free Discharge	e)

Discarded OutFlow Max=0.55 cfs @ 12.88 hrs HW=222.24' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.55 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=222.00' (Free Discharge)

Pond 11cP: Proposed Berm

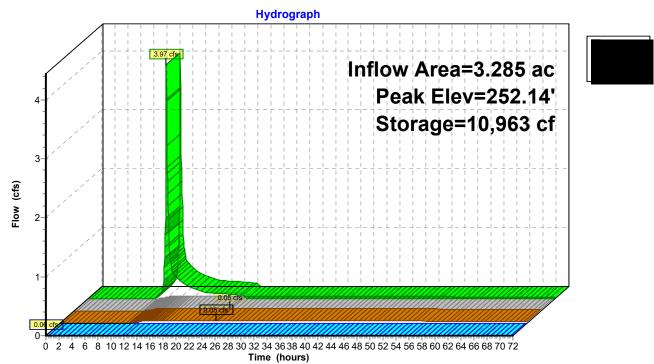

Summary for Pond 12bP: Proposed Berm

Inflow A Inflow Outflow Discarde Primary	= = ed =	9.01 cfs @ 0.14 cfs @	12.36 hr 24.36 hr 24.36 hr	npervious, Inflow E s, Volume= s, Volume= s, Volume= s, Volume=	Depth = 1.04" for 0.961 af 0.630 af, Atten= 9 0.630 af 0.000 af	2-year event 98%, Lag= 720.2 min
				= 0.00-72.00 hrs, d rea= 22,452 sf St		
Center-o	of-Mass d	et. time= 1,559	9.6 min (alculated for 0.629 2,442.6 - 883.1)		
Volume				Storage Descriptio		
#1	250.0	00' 71,	013 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
250.0	/	4,608	359.0	0	0	4,608
252.0		20,843	719.0	23,501	23,501	35,509
254.0		26,794	769.0	47,513	71,013	41,614
Device	Routing	Inver		t Devices	,	
#1	Primary	253.00			n Broad-Crested R	
						0 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4		
						2.68 2.66 2.64 2.64
	_				.66 2.68 2.70 2.74	
#2	Discarde	ed 250.00	0.270	in/hr Exfiltration	over Surface area	

Discarded OutFlow Max=0.14 cfs @ 24.36 hrs HW=252.57' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=250.00' (Free Discharge)

Pond 12bP: Proposed Berm


Summary for Pond 12cP: Proposed Berm

Inflow A Inflow Outflow Discarde Primary	= = ed =	3.97 cfs @ 0.05 cfs @	12.10 hr 24.04 hr 24.04 hr		0epth = 1.09" for 0.299 af 0.208 af, Atten= 9 0.208 af 0.000 af	2-year event 99%, Lag= 716.6 min
				= 0.00-72.00 hrs, dt rea= 7,932 sf Stor		
Center-o	of-Mass de	et. time= 1,524	.6 min (alculated for 0.208 2,383.4 - 858.8)		
Volume				Storage Description		
#1	250.0	0' 29,3	339 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
250.0	- /	2,632	234.0	0	0	2,632
252.0		7,654	458.0	9,850	9,850	14,987
254.0	00	11,997	575.0	19,489	29,339	24,660
Device	Routing	Invert	t Outle	t Devices		
#1	Primary	253.75	' 4.0' le	ong x 8.0' breadth	n Broad-Crested R	ectangular Weir
						0 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.		
						2.68 2.66 2.64 2.64
					66 2.68 2.70 2.74	
#2	Discarde	d 250.00	0.270	in/hr Exfiltration	over Surface area	

Discarded OutFlow Max=0.05 cfs @ 24.04 hrs HW=252.14' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=250.00' (Free Discharge)

Pond 12cP: Proposed Berm

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 H	Printed 10/3/2019
Runoff by SCS	.00-72.00 hrs, dt=0.05 hrs, 1441 points TR-20 method, UH=SCS, Weighted-CN +Trans method - Pond routing by Stor-Ind method
Subcatchment1aS: Drainage Area 1a	Runoff Area=3,964,196 sf 11.60% Impervious Runoff Depth=1.12" ow Length=4,424' Tc=105.4 min CN=59 Runoff=27.96 cfs 8.513 af
Subcatchment1bS: Drainage Area 1b	Runoff Area=146,589 sf 28.06% Impervious Runoff Depth=0.56" Flow Length=342' Tc=9.9 min CN=49 Runoff=1.01 cfs 0.158 af
Subcatchment1cS: Drainage Area 1c F	Runoff Area=408,420 sf 8.65% Impervious Runoff Depth=2.12" Flow Length=1,734' Tc=30.4 min CN=73 Runoff=12.94 cfs 1.660 af
Subcatchment1dS: Drainage Area 1a F	Runoff Area=341,088 sf 7.37% Impervious Runoff Depth=2.21" Flow Length=4,424' Tc=105.4 min CN=74 Runoff=5.47 cfs 1.439 af
Subcatchment2S: Drainage Area 2	Runoff Area=233,007 sf 1.98% Impervious Runoff Depth=0.47" Flow Length=289' Tc=12.1 min CN=47 Runoff=1.14 cfs 0.209 af
Subcatchment3aS: Drainage Area 3a	Runoff Area=359,815 sf 3.27% Impervious Runoff Depth=2.12" Flow Length=794' Tc=19.3 min CN=73 Runoff=13.82 cfs 1.463 af
Subcatchment3bS: Drainage Area 3b F	Runoff Area=1,022,537 sf 4.99% Impervious Runoff Depth=1.89" Flow Length=1,119' Tc=14.7 min CN=70 Runoff=38.44 cfs 3.696 af
Subcatchment4S: Drainage Area 4	Runoff Area=717,184 sf 0.65% Impervious Runoff Depth=2.81" Flow Length=974' Tc=13.9 min CN=81 Runoff=41.95 cfs 3.854 af
Subcatchment5aS: Drainage Area 5 F	Runoff Area=2,242,858 sf 25.20% Impervious Runoff Depth=2.05" Flow Length=2,517' Tc=49.6 min CN=72 Runoff=53.17 cfs 8.775 af
Subcatchment5bS: Drainage Area 5	Runoff Area=52,534 sf 64.34% Impervious Runoff Depth=3.09" Tc=6.0 min CN=84 Runoff=4.25 cfs 0.310 af
Subcatchment5cS: Drainage Area 5	Runoff Area=271,995 sf 13.40% Impervious Runoff Depth=2.05" Flow Length=1,346' Tc=29.3 min CN=72 Runoff=8.41 cfs 1.064 af
Subcatchment5dS: Drainage Area 5	Runoff Area=59,233 sf 44.82% Impervious Runoff Depth=3.18" Flow Length=157' Tc=9.1 min CN=85 Runoff=4.44 cfs 0.361 af
Subcatchment6aS: Drainage Area 6	Runoff Area=972,255 sf 22.55% Impervious Runoff Depth=0.47" Flow Length=1,544' Tc=44.6 min CN=47 Runoff=3.12 cfs 0.871 af
Subcatchment6bS: Drainage Area 6	Runoff Area=469,126 sf 17.08% Impervious Runoff Depth=0.51" Flow Length=549' Tc=19.6 min CN=48 Runoff=2.44 cfs 0.462 af
Subcatchment7aS: Drainage Area 7a	Runoff Area=264,166 sf 2.54% Impervious Runoff Depth=0.11" Flow Length=3,124' Tc=95.4 min CN=37 Runoff=0.08 cfs 0.053 af
Subcatchment7bS: Drainage Area 7b	Runoff Area=3,158,253 sf 14.64% Impervious Runoff Depth=0.51" Flow Length=3,232' Tc=99.9 min CN=48 Runoff=7.71 cfs 3.111 af

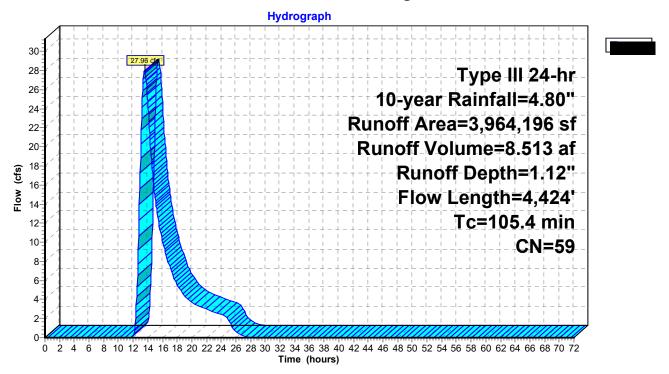
Quinebaug Proposed Hydrology Prepared by Tighe & Bond	Type III 24-hr 10-year Rainfall=4.80" Printed 10/3/2019
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solution	ons LLC Page 113
	sf 26.48% Impervious Runoff Depth=2.63" 23.6 min CN=79 Runoff=15.72 cfs 1.783 af
	sf 35.74% Impervious Runoff Depth=1.74" I7.1 min CN=68 Runoff=20.47 cfs 2.117 af
	sf 13.96% Impervious Runoff Depth=2.12" I7.2 min CN=73 Runoff=10.29 cfs 1.039 af
Subcatchment10bS: Drainage Area 10 Runoff Area=1,072,278 Flow Length=1,752' Tc=4	sf 13.17% Impervious Runoff Depth=1.67" 40.2 min CN=67 Runoff=22.54 cfs 3.416 af
	sf 10.23% Impervious Runoff Depth=1.81" 38.3 min CN=69 Runoff=49.11 cfs 7.156 af
	4 sf 1.97% Impervious Runoff Depth=1.32" =16.2 min CN=62 Runoff=5.47 cfs 0.590 af
	6 sf 1.10% Impervious Runoff Depth=1.59" =14.0 min CN=66 Runoff=5.98 cfs 0.582 af
Subcatchment12aS: Drainage Area 12a Runoff Area=1,702,429 Flow Length=1,596' Tc=4	sf 14.03% Impervious Runoff Depth=2.12" 44.7 min CN=73 Runoff=44.61 cfs 6.920 af
	9 sf 7.70% Impervious Runoff Depth=2.21" I4.5 min CN=74 Runoff=21.73 cfs 2.043 af
	6 sf 8.38% Impervious Runoff Depth=2.29" c=6.0 min CN=75 Runoff=8.61 cfs 0.626 af
	2 sf 0.05% Impervious Runoff Depth=1.59" ⊧9.8 min CN=66 Runoff=49.82 cfs 4.293 af
	Max Vel=4.06 fps Inflow=10.29 cfs 1.039 af pacity=51.58 cfs Outflow=10.04 cfs 1.039 af
	Max Vel=4.60 fps Inflow=21.73 cfs 2.043 af pacity=45.66 cfs Outflow=20.63 cfs 2.043 af
Reach DP-1: Off-Site West	Inflow=31.40 cfs 12.135 af Outflow=31.40 cfs 12.135 af
Reach DP-2: Off-Site South	Inflow=22.54 cfs 7.625 af Outflow=22.54 cfs 7.625 af
Reach DP-3: Off-Site East	Inflow=44.61 cfs 7.729 af Outflow=44.61 cfs 7.729 af
Reach DP-4: Off-Site Southeast	Inflow=69.42 cfs 11.449 af Outflow=69.42 cfs 11.449 af

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Sol	Type III 24-hr 10-year Rainfall=4.80" Printed 10/3/2019 Jutions LLC Page 114
	52.02' Storage=328 cf Inflow=1.01 cfs 0.158 af y=0.00 cfs 0.000 af Outflow=0.92 cfs 0.158 af
	l' Storage=13,095 cf Inflow=12.94 cfs 1.660 af 12.28 cfs 1.368 af Outflow=12.36 cfs 1.660 af
	79' Storage=24,646 cf Inflow=5.47 cfs 1.439 af y=3.43 cfs 0.851 af Outflow=3.52 cfs 1.300 af
Pond 2P: Existing Depression Peak Elev=168	.25' Storage=2,295 cf Inflow=1.14 cfs 0.209 af Outflow=0.27 cfs 0.209 af
	' Storage=50,389 cf Inflow=13.82 cfs 1.463 af y=0.00 cfs 0.000 af Outflow=0.29 cfs 1.250 af
	Storage=112,497 cf Inflow=38.44 cfs 3.696 af y=0.00 cfs 0.000 af Outflow=1.24 cfs 3.696 af
	Storage=124,488 cf Inflow=41.95 cfs 3.854 af y=0.00 cfs 0.000 af Outflow=1.11 cfs 3.611 af
	.02' Storage=6,935 cf Inflow=4.25 cfs 0.310 af y=0.00 cfs 0.000 af Outflow=0.29 cfs 0.310 af
	45' Storage=30,175 cf Inflow=8.41 cfs 1.064 af y=0.88 cfs 0.394 af Outflow=0.90 cfs 0.509 af
	72' Storage=10,955 cf Inflow=4.44 cfs 0.361 af y=0.00 cfs 0.000 af Outflow=0.10 cfs 0.361 af
	Storage=118,856 cf Inflow=53.17 cfs 9.169 af 43.55 cfs 6.496 af Outflow=43.79 cfs 7.579 af
	.10' Storage=2,066 cf Inflow=2.44 cfs 0.462 af y=0.00 cfs 0.000 af Outflow=1.24 cfs 0.462 af
	Storage=220,087 cf Inflow=50.57 cfs 9.473 af 11.37 cfs 4.209 af Outflow=11.82 cfs 6.266 af
	66.12' Storage=719 cf Inflow=0.08 cfs 0.053 af y=0.00 cfs 0.000 af Outflow=0.04 cfs 0.053 af
	76' Storage=26,747 cf Inflow=7.71 cfs 3.111 af y=4.95 cfs 1.403 af Outflow=6.20 cfs 3.111 af
	5' Storage=69,294 cf Inflow=15.72 cfs 1.783 af y=0.00 cfs 0.000 af Outflow=0.20 cfs 0.844 af
	69' Storage=2,089 cf Inflow=47.85 cfs 8.613 af 47.59 cfs 8.601 af Outflow=47.61 cfs 8.613 af

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 Hydror	Type III 24-hr 10-year Rainfall=4.80"Printed 10/3/2019CAD Software Solutions LLCPage 115
	Peak Elev=213.02' Storage=29,048 cf Inflow=10.04 cfs 1.039 af 1.039 af Primary=0.00 cfs 0.000 af Outflow=0.50 cfs 1.039 af
Pond 11bP: Proposed Berm Discarded=1.50 cfs	Peak Elev=220.24' Storage=6,323 cf Inflow=5.47 cfs 0.590 af 0.590 af Primary=0.00 cfs 0.000 af Outflow=1.50 cfs 0.590 af
Pond 11cP: Proposed Berm Discarded=0.67 cfs	Peak Elev=222.97' Storage=10,253 cf Inflow=5.98 cfs 0.582 af 0.582 af Primary=0.00 cfs 0.000 af Outflow=0.67 cfs 0.582 af
	Peak Elev=253.26' Storage=52,011 cf Inflow=20.63 cfs 2.043 af 0.707 af Primary=1.95 cfs 0.809 af Outflow=2.10 cfs 1.516 af
Pond 12cP: Proposed Berm Discarded=0.07 cfs	Peak Elev=253.56' Storage=24,310 cf Inflow=8.61 cfs 0.626 af 0.310 af Primary=0.00 cfs 0.000 af Outflow=0.07 cfs 0.310 af
Total Dunoff Area - 522 240 av	e Bunoff Volume - 66 565 af Average Bunoff Depth - 1 50

Total Runoff Area = 533.249 ac Runoff Volume = 66.565 af Average Runoff Depth = 1.50" 86.79% Pervious = 462.798 ac 13.21% Impervious = 70.450 ac

Summary for Subcatchment 1aS: Drainage Area 1a

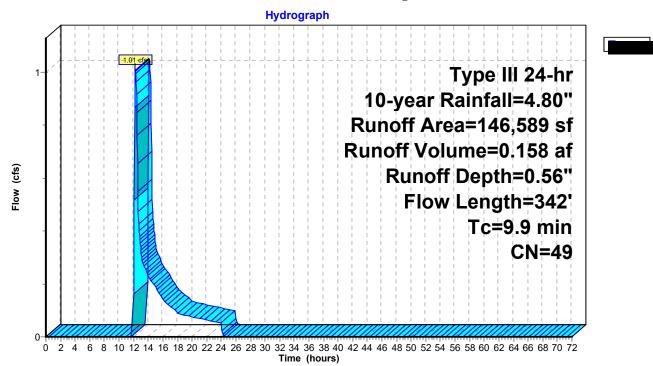

Runoff = 27.96 cfs @ 13.58 hrs, Volume= 8.513 af, Depth= 1.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.80"

A	rea (sf)	CN [Description			
4	82,442	30 N	leadow, no	on-grazed,	HSG A	
5	38,022	58 N	Aeadow, no	on-grazed,	HSG B	
9	42,184	71 N	Aeadow, no	on-grazed,	HSG C	
	0	78 N	Aeadow, no	on-grazed,	HSG D	
5	15,616			od, HSG A		
	04,263			od, HSG B		
	25,155			od, HSG C		
	10,840			od, HSG D		
	33,102		Gravel pit, I			
*	0		Gravel pit, I			
*	0		Gravel pit, I			
*	0		Gravel pit, I			
	14,914		Vater body			
*	52,839		Gravel road	1		
*	0		Structure			
^ +	1,438		Panels			
*	4,403		Equipment	pad		
-	38,978		Paved			
	64,196		Veighted A			
	04,463		88.40% Pervious Area 11.60% Impervious Area			
4	59,733		1.00% 111	Dervious Ar	ea	
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9.3	50	0.0400	0.09		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 3.20"	
11.3	356	0.0110	0.52		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
23.1	433	0.0020	0.31		Shallow Concentrated Flow,	
					Short Grass Pasture Kv= 7.0 fps	
4.3	222	0.0300	0.87		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
10.5	766	0.0300	1.21		Shallow Concentrated Flow,	
					Short Grass Pasture Kv= 7.0 fps	
46.9	2,597	0.0340	0.92		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
105 /	1 121	Total				

105.4 4,424 Total

Subcatchment 1aS: Drainage Area 1a

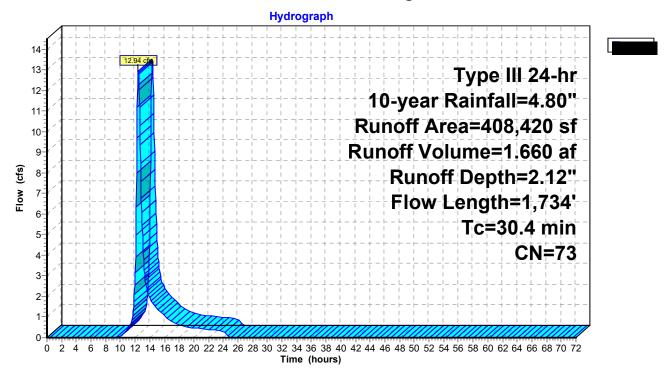

Summary for Subcatchment 1bS: Drainage Area 1b

Runoff = 1.01 cfs @ 12.23 hrs, Volume= 0.158 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.80"

	A	rea (sf)	CN E	Description								
	1	03,427	30 N	30 Meadow, non-grazed, HSG A								
		2,036	58 N	leadow, no	on-grazed,	HSG B						
*		7,140	98 F	Panels	-							
*		33,986	98 E	Basin								
	1	46,589	49 V	Veighted A	verage							
	1	05,463			vious Area							
		41,126	2	8.06% Imp	pervious Ar	ea						
	Тс	Length	Slope	Velocity	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	7.4	50	0.0100	0.11		Sheet Flow,						
						Grass: Short n= 0.150 P2= 3.20"						
	2.5	292	0.0762	1.93		Shallow Concentrated Flow,						
_						Short Grass Pasture Kv= 7.0 fps						
	9.9	342	Total									

Subcatchment 1bS: Drainage Area 1b

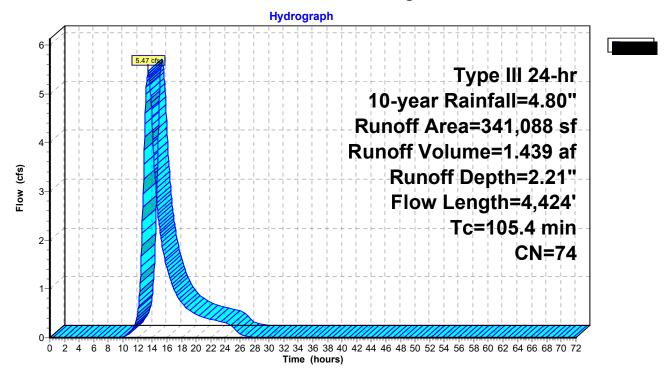

Summary for Subcatchment 1cS: Drainage Area 1c

Page 119

Runoff 12.94 cfs @ 12.44 hrs, Volume= 1.660 af, Depth= 2.12" =

	A	rea (sf)	CN	Description								
	HSG A											
		0	58	Meadow, non-grazed, HSG B								
	3	51,878	71	Meadow, non-grazed, HSG C								
		HSG D										
	0 78 Meadow, non-grazed, HSG D 0 30 Woods, Good, HSG A											
		0	55	Woods, Go	od, HSG B							
		18,313	70	Woods, Go	od, HSG C							
		0	77	Woods, Go	od, HSG D							
*		0	70	Gravel pit, l	HSG A							
*		0	81	Gravel pit, l	HSG B							
*		0	88	Gravel pit, l	HSG C							
*		0	92	Gravel pit, l	HSG D							
*		2,416	98	Water body	,							
*		2,918		Gravel road	ł							
*		0	98	Structure								
*		5,460	98	Panels								
*		0	98	Equipment	pad							
*		10,197										
*		17,238	98 Basin									
	4	08,420	0 73 Weighted Average									
	373,109 91.35% Pervious Area 35,311 8.65% Impervious Area											
	Тс	Length	Slope	Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	7.1	50	0.0800	0.12		Sheet Flow,						
						Woods: Light underbrush n= 0.400 P2= 3.20"						
	23.3	1,684	0.0297	1.21		Shallow Concentrated Flow,						
						Short Grass Pasture Kv= 7.0 fps						
	30.4	1,734	Total									

Subcatchment 1cS: Drainage Area 1c


Summary for Subcatchment 1dS: Drainage Area 1a

Page 121

Runoff 5.47 cfs @ 13.45 hrs, Volume= 1.439 af, Depth= 2.21" =

_	A	rea (sf)	CN	Description					
		0	30	Meadow, no	on-grazed,	HSG A			
		0	58	Meadow, no	on-grazed,	HSG B			
	2	69,007	71	Meadow, no	on-grazed,	HSG C			
		0	78	Meadow, no	on-grazed,	HSG D			
		0	30	Woods, Go	od, HSG A				
		0	55	Woods, Go	Woods, Good, HSG B				
		34,713	70	Woods, Good, HSG C					
		0	77	Woods, Go	od, HSG D				
*		0	70	Gravel pit, I	HSG A				
*		0		Gravel pit, I					
*		0		Gravel pit, I	HSG C				
*		0		Gravel pit, I					
*		0		Water body					
*		12,239		Gravel road	ł				
*		0		Structure					
*		7,140		Panels					
*		629		Equipment	pad				
*		1,074		Paved					
*		16,286		Basin					
	341,088 74			Weighted A					
		15,959		92.63% Pervious Area					
	25,129			7.37% Impervious Area					
	Тс	Length	Slope	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft		(cfs)				
	9.3	50	0.0400	//	(0.0)	Sheet Flow,			
	0.0	00	0.0400	0.00		Woods: Light underbrush n= 0.400 P2= 3.20"			
	11.3	356	0.0110	0.52		Shallow Concentrated Flow,			
	11.0	000	0.0110	0.02		Woodland Kv= 5.0 fps			
	23.1	433	0.0020	0.31		Shallow Concentrated Flow,			
	2011	100	0.002	0.01		Short Grass Pasture Kv= 7.0 fps			
	4.3	222	0.0300	0.87		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	10.5	766	0.0300	0 1.21		Shallow Concentrated Flow,			
				• • • •		Short Grass Pasture Kv= 7.0 fps			
	46.9	2,597	0.0340	0.92		Shallow Concentrated Flow,			
	-	,		-		Woodland Kv= 5.0 fps			
	105.4	4,424	Total			· · ·			
		-							

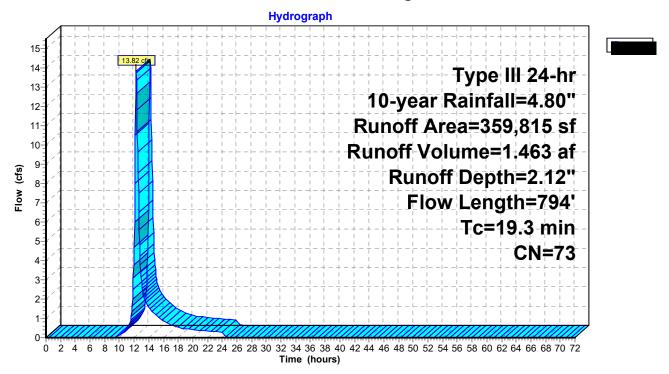
Subcatchment 1dS: Drainage Area 1a

Summary for Subcatchment 2S: Drainage Area 2

Runoff 1.14 cfs @ 12.38 hrs, Volume= 0.209 af, Depth= 0.47" =

	Area (sf) CN Description								
	117,788 30 Meadow, non-grazed, HSG A								
	29,605 58 Meadow, non-grazed, HSG B								
		0	71	Meadow, no	on-grazed,	HSG C			
		0	78	Meadow, no	on-grazed,	HSG D			
		16,114	30	Woods, Go	od, HSG A				
		0		Woods, Go					
		0		Woods, Go					
		0		Woods, Go					
*		58,620		Gravel pit, l					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, l					
*		0		Water body					
*		6,260		Gravel road	1				
		0							
<u>~</u>		4,620		98 Panels					
		33,007	98.02% Pervious Area						
	2	28,387							
		4,620	1.98% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	Description			
((min)	(feet)	(ft/ft)		(cfs)	Decemption			
	6.8	50	0.0900			Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.20"			
	5.3	239	0.0230	0.76		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	12.1	289	Total						

Subcatchment 2S: Drainage Area 2

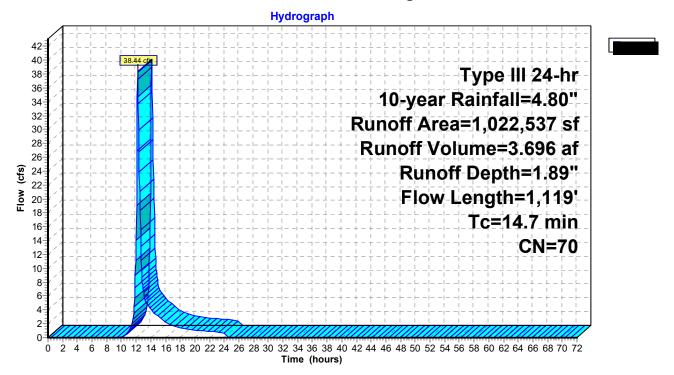

Summary for Subcatchment 3aS: Drainage Area 3a

Page 125

Runoff 13.82 cfs @ 12.28 hrs, Volume= 1.463 af, Depth= 2.12" =

	A	rea (sf)	CN	Description								
		0	30	Meadow, n	on-grazed,	HSG A						
		0	58	Meadow, non-grazed, HSG B								
	3	337,756 71 Meadow, non-grazed, HSG C										
		0		Meadow, n								
		0		Woods, Go								
		0		Woods, Go								
		0		Woods, Go								
		0		Woods, Go								
*		0		Gravel pit, l								
*		0		Gravel pit, l								
*		0		Gravel pit, l								
*		0		Gravel pit, l								
*		0		Water body								
*		10,301		Gravel road	1							
*		0		Structure								
Ŷ		10,500		Panels								
		1,258		Equipment	•							
			59,815 73 Weighted Average									
	3	348,057		96.73% Pe								
		11,758		3.27% Impe	ervious Are	a						
	Тс	Longth	Slope	Velocity	Capacity	Description						
	(min)	Length (feet)	(ft/ft)		(cfs)	Description						
	<u>(11111)</u> 7.4	<u>(1881)</u> 50	0.0100		(013)	Shoot Flow						
	7.4	50	0.0100	0.11		Sheet Flow, Grass: Short n= 0.150 P2= 3.20"						
	11.9	744	0.0222	1.04		Shallow Concentrated Flow,						
	11.9	/44	0.0222	. 1.04		Short Grass Pasture Kv= 7.0 fps						
	19.3	794	Total									
	19.3	194	TUIAI									

Subcatchment 3aS: Drainage Area 3a

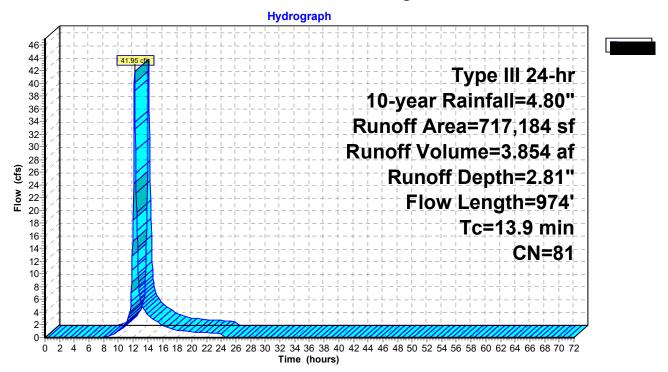


Summary for Subcatchment 3bS: Drainage Area 3b

Runoff 38.44 cfs @ 12.21 hrs, Volume= 3.696 af, Depth= 1.89" =

	А	rea (sf)	CN	Description							
		0	30	Meadow, non-grazed, HSG A							
		99,790	58	Meadow, non-grazed, HSG B							
	5	32,219		Meadow, non-grazed, HSG C							
		0		Meadow, no							
		1,798		Woods, Go							
		07,172		Woods, Go							
		59,721		Woods, Go							
		14,571		Woods, Go							
*		59,918		Gravel pit, l							
*		96,280		Gravel pit, l							
*		0		Gravel pit, l							
*		0		Gravel pit, l							
*		51,068		Water body							
*		0		Gravel road							
*		0		Structure							
*		0		Panels							
*		0		Equipment							
		22,537		Weighted A	0						
		71,469		95.01% Pei							
		51,068		4.99% Impe	ervious Are	а					
	т.	1	01.000		Ormersiter	Description					
	Tc	Length	Slope		Capacity	Description					
	(min)	(feet)	(ft/ft)		(cfs)						
	5.6	50	0.0200	0.15		Sheet Flow,					
	• •	4 000	0 0770			Grass: Short n= 0.150 P2= 3.20"					
	9.1	1,069	0.0776	5 1.95		Shallow Concentrated Flow,					
			- · ·			Short Grass Pasture Kv= 7.0 fps					
	14.7	1,119	Total								

Subcatchment 3bS: Drainage Area 3b



Summary for Subcatchment 4S: Drainage Area 4

Runoff = 41.95 cfs @ 12.19 hrs, Volume= 3.854 af, Depth= 2.81"

	Ai	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0		Meadow, no		
		0		Meadow, no		
		0		Meadow, no		
		0		Noods, Go		
		18,016		Noods, Go		
		19,532	70	Noods, Go	od, HSG C	
		5,054	77 \	Noods, Go	od, HSG D	
*		34,397	70	Gravel pit, I	HSG A	
*		00,725	81 (Gravel pit, I	HSG B	
*	1	34,831	88	Gravel pit, I	HSG C	
*		0	92	Gravel pit, I	HSG D	
*		4,629	98	Nater body		
*		0	96	Gravel road	l	
*		0	98	Structure		
	717,184 81 Weighted Average					
	7	12,555	9	99.35% Pei	vious Area	l
		4,629	().65% Impe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	50	0.0200	1.20		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.20"
	3.9	384	0.0102	1.63		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	45	0.2700	8.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.8	269	0.0010	0.51		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.4	226	0.3100	8.96		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	13.9	974	Total			

Subcatchment 4S: Drainage Area 4

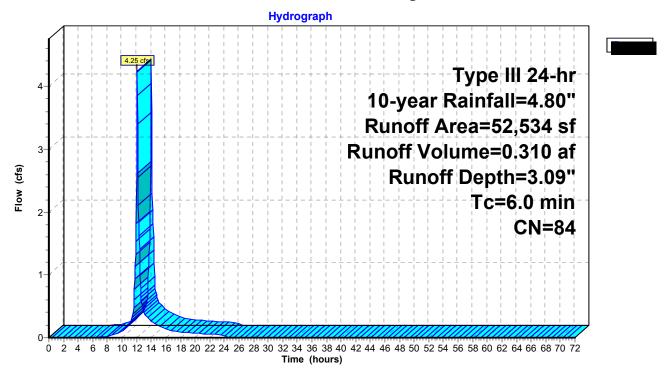


Summary for Subcatchment 5aS: Drainage Area 5

Runoff 53.17 cfs @ 12.71 hrs, Volume= 8.775 af, Depth= 2.05" =

	A	rea (sf)	CN I	Description						
		84,391	30 I	30 Meadow, non-grazed, HSG A						
		17,637		Meadow, non-grazed, HSG B						
		39,197								
		91,068								
		0		Woods, Good, HSG A						
		97,427			od, HSG B					
		04,182		,	od, HSG C					
		03,749		,	od, HSG D					
*		15,001		Gravel pit, I						
*		0		Gravel pit, I						
*		0		Gravel pit, I						
*	Б	0 62,885		Gravel pit, I Vater body						
*		25,012		Gravel road						
*		23,012		Structure	4					
*		1,680		Panels						
*		629		Equipment	pad					
	2.2	42,858		Veighted A	•					
	1,677,664 74.80% Pervious A									
565,194 25.20% Impervious Area						ea				
	Тс	Length	Slope			Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	7.4	50	0.0100	0.11		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.20"				
	3.4	238	0.0550	1.17		Shallow Concentrated Flow,				
	<u> </u>	4 0 4 0	0 00 40	0.70		Woodland Kv= 5.0 fps				
	26.6	1,240	0.0242	0.78		Shallow Concentrated Flow,				
	7.0	500	0.0500	1 1 0		Woodland Kv= 5.0 fps				
	7.6	509	0.0500	1.12		Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
	4.6	480	0.1200	1.73		Shallow Concentrated Flow,				
	4.0	400	0.1200	1.73		Woodland Kv= 5.0 fps				
	49.6	2,517	Total							
	-+3.0	2,017	rotar							

Subcatchment 5aS: Drainage Area 5

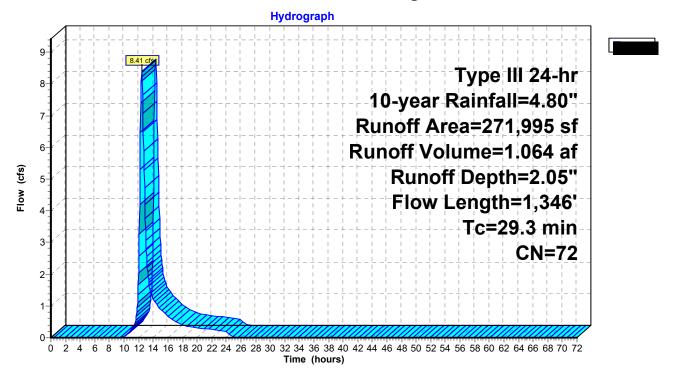


Summary for Subcatchment 5bS: Drainage Area 5

Runoff 4.25 cfs @ 12.09 hrs, Volume= 0.310 af, Depth= 3.09" =

A	rea (sf)	CN	Description						
	0	30	Meadow, non-grazed, HSG A						
	18,465	58	Meadow, non-grazed, HSG B						
	267	71	Meadow, non-grazed, HSG C						
	0	78	Meadow, non-grazed, HSG D						
	0	30	Woods, Good, HSG A						
	0	55	Woods, Good, HSG B						
	0	70	Woods, Good, HSG C						
	0	77	Woods, Good, HSG D						
*	0	70	Gravel pit, HSG A						
*	0	81	Gravel pit, HSG B						
*	0	88	Gravel pit, HSG C						
*	0	92	Gravel pit, HSG D						
*	0	98	Water body						
*	0	96	Gravel road						
*	0	98	Structure						
*	5,040	98	Panels						
*	0	98	Equipment pad						
*	28,762	98	Basin						
	52,534	84	Weighted Average						
	18,732		35.66% Pervious Area						
	33,802		64.34% Impervious Area						
Тс	Length	Slop	e Velocity Capacity Description						
(min)	(feet)	(ft/f							
6.0	(1001)	(101	Direct Entry,						

Subcatchment 5bS: Drainage Area 5

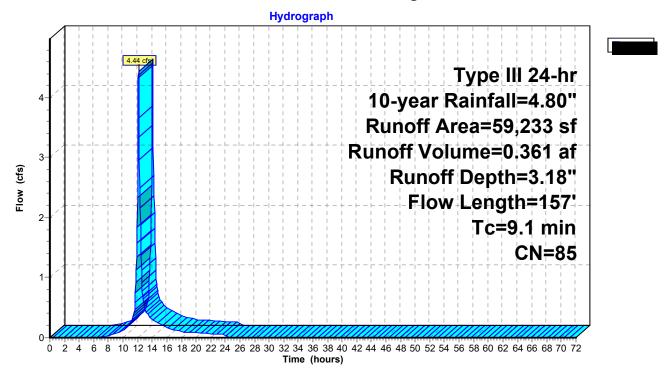

Summary for Subcatchment 5cS: Drainage Area 5

Page 135

Runoff 8.41 cfs @ 12.42 hrs, Volume= 1.064 af, Depth= 2.05" =

	А	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		53,847	58	Meadow, no	on-grazed,	HSG B
		27,788	71	Meadow, no	on-grazed,	HSG C
		8,123	78	Meadow, no	on-grazed,	HSG D
		0	30	Woods, Go	od, HSG A	
		2,622	55	Woods, Go	od, HSG B	
	1	23,893	70	Woods, Go	od, HSG C	
		19,268		Woods, Go	,	
*		0	70	Gravel pit, I	HSG A	
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		20,354		Water body		
*		0		Gravel road	l	
*		0		Structure		
*		5,460		Panels		
*		0		Equipment	pad	
*		10,640		Basin		
		71,995		Weighted A		
		35,541		86.60% Per		
		36,454		13.40% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	Description
	9.3	50	0.0400	()	()	Sheet Flow,
	0.0	00	0.0.00	0100		Woods: Light underbrush n= 0.400 P2= 3.20"
	17.9	1,030	0.0369	0.96		Shallow Concentrated Flow,
	-	,				Woodland Kv= 5.0 fps
	2.1	266	0.0902	2.10		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	29.3	1,346	Total			·

Subcatchment 5cS: Drainage Area 5

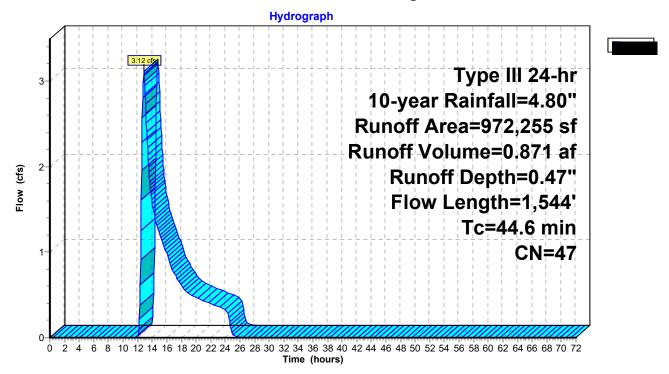


Summary for Subcatchment 5dS: Drainage Area 5

Runoff 4.44 cfs @ 12.13 hrs, Volume= 0.361 af, Depth= 3.18" =

	Area (sf)	CN	Description					
	0	30	Meadow, n	on-grazed,	HSG A			
	0	58	Meadow, n	on-grazed,	HSG B			
	28,213			on-grazed,				
	0	78	Meadow, n	on-grazed,	HSG D			
	0	30	Woods, Good, HSG A					
	0	55	Woods, Good, HSG B					
	0	70	Woods, Good, HSG C					
	0	77	Woods, Good, HSG D					
*	0		Gravel pit, l					
*	0		Gravel pit, l					
*	0		Gravel pit, l					
*	0		Gravel pit, l					
*	0		Water body					
*	4,470		Gravel road					
*	0		Structure					
*	5,460		Panels					
*	629		Equipment	pad				
*	20,461		Basin					
	59,233		Weighted A					
	32,683			rvious Area				
	26,550	4	44.82% Imp	pervious Ar	ea			
_		~		a 14	— • • •			
	c Length	Slope		Capacity	Description			
(mi	/ /	(ft/ft)	, ,	(cfs)				
7	.4 50	0.0100	0.11		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.20"			
1	.7 107	0.0234	1.07		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
9	.1 157	Total						

Subcatchment 5dS: Drainage Area 5

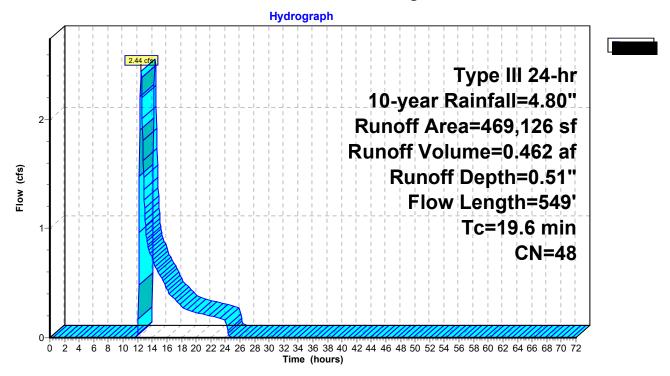


Summary for Subcatchment 6aS: Drainage Area 6

Runoff = 3.12 cfs @ 12.85 hrs, Volume= 0.871 af, Depth= 0.47"

	Α	rea (sf)	CN E	Description		
	3	01,060	30 N	/leadow, no	on-grazed,	HSG A
		0	58 N	leadow, no	on-grazed,	HSG B
		0	71 N	leadow, no	on-grazed,	HSG C
		0			on-grazed,	
		90,620			od, HSG A	
		50,036			od, HSG B	
		0			od, HSG C	
		0			od, HSG D	
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		19,272		Vater body		
*		11,267		Gravel road	1	
*		0		Structure		
*		0 0		Panels	nad	
				Equipment	•	
		72,255		Veighted A	iverage rvious Area	
		252,983 19,272		-	pervious Area	
	2	19,212	2	2.55% ៣	Jei vious Ai	ea
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
	4.3	50	0.0400	0.20	(010)	Sheet Flow,
	ч.0	00	0.0400	0.20		Grass: Short n= 0.150 P2= 3.20"
	13.5	538	0.0090	0.66		Shallow Concentrated Flow,
	10.0	000	0.0000	0.00		Short Grass Pasture Kv= 7.0 fps
	10.1	601	0.0391	0.99		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	16.7	355	0.0050	0.35		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	44.6	1,544	Total			

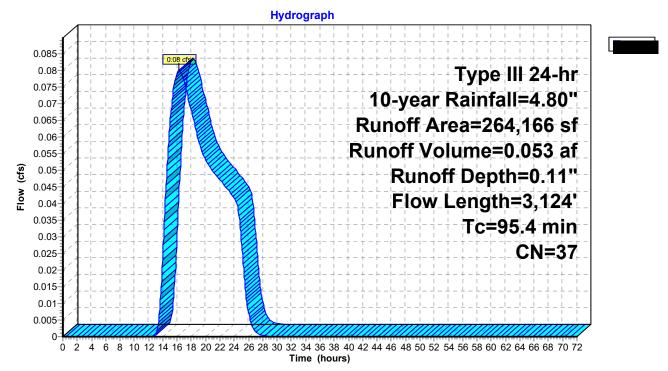
Subcatchment 6aS: Drainage Area 6



Summary for Subcatchment 6bS: Drainage Area 6

Runoff = 2.44 cfs @ 12.47 hrs, Volume= 0.462 af, Depth= 0.51"

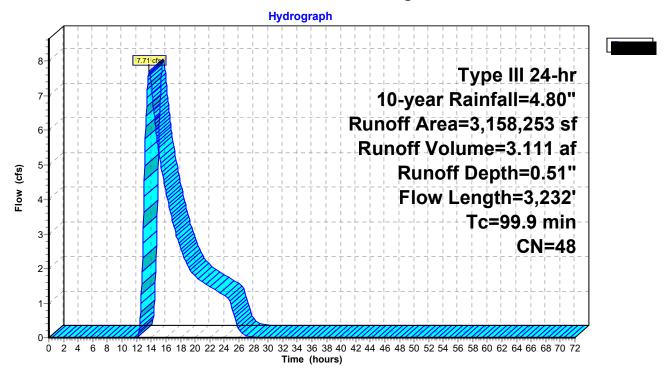
	А	rea (sf)	CN I	Description					
	2	88,325	30 I	Meadow, n	on-grazed,	HSG A			
		91,050	58 I	Meadow, n	on-grazed,	HSG B			
		0	71 I	Meadow, n	on-grazed,	HSG C			
		0	78 I	Meadow, n	on-grazed,	HSG D			
		0	30	Noods, Go	od, HSG A				
		0	55	Noods, Go	od, HSG B				
		0	70	Woods, Good, HSG C					
		0	77 \	Noods, Good, HSG D					
*		0	70 (Gravel pit, l	HSG A				
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Nater body					
*		9,625		Gravel road	ł				
*		0		Structure					
*		12,660		Panels					
*		629		Equipment	pad				
*		66,837		Basin					
		69,126		Neighted A					
		89,000			rvious Area				
		80,126		17.08% Imp	pervious Ar	ea			
	_								
	ŢĊ	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	6.3	50	0.0150	0.13		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.20"			
	13.3	499	0.0080	0.63		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	19.6	549	Total						


Subcatchment 6bS: Drainage Area 6

Summary for Subcatchment 7aS: Drainage Area 7a

Runoff = 0.08 cfs @ 16.23 hrs, Volume= 0.053 af, Depth= 0.11"

	A	rea (sf)	CN [Description		
	2	31,002	30 I	Meadow, no	on-grazed,	HSG A
		0			on-grazed,	
		0	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
		0	30 \	Noods, Go	od, HSG A	
		0	55 \	Noods, Go	od, HSG B	
		0	70 \	Noods, Go	od, HSG C	
		0	77 \	Noods, Go	od, HSG D	
*		7,059	70 (Gravel pit, I	HSG A	
*		9,519		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Nater body		
*		9,866		Gravel road	1	
*		0		Structure		
*		6,720		Panels		
*		0		Equipment	•	
		64,166		Neighted A		
	2	57,446		-	rvious Area	
		6,720	2	2.54% Impe	ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	3.6	50	0.0600	0.23	()	Sheet Flow,
	0.0			0.20		Grass: Short n= 0.150 P2= 3.20"
	2.9	238	0.0380	1.36		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	88.9	2,836	0.0113	0.53		Shallow Concentrated Flow,
		, -	-			Woodland Kv= 5.0 fps
	95.4	3,124	Total			· · ·

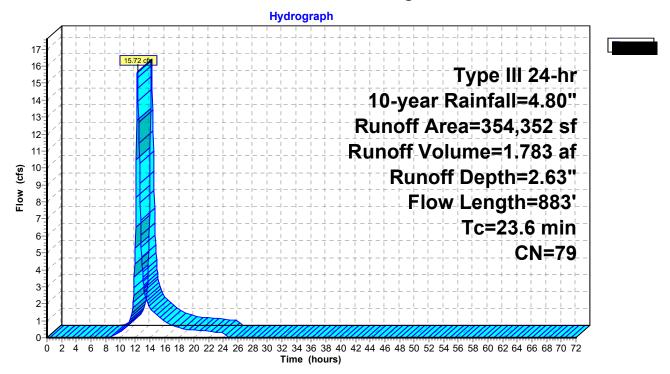

Subcatchment 7aS: Drainage Area 7a

Summary for Subcatchment 7bS: Drainage Area 7b

Runoff = 7.71 cfs @ 13.75 hrs, Volume= 3.111 af, Depth= 0.51"

	А	rea (sf)	CN	Description		
	6	48,318	30	Meadow, no	on-grazed,	HSG A
	1	10,037	58 I	Meadow, no	on-grazed,	HSG B
		0	71	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
	1,3	85,107		Woods, Go		
	2	30,359	55	Woods, Go	od, HSG B	
		0	70	Woods, Go	od, HSG C	
		0	77	Woods, Go	od, HSG D	
*	1	65,079	70	Gravel pit, I	HSG A	
*		79,347	81 (Gravel pit, I	HSG B	
*		0		Gravel pit, I	HSG C	
*		0		Gravel pit, I		
*		53,314		Water body		
*		77,609		Gravel road	l	
*		0		Structure		
*		8,454		Panels		
*		629	98	Equipment	pad	
	3,1	58,253	48	Weighted A	verage	
	2,6	95,856	8	35.36% Pei	rvious Area	
	4	62,397		14.64% Imp	pervious Ar	ea
	Та	Longth	Clana	Valaaitu	Consoitu	Description
	Tc (min)	Length	Slope (ft/ft)		Capacity	Description
	(min)	(feet)	/	()	(cfs)	
	5.4	50	0.1600	0.16		Sheet Flow,
	FC	246	0 0 4 2 0	1 0 1		Woods: Light underbrush n= 0.400 P2= 3.20"
	5.6	346	0.0430	1.04		Shallow Concentrated Flow,
	88.9	2,836	0.0113	0.53		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
	00.9	2,030	0.0113	0.00		Woodland Kv= 5.0 fps
	99.9	3,232	Total			
		,				

Subcatchment 7bS: Drainage Area 7b

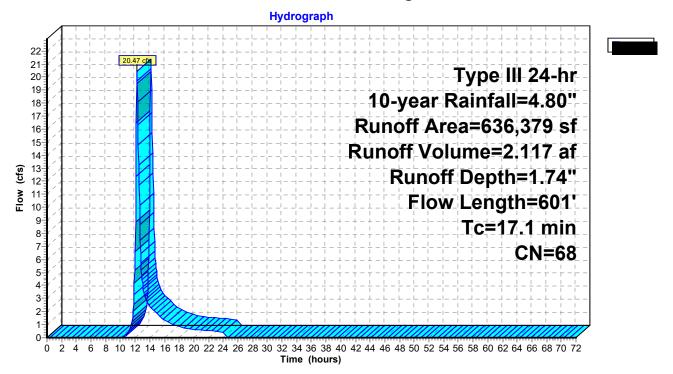


Summary for Subcatchment 8S: Drainage Area 8

Runoff 15.72 cfs @ 12.33 hrs, Volume= 1.783 af, Depth= 2.63" =

	A	rea (sf)	CN	Description					
		0	30	Meadow, no	on-grazed,	HSG A			
		0	58	Meadow, no	on-grazed,	HSG B			
		14,757	71	Meadow, no	on-grazed,	HSG C			
6,627 78 Meadow, non-grazed, HSG D 0 30 Woods, Good, HSG A						HSG D			
7,700 55 Woods, Good, HSG B									
	1	75,484	70	Woods, Go	od, HSG C				
	40,001 77 Woods, Good, HSG D								
*		0	70						
*		0							
*		0	88	Gravel pit, I					
*		0	92	Gravel pit, I					
*		93,828	98	Water body					
*		15,955	96	Gravel road	1				
×	* 0 98 Structure								
		54,352	79	Weighted A					
	2	60,524		73.52% Per		-			
		93,828		26.48% Imp	pervious Ar	ea			
	Тс	Length	Slop	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft		(cfs)				
	8.5	50	0.050	//		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.20"			
	8.8	390	0.022	0 0.74		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	2.9	271	0.100	0 1.58		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	3.4	172	0.028	0 0.84		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	23.6	883	Total						
	23.0	883	Iotal						

Subcatchment 8S: Drainage Area 8

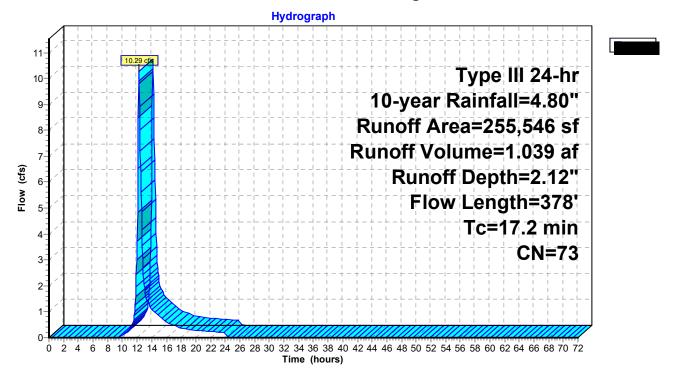


Summary for Subcatchment 9S: Drainage Area 9

Runoff = 20.47 cfs @ 12.25 hrs, Volume= 2.117 af, Depth= 1.74"

	A	rea (sf)	CN	Description			
		80,020	30	Meadow, no	on-grazed,	HSG A	
		29,044	58 I	Meadow, no	on-grazed,	HSG B	
		8,254	71	Meadow, no	on-grazed,	HSG C	
		0	78 I	Meadow, no	on-grazed,	HSG D	
		24,186	30	Noods, Go	od, HSG A		
		29,102		Noods, Go			
		19,896	70	Noods, Go	od, HSG C		
0 77 Woods, Good, HSG D							
*		0 70 Gravel pit, HSG A					
*		0		Gravel pit, I			
*		0		Gravel pit, l			
*		0		Gravel pit, l			
*		26,618		Nater body			
*		18,419		Gravel road	1		
*		0		Structure			
*		840	98	Panels			
		36,379		Neighted A			
		08,921		64.26% Pei			
	2	27,458		35.74% Imp	pervious Ar	ea	
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Becchpilon	
	10.5	50	0.0300			Sheet Flow,	
	10.0	00	0.0000	0.00		Woods: Light underbrush n= 0.400 P2= 3.20"	
	1.4	106	0.0610	1.23		Shallow Concentrated Flow,	
		100	0.0010			Woodland $Kv=5.0$ fps	
	3.4	184	0.0330	0.91		Shallow Concentrated Flow,	
	0.1	101	0.0000	0101		Woodland $Kv=5.0$ fps	
	1.8	261	0.2470	2.48		Shallow Concentrated Flow,	
		-				Woodland $Kv=5.0$ fps	
	17.1	601	Total				

Subcatchment 9S: Drainage Area 9

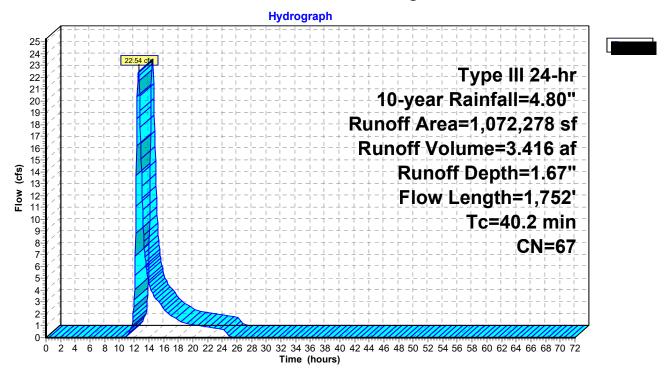


Summary for Subcatchment 10aS: Drainage Area 10

Runoff 10.29 cfs @ 12.25 hrs, Volume= 1.039 af, Depth= 2.12" =

A	rea (sf)	CN [Description		
	0	30 N	Aeadow, n	on-grazed,	HSG A
	40,805	58 N	Meadow, n	on-grazed,	HSG B
1	126,615	71 N	Aeadow, n	on-grazed,	HSG C
	0			on-grazed,	
	0			od, HSG A	
	9,453			od, HSG B	
	37,133			od, HSG C	
	0			od, HSG D	
*	0		Gravel pit, l		
*	0		Gravel pit, I		
*	0		Gravel pit, I		
*	0		Gravel pit, I		
*	0		Vater body		
*	5,861		Gravel road	1	
т ×	0		Structure		
*	3,360		Panels		
*	32,319		Basin		
	255,546		Veighted A		
2	219,867			rvious Area	
	35,679		13.96% Imp	pervious Are	ea
т.	المرب منظام	01	Mala site :		Description
Tc	Length	Slope		Capacity	Description
(min)	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)	
12.3	50	0.0200	0.07		Sheet Flow,
4.0	000	0.0400	1 10		Woods: Light underbrush n= 0.400 P2= 3.20"
4.9	328	0.0488	1.10		Shallow Concentrated Flow,
47.0	070	.			Woodland Kv= 5.0 fps
17.2	378	Total			

Subcatchment 10aS: Drainage Area 10

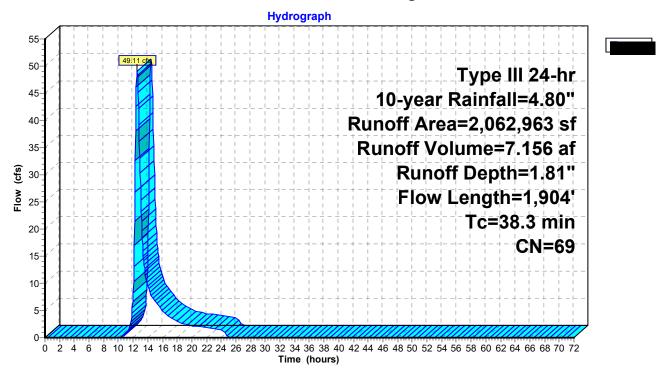


Summary for Subcatchment 10bS: Drainage Area 10

Runoff = 22.54 cfs @ 12.59 hrs, Volume= 3.416 af, Depth= 1.67"

	A	rea (sf)	CN	Description				
		13,076	30	Meadow, no	on-grazed,	HSG A		
		9,872	58	Meadow, no	on-grazed,	HSG B		
	1	62,839	71	Meadow, no	on-grazed,	HSG C		
		21,857	78	Meadow, no	on-grazed,	HSG D		
	1	10,901	30	Woods, Good, HSG A				
		22,199		Woods, Go	,			
		84,517		Woods, Go	,			
		72,773		Woods, Go	,			
* 0 70 Gravel pit, HSG A								
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
* 141,195 98 Water body * 33,049 96 Gravel road								
*		0		Structure				
		0		Panels				
		72,278		Weighted A				
		31,083		86.83% Pei				
	1	41,195		13.17% Imp	pervious Ar	ea		
	Тс	Length	Slope	e Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)		(cfs)			
	4.3	50	0.0400	0.20		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.20"		
	29.4	1,139	0.0167	0.65		Shallow Concentrated Flow,		
		,				Woodland Kv= 5.0 fps		
	0.4	72	0.0417	3.29		Shallow Concentrated Flow,		
						Unpaved Kv= 16.1 fps		
	6.1	491	0.0367	' 1.34		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	40.2	1,752	Total					

Subcatchment 10bS: Drainage Area 10

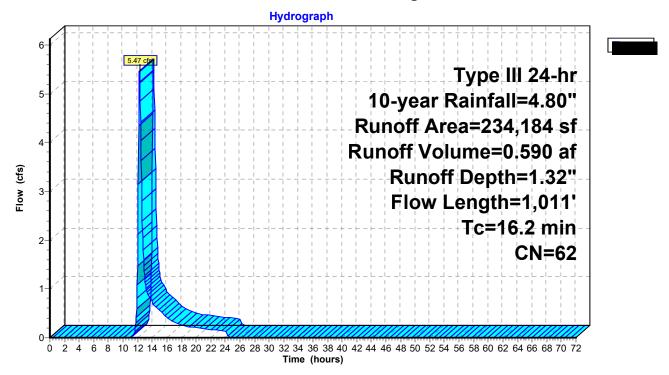


Summary for Subcatchment 11aS: Drainage Area 11

Runoff = 49.11 cfs @ 12.56 hrs, Volume= 7.156 af, Depth= 1.81"

	Ai	rea (sf)	CN	Description		
	2	30,381	30	Meadow, n	on-grazed,	HSG A
		74,662	58	Meadow, n	on-grazed,	HSG B
		45,920		Meadow, n		
		51,732		Meadow, n		
		5,299		Woods, Go		
		38,194		Woods, Go	•	
		16,983		Woods, Go		
		42,710		Woods, Go		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*	-	0		Gravel pit, l		
*		01,207		Water body		
*		45,982		Gravel road	1	
*		8,006		Structure		
*		1,887		Equipment	pad	
<u>*</u>		0		Panels		
		62,963		Weighted A	0	
		51,863		89.77% Pe		
	2	11,100		10.23% Imp	pervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	Description
	4.3	50	0.0400		(013)	Sheet Flow,
	4.3	50	0.0400	0.20		Grass: Short $n= 0.150$ P2= 3.20"
	34.0	1,854	0.0330	0.91		Shallow Concentrated Flow,
	07.0	1,004	0.0000	0.01		Woodland Kv= 5.0 fps
	38.3	1,904	Total			

Subcatchment 11aS: Drainage Area 11

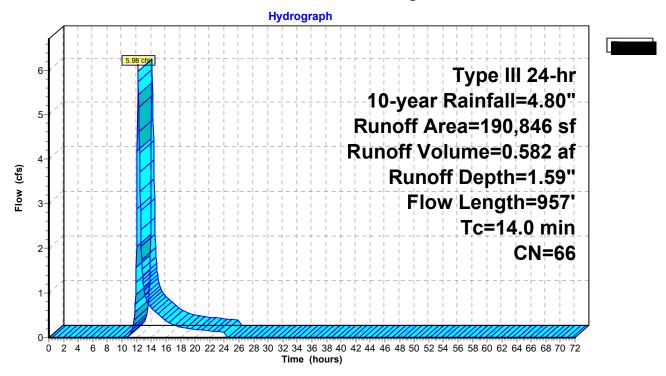


Summary for Subcatchment 11bS: Drainage Area 11

Runoff = 5.47 cfs @ 12.25 hrs, Volume= 0.590 af, Depth= 1.32"

	Α	rea (sf)	CN	Description				
		62,296	30	Meadow, no	on-grazed,	HSG A		
		0		Meadow, no				
	1	53,054	71	Meadow, no	on-grazed,	HSG C		
		0	78	Meadow, no	on-grazed,	HSG D		
		0	30	Woods, Go	od, HSG A			
		0		Woods, Go				
		0		Woods, Go				
		0		Woods, Go				
*		0		Gravel pit, I				
*		0		Gravel pit, I				
*		0		Gravel pit, I				
*		0		Gravel pit, I				
*		0		Water body				
*		14,214		Gravel road				
*		0		Structure				
*		0		Equipment	pad			
*		4,620		Panels				
		34,184		Weighted A				
	2	29,564		98.03% Pei				
		4,620		1.97% Impe	ervious Area	a		
	–	1	0		0	Description		
	Tc	Length	Slope			Description		
_	(min)	(feet)	(ft/ft		(cfs)			
	5.6	50	0.0200	0.15		Sheet Flow,		
	40.0	004	0.0400			Grass: Short n= 0.150 P2= 3.20"		
	10.6	961	0.0468	3 1.51		Shallow Concentrated Flow,		
_	40.0	4.044	T . 4 . 1			Short Grass Pasture Kv= 7.0 fps		
	16.2	1,011	Total					

Subcatchment 11bS: Drainage Area 11

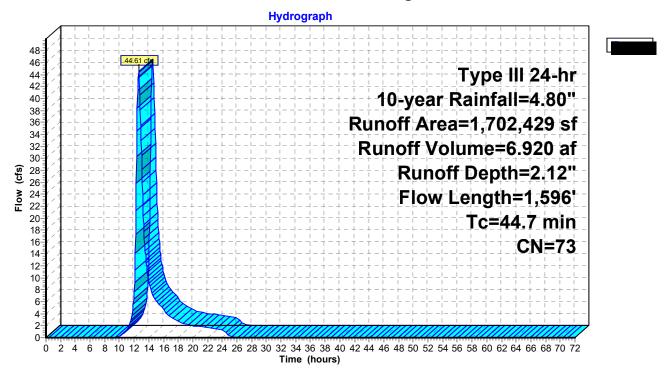


Summary for Subcatchment 11cS: Drainage Area 11

Runoff = 5.98 cfs @ 12.21 hrs, Volume= 0.582 af, Depth= 1.59"

	A	rea (sf)	CN	Description			
		27,259	30	Meadow, n	on-grazed,	HSG A	
0 58 Meadow, non-grazed, HSG B				HSG B			
158,821 71 Meadow, non-grazed, HSG C					HSG C		
		0	78	Meadow, n	on-grazed,	HSG D	
		0			od, HSG A		
		0		Woods, Go			
		0			od, HSG C		
		0			od, HSG D		
*		0		Gravel pit, l			
*		0		Gravel pit, l			
*		0		Gravel pit, l			
*		0		Gravel pit, I			
*		0		Water body			
~ _		2,666		Gravel road			
*		0		Structure			
*		0		Equipment			
		2,100		Panels			
	190,846 66 Weighted Average						
	188,746 98.90% Pervious Area						
2,100 1.10% Impervious Area				a			
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)		(cfs)		
	4.3	50	0.0400			Sheet Flow,	
		- •				Grass: Short n= 0.150 P2= 3.20"	
	9.7	907	0.0496	1.56		Shallow Concentrated Flow,	
_						Short Grass Pasture Kv= 7.0 fps	
	14.0	957	Total				

Subcatchment 11cS: Drainage Area 11

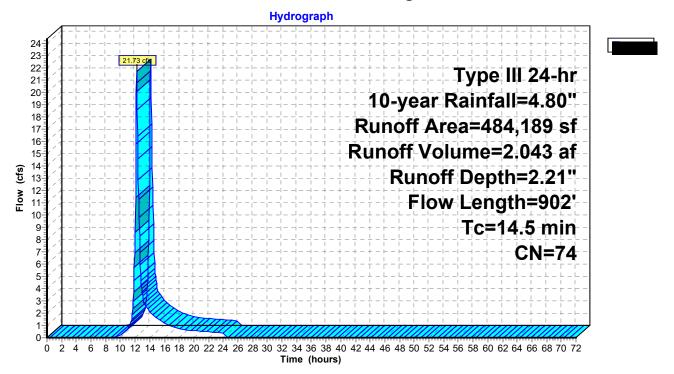


Summary for Subcatchment 12aS: Drainage Area 12a

Runoff = 44.61 cfs @ 12.64 hrs, Volume= 6.920 af, Depth= 2.12"

	Α	rea (sf)	CN	Description				
		23,018	30	Meadow, no	on-grazed,	HSG A		
		9,439	58	Meadow, no	on-grazed,	HSG B		
	6	54,323	71	Meadow, no	on-grazed,	HSG C		
	2	10,828			on-grazed,			
		22,923	30	Woods, Go	od, HSG A			
	1	83,438	55	Woods, Go	od, HSG B			
	2	93,907	70	Woods, Go	od, HSG C			
		52,031	77	Woods, Go	od, HSG D			
*		0	70	Gravel pit, I	HSG A			
*		0		Gravel pit, I				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*	2	29,248		Water body				
*		13,614		Gravel road	ł			
*		0		Structure				
*		9,660		Panels				
*		0		Equipment				
		02,429		Weighted A				
	1,463,521			85.97% Pervious Area				
238,908 14.03% Impervious Area			ea					
	т.	1 11.	0		0			
	Tc	Length	Slope			Description		
(<u>(min)</u>	(feet)	(ft/ft)	. ,	(cfs)			
	6.5	50	0.0140	0.13		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.20"		
	7.5	626	0.0780	1.40		Shallow Concentrated Flow,		
	00 7	000	0.0400	0 50		Woodland Kv= 5.0 fps		
	30.7	920	0.0100	0.50		Shallow Concentrated Flow,		
	44 7	4 500	- · ·			Woodland Kv= 5.0 fps		
	44.7	1,596	Total					

Subcatchment 12aS: Drainage Area 12a

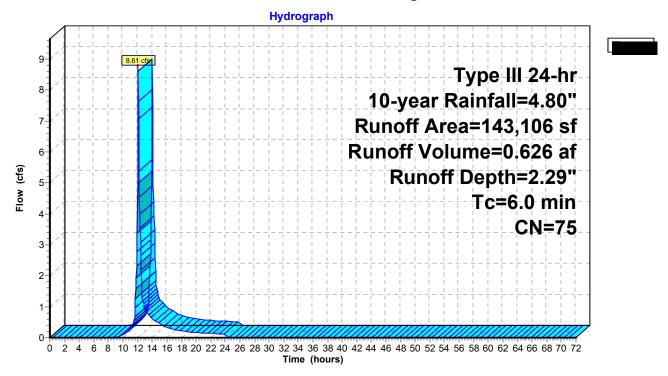


Summary for Subcatchment 12bS: Drainage Area 12b

Runoff = 21.73 cfs @ 12.21 hrs, Volume= 2.043 af, Depth= 2.21"

	Ai	rea (sf)	CN	Description					
0 30 Meadow, non-grazed, HSG A				HSG A					
		0	58	Meadow, non-grazed, HSG B					
	4	38,020	HSG C						
		0	78	Meadow, no	on-grazed,	HSG D			
		0	30	Woods, Go	od, HSG A				
	0 55 Woods, Good, HSG B								
		0	70	Woods, Go	od, HSG C				
		0		Woods, Go	,				
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Water body					
*		8,877		Gravel road					
*		0		Structure					
*		9,240		Panels					
*		1,258		Equipment pad					
		26,794		Basin					
484,189 74 Weighted Average									
		46,897		92.30% Pei					
37,292 7.70% Impervious Area				а					
	та	l e re entre	Clana	Valasity	Conseitu	Description			
	Tc (min)	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	. ,	(cfs)				
	4.3	50	0.0400	0.20		Sheet Flow,			
	40.0	050	0 0000	4 00		Grass: Short n= 0.150 P2= 3.20"			
	10.2	852	0.0393	1.39		Shallow Concentrated Flow,			
	445	000	Tatal			Short Grass Pasture Kv= 7.0 fps			
	14.5	902	Total						

Subcatchment 12bS: Drainage Area 12b

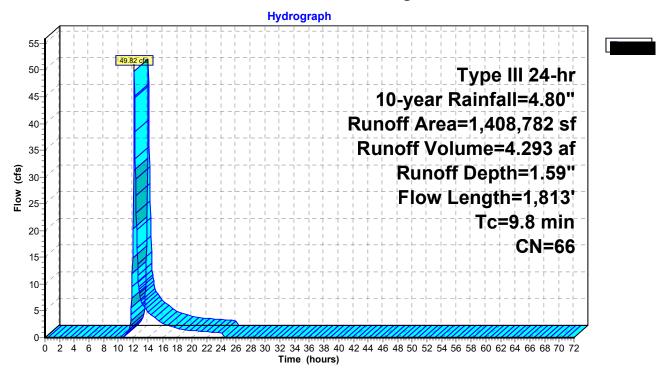


Summary for Subcatchment 12cS: Drainage Area 12

Runoff = 8.61 cfs @ 12.09 hrs, Volume= 0.626 af, Depth= 2.29"

Area	a (sf)	CN	Description					
	0	30	Meadow, non-grazed, HSG A					
	0	58	Meadow, non-grazed, HSG B					
122	2,234	71	Meadow, non-grazed, HSG C					
	0	78	Meadow, non-grazed, HSG D					
	0	30	Woods, Good, HSG A					
	0	55	Woods, Good, HSG B					
	0	70	Woods, Good, HSG C					
	0	77	Woods, Good, HSG D					
*	0	70	Gravel pit, HSG A					
*	0	81	Gravel pit, HSG B					
*	0	88	Gravel pit, HSG C					
*	0	92	Gravel pit, HSG D					
*	0	98	Water body					
* 8	8,875	96	Gravel road					
*	0	98	Structure					
*	0	98	Panels					
*	0	98	Equipment pad					
<u>* 1</u> 1	,997	98	Basin					
143	3,106	75	Weighted Average					
131	1,109		91.62% Pervious Area					
11	,997		8.38% Impervious Area					
Tc L	.ength	Slop	e Velocity Capacity Description					
(min)	(feet)	(ft/fl						
6.0			Direct Entry,					

Subcatchment 12cS: Drainage Area 12



Summary for Subcatchment 13S: Drainage Area 13

Runoff = 49.82 cfs @ 12.15 hrs, Volume= 4.293 af, Depth= 1.59"

	A	rea (sf)	CN	Description			
	137,390 30 Meadow, non-grazed, HSG A					HSG A	
0 58 Meadow, non-grazed, HSG B						HSG B	
		HSG C					
		0	78	Meadow, no	on-grazed,	HSG D	
	0 30 Woods, Good, HSG A						
		0 55 Woods, Good, HSG B					
		0	70	Woods, Go	od, HSG C		
		0		Woods, Go			
*	1,2	66,167		Gravel pit, l	HSG A		
*		4,469		Gravel pit, l			
*		0		Gravel pit, l			
*		0 92 Gravel pit, HSG D					
*	* 756 98 Water body						
*	* 0 96 Gravel road						
*	* 0 98 Structure						
1,408,782 66 Weighted Average							
1,408,026 99.95% Pervious Area							
756 0.05% Impervious Area			а				
	т.	1	<u>Olana</u>	Mala alter	0	Description	
	Tc	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft)		(cfs)		
	0.7	50	0.0200	1.20		Sheet Flow,	
						Smooth surfaces $n = 0.011$ P2= 3.20"	
	9.1	1,763	0.0403	3.23		Shallow Concentrated Flow,	
						Unpaved Kv= 16.1 fps	
	9.8	1,813	Total				

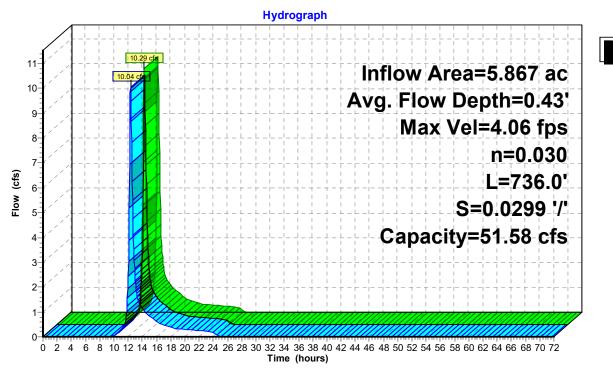
Subcatchment 13S: Drainage Area 13

Summary for Reach 10aR: Swale 10a

 Inflow Area =
 5.867 ac, 13.96% Impervious, Inflow Depth = 2.12" for 10-year event

 Inflow =
 10.29 cfs @
 12.25 hrs, Volume=
 1.039 af

 Outflow =
 10.04 cfs @
 12.34 hrs, Volume=
 1.039 af, Atten= 2%, Lag= 5.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 4.06 fps, Min. Travel Time= 3.0 min Avg. Velocity = 1.29 fps, Avg. Travel Time= 9.5 min

Peak Storage= 1,819 cf @ 12.29 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 51.58 cfs

4.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 736.0' Slope= 0.0299 '/' Inlet Invert= 236.00', Outlet Invert= 214.00'

±

Reach 10aR: Swale 10a

L=982.0'

S=0.0234 '/'

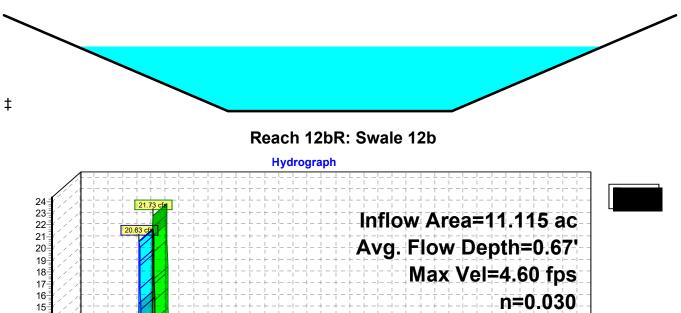
Capacity=45.66 cfs

Summary for Reach 12bR: Swale 12b

11.115 ac, 7.70% Impervious, Inflow Depth = 2.21" for 10-year event Inflow Area = Inflow 21.73 cfs @ 12.21 hrs, Volume= 2.043 af = Outflow 20.63 cfs @ 12.32 hrs, Volume= 2.043 af, Atten= 5%, Lag= 6.4 min =

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 4.60 fps, Min. Travel Time= 3.6 min Avg. Velocity = 1.37 fps, Avg. Travel Time= 11.9 min

Peak Storage= 4,439 cf @ 12.26 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 45.66 cfs

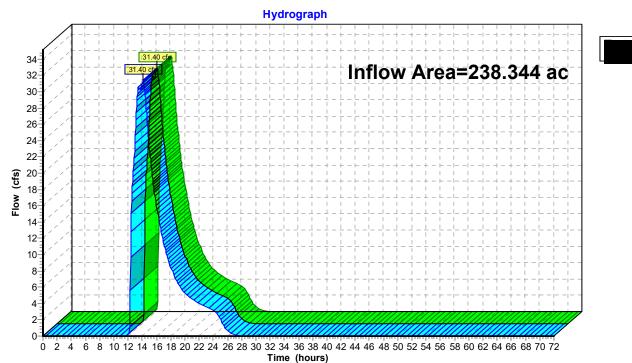

4.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 982.0' Slope= 0.0234 '/' Inlet Invert= 276.00', Outlet Invert= 253.00'

14 (cfs)

13-12-11-Flow

10-9

8-7-6-5 4 3 2

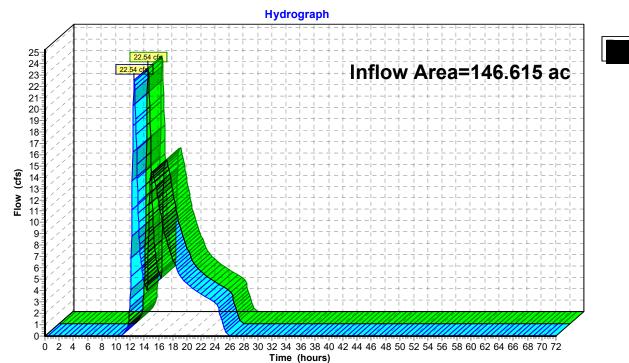

0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Reach DP-1: Off-Site West

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	238.344 ac, 10.57% Impervious, Inflow Depth = 0.61" for 10-year event
Inflow	=	31.40 cfs @ 14.12 hrs, Volume= 12.135 af
Outflow	=	31.40 cfs @ 14.12 hrs, Volume= 12.135 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

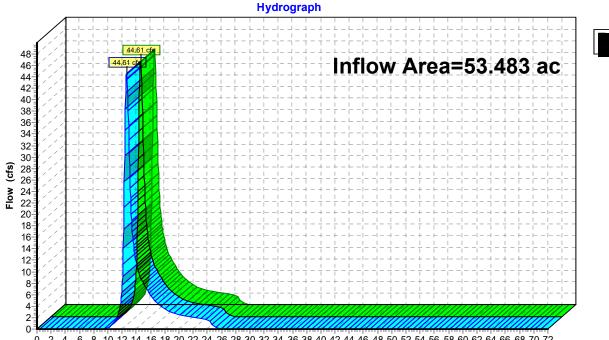

Reach DP-1: Off-Site West

Summary for Reach DP-2: Off-Site South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	146.615 ac, 22.85% Impervious, Inflow Depth = 0.62" for 10-year event	
Inflow	=	22.54 cfs @ 12.59 hrs, Volume= 7.625 af	
Outflow	=	22.54 cfs @ 12.59 hrs, Volume= 7.625 af, Atten= 0%, Lag= 0.0 mir	۱

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach DP-2: Off-Site South

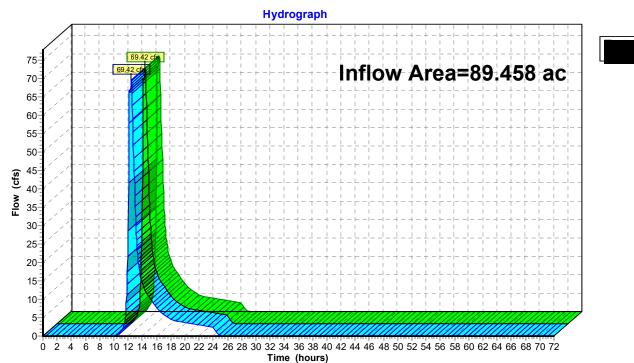
Summary for Reach DP-3: Off-Site East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	53.483 ac, 12.37% Impervious, Inflow Depth = 1.73" for 10-year event
Inflow	=	44.61 cfs @ 12.64 hrs, Volume= 7.729 af
Outflow	=	44.61 cfs @ 12.64 hrs, Volume= 7.729 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-3: Off-Site East


0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

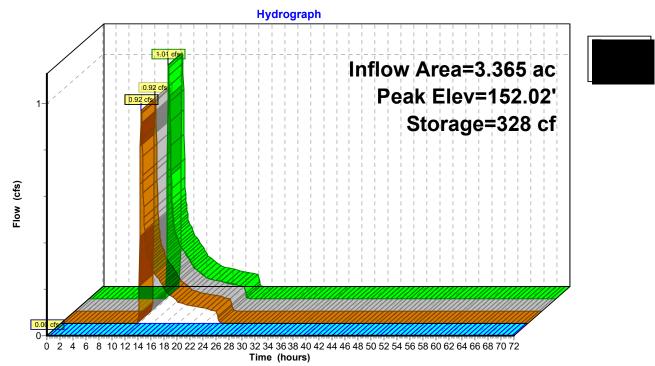
Summary for Reach DP-4: Off-Site Southeast

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	89.458 ac,	5.61% Impervious, Inflo	ow Depth = 1.54"	for 10-year event
Inflow	=	69.42 cfs @	12.43 hrs, Volume=	11.449 af	
Outflow	=	69.42 cfs @	12.43 hrs, Volume=	11.449 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-4: Off-Site Southeast

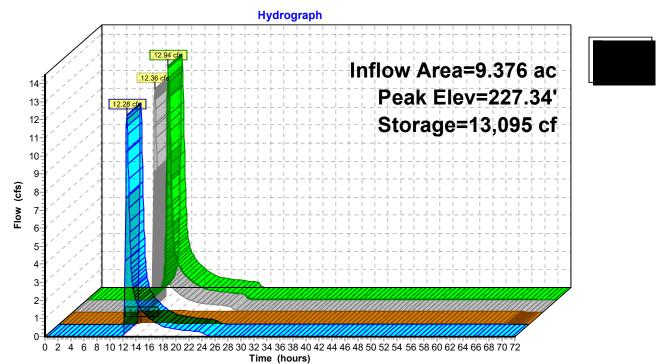

Summary for Pond 1bP: Proposed Basin

Outflow Discarded	= 1.01 = 0.92 = 0.92	cfs @ 12.23 cfs @ 12.40 cfs @ 12.40	Impervious, Inflow hrs, Volume= hrs, Volume= hrs, Volume= hrs, Volume=	Depth = 0.56" for 0.158 af 0.158 af, Atten= 0.158 af 0.000 af	10-year event 9%, Lag= 10.1 min	
	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 152.02' @ 12.40 hrs Surf.Area= 21,811 sf Storage= 328 cf					
	Plug-Flow detention time= 6.0 min calculated for 0.158 af (100% of inflow) Center-of-Mass det. time= 6.0 min (935.7 - 929.8)					
-			Storage Descript			
#1	152.00'	55,260 C	Custom Stage L)ata (Irregular) Listed	below (Recalc)	
Elevation (feet)	Surf.A (sc	Area Perin q-ft) (fee		Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
152.00		729 681.		0	21,729	
154.00	,	986 817.		55,260	38,010	
Device Ro	outing	Invert Ou	tlet Devices			
#1 Pr	rimary	153.50' 20	.0' long x 8.0' brea	dth Broad-Crested	Rectangular Weir	
	-	He	ad (feet) 0.20 0.40	0.60 0.80 1.00 1.2	20 1.40 1.60 1.80 2.00	
			0 3.00 3.50 4.00			
					2.68 2.66 2.64 2.64	
<i>"</i>				2.66 2.68 2.70 2.74	-	
#2 Di	iscarded	152.00' 2. 4	10 in/hr Exfiltratio	n over Surface area		
		ax=1.22 cfs @		2.02' (Free Discharge	e)	

2=Exfiltration (Exfiltration Controls 1.22 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=152.00' (Free Discharge)

Pond 1bP: Proposed Basin

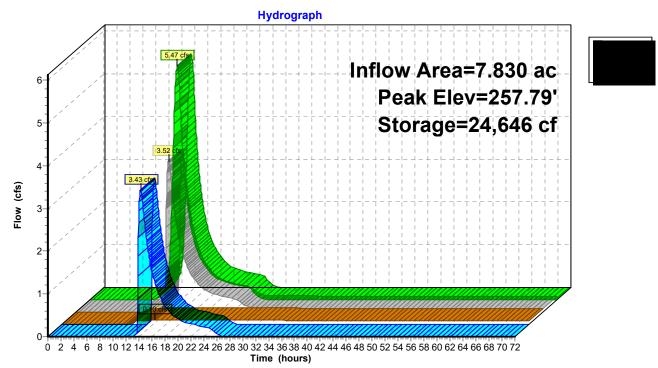

Summary for Pond 1cP: Proposed Basin

Outflow Discarded	= 12.94 cfs @ = 12.36 cfs @	12.44 hr 12.53 hr 12.53 hr	npervious, Inflow D s, Volume= s, Volume= s, Volume= s, Volume=	epth = 2.12" for 1.660 af 1.660 af, Atten= 4 0.292 af 1.368 af		
	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 227.34' @ 12.53 hrs Surf.Area= 13,218 sf Storage= 13,095 cf					
Center-of-M	detention time= 255 Mass det. time= 257 Invert Avail.	.0 min (1,	121.7 - 864.7)	. ,		
Volume			Storage Description			
#1	226.00' 2	3,156 cf	Custom Stage Dat	a (Irregular)Listed I	below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
226.00	6,727	408.0	0	0	6,727	
228.00	17,238	601.0	23,156	23,156	22,256	
Device Re	outing Inv	ert Outle	t Devices			
#1 Pr	rimary 227.0	00' 25.0'	long x 8.0' breadt	h Broad-Crested F	Rectangular Weir	
					0 1.40 1.60 1.80 2.00	
			3.00 3.50 4.00 4.			
					2.68 2.66 2.64 2.64	
110 D				66 2.68 2.70 2.74		
#2 Di	iscarded 226.0	JU [.] 0.270	in/hr Exfiltration	over Surface area		
	OutFlow Max=0.0			4' (Free Discharge)	

2=Exfiltration (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=12.23 cfs @ 12.53 hrs HW=227.34' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 12.23 cfs @ 1.45 fps)

Pond 1cP: Proposed Basin


Summary for Pond 1dP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	5.47 cfs @ 1 3.52 cfs @ 1 0.10 cfs @ 1	.37% Impervious, In 3.45 hrs, Volume= 4.29 hrs, Volume= 4.29 hrs, Volume= 4.29 hrs, Volume=	1.439 af 1.300 af, Att	for 10-year event en= 36%, Lag= 50.4 min		
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 257.79' @ 14.29 hrs Surf.Area= 15,785 sf Storage= 24,646 cf						
Center-of-Mass of	let. time= 574.8	min calculated for 1. min (1,506.6 - 931.8	3)	/)		
		orage Storage Des				
#1 256.	00' 28,0	65 cf Custom Sta	ge Data (Irregular)∟	isted below (Recalc)		
Elevation (feet)	Surf.Area F (sq-ft)	Perim. Inc.St (feet) (cubic-fe				
256.00		466.0	0 () 11.894		
258.00	,	530.0 28,0	065 28,06	5 17,063		
Device Routing	Invert	Outlet Devices				
#1 Primary	257.50'			ed Rectangular Weir		
				0 1.20 1.40 1.60 1.80 2.00		
			.00 4.50 5.00 5.50			
				2.68 2.68 2.66 2.64 2.64		
	050.001		66 2.66 2.68 2.70			
#2 Discard	ed 256.00'	0.270 In/nr Exfiltr	ation over Surface	area		
	low Max=0.10 c	fs @ 14.29 hrs HW=	257.79' (Free Disc	harge)		

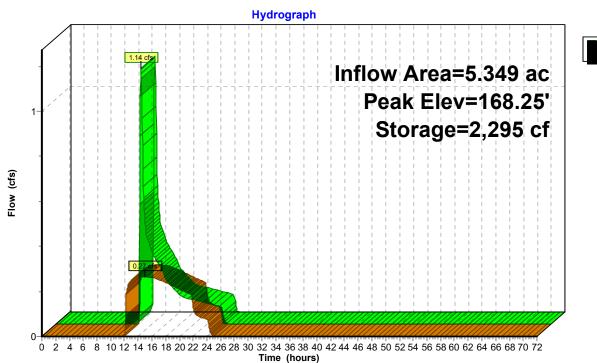
2=Exfiltration (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=3.42 cfs @ 14.29 hrs HW=257.79' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 3.42 cfs @ 1.33 fps)

Pond 1dP: Proposed Berm

Summary for Pond 2P: Existing Depression

Inflow Area =	5.349 ac,	1.98% Impervious, Inflow D	epth = 0.47" for 10-year event
Inflow =	1.14 cfs @	12.38 hrs, Volume=	0.209 af
Outflow =	0.27 cfs @	14.97 hrs, Volume=	0.209 af, Atten= 77%, Lag= 155.8 min
Discarded =	0.27 cfs @	14.97 hrs, Volume=	0.209 af

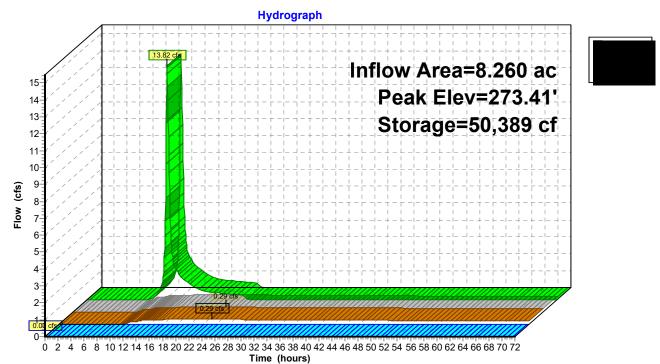

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 168.25' @ 14.97 hrs Surf.Area= 11,252 sf Storage= 2,295 cf

Plug-Flow detention time= 96.8 min calculated for 0.209 af (100% of inflow) Center-of-Mass det. time= 96.7 min (1,041.5 - 944.8)

Volume	Invert	Ava	il.Storage	Storage Description	on		
#1	168.00'		58,289 cf	Custom Stage D	ata (Irregular) Listed	l below (Recalc)	
Elevation (feet)	Su	ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
168.00 170.00		7,570 58,771	407.0 1,048.0	0 58,289	0 58,289	7,570 81,803	
-	Routing			et Devices			
#1 [Discarded	168	3.00' 1.02	0 in/hr Exfiltratior	n over Surface area	1	

Discarded OutFlow Max=0.27 cfs @ 14.97 hrs HW=168.25' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.27 cfs)

Pond 2P: Existing Depression


Summary for Pond 3aP: Proposed Berm

Inflow Are Inflow Outflow Discardee Primary	= 1 = d =	3.82 cfs @ 1 0.29 cfs @ 2 0.29 cfs @ 2	2.28 hrs 3.37 hrs 3.37 hrs		1.463 af	10-year event 98%, Lag= 665.5 min
	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 273.41' @ 23.37 hrs Surf.Area= 47,046 sf Storage= 50,389 cf					
	Plug-Flow detention time= 1,573.7 min calculated for 1.250 af (85% of inflow) Center-of-Mass det. time= 1,509.3 min (2,363.7 - 854.4)					
-				Storage Description		halaw (Daaala)
#1	272.00	5,5	03 CT	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevatior	n S	Surf.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>
272.00		,	871.0	0	0	25,677
274.00	0	57,990 1,	103.0	81,503	81,503	62,174
Device	Routing	Invert	Outlet	t Devices		
#1	Primary	273.75'	8.0' lo	ong x 8.0' breadth	Broad-Crested R	ectangular Weir
	,					0 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00 4.	50 5.00 5.50	
						2.68 2.66 2.64 2.64
				2.65 2.65 2.66 2.0		
#2	Discarded	272.00'	0.270	in/hr Exfiltration	over Surface area	
		w Max=0.29 c	-	.37 hrs HW=273.4	1' (Free Discharge	e)

2=Exfiltration (Exfiltration Controls 0.29 cfs)

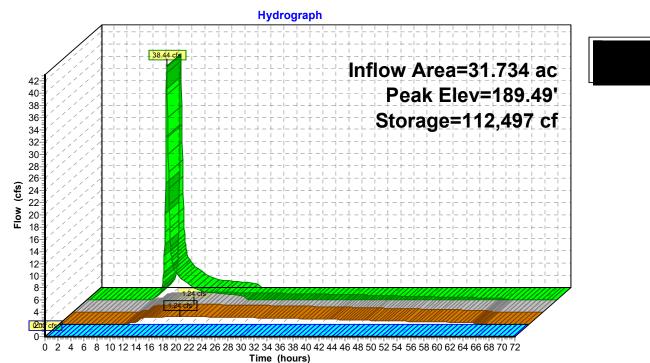
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=272.00' (Free Discharge)

Pond 3aP: Proposed Berm

Summary for Pond 3P: Existing Depression

Inflow Area =	31.734 ac,	4.54% Impervious, Inflow [Depth = 1.40" for 10-year event
Inflow =	38.44 cfs @	12.21 hrs, Volume=	3.696 af
Outflow =	1.24 cfs @	18.56 hrs, Volume=	3.696 af, Atten= 97%, Lag= 381.0 min
Discarded =	1.24 cfs @	18.56 hrs, Volume=	3.696 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 189.49' @ 18.56 hrs Surf.Area= 52,671 sf Storage= 112,497 cf


Plug-Flow detention time= 1,093.0 min calculated for 3.696 af (100% of inflow) Center-of-Mass det. time= 1,092.8 min (1,950.8 - 858.0)

Volume	Invert	Avail	.Storage	Storage Descripti	on	
#1	186.00'	27	7,396 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)
Elevatio (fee 186.0 188.0	t) O	urf.Area (sq-ft) 11,737 36,683	Perim. (feet) 422.0 753.0	Inc.Store (cubic-feet) 0 46,113	Cum.Store (cubic-feet) 0 46,113	Wet.Area (sq-ft) 11,737 42,709
190.0		58,742	1,001.0	94,563	140,677	77,369
192.0	0	78,452	1,254.0	136,720	277,396	122,825
Device	Routing	١n	vert Outl	et Devices		
#1	Discarded	186.	00' 1.02	0 in/hr Exfiltration	n over Surface ar	ea
#2	Primary	191.	Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	ted Rectangular Weir 1.20 1.40 1.60 63 2.64 2.64 2.63
Discard	Discarded OutFlow Max=1.24 cfs @ 18.56 hrs HW=189.49' (Free Discharge)					

1=Exfiltration (Exfiltration Controls 1.24 cfs)

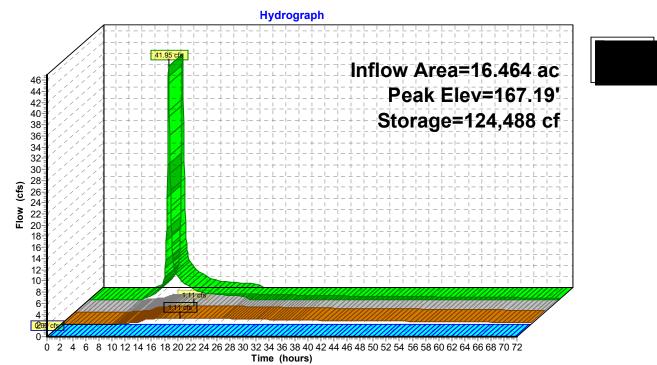
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=186.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 3P: Existing Depression

Summary for Pond 4P: Existing Depression

Inflow Area =	16.464 ac, 0	0.65% Impervious, Inflow	v Depth = 2.81" for 10-year event	
Inflow =	41.95 cfs @	12.19 hrs, Volume=	3.854 af	
Outflow =	1.11 cfs @	18.21 hrs, Volume=	3.611 af, Atten= 97%, Lag= 361.0 min	۱
Discarded =	1.11 cfs @	18.21 hrs, Volume=	3.611 af	
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.19' @ 18.21 hrs Surf.Area= 47,032 sf Storage= 124,488 cf


Plug-Flow detention time= 1,348.5 min calculated for 3.608 af (94% of inflow) Center-of-Mass det. time= 1,316.1 min (2,144.2 - 828.1)

Volume	Invert	Avail.Sto	orage	Storage Description	on		
#1	162.00'	1,773,2	03 cf	Custom Stage D	ata (Irregular) Liste	ed below (Recalc)	
Elevation (feet)		f.Area F (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
162.00		8,040	387.0	0	0	8,040	
164.00) 2	,	890.0	27,203	27,203	59,171	
166.00) 3	31,393	894.0	51,036	78,239	61,043	
168.00) 5	59,552 1,	582.0	89,455	167,695	196,625	
170.00) 10	06,611 3,	162.0	163,895	331,590	793,118	
172.00) 14	12,449 3,	012.0	248,196	579,786	867,073	
174.00	18	32,259 2,	708.0	323,891	903,678	1,005,567	
176.00	22	22,778 3,	083.0	404,360	1,308,037	1,178,477	
178.00	24	12,528 3,	031.0	465,166	1,773,203	1,204,505	
#1	Routing Discarded Primary	Invert 162.00' 177.00'	1.02 23.0 Hea	d (feet) 0.20 0.40	adth Broad-Crest 0.60 0.80 1.00	ed Rectangular Weir	

Discarded OutFlow Max=1.11 cfs @ 18.21 hrs HW=167.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.11 cfs)

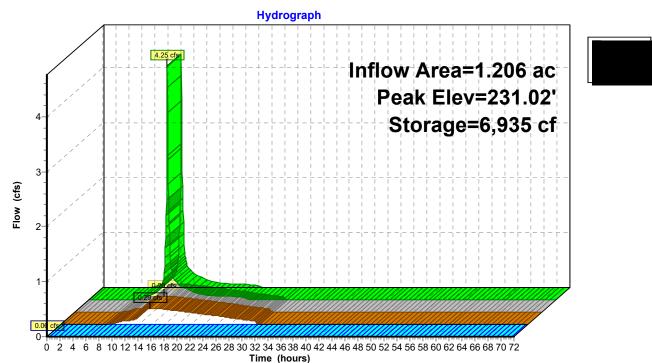
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=162.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 4P: Existing Depression

Summary for Pond 5bP: Proposed Berm

Inflow Area =	1.206 ac, 64.34% Impervious, Inflow De	epth = 3.09" for 10-year event
Inflow =	4.25 cfs @ 12.09 hrs, Volume=	0.310 af
Outflow =	0.29 cfs @ 13.75 hrs, Volume=	0.310 af, Atten= 93%, Lag= 99.7 min
Discarded =	0.29 cfs @ 13.75 hrs, Volume=	0.310 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 231.02' @ 13.75 hrs Surf.Area= 12,326 sf Storage= 6,935 cf


Plug-Flow detention time= 296.7 min calculated for 0.310 af (100% of inflow) Center-of-Mass det. time= 296.8 min (1,108.9 - 812.2)

Volume	Invert	Avail.St	orage	Storage Descriptio	n	
#1	230.00'	26,	529 cf	Custom Stage Da	i ta (Irregular) Liste	ed below (Recalc)
Elevatic (fee	t)	(sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
230.0 232.0	-	2,519 28,762 1	275.0 ,204.0	0 26,529	0 26,529	2,519 111,868
Device	Routing	Inver	t Outl	et Devices		
#1 #2	Discarded Primary	230.00 231.50	' 10.0 Hea 2.50 Coe	d (feet) 0.20 0.40 3.00 3.50 4.00 4	th Broad-Creste 0.60 0.80 1.00 .50 5.00 5.50 54 2.70 2.69 2.0	d Rectangular Weir 1.20 1.40 1.60 1.80 2.00 68 2.68 2.66 2.64 2.64

Discarded OutFlow Max=0.29 cfs @ 13.75 hrs HW=231.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.29 cfs)

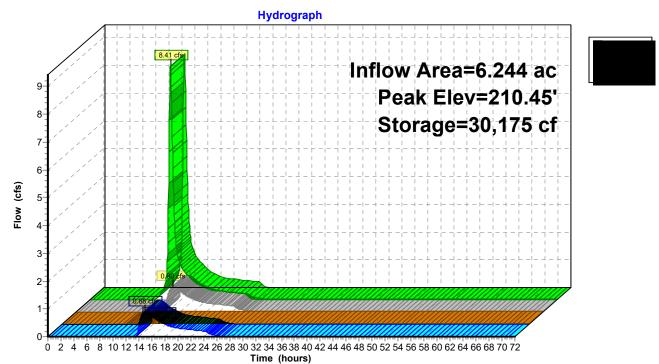
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=230.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 5bP: Proposed Berm

Summary for Pond 5cP: Proposed Berm

Inflow Area =	6.244 ac, 13.40% Impervious, Inflow De	epth = 2.05" for 10-year event
Inflow =	8.41 cfs @ 12.42 hrs, Volume=	1.064 af
Outflow =	0.90 cfs @ 15.02 hrs, Volume=	0.509 af, Atten= 89%, Lag= 155.8 min
Discarded =	0.02 cfs @ 15.02 hrs, Volume=	0.115 af
Primary =	0.88 cfs @ 15.02 hrs, Volume=	0.394 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 210.45' @ 15.02 hrs Surf.Area= 11,879 sf Storage= 30,175 cf


Plug-Flow detention time= 656.8 min calculated for 0.509 af (48% of inflow) Center-of-Mass det. time= 531.7 min (1,398.0 - 866.3)

Volume	Inver	t Avail.	Storage	Storage Description	on	
#1	206.00	' 3	7,107 cf	Custom Stage Da	ata (Irregular)Liste	d below (Recalc)
Elevatio (fee 206.0	t) 00	urf.Area (sq-ft) 2,702	Perim. (feet) 340.0	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 2,702
208.0 210.0	-	6,061	500.0 660.0	8,540 16 545	8,540	13,430
210.0		10,702 13,393	685.0	16,545 12,022	25,084 37,107	28,245 31,004
Device	Routing	Inv	ert Outle	et Devices		
#1	Discarded	206.0	00' 0.09	0 in/hr Exfiltration	over Surface are	a
#2	Primary	210.2	25' 4.0'	long x 8.0' breadt	h Broad-Crested I	Rectangular Weir
			Head	d (feet) 0.20 0.40	0.60 0.80 1.00 1.	20 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00 4	.50 5.00 5.50	
			Coet	f. (English) 2.43 2.	54 2.70 2.69 2.68	3 2.68 2.66 2.64 2.64
			2.64	2.65 2.65 2.66 2	.66 2.68 2.70 2.7	4
Disported OutFlow Max-0.02 of a $(15.02 \text{ bra}, 1)$ (10.45) (Free Displaying)						

Discarded OutFlow Max=0.02 cfs @ 15.02 hrs HW=210.45' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

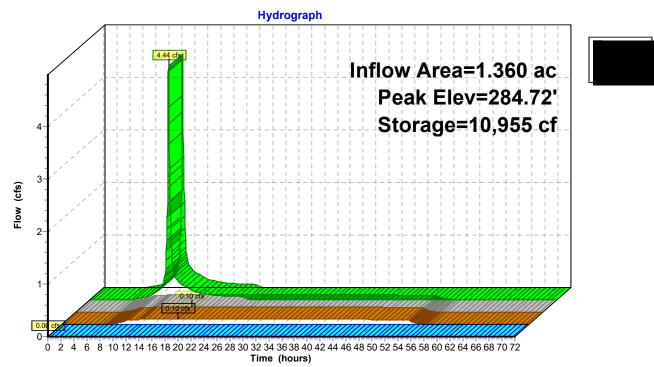
Primary OutFlow Max=0.88 cfs @ 15.02 hrs HW=210.45' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.88 cfs @ 1.09 fps)

Pond 5cP: Proposed Berm

Summary for Pond 5dP: Proposed Berm

Inflow Area =	1.360 ac, 44.82% Impervious, Inflow D	epth = 3.18" for 10-year event
Inflow =	4.44 cfs @ 12.13 hrs, Volume=	0.361 af
Outflow =	0.10 cfs @ 17.93 hrs, Volume=	0.361 af, Atten= 98%, Lag= 348.0 min
Discarded =	0.10 cfs @ 17.93 hrs, Volume=	0.361 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 284.72' @ 17.93 hrs Surf.Area= 16,327 sf Storage= 10,955 cf


Plug-Flow detention time= 1,064.7 min calculated for 0.361 af (100% of inflow) Center-of-Mass det. time= 1,064.4 min (1,876.4 - 812.0)

Volume	Invert	: Avail.St	orage	Storage Descriptio	n		
#1	284.00	' 34,4	188 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)	
Elevatio (fee 284.0 286.0	et) 00	urf.Area (sq-ft) 14,216 20,461	Perim. (feet) 751.0 810.0	Inc.Store (cubic-feet) 0 34,488	Cum.Store (cubic-feet) 0 34,488	Wet.Area (sq-ft) 14,216 21,709	
Device	Routing	Invert	Outle	et Devices			
#1 #2	Discarded Primary	284.00 285.00	8.0' Head 2.50 Coet	3.00 3.50 4.00 4	h Broad-Crested 0.60 0.80 1.00 1 .50 5.00 5.50 54 2.70 2.69 2.6	Rectangular Weir .20 1.40 1.60 1.80 2. 8 2.68 2.66 2.64 2.64	

Discarded OutFlow Max=0.10 cfs @ 17.93 hrs HW=284.72' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.10 cfs)

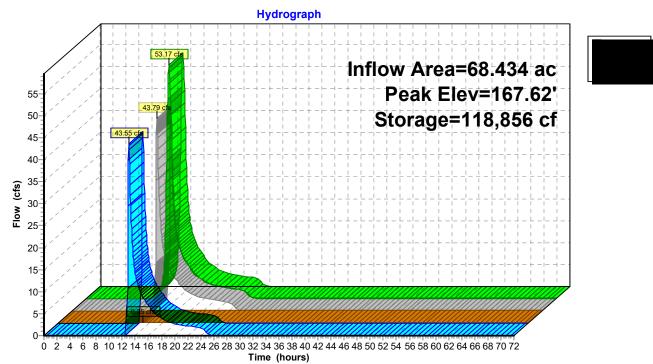
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=284.00' (Free Discharge) ☐ 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 5dP: Proposed Berm

Summary for Pond 5P: Existing Depression

Inflow Area =	68.434 ac, 25.36% Impervious, Inflow	Depth = 1.61" for 10-year event
Inflow =	53.17 cfs @ 12.71 hrs, Volume=	9.169 af
Outflow =	43.79 cfs @ 12.97 hrs, Volume=	7.579 af, Atten= 18%, Lag= 16.0 min
Discarded =	0.25 cfs @ 12.97 hrs, Volume=	1.083 af
Primary =	43.55 cfs @ 12.97 hrs, Volume=	6.496 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.62' @ 12.97 hrs Surf.Area= 39,761 sf Storage= 118,856 cf

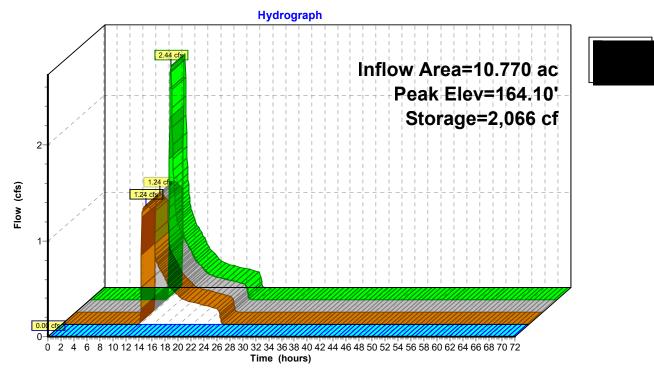

Plug-Flow detention time= 341.8 min calculated for 7.573 af (83% of inflow) Center-of-Mass det. time= 269.5 min (1,163.1 - 893.5)

Volume	Inver	t Avail.	Storage	Storage Description	n	
#1	162.00)' 13 [,]	4,374 cf	Custom Stage Da	i ta (Irregular) Liste	ed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
162.0	0	1,686	164.0	0	0	1,686
164.0	0	17,454	653.0	16,376	16,376	33,489
166.0	0	29,548	840.0	46,474	62,851	55,756
168.0	0	42,358	938.0	71,523	134,374	69,736
Device	Routing	Inv	ert Outl	et Devices		
#1	Discarded	162.0	00' 0.27	0 in/hr Exfiltration	over Surface are	ea
#2						1.20 1.40 1.60
Discard	Discarded OutFlow Max=0.25 cfs @ 12.97 hrs HW=167.62' (Free Discharge)					

1=Exfiltration (Exfiltration Controls 0.25 cfs)

Primary OutFlow Max=43.01 cfs @ 12.97 hrs HW=167.62' (Free Discharge) ☐ 2=Broad-Crested Rectangular Weir (Weir Controls 43.01 cfs @ 1.64 fps)

Pond 5P: Existing Depression


Summary for Pond 6bP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	2.44 cfs @ 1.24 cfs @ 1.24 cfs @	12.47 h 12.92 h 12.92 h	mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume= rs, Volume=	Depth = 0.51" for 0.462 af 0.462 af, Atten= 4 0.462 af 0.000 af	10-year event 49%, Lag= 26.9 min
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 164.10' @ 12.92 hrs Surf.Area= 22,215 sf Storage= 2,066 cf					
Plug-Flow detention time= 11.5 min calculated for 0.462 af (100% of inflow) Center-of-Mass det. time= 11.5 min (956.4 - 945.0) Volume Invert Avail.Storage Storage Description					
		,016 cf		ta (Irregular)Listed	below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
164.00	20,590	712.0	0	0	20,590
166.00	66,837	1,639.0	83,016	83,016	194,035
Device Routir	ig Invei	rt Outle	et Devices		
#1 Prima	y 165.00	Head 2.50 Coef	d (feet) 0.20 0.40 3.00 3.50 4.00 4 . (English) 2.43 2.3	.50 5.00 5.50	0 1.40 1.60 1.80 2.00 2.68 2.66 2.64 2.64
#2 Discar	ded 164.00)' 2.41	0 in/hr Exfiltration	over Surface area	

Discarded OutFlow Max=1.24 cfs @ 12.92 hrs HW=164.10' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.24 cfs)

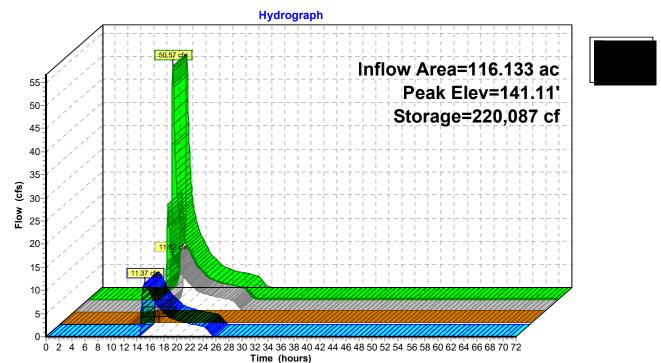
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=164.00' (Free Discharge) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Pond 6bP: Proposed Berm

Summary for Pond 6P: Existing Wetland

Inflow Area =	116.133 ac, 25.36% Impervious, Inflow D	Depth = 0.98" for 10-year event
Inflow =	50.57 cfs @ 12.98 hrs, Volume=	9.473 af
Outflow =	11.82 cfs @ 15.12 hrs, Volume=	6.266 af, Atten= 77%, Lag= 128.3 min
Discarded =	0.45 cfs @ 15.12 hrs, Volume=	2.057 af
Primary =	11.37 cfs @ 15.12 hrs, Volume=	4.209 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 141.11' @ 15.12 hrs Surf.Area= 113,608 sf Storage= 220,087 cf

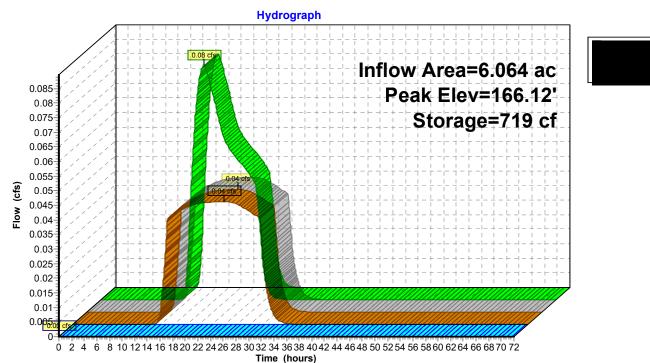

Plug-Flow detention time= 731.9 min calculated for 6.261 af (66% of inflow) Center-of-Mass det. time= 617.6 min (1,550.8 - 933.2)

Volume	Invert	Avail.St	orage	Storage Description	n	
#1	138.00'	330,4	71 cf	Custom Stage Da	ita (Irregular) Liste	d below (Recalc)
Elevatio (fee	t)	(sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
138.0		3,460	686.0	0	0	23,460
140.0	0 9	1,023 1	,816.0	107,129	107,129	248,460
142.0	0 13	3,681 2	,277.0	223,342	330,471	398,668
Device	Routing	Invert	Outle	et Devices		
#1	Discarded	138.00	0.17	0 in/hr Exfiltration	over Surface are	a
#2	Primary	141.00	121.	0' long x 19.0' bre	adth Broad-Cres	ted Rectangular Weir
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1	.20 1.40 1.60
			Coe	f. (English) 2.68 2.	70 2.70 2.64 2.6	3 2.64 2.64 2.63
Discoud			4		111 (Enc. Dischar	

Discarded OutFlow Max=0.45 cfs @ 15.12 hrs HW=141.11' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.45 cfs)

Primary OutFlow Max=11.23 cfs @ 15.12 hrs HW=141.11' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 11.23 cfs @ 0.87 fps)

Pond 6P: Existing Wetland



Summary for Pond 7aP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	0.08 cfs @ 10 0.04 cfs @ 20 0.04 cfs @ 20	54% Impervious, Inf 6.23 hrs, Volume= 3.82 hrs, Volume= 3.82 hrs, Volume= 0.00 hrs, Volume=	0.053 af	for 10-year event en= 47%, Lag= 455.6 min		
		e Span= 0.00-72.00 h Surf.Area= 6,732 sf				
Center-of-Mass of	Plug-Flow detention time= 201.7 min calculated for 0.053 af (100% of inflow) Center-of-Mass det. time= 201.3 min(1,348.1 - 1,146.9)					
Volume Inv	ert Avail.Sto	rage Storage Desc	ription			
#1 166.	#1 166.00' 38,794 cf Custom Stage Data (Irregular) Listed below (Recalc)					
Elevation	Surf.Area P	Perim. Inc.Sto	re Cum.Store	e Wet.Area		
(feet)		(feet) (cubic-fee	-			
166.00		286.0	0 (
168.00		753.0 38,7		,		
Device Routing	Invert	Outlet Devices				
#1 Primary		Head (feet) 0.20 0 2.50 3.00 3.50 4.0 Coef. (English) 2.4 2.64 2.65 2.65 2.0	.40 0.60 0.80 1.00 00 4.50 5.00 5.50 3 2.54 2.70 2.69 36 2.66 2.68 2.70			
#2 Discard	ed 166.00'	0.270 in/hr Exfiltra	tion over Surface	area		
Discarded OutFlow Max-0.04 cfs @ 23.82 brs. HW-166.12' (Free Discharge)						

Discarded OutFlow Max=0.04 cfs @ 23.82 hrs HW=166.12' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=166.00' (Free Discharge)

Pond 7aP: Proposed Berm

Summary for Pond 7P: Existing Depression

Inflow Area =	78.568 ac, 13.71% Impervious, Inflow Depth = 0.48" for 10-year event
Inflow =	7.71 cfs @ 13.75 hrs, Volume= 3.111 af
Outflow =	6.20 cfs @ 14.55 hrs, Volume= 3.111 af, Atten= 20%, Lag= 47.5 min
Discarded =	1.25 cfs @ 14.55 hrs, Volume= 1.708 af
Primary =	4.95 cfs @14.55 hrs, Volume=1.403 af
-	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 147.76' @ 14.55 hrs Surf.Area= 22,349 sf Storage= 26,747 cf

Plug-Flow detention time= 156.6 min calculated for 3.111 af (100% of inflow) Center-of-Mass det. time= 156.6 min (1,176.1 - 1,019.6)

Volume	Inver	t Avail	.Storage	Storage Descriptio	n		
#1	146.00	' 3	2,409 cf	Custom Stage Da	ita (Irregular) Listed	l below (Recalc)	
Elevatio (fee		ourf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
146.0		9,050	771.0	0	0	9,050	
148.0	00	24,633	1,236.0	32,409	32,409	83,343	
Device	Routing	Inv	ert Outle	et Devices			
#1	Primary	147.	50' 14.0	' long x 90.0' brea	dth Broad-Creste	d Rectangular Weir	
				d (feet) 0.20 0.40			
				f. (English) 2.68 2.			
#2	Discarded	146.	00' 2.41	0 in/hr Exfiltration	over Surface area	1	
Discarded OutFlow Max=1.25 cfs @ 14.55 hrs HW=147.76' (Free Discharge)							

2=Exfiltration (Exfiltration Controls 1.25 cfs)

Primary OutFlow Max=4.95 cfs @ 14.55 hrs HW=147.76' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 4.95 cfs @ 1.37 fps)

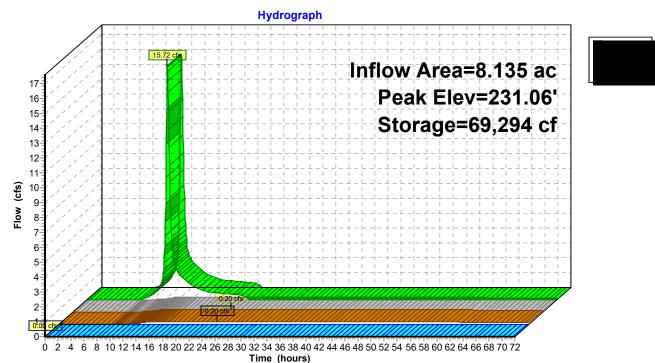
Hydrograph 7.71 cf Inflow Area=78.568 ac Peak Elev=147.76' Storage=26,747 cf 6.20 7 6-4 Flow (cfs) 4 3-2 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond 7P: Existing Depression

Summary for Pond 8P: Existing Wetland

Inflow Area =	8.135 ac, 26.48% Impervious, Inflow [Depth = 2.63" for 10-year event
Inflow =	15.72 cfs @ 12.33 hrs, Volume=	1.783 af
Outflow =	0.20 cfs @ 24.27 hrs, Volume=	0.844 af, Atten= 99%, Lag= 716.3 min
Discarded =	0.20 cfs @ 24.27 hrs, Volume=	0.844 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 231.06' @ 24.27 hrs Surf.Area= 50,729 sf Storage= 69,294 cf


Plug-Flow detention time= 1,688.8 min calculated for 0.844 af (47% of inflow) Center-of-Mass det. time= 1,570.0 min (2,412.6 - 842.6)

Invert	Avail.St	orage	Storage Descript	ion	
228.00'	130,0)34 cf	Custom Stage D)ata (Irregular) List	ted below (Recalc)
	(sq-ft) 5,806 25,974	(feet) 459.0 862.0	Inc.Store (cubic-feet) 0 29,374 100,661	Cum.Store (cubic-feet) 0 29,374 130,034	Wet.Area (sq-ft) 5,806 48,191 101,601
outing	Invert	Outl	et Devices		
scarded mary		158. Hea	0' long x 196.0' k d (feet) 0.20 0.40	oreadth Broad-Cr 0.60 0.80 1.00	ested Rectangular Weir 1.20 1.40 1.60
i	228.00' Su suting scarded mary	228.00' 130,0 Surf.Area H (sq-ft) 5,806 25,974 79,559 1 Souting Inverted scarded 228.00' mary 231.50'	228.00' 130,034 cf Surf.Area Perim. (sq-ft) (feet) 5,806 459.0 25,974 862.0 79,559 1,189.0 Scarded 228.00' 0.17 mary 231.50' 158. Hea Coe	228.00' 130,034 cf Custom Stage D Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 5,806 459.0 0 25,974 862.0 29,374 79,559 1,189.0 100,661 outing Invert Outlet Devices scarded 228.00' 0.170 in/hr Exfiltratio mary 231.50' 158.0' long x 196.0' k Head (feet) 0.20 0.40 Coef. (English) 2.68 2	228.00' 130,034 cf Custom Stage Data (Irregular)List Surf.Area Perim. Inc.Store Cum.Store (sq-ft) (feet) (cubic-feet) (cubic-feet) 5,806 459.0 0 0 25,974 862.0 29,374 29,374 79,559 1,189.0 100,661 130,034 uting Invert Outlet Devices 228.00' scarded 228.00' 0.170 in/hr Exfiltration over Surface and state

Discarded OutFlow Max=0.20 cfs @ 24.27 hrs HW=231.06' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

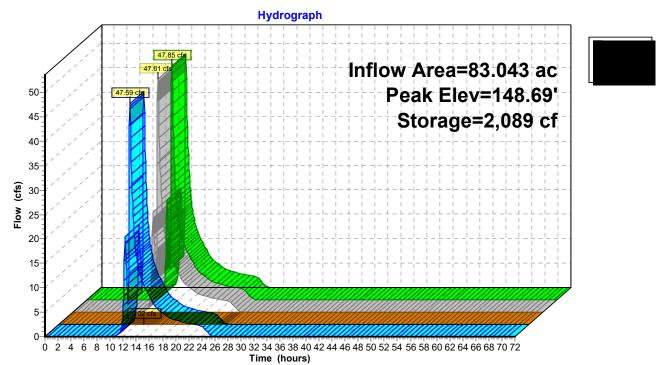
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=228.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 8P: Existing Wetland

Summary for Pond 9P: Existing Wetland

Inflow Area =	83.043 ac, 27.18% Impervious, Inflov	w Depth = 1.24" for 10-year event
Inflow =	47.85 cfs @ 12.97 hrs, Volume=	8.613 af
Outflow =	47.61 cfs @ 12.98 hrs, Volume=	8.613 af, Atten= 1%, Lag= 0.9 min
Discarded =	0.02 cfs @ 12.98 hrs, Volume=	0.011 af
Primary =	47.59 cfs @ 12.98 hrs, Volume=	8.601 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 148.69' @ 12.98 hrs Surf.Area= 4,009 sf Storage= 2,089 cf


Plug-Flow detention time= 1.0 min calculated for 8.607 af (100% of inflow) Center-of-Mass det. time= 1.0 min (929.2 - 928.2)

Volume	Invert	t Avail.S	Storage	Storage Description	on			
#1	148.00	' 834	,530 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)		
Elevation (feet 148.0 150.0 152.0	t) 0 0 0	,	Perim. (feet) 180.0 387.0 2,199.0	Inc.Store (cubic-feet) 0 10,479 120,084 212 004	Cum.Store (cubic-feet) 0 10,479 130,563	Wet.Area (sq-ft) 2,138 11,495 384,391 430,714		
154.0 156.0		178,250 213,235	2,327.0 2,588.0	313,004 390,963	443,567 834,530	430,714 532,915		
Device #1 #2	Routing Discarded Primary	Inve 148.0 148.0	ert Outle 0' 0.17	et Devices 0 in/hr Exfiltratior	n over Surface ar			
	,		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	-		
Discarde	Discarded OutFlow Max=0.02 cfs @ 12.98 hrs HW=148.69' (Free Discharge)							

Primary OutFlow Max=47.32 cfs @ 12.98 hrs HW=148.69' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 47.32 cfs @ 2.22 fps)

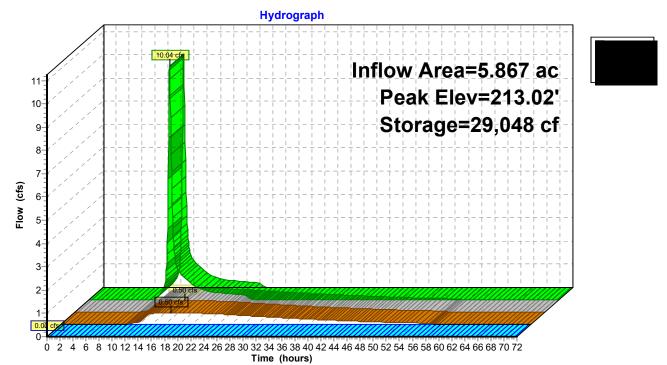
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Pond 9P: Existing Wetland

Summary for Pond 10aP: Proposed Berm

Inflow Area =	5.867 ac, 13.96% Impervious, Inflow	Depth = 2.12" for 10-year event
Inflow =	10.04 cfs @ 12.34 hrs, Volume=	1.039 af
Outflow =	0.50 cfs @ 16.84 hrs, Volume=	1.039 af, Atten= 95%, Lag= 270.3 min
Discarded =	0.50 cfs @ 16.84 hrs, Volume=	1.039 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 213.02' @ 16.84 hrs Surf.Area= 21,214 sf Storage= 29,048 cf

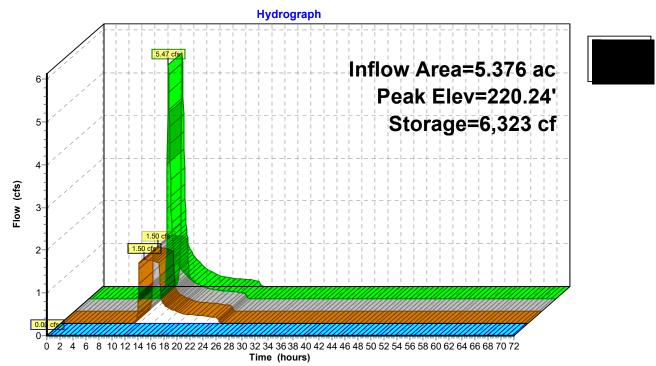

Plug-Flow detention time= 780.4 min calculated for 1.038 af (100% of inflow) Center-of-Mass det. time= 781.2 min (1,642.5 - 861.3)

Volume	Inve	rt Avail	.Storage	Storage Description			
#1	#1 210.00' 55,040 cf		Custom Stage Da	Custom Stage Data (Irregular)Listed below (Recalc)			
Elevatio (fee	et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
	210.00 1,713 2		254.0	0	0	1,713	
212.0	00	12,100	654.0	12,244	12,244	30,630	
214.0	00	32,319	899.0	42,796	55,040	60,948	
<u>Device</u> #1 #2	Routing Discarded Primary		00' 1.02	et Devices 0 in/hr Exfiltration ' long x 8.0' bread			
	•		Hea	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00			
			2.50	3.00 3.50 4.00 4	.50 5.00 5.50		
			Coet	f. (English) 2.43 2.5	54 2.70 2.69 2.68	3 2.68 2.66 2.64 2.64	
			2.64	2.65 2.65 2.66 2	.66 2.68 2.70 2.7	4	
Discarded OutFlow Max=0.50 cfs @ 16.84 hrs HW=213.02' (Free Discharge)							

1=Exfiltration (Exfiltration Controls 0.50 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=210.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 10aP: Proposed Berm

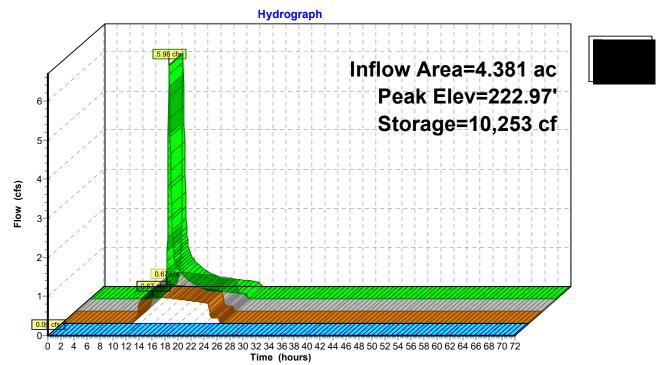

Summary for Pond 11bP: Proposed Berm

Outflow Discarded	= 5.47 cfs @ = 1.50 cfs @	2 12.25 h 2 12.84 h 2 12.84 h	mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= rs, Volume=	0.590 af	10-year event 73%, Lag= 35.2 min		
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 220.24' @ 12.84 hrs Surf.Area= 26,891 sf Storage= 6,323 cf							
Plug-Flow detention time= 31.0 min calculated for 0.589 af (100% of inflow) Center-of-Mass det. time= 31.0 min(912.7 - 881.7)							
Volume			Storage Description	n			
#1	220.00' 6	6,163 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
220.00	25,086	664.0	0	0	25,086		
222.00	41,783	802.0	66,163	66,163	41,252		
Device Ro	outing Inv	ert Outle	et Devices				
H 2 C		Head 2.50 Coet	30.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74				
#2 Di	iscarded 220.	00' 2.41	0 in/hr Exfiltration	over Surface area			
Discarded OutFlow Max=1.50 cfs @ 12.84 hrs HW=220.24' (Free Discharge)							

Discarded OutFlow Max=1.50 cfs @ 12.84 hrs HW=220.24' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.50 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=220.00' (Free Discharge)

Pond 11bP: Proposed Berm


Summary for Pond 11cP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	5.98 cfs @ 0.67 cfs @	12.21 hr 13.98 hr 13.98 hr	npervious, Inflow D s, Volume= s, Volume= s, Volume= s, Volume=	0.582 af	10-year event 39%, Lag= 106.1 min	
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 222.97' @ 13.98 hrs Surf.Area= 12,070 sf Storage= 10,253 cf						
Plug-Flow detention time= 161.9 min calculated for 0.581 af (100% of inflow) Center-of-Mass det. time= 161.8 min(1,029.8 - 868.1)						
			Storage Descriptior			
#1 222.	00' 24	,481 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
222.00	9,148	421.0	0	0	9,148	
224.00	15,620	537.0	24,481	24,481	18,043	
Device Routing	Inve	rt Outle	t Devices			
#1 Primary 223.75' 10.0' long x 8.0' breadth Broad-Crested Rectangular We Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.8 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74			0 1.40 1.60 1.80 2.00 2.68 2.66 2.64 2.64			
#2 Discard	ed 222.0	0' 2.410	in/hr Exfiltration	over Surface area		
Discarded OutFlow Max=0.67 cfs @ 13.98 hrs HW=222.97' (Free Discharge)						

Discarded OutFlow Max=0.67 cfs @ 13.98 hrs HW=222.97' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.67 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=222.00' (Free Discharge)

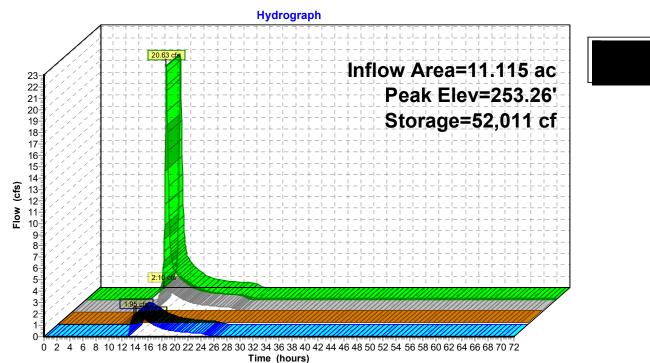
Pond 11cP: Proposed Berm

Summary for Pond 12bP: Proposed Berm

[62] Hint: Exceeded Reach 12bR OUTLET depth by 0.07' @ 14.50 hrs

Inflow Area =	11.115 ac, 7.70% Impervious, Inflow	Depth = 2.21" for 10-year event
Inflow =	20.63 cfs @ 12.32 hrs, Volume=	2.043 af
Outflow =	2.10 cfs @ 14.14 hrs, Volume=	1.516 af, Atten= 90%, Lag= 109.7 min
Discarded =	0.15 cfs @ 14.14 hrs, Volume=	0.707 af
Primary =	1.95 cfs $\overline{@}$ 14.14 hrs, Volume=	0.809 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 253.26' @ 14.14 hrs Surf.Area= 24,502 sf Storage= 52,011 cf

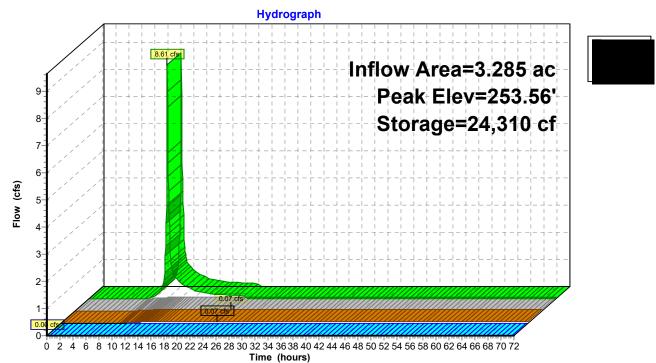

Plug-Flow detention time= 925.1 min calculated for 1.515 af (74% of inflow) Center-of-Mass det. time= 833.7 min (1,691.3 - 857.6)

Volume	Inve	rt Avail.	.Storage	Storage Description	on		
#1	#1 250.00' 71,013 cf		Custom Stage Da	ata (Irregular)Liste	d below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
250.0 252.0 254.0)0)0	4,608 20,843 26,794	359.0 719.0 769.0	0 23,501 47,513	0 23,501 71,013	4,608 35,509 41,614	
Device	evice Routing Invert Ou		vert Outle	et Devices			
#1	Hea 2.50 Coe		3.00 3.50 4.00 4	0.60 0.80 1.00 1 .50 5.00 5.50 54 2.70 2.69 2.68	.20 1.40 1.60 1.80 2.0 8 2.68 2.66 2.64 2.64	00	
#2	Discardeo	d 250.		0 in/hr Exfiltration			

Discarded OutFlow Max=0.15 cfs @ 14.14 hrs HW=253.26' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.15 cfs)

Primary OutFlow Max=1.95 cfs @ 14.14 hrs HW=253.26' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 1.95 cfs @ 1.25 fps)

Pond 12bP: Proposed Berm


Summary for Pond 12cP: Proposed Berm

Inflow Area Inflow Outflow Discarded Primary	=	3.285 ac, 8.61 cfs @ 0.07 cfs @ 0.07 cfs @ 0.00 cfs @	12.09 hrs 24.07 hrs 24.07 hrs	8.38% Impervious, Inflow Depth = 2.29" for 10-year events 12.09 hrs, Volume= 0.626 af 24.07 hrs, Volume= 0.310 af, Atten= 99%, Lag= 3 24.07 hrs, Volume= 0.310 af 0.00 hrs, Volume= 0.000 af				
	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 253.56' @ 24.07 hrs Surf.Area= 10,962 sf Storage= 24,310 cf							
	Plug-Flow detention time= 1,721.6 min calculated for 0.310 af (49% of inflow) Center-of-Mass det. time= 1,603.0 min (2,439.9 - 836.9)							
Volume	Inve	ert Avail.	Storage	Storage Description	n			
#1	250.0	0' 29	9,339 cf	Custom Stage Da	ta (Irregular) Listed	below (Recalc)		
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
250.00		2,632	234.0	0	0	2,632		
252.00		7,654	458.0	9,850	9,850	14,987		
254.00		11,997	575.0	19,489	29,339	24,660		
Device Routing Invert Outlet Devices								
#1 Primary 253.75' 4.0' long x 8 Head (feet) 0 2.50 3.00 3.4 Coef. (English		(feet) 0.20 0.40 (3.00 3.50 4.00 4. (English) 2.43 2.5	50 5.00 5.50	0 1.40 1.60 1.80 2.00 2.68 2.66 2.64 2.64				
#2 E	Discarde	d 250.0			over Surface area			

Discarded OutFlow Max=0.07 cfs @ 24.07 hrs HW=253.56' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=250.00' (Free Discharge)

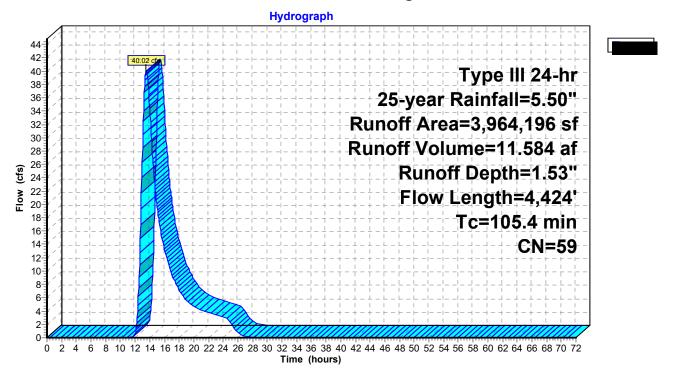
Pond 12cP: Proposed Berm

Quinebaug Proposed Hydrology Prepared by Tighe & Bond <u>HydroCAD® 10.00-20_s/n 03436 © 2017 HydroCAD Software Solut</u>	Type III 24-hr 25-year Rainfall=5.50" Printed 10/3/2019 ions LLC Page 218
Time span=0.00-72.00 hrs, dt=0.05 Runoff by SCS TR-20 method, UH=S Reach routing by Stor-Ind+Trans method - Pon	CS, Weighted-CN
	6 sf 11.60% Impervious Runoff Depth=1.53" 5.4 min CN=59 Runoff=40.02 cfs 11.584 af
	9 sf 28.06% Impervious Runoff Depth=0.85" c=9.9 min CN=49 Runoff=1.94 cfs 0.237 af
	20 sf 8.65% Impervious Runoff Depth=2.68" 30.4 min CN=73 Runoff=16.44 cfs 2.093 af
	88 sf 7.37% Impervious Runoff Depth=2.77" 105.4 min CN=74 Runoff=6.92 cfs 1.807 af
	07 sf 1.98% Impervious Runoff Depth=0.73" =12.1 min CN=47 Runoff=2.20 cfs 0.323 af
	15 sf 3.27% Impervious Runoff Depth=2.68" 19.3 min CN=73 Runoff=17.62 cfs 1.844 af
	37 sf 4.99% Impervious Runoff Depth=2.41" 14.7 min CN=70 Runoff=49.77 cfs 4.723 af
	84 sf 0.65% Impervious Runoff Depth=3.43" 13.9 min CN=81 Runoff=51.12 cfs 4.708 af
	8 sf 25.20% Impervious Runoff Depth=2.59" 9.6 min CN=72 Runoff=67.96 cfs 11.111 af
	4 sf 64.34% Impervious Runoff Depth=3.73" c=6.0 min CN=84 Runoff=5.11 cfs 0.375 af
	5 sf 13.40% Impervious Runoff Depth=2.59" 29.3 min CN=72 Runoff=10.75 cfs 1.347 af
	3 sf 44.82% Impervious Runoff Depth=3.83" 'c=9.1 min CN=85 Runoff=5.32 cfs 0.434 af
	5 sf 22.55% Impervious Runoff Depth=0.73" =44.6 min CN=47 Runoff=5.87 cfs 1.348 af
	6 sf 17.08% Impervious Runoff Depth=0.78" =19.6 min CN=48 Runoff=4.47 cfs 0.704 af
	66 sf 2.54% Impervious Runoff Depth=0.23" =95.4 min CN=37 Runoff=0.19 cfs 0.116 af
	3 sf 14.64% Impervious Runoff Depth=0.78" 99.9 min CN=48 Runoff=13.40 cfs 4.739 af

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solut	Type III 24-hr 25-year Rainfall=5.50" Printed 10/3/2019 ions LLC Page 219
Subcatchment8S: Drainage Area 8 Runoff Area=354,352	2 sf 26.48% Impervious Runoff Depth=3.24" 23.6 min CN=79 Runoff=19.35 cfs 2.194 af
	9 sf 35.74% Impervious Runoff Depth=2.24" 17.1 min CN=68 Runoff=26.87 cfs 2.731 af
	6 sf 13.96% Impervious Runoff Depth=2.68" 17.2 min CN=73 Runoff=13.07 cfs 1.310 af
Subcatchment10bS: Drainage Area 10 Runoff Area=1,072,278 Flow Length=1,752' Tc=	8 sf 13.17% Impervious Runoff Depth=2.16" 40.2 min CN=67 Runoff=29.78 cfs 4.429 af
	3 sf 10.23% Impervious Runoff Depth=2.33" 38.3 min CN=69 Runoff=63.95 cfs 9.189 af
	84 sf 1.97% Impervious Runoff Depth=1.76" =16.2 min CN=62 Runoff=7.57 cfs 0.787 af
	46 sf 1.10% Impervious Runoff Depth=2.08" =14.0 min CN=66 Runoff=7.98 cfs 0.758 af
	44.7 min CN=73 Runoff=56.67 cfs 8.725 af
Flow Length=902' Tc=	89 sf 7.70% Impervious Runoff Depth=2.77" :14.5 min CN=74 Runoff=27.45 cfs 2.565 af
C Tc	06 sf 8.38% Impervious Runoff Depth=2.86" =6.0 min CN=75 Runoff=10.80 cfs 0.783 af
Flow Length=1,813' To	82 sf 0.05% Impervious Runoff Depth=2.08" =9.8 min CN=66 Runoff=66.38 cfs 5.596 af
n=0.030 L=736.0' S=0.0299 '/' Ca	Max Vel=4.36 fps Inflow=13.07 cfs 1.310 af apacity=51.58 cfs Outflow=12.76 cfs 1.310 af
n=0.030 L=982.0' S=0.0234 '/' Ca	Max Vel=4.91 fps Inflow=27.45 cfs 2.565 af apacity=45.66 cfs Outflow=26.24 cfs 2.565 af
Reach DP-1: Off-Site West	Inflow=55.53 cfs 17.542 af Outflow=55.53 cfs 17.542 af
Reach DP-2: Off-Site South	Inflow=36.88 cfs 12.321 af Outflow=36.88 cfs 12.321 af
Reach DP-3: Off-Site East	Inflow=58.47 cfs 10.143 af Outflow=58.47 cfs 10.143 af
Reach DP-4: Off-Site Southeast	Inflow=90.65 cfs 14.785 af Outflow=90.65 cfs 14.785 af

Quinebaug Proposed Hydrology Prepared by Tighe & Bond <u>HydroCAD® 10.00-20_s/n 03436_© 2017 HydroCAD Softwar</u>	Type III 24-hr25-year Rainfall=5.50"Printed10/3/2019re Solutions LLCPage 220
	ev=152.04' Storage=868 cf Inflow=1.94 cfs 0.237 af rimary=0.00 cfs 0.000 af Outflow=1.22 cfs 0.237 af
	27.40' Storage=13,901 cf Inflow=16.44 cfs 2.093 af nary=15.91 cfs 1.798 af Outflow=16.00 cfs 2.093 af
	257.88' Storage=26,145 cf Inflow=6.92 cfs 1.807 af rimary=5.36 cfs 1.213 af Outflow=5.46 cfs 1.667 af
Pond 2P: Existing Depression Peak Elev	=168.44' Storage=4,882 cf Inflow=2.20 cfs 0.323 af Outflow=0.35 cfs 0.323 af
	73.71' Storage=65,299 cf Inflow=17.62 cfs 1.844 af rimary=0.00 cfs 0.000 af Outflow=0.33 cfs 1.409 af
	0.13' Storage=148,647 cf Inflow=49.77 cfs 4.723 af rimary=0.00 cfs 0.000 af Outflow=1.42 cfs 4.718 af
	7.75' Storage=153,551 cf Inflow=51.12 cfs 4.708 af rimary=0.00 cfs 0.000 af Outflow=1.31 cfs 4.268 af
	=231.15' Storage=8,626 cf Inflow=5.11 cfs 0.375 af rimary=0.00 cfs 0.000 af Outflow=0.33 cfs 0.375 af
	10.59' Storage=31,840 cf Inflow=10.75 cfs 1.347 af rimary=1.98 cfs 0.676 af Outflow=2.01 cfs 0.792 af
	284.88' Storage=13,671 cf Inflow=5.32 cfs 0.434 af rimary=0.00 cfs 0.000 af Outflow=0.11 cfs 0.434 af
	.73' Storage=123,173 cf Inflow=67.96 cfs 11.788 af ary=63.76 cfs 9.107 af Outflow=64.02 cfs 10.196 af
	=164.27' Storage=6,088 cf Inflow=4.47 cfs 0.704 af rimary=0.00 cfs 0.000 af Outflow=1.41 cfs 0.704 af
U U	.20' Storage=231,206 cf Inflow=76.26 cfs 13.174 af nary=29.75 cfs 7.891 af Outflow=30.20 cfs 9.963 af
	=166.37' Storage=2,724 cf Inflow=0.19 cfs 0.116 af rimary=0.00 cfs 0.000 af Outflow=0.06 cfs 0.116 af
	47.94' Storage=30,870 cf Inflow=13.40 cfs 4.739 af nary=10.91 cfs 2.947 af Outflow=12.25 cfs 4.739 af
	31.36' Storage=85,720 cf Inflow=19.35 cfs 2.194 af rimary=0.00 cfs 0.000 af Outflow=0.23 cfs 0.997 af
	48.91' Storage=3,026 cf Inflow=70.45 cfs 11.838 af y=70.45 cfs 11.826 af Outflow=70.47 cfs 11.838 af

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 Hydro(Type III 24-hr 25-year Rainfall=5.50"Printed 10/3/2019AD Software Solutions LLCPage 221
	eak Elev=213.39' Storage=37,571 cf Inflow=12.76 cfs 1.310 af .310 af Primary=0.00 cfs 0.000 af Outflow=0.59 cfs 1.310 af
Pond 11bP: Proposed Berm Discarded=1.56 cfs	Peak Elev=220.39' Storage=10,292 cf Inflow=7.57 cfs 0.787 af 0.787 af Primary=0.00 cfs 0.000 af Outflow=1.56 cfs 0.787 af
Pond 11cP: Proposed Berm Discarded=0.74 cfs	Peak Elev=223.33' Storage=14,814 cf Inflow=7.98 cfs 0.758 af 0.758 af Primary=0.00 cfs 0.000 af Outflow=0.74 cfs 0.758 af
	eak Elev=253.44' Storage=56,575 cf Inflow=26.24 cfs 2.565 af 0.712 af Primary=4.56 cfs 1.324 af Outflow=4.71 cfs 2.036 af
Discarded=0.07 cfs	eak Elev=253.83' Storage=27,279 cf Inflow=10.80 cfs 0.783 af 0.328 af Primary=0.21 cfs 0.095 af Outflow=0.28 cfs 0.423 af

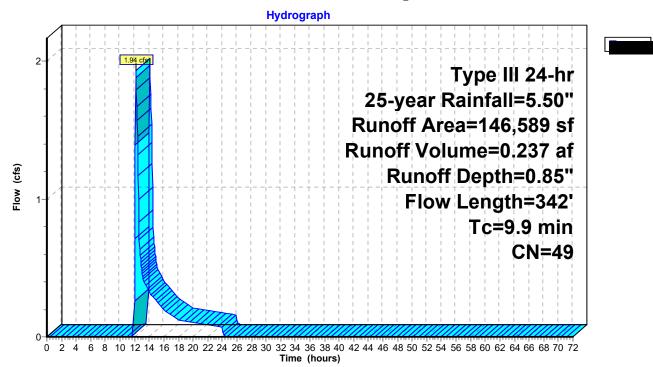

Total Runoff Area = 533.249 ac Runoff Volume = 86.561 af Average Runoff Depth = 1.95" 86.79% Pervious = 462.798 ac 13.21% Impervious = 70.450 ac

Summary for Subcatchment 1aS: Drainage Area 1a

Runoff 40.02 cfs @ 13.52 hrs, Volume= 11.584 af, Depth= 1.53" =

	Ai	rea (sf)	CN	Description					
	4	82,442	30 I	Meadow, no	on-grazed,	HSG A			
	5	38,022	58 I	Meadow, no	on-grazed,	HSG B			
	9	42,184		Meadow, no	•				
		0		Meadow, no					
		15,616		Noods, Go					
		04,263		Noods, Go					
		25,155		Noods, Go					
		10,840		Noods, Go					
*		33,102		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*	4	0		Gravel pit, I					
*		14,914		Nater body Gravel road					
*		52,839		Structure					
*		0 1,438		Panels					
*		4,403			nad				
*		38,978		Equipment pad Paved					
		64,196		Neighted A	verade				
		04,463		38.40% Pei					
		59,733		11.60% Imp					
	•	00,100							
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•			
	9.3	50	0.0400	0.09		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.20"			
	11.3	356	0.0110	0.52		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	23.1	433	0.0020	0.31		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	4.3	222	0.0300	0.87		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	10.5	766	0.0300	1.21		Shallow Concentrated Flow,			
	10.0	o =o=				Short Grass Pasture Kv= 7.0 fps			
	46.9	2,597	0.0340	0.92		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	105.4	4,424	Total						

Subcatchment 1aS: Drainage Area 1a

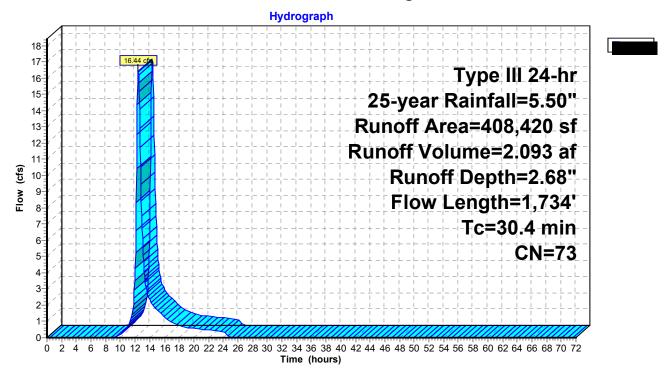

Summary for Subcatchment 1bS: Drainage Area 1b

Runoff = 1.94 cfs @ 12.19 hrs, Volume= 0.237 af, Depth= 0.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.50"

	A	rea (sf)	CN E	Description		
	1	03,427	30 N	leadow, no	on-grazed,	HSG A
		2,036	58 N	leadow, no	on-grazed,	HSG B
*		7,140	98 F	Panels	-	
*		33,986	98 E	Basin		
	1	46,589	49 V	Veighted A	verage	
	1	05,463			vious Area	
		41,126	2	8.06% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.4	50	0.0100	0.11		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	2.5	292	0.0762	1.93		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	9.9	342	Total			

Subcatchment 1bS: Drainage Area 1b

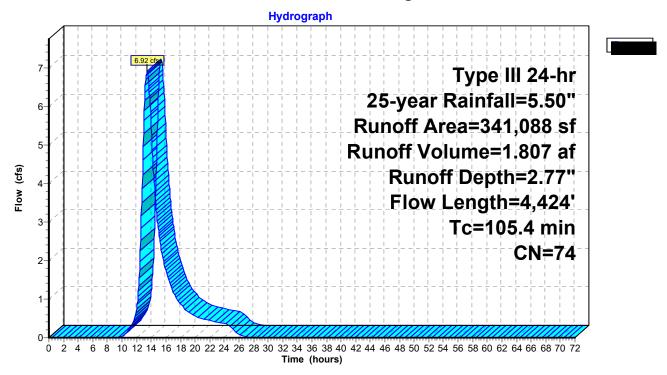


Summary for Subcatchment 1cS: Drainage Area 1c

Runoff 16.44 cfs @ 12.43 hrs, Volume= 2.093 af, Depth= 2.68" =

	A	rea (sf)	CN	Description		
		0	30	Meadow, n	on-grazed,	HSG A
		0			on-grazed,	
	3	51,878	71	Meadow, n	on-grazed,	HSG C
		0	78	Meadow, n	on-grazed,	HSG D
		0	30	Woods, Go	od, HSG A	
		0	55	Woods, Go	od, HSG B	
		18,313	70	Woods, Go	od, HSG C	
		0	77	Woods, Go	od, HSG D	
*		0		Gravel pit, l		
*		0	81	Gravel pit, l	HSG B	
*		0	88	Gravel pit, l	HSG C	
*		0		Gravel pit, l		
*		2,416		Water body		
*		2,918		Gravel road	1	
*		0		Structure		
*		5,460		Panels		
*		0		Equipment	pad	
*		10,197		Paved		
*		17,238	98	Basin		
	4	08,420	73	Weighted A	verage	
	3	73,109	9	91.35% Pe	rvious Area	
		35,311	i	8.65% Impe	ervious Are	а
	Тс	Length	Slope			Description
	(min)	(feet)	(ft/ft)	, ,	(cfs)	
	7.1	50	0.0800	0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	23.3	1,684	0.0297	1.21		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	30.4	1,734	Total			

Subcatchment 1cS: Drainage Area 1c

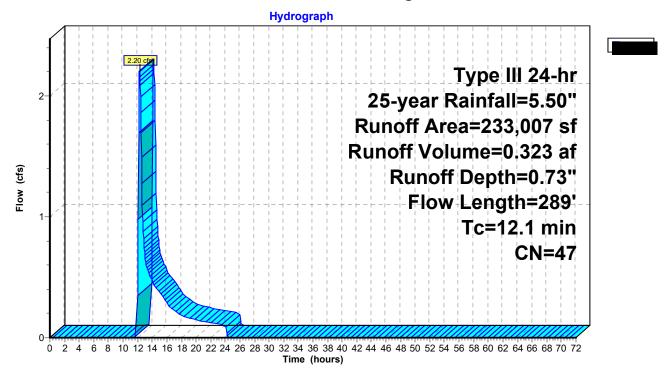

Summary for Subcatchment 1dS: Drainage Area 1a

Page 227

Runoff 6.92 cfs @ 13.45 hrs, Volume= 1.807 af, Depth= 2.77" =

_	A	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0	58	Meadow, no	on-grazed,	HSG B
	2	69,007	71	Meadow, no	on-grazed,	HSG C
		0	78	Meadow, no	on-grazed,	HSG D
		0		Woods, Go		
		0	55	Woods, Go	od, HSG B	
		34,713	70	Woods, Go	od, HSG C	
		0	77	Woods, Go	od, HSG D	
*		0	70	Gravel pit, I	HSG A	
*		0	81	Gravel pit, l	HSG B	
*		0	88	Gravel pit, I	HSG C	
*		0	92	Gravel pit, I	HSG D	
*		0	98	Water body		
*		12,239	96	Gravel road	l	
*		0	98	Structure		
*		7,140	98	Panels		
*		629	98	Equipment	pad	
*		1,074		Paved		
*		16,286	98	Basin		
	3	41,088	74	Weighted A	verage	
		15,959		92.63% Pei	vious Area	l
		25,129		7.37% Impe	ervious Are	а
	_					
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	
	9.3	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	11.3	356	0.0110	0.52		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	23.1	433	0.0020	0.31		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	4.3	222	0.0300	0.87		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	10.5	766	0.0300) 1.21		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	46.9	2,597	0.0340	0.92		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	105.4	4,424	Total			

Subcatchment 1dS: Drainage Area 1a

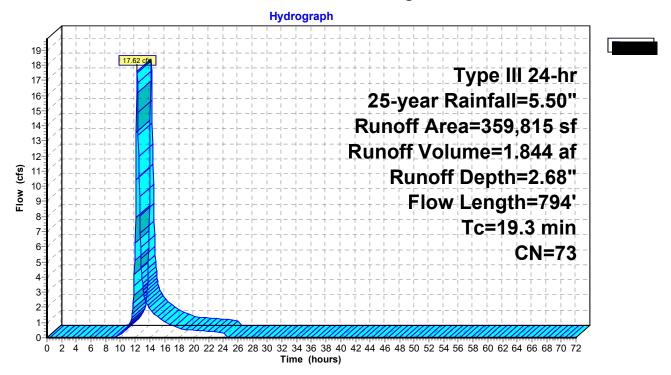


Summary for Subcatchment 2S: Drainage Area 2

Runoff 2.20 cfs @ 12.26 hrs, Volume= 0.323 af, Depth= 0.73" =

	A	rea (sf)	CN	Description		
	1	17,788	30	Meadow, n	on-grazed,	HSG A
		29,605	58	Meadow, no	on-grazed,	HSG B
		0	71	Meadow, no	on-grazed,	HSG C
		0	78	Meadow, no	on-grazed,	HSG D
		16,114	30	Woods, Go		
		0	55	Woods, Go		
		0	70	Woods, Go	•	
		0	77	Woods, Go		
*		58,620	70	Gravel pit, I		
*		0	81	Gravel pit, I		
*		0	88	Gravel pit, I		
*		0	92	Gravel pit, I		
*		0	98	Water body		
*		6,260	96	Gravel road	1	
*		0	98	Structure		
<u> </u>		4,620	98	Panels		
		33,007	47	Weighted A		
	2	28,387		98.02% Pe		
		4,620		1.98% Impe	ervious Are	а
	Та	Longth	Clan		Canaaitu	Description
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
				/ / /	(015)	Shoot Flow
	6.8	50	0.090	0.12		Sheet Flow,
	5.3	239	0.023	0.76		Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow,
	0.0	209	0.0230	5 0.70		Woodland Kv= 5.0 fps
	12.1	289	Total			
	14.1	200	rotar			

Subcatchment 2S: Drainage Area 2


Summary for Subcatchment 3aS: Drainage Area 3a

Page 231

Runoff 17.62 cfs @ 12.27 hrs, Volume= 1.844 af, Depth= 2.68" =

	A	rea (sf)	CN	Description		
		0	30	Meadow, n	on-grazed,	HSG A
		0	58	Meadow, n	on-grazed,	HSG B
	3	37,756		Meadow, n		
		0		Meadow, n		
		0		Woods, Go		
		0		Woods, Go		
		0		Woods, Go		
		0		Woods, Go		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Water body		
*		10,301		Gravel road	1	
*		0		Structure		
Ŷ		10,500		Panels		
		1,258		Equipment	•	
		59,815		Weighted A		
	348,057 96.73% Pervious Area					
		11,758		3.27% Impe	ervious Area	a
	Тс	Longth	Slope	Velocity	Capacity	Description
	(min)	Length (feet)	(ft/ft)		(cfs)	Description
	<u>(11111)</u> 7.4	<u>(1881)</u> 50	0.0100		(013)	Shoot Flow
	7.4	50	0.0100	0.11		Sheet Flow, Grass: Short n= 0.150 P2= 3.20"
	11.9	744	0.0222	1.04		Shallow Concentrated Flow,
	11.9	/44	0.0222	. 1.04		Short Grass Pasture Kv= 7.0 fps
	19.3	794	Total			
	19.0	194	TUIAI			

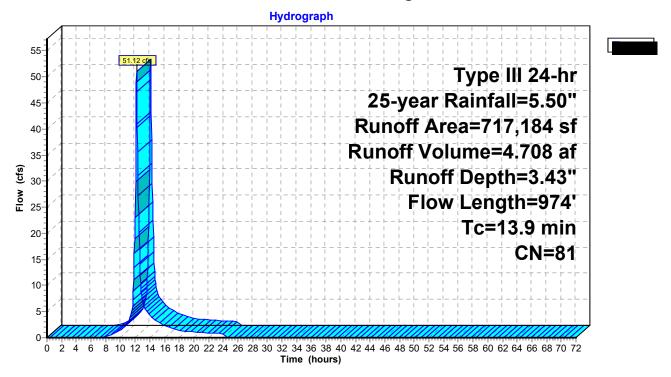
Subcatchment 3aS: Drainage Area 3a

Page 233

Runoff 49.77 cfs @ 12.21 hrs, Volume= 4.723 af, Depth= 2.41" =

	А	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		99,790	58	Meadow, no	on-grazed,	HSG B
	5	32,219		Meadow, no		
		0		Meadow, no		
		1,798		Woods, Go		
		07,172		Woods, Go		
		59,721		Woods, Go		
		14,571		Woods, Go		
*		59,918		Gravel pit, l		
*		96,280		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		51,068		Water body		
*		0		Gravel roac	1	
*		0		Structure		
*		0		Panels		
*		0		Equipment	•	
		22,537		Weighted A	0	
		71,469		95.01% Pei		
		51,068		4.99% Impe	ervious Are	а
	–	1	0		0	
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)		(cfs)	
	5.6	50	0.0200	0.15		Sheet Flow,
		4 9 9 9				Grass: Short n= 0.150 P2= 3.20"
	9.1	1,069	0.0776	5 1.95		Shallow Concentrated Flow,
_			-			Short Grass Pasture Kv= 7.0 fps
	14.7	1,119	Total			

Subcatchment 3bS: Drainage Area 3b



Summary for Subcatchment 4S: Drainage Area 4

Runoff 51.12 cfs @ 12.19 hrs, Volume= 4.708 af, Depth= 3.43" =

	Ai	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0		Meadow, no		
		0		Meadow, no		
		0		Meadow, no		
		0		Woods, Go		
		18,016	55	Woods, Go	od, HSG B	
		19,532	70	Woods, Go	od, HSG C	
		5,054		Woods, Go		
*		34,397	70	Gravel pit, I	HSG A	
*	5	00,725	81	Gravel pit, I	HSG B	
*	1	34,831	88	Gravel pit, I	HSG C	
*		0	92	Gravel pit, I	HSG D	
*		4,629	98	Water body		
*		0	96	Gravel road	l	
*		0	98	Structure		
	7	17,184	81	Weighted A	verage	
	7	12,555	9	99.35% Pei	vious Area	l de la constante d
		4,629	(0.65% Impe	ervious Are	а
	_					
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	50	0.0200	1.20		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.20"
	3.9	384	0.0102	1.63		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	45	0.2700	8.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.8	269	0.0010	0.51		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.4	226	0.3100	8.96		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	13.9	974	Total			

Subcatchment 4S: Drainage Area 4

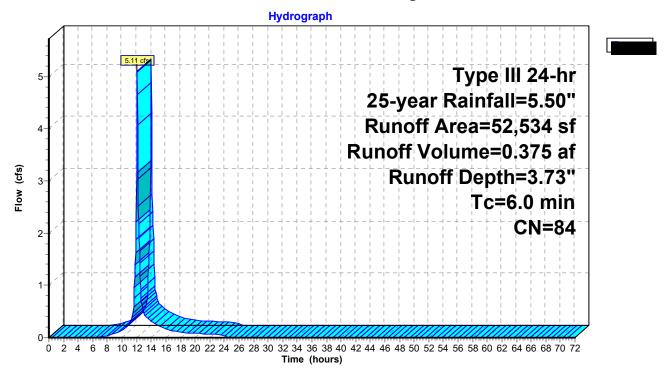
Summary for Subcatchment 5aS: Drainage Area 5

Runoff = 67.96 cfs @ 12.70 hrs, Volume= 11.111 af, Depth= 2.59"

	A	rea (sf)	CN I	Description		
		84,391	30 I	Meadow, no	on-grazed,	HSG A
		17,637			on-grazed,	
		39,197			on-grazed,	
		91,068			on-grazed,	
		0			od, HSG A	
		97,427			od, HSG B	
		04,182		,	od, HSG C	
		03,749		,	od, HSG D	
*		15,001		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*	Б	0 62,885		Gravel pit, I Vater body		
*		25,012		Gravel road		
*		23,012		Structure	4	
*		1,680		Panels		
*		629		Equipment	pad	
	2.2	42,858		Veighted A	•	
	,	77,664		•	rvious Area	
	5	65,194		25.20% Imp	pervious Ar	ea
	Тс	Length	Slope			Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.4	50	0.0100	0.11		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	3.4	238	0.0550	1.17		Shallow Concentrated Flow,
	<u> </u>	4 0 4 0	0 00 40	0.70		Woodland Kv= 5.0 fps
	26.6	1,240	0.0242	0.78		Shallow Concentrated Flow,
	7.0	500	0.0500	1 1 0		Woodland Kv= 5.0 fps
	7.6	509	0.0500	1.12		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	4.6	480	0.1200	1.73		Shallow Concentrated Flow,
	4.0	400	0.1200	1.73		Woodland Kv= 5.0 fps
	49.6	2,517	Total			
	-+3.0	2,017	rotar			

Hydrograph 75 70 67 Type III 24-hr 65 25-year Rainfall=5.50" 60 Runoff Area=2,242,858 sf 55-50 Runoff Volume=11.111 af 45 (sj) 40-35-35-Runoff Depth=2.59" Flow Length=2,517' Tc=49.6 min 30 25 CN=72 20-15 10-5 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Subcatchment 5aS: Drainage Area 5

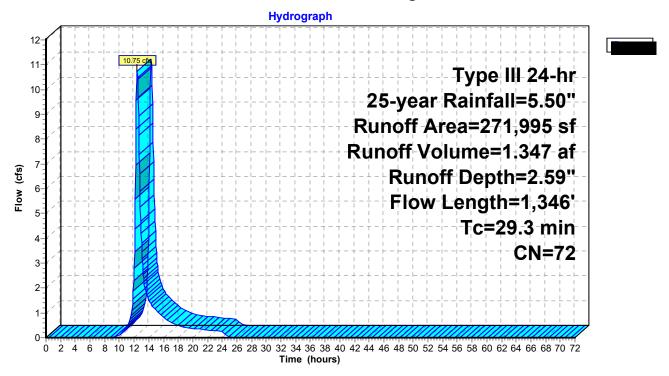

Summary for Subcatchment 5bS: Drainage Area 5

Page 239

Runoff 5.11 cfs @ 12.09 hrs, Volume= 0.375 af, Depth= 3.73" =

A	rea (sf)	CN	Description						
	0	30	Meadow, non-grazed, HSG A						
	18,465	58	Meadow, non-grazed, HSG B						
	267	71	Meadow, non-grazed, HSG C						
	0	78	Meadow, non-grazed, HSG D						
	0	30	Woods, Good, HSG A						
	0	55	Woods, Good, HSG B						
	0	70	Woods, Good, HSG C						
	0	77	Woods, Good, HSG D						
*	0	70	Gravel pit, HSG A						
*	0	81	Gravel pit, HSG B						
*	0	88	Gravel pit, HSG C						
*	0	92	Gravel pit, HSG D						
*	0	98	Water body						
*	0	96	Gravel road						
*	0	98	Structure						
*	5,040	98	Panels						
*	0	98	Equipment pad						
*	28,762	98	Basin						
	52,534	84	Weighted Average						
	18,732		35.66% Pervious Area						
	33,802		64.34% Impervious Area						
Тс	Length	Slop	e Velocity Capacity Description						
(min)	(feet)	(ft/f							
6.0	(1001)	(101	Direct Entry,						

Subcatchment 5bS: Drainage Area 5

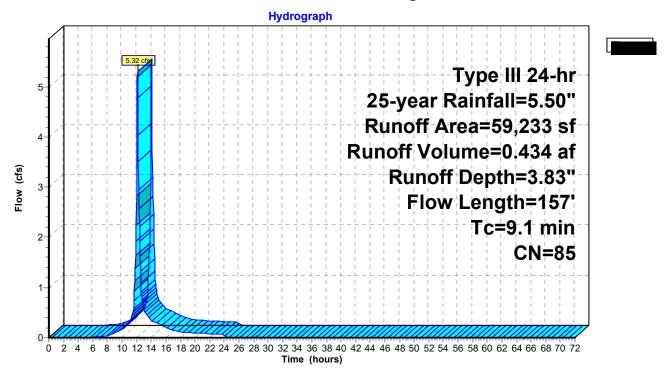

Summary for Subcatchment 5cS: Drainage Area 5

Page 241

Runoff 10.75 cfs @ 12.42 hrs, Volume= 1.347 af, Depth= 2.59" =

Area (sf) CN Description	
0 30 Meadow, non-grazed, HSG A	
53,847 58 Meadow, non-grazed, HSG B	
27,788 71 Meadow, non-grazed, HSG C	
8,123 78 Meadow, non-grazed, HSG D	
0 30 Woods, Good, HSG A	
2,622 55 Woods, Good, HSG B	
123,893 70 Woods, Good, HSG C	
19,268 77 Woods, Good, HSG D	
* 0 70 Gravel pit, HSG A	
* 0 81 Gravel pit, HSG B	
* 0 88 Gravel pit, HSG C	
* 0 92 Gravel pit, HSG D	
* 20,354 98 Water body	
* 0 96 Gravel road	
* 0 98 Structure	
* 5,460 98 Panels	
* 0 98 Equipment pad	
271,995 72 Weighted Average	
235,541 86.60% Pervious Area	
36,454 13.40% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
9.3 50 0.0400 0.09 Sheet Flow ,	
Woods: Light underbrush n= 0	.400 P2= 3.20"
17.9 1,030 0.0369 0.96 Shallow Concentrated Flow,	
Woodland Kv= 5.0 fps	
2.1 266 0.0902 2.10 Shallow Concentrated Flow,	
Short Grass Pasture Kv= 7.0 f	ps
29.3 1,346 Total	

Subcatchment 5cS: Drainage Area 5

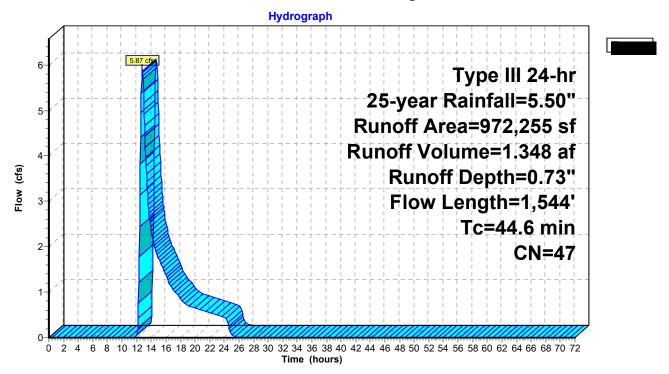


Summary for Subcatchment 5dS: Drainage Area 5

Runoff 5.32 cfs @ 12.13 hrs, Volume= 0.434 af, Depth= 3.83" =

	A	rea (sf)	CN	Description				
		0	30	Meadow, n	on-grazed,	HSG A		
		0	58	Meadow, n	on-grazed,	HSG B		
		28,213	71	Meadow, n	on-grazed,	HSG C		
		0	78	Meadow, n	on-grazed,	HSG D		
		0	30	Woods, Go	od, HSG A			
		0	55	Woods, Go	od, HSG B			
		0	70	Woods, Good, HSG C				
		0		Noods, Good, HSG D				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0			Water body			
*		4,470		Gravel road				
*		0		Structure				
*		5,460		Panels				
*		629		Equipment	pad			
*		20,461		Basin				
		59,233		Weighted A				
		32,683		55.18% Pe				
		26,550		44.82% Imp	pervious Ar	ea		
	т.	1	0			Description		
	Tc	Length	Slope		Capacity	Description		
	(min)	(feet)	(ft/ft)	, ,	(cfs)			
	7.4	50	0.0100	0.11		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.20"		
	1.7	107	0.0234	1.07		Shallow Concentrated Flow,		
	- (Short Grass Pasture Kv= 7.0 fps		
	9.1	157	Total					

Subcatchment 5dS: Drainage Area 5

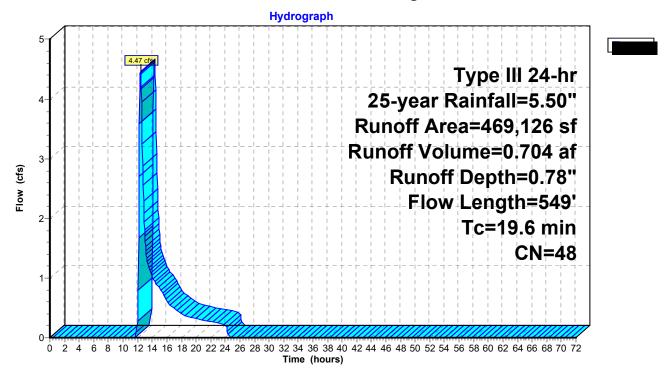


Summary for Subcatchment 6aS: Drainage Area 6

Runoff = 5.87 cfs @ 12.79 hrs, Volume= 1.348 af, Depth= 0.73"

301,060 30 Meadow, non-grazed, HSG A 0 58 Meadow, non-grazed, HSG B 0 71 Meadow, non-grazed, HSG C 0 78 Meadow, non-grazed, HSG D 390,620 30 Woods, Good, HSG A 50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D * 0 70 Gravel pit, HSG A		A	rea (sf)	CN	Description						
0 71 Meadow, non-grazed, HSG C 0 78 Meadow, non-grazed, HSG D 390,620 30 Woods, Good, HSG A 50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D		3	01,060	30	Meadow, no	on-grazed,	HSG A				
0 78 Meadow, non-grazed, HSG D 390,620 30 Woods, Good, HSG A 50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D			0	58 I	Meadow, no	on-grazed,	HSG B				
390,620 30 Woods, Good, HSG Á 50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D			0	71 I	Meadow, no	on-grazed,	HSG C				
50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D			-								
0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D		3	,								
0 77 Woods, Good, HSG D			50,036		Noods, Go	od, HSG B					
			-		,	,					
* 0 70 Gravel nit HSG A			0		,	,					
	*		0								
* 0 81 Gravel pit, HSG B	*		0								
* 0 88 Gravel pit, HSG C	*										
* 0 92 Gravel pit, HSG D	*		-								
* 219,272 98 Water body		2	,		,						
* 11,267 96 Gravel road	*		,		-	ł					
* 0 98 Structure	*		-								
0 90 Parleis	*										
* 0 98 Equipment pad											
972,255 47 Weighted Average					•	•					
752,983 77.45% Pervious Area					-						
219,272 22.55% Impervious Area		2	19,272		22.55% Imp	pervious Ar	ea				
Tc Length Slope Velocity Capacity Description		То	Longth	Slope	Volocity	Capacity	Description				
(min) (feet) (ft/ft) (ft/sec) (cfs)			•				Description				
			, ,	. ,		(013)	Shoot Flow				
4.3 50 0.0400 0.20 Sheet Flow, Grass: Short n= 0.150 P2= 3.20"		4.3	50	0.0400	0.20						
13.5 538 0.0090 0.66 Shallow Concentrated Flow,		13 5	538	0 0000	0.66						
Short Grass Pasture Kv= 7.0 fps		13.5	556	0.0090	0.00						
10.1 601 0.0391 0.99 Shallow Concentrated Flow,		10 1	601	0 0301	0 00						
Woodland Kv= 5.0 fps		10.1	001	0.0091	0.33						
16.7 355 0.0050 0.35 Shallow Concentrated Flow,		16 7	355	0 0050	0 35						
Woodland Kv= 5.0 fps		10.7	000	0.0000	0.00		•				
44.6 1,544 Total		44.6	1.544	Total							

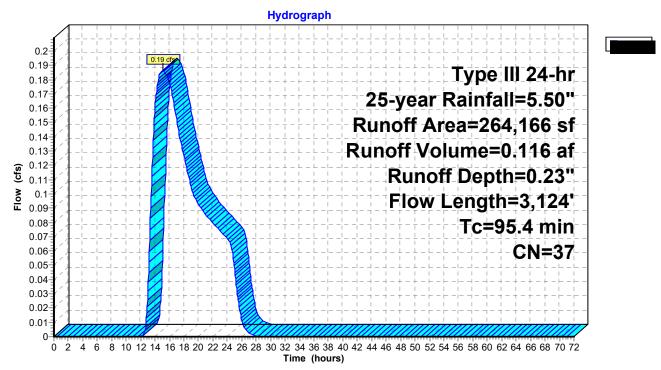
Subcatchment 6aS: Drainage Area 6



Summary for Subcatchment 6bS: Drainage Area 6

Runoff 4.47 cfs @ 12.39 hrs, Volume= 0.704 af, Depth= 0.78" =

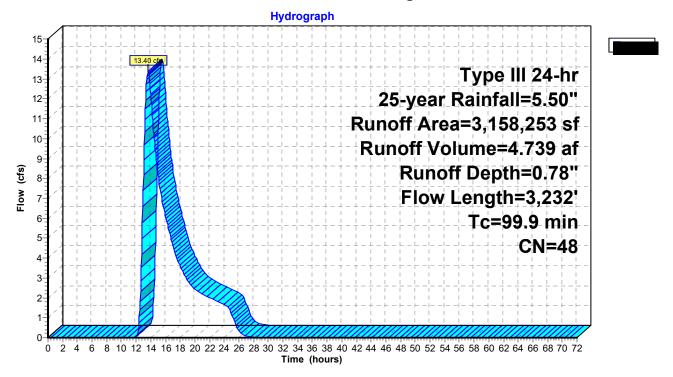
	Α	rea (sf)	CN	Description				
	2	88,325	30	Meadow, n	on-grazed,	HSG A		
		91,050	58	Meadow, n	on-grazed,	HSG B		
		0	71	Meadow, n	on-grazed,	HSG C		
		0	78	Meadow, n	on-grazed,	HSG D		
		0	30	Woods, Go	od, HSG A			
		0	55	Woods, Go	od, HSG B			
		0	70	Woods, Go	od, HSG C			
		0	77	Woods, Go	od, HSG D			
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Water body				
*		9,625		Gravel road	ł			
*		0		Structure				
*		12,660		Panels				
*		629		Equipment	pad			
*		66,837		Basin				
		69,126		Weighted A	•			
		89,000			rvious Area			
		80,126		17.08% Imp	pervious Ar	ea		
	Тс	Length	Slope	Velocity	Capacity	Description		
(m	nin)	(feet)	(ft/ft)		(cfs)	Description		
<u> </u>	6.3	<u>(1001)</u> 50	0.0150		(013)	Sheet Flow,		
	0.5	50	0.0150	0.15		Grass: Short $n = 0.150 P2 = 3.20"$		
1	3.3	499	0.0080	0.63		Shallow Concentrated Flow,		
1	0.0	-00	0.0000	0.00		Short Grass Pasture Kv= 7.0 fps		
1	9.6	549	Total					


Subcatchment 6bS: Drainage Area 6

Summary for Subcatchment 7aS: Drainage Area 7a

Runoff 0.19 cfs @ 15.13 hrs, Volume= 0.116 af, Depth= 0.23" =

	Α	rea (sf)	CN [Description		
	2	31,002	30 I	Aeadow, no	on-grazed,	HSG A
		0			on-grazed,	
		0	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
		0	30 \	Noods, Go	od, HSG A	
		0		,	od, HSG B	
		0	70 \	Voods, Go	od, HSG C	
		0			od, HSG D	
*		7,059		Gravel pit, I		
*		9,519		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Vater body		
*		9,866		Gravel road	1	
*		0		Structure		
*		6,720		Panels		
<u>*</u>		0		Equipment	•	
		64,166		Veighted A		
	2	57,446	-	-	rvious Area	
		6,720		2.54% Impe	ervious Are	а
	Tc	Length	Slope	Velocitv	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.6	50	0.0600	0.23	· · ·	Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	2.9	238	0.0380	1.36		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	88.9	2,836	0.0113	0.53		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	95.4	3,124	Total			

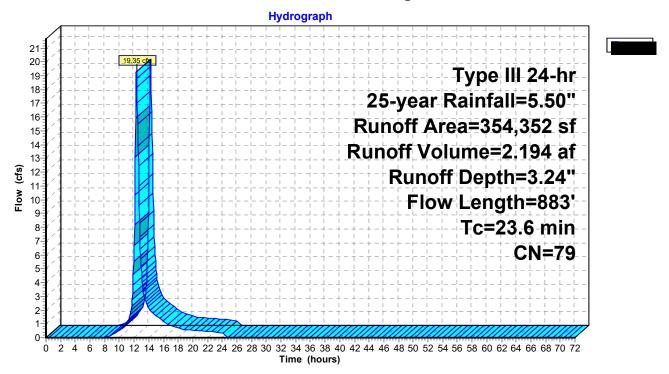

Subcatchment 7aS: Drainage Area 7a

Summary for Subcatchment 7bS: Drainage Area 7b

Runoff = 13.40 cfs @ 13.65 hrs, Volume= 4.739 af, Depth= 0.78"

	А	rea (sf)	CN	Description		
	6	48,318	30	Meadow, no	on-grazed,	HSG A
	1	10,037	58 I	Meadow, no	on-grazed,	HSG B
		0	71	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
	1,3	85,107		Woods, Go		
	2	30,359	55	Woods, Go	od, HSG B	
		0	70	Woods, Go	od, HSG C	
		0	77	Woods, Go	od, HSG D	
*	1	65,079	70	Gravel pit, I	HSG A	
*		79,347	81 (Gravel pit, I	HSG B	
*		0		Gravel pit, I	HSG C	
*		0		Gravel pit, I		
*		53,314		Water body		
*		77,609		Gravel road	l	
*		0		Structure		
*		8,454		Panels		
*		629	98	Equipment	pad	
	3,1	58,253	48	Weighted A	verage	
	2,6	95,856	8	35.36% Pei	rvious Area	
	4	62,397		14.64% Imp	pervious Ar	ea
	Та	Longth	Clana	Valaaitu	Consoitu	Description
	Tc (min)	Length	Slope (ft/ft)		Capacity	Description
	(min)	(feet)	/	()	(cfs)	
	5.4	50	0.1600	0.16		Sheet Flow,
	FC	246	0 0 4 2 0	1 0 1		Woods: Light underbrush n= 0.400 P2= 3.20"
	5.6	346	0.0430	1.04		Shallow Concentrated Flow,
	88.9	2,836	0.0113	0.53		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
	00.9	2,030	0.0113	0.00		Woodland Kv= 5.0 fps
	99.9	3,232	Total			
		,				

Subcatchment 7bS: Drainage Area 7b

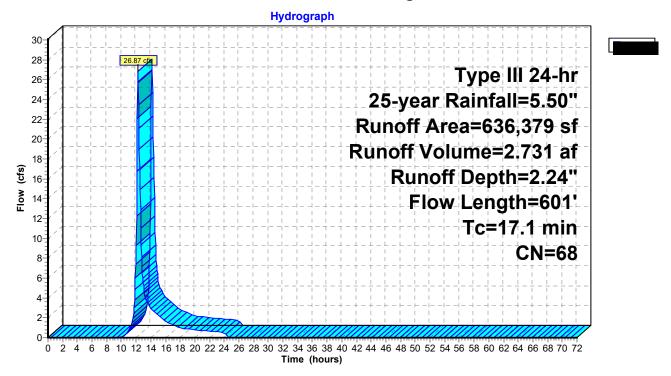


Summary for Subcatchment 8S: Drainage Area 8

Runoff = 19.35 cfs @ 12.33 hrs, Volume= 2.194 af, Depth= 3.24"

	A	rea (sf)	CN	Description						
		0	30	Meadow, no	on-grazed,	HSG A				
		0	58							
		14,757	71	Meadow, non-grazed, HSG C						
		6,627	78	Meadow, non-grazed, HSG D						
		0	30	Woods, Good, HSG A						
7,700 55 Woods, Good, HSG B 175,484 70 Woods, Good, HSG C										
	40,001 77 Woods, Good, HSG D									
*		0	70 Gravel pit, HSG A							
*		0	81	Gravel pit, I	HSG B					
*		0	88	Gravel pit, I						
*		0 92 Gravel pit, HSG D								
*		93,828								
*		15,955 96 Gravel road								
*		0	98	Structure						
354,352 79 Weighted Average										
	2	260,524		73.52% Per	rvious Area	l				
		93,828		26.48% Imp	pervious Ar	ea				
	т.	1	<u>Olam</u>) (- : +	0	Description				
	Tc (min)	Length	Slope		Capacity	Description				
	(min)	(feet)	(ft/ft	/ / /	(cfs)					
	8.5	50	0.0500	0.10		Sheet Flow,				
	0.0	000	0.000	0.74		Woods: Light underbrush n= 0.400 P2= 3.20"				
	8.8	390	0.0220	0.74		Shallow Concentrated Flow,				
	2.0	074	0 1000	1 50		Woodland Kv= 5.0 fps				
	2.9	271	0.1000) 1.58		Shallow Concentrated Flow,				
	2.4	470	0 0 0 0 0	0.04		Woodland Kv= 5.0 fps				
	3.4	172	0.0280	0.84		Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
	00.0	000	Tatal							
	23.6	883	Total							

Subcatchment 8S: Drainage Area 8

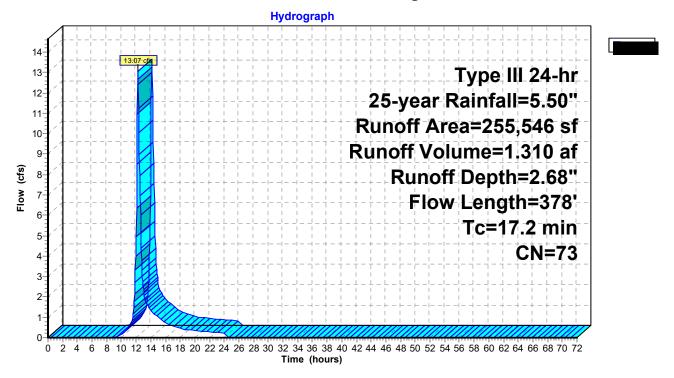


Summary for Subcatchment 9S: Drainage Area 9

Runoff = 26.87 cfs @ 12.25 hrs, Volume= 2.731 af, Depth= 2.24"

	A	rea (sf)	CN I	Description		
		80,020	30 I	Meadow, no	on-grazed,	HSG A
		29,044	58 I	Meadow, no	on-grazed,	HSG B
		8,254	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
		24,186	30 \	Noods, Go	od, HSG A	
	2	29,102	55	Noods, Go	od, HSG B	
		19,896		Noods, Go		
		0		Noods, Go		
*		0		Gravel pit, I		
*		0		Gravel pit, l		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		26,618		Nater body		
*		18,419		Gravel road	1	
*		0		Structure		
*		840		Panels		
		36,379		Neighted A		
		08,921		64.26% Pei		
	2	27,458		35.74% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.5	50	0.0300			Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.4	106	0.0610	1.23		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	184	0.0330	0.91		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.8	261	0.2470	2.48		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	17.1	601	Total			·

Subcatchment 9S: Drainage Area 9

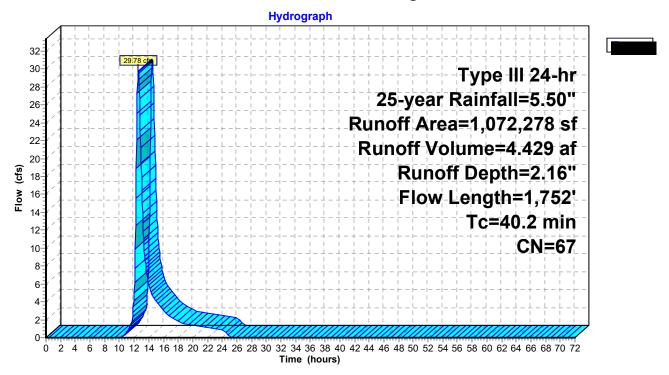


Summary for Subcatchment 10aS: Drainage Area 10

Runoff = 13.07 cfs @ 12.24 hrs, Volume= 1.310 af, Depth= 2.68"

	Area (sf)	CN I	Description		
	0	30 I	Meadow, n	on-grazed,	HSG A
	40,805	58 I	Meadow, n	on-grazed,	HSG B
	126,615	71 I	Meadow, n	on-grazed,	HSG C
	0	78 I	Meadow, n	on-grazed,	HSG D
	0	30	Woods, Go	od, HSG A	
	9,453			od, HSG B	
	37,133			od, HSG C	
	0			od, HSG D	
*	0		Gravel pit, l		
*	0		Gravel pit, I		
*	0		Gravel pit, l		
*	0		Gravel pit, l		
*	0		Water body		
*	5,861		Gravel road	1	
*	0		Structure		
*	3,360		Panels		
<u>~</u>	32,319		Basin		
	255,546		Weighted A		
	219,867			rvious Area	
	35,679		13.96% Im	pervious Ar	ea
Тс	longth	Slopo	Velocity	Capacity	Description
(min)	0	Slope (ft/ft)		(cfs)	Description
12.3		0.0200		(013)	Shoot Flow
12.3	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.20"
4.9	328	0.0488	1.10		Shallow Concentrated Flow,
4.3	, 520	0.0400	1.10		Woodland Kv= 5.0 fps
17.2	378	Total			

Subcatchment 10aS: Drainage Area 10

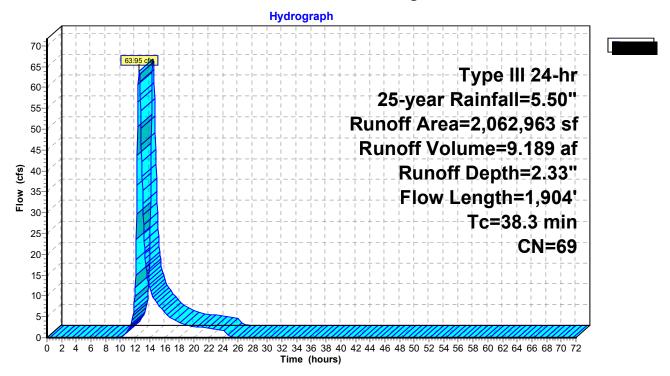


Summary for Subcatchment 10bS: Drainage Area 10

Runoff = 29.78 cfs @ 12.58 hrs, Volume= 4.429 af, Depth= 2.16"

	A	rea (sf)	CN	Description						
		13,076	30	Meadow, no	on-grazed,	HSG A				
		9,872	58	Meadow, no	on-grazed,	HSG B				
	1	62,839	71	Meadow, no	Meadow, non-grazed, HSG C					
		21,857	78	Meadow, non-grazed, HSG D						
	1	10,901	30	Noods, Good, HSG A						
		22,199		Woods, Go	,					
		84,517		Woods, Go	,					
		72,773		Woods, Go	,					
*	* 0 70 Gravel pit, HSG A									
*		0		Gravel pit, l						
*		0		Gravel pit, l						
*		0		Gravel pit, l						
* 141,195 98 Water body * 33,049 96 Gravel road										
*		0		Structure						
	* 0 98 Panels									
		72,278		Weighted A						
		31,083		86.83% Pei						
	1	41,195	13.17% Impervious Area							
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)		(cfs)					
	4.3	50	0.0400	0.20		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.20"				
	29.4	1,139	0.0167	0.65		Shallow Concentrated Flow,				
		,				Woodland Kv= 5.0 fps				
	0.4	72	0.0417	3.29		Shallow Concentrated Flow,				
						Unpaved Kv= 16.1 fps				
	6.1	491	0.0367	' 1.34		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	40.2	1,752	Total							

Subcatchment 10bS: Drainage Area 10

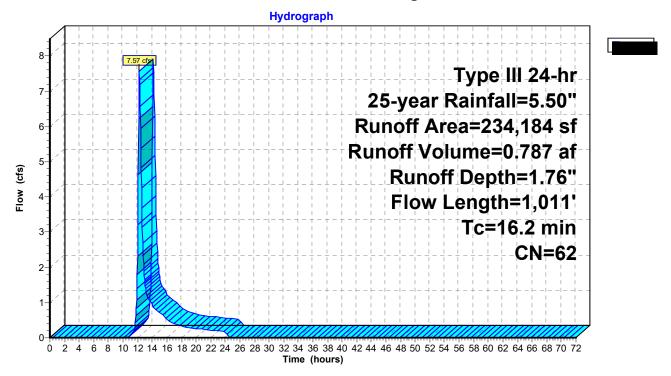


Summary for Subcatchment 11aS: Drainage Area 11

Runoff = 63.95 cfs @ 12.55 hrs, Volume= 9.189 af, Depth= 2.33"

	Ai	rea (sf)	CN	Description			
	2	30,381	30	Meadow, no	on-grazed,	HSG A	
		74,662		Meadow, no		HSG B	
	1,2	45,920	71	Meadow, no	on-grazed,	HSG C	
		51,732	78	Meadow, no	on-grazed,	HSG D	
		5,299		Woods, Go			
		38,194		Woods, Go	,		
		16,983		Woods, Go			
		42,710		Woods, Go			
*		0		Gravel pit, I			
*		0		Gravel pit, I			
*		0		Gravel pit, I			
*		0		Gravel pit, I			
*		01,207		Water body			
*		45,982		Gravel road	1		
*		8,006		Structure			
*		1,887		Equipment	pad		
		0		Panels			
		62,963		Weighted A			
		51,863		89.77% Per			
	2	11,100		10.23% Imp	bervious Ar	ea	
	Тс	Length	Slope	e Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft		(cfs)	Decemption	
	4.3	50	0.0400		()	Sheet Flow,	
	4.0	00	0.0400	0.20		Grass: Short n= 0.150 P2= 3.20"	
	34.0	1,854	0.0330	0.91		Shallow Concentrated Flow,	
		.,				Woodland Kv= 5.0 fps	
	38.3	1,904	Total			·	

Subcatchment 11aS: Drainage Area 11

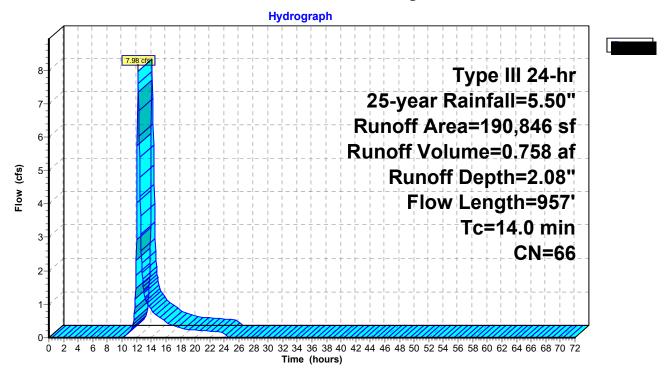


Summary for Subcatchment 11bS: Drainage Area 11

Runoff 7.57 cfs @ 12.24 hrs, Volume= 0.787 af, Depth= 1.76" =

	A	rea (sf)	CN	Description				
		62,296	30	Meadow, no	on-grazed,	HSG A		
		0			on-grazed,			
	1	53,054	71	Meadow, no	on-grazed,	HSG C		
		0	78	Meadow, no	on-grazed,	HSG D		
		0	30	Woods, Go	od, HSG A			
		0	55	Woods, Go	od, HSG B			
		0			od, HSG C			
		0	77	Woods, Go	od, HSG D			
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Water body				
*		14,214		Gravel roac	1			
*		0		Structure				
*		0		Equipment	pad			
*		4,620		Panels				
		34,184		Weighted A				
	2	29,564			rvious Area			
		4,620		1.97% Impe	ervious Area	а		
	Та	Longth	Slope	Volooity	Conocity	Description		
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
_	/	. ,			(015)	Cheet Flow		
	5.6	50	0.0200	0.15		Sheet Flow, Grass: Short n= 0.150 P2= 3.20"		
	10.6	961	0.0468	1.51		Shallow Concentrated Flow,		
	10.0	301	0.0400	1.01		Short Grass Pasture Kv= 7.0 fps		
	16.2	1,011	Total					
	10.2	1,011	rotar					

Subcatchment 11bS: Drainage Area 11

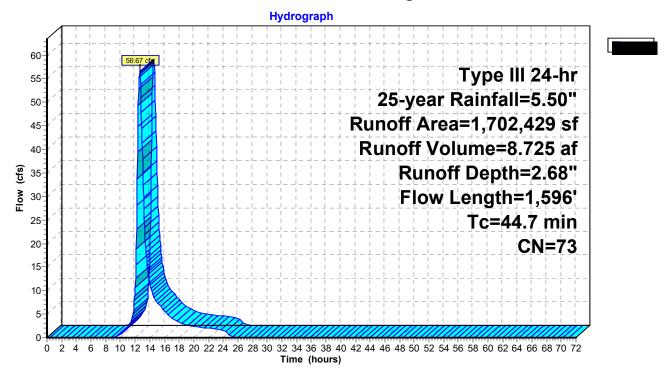


Summary for Subcatchment 11cS: Drainage Area 11

Runoff = 7.98 cfs @ 12.21 hrs, Volume= 0.758 af, Depth= 2.08"

	Ai	rea (sf)	CN	Description		
		27,259	30	Meadow, n	on-grazed,	HSG A
		0	58	Meadow, n	on-grazed,	HSG B
	1	58,821	71	Meadow, n	on-grazed,	HSG C
		0	78	Meadow, n	on-grazed,	HSG D
		0			od, HSG A	
		0		Woods, Go		
		0			od, HSG C	
		0			od, HSG D	
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, I		
*		0		Water body		
т ~		2,666		Gravel road	1	
*		0		Structure		
*		0		Equipment	pad	
		2,100		Panels		
		90,846		Weighted A		
	1	88,746			rvious Area	
		2,100		1.10% impe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	Decemption
	4.3	50	0.0400			Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	9.7	907	0.0496	1.56		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	14.0	957	Total			

Subcatchment 11cS: Drainage Area 11

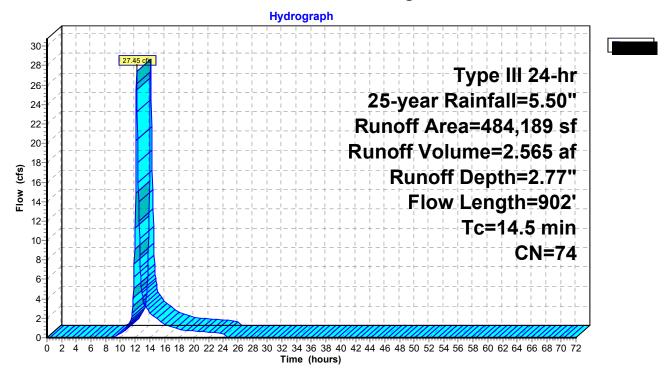


Summary for Subcatchment 12aS: Drainage Area 12a

Runoff = 56.67 cfs @ 12.63 hrs, Volume= 8.725 af, Depth= 2.68"

	А	rea (sf)	CN	Description		
		23,018	30	Meadow, no	on-grazed,	HSG A
		9,439	58	Meadow, no	on-grazed,	HSG B
	6	54,323	71	Meadow, no	on-grazed,	HSG C
	2	10,828	78	Meadow, no	on-grazed,	HSG D
		22,923	30	Woods, Go	od, HSG A	
	1	83,438	55	Woods, Go	od, HSG B	
	2	93,907	70	Woods, Go	od, HSG C	
		52,031	77	Woods, Go	od, HSG D	
*		0	70	Gravel pit, l	HSG A	
*		0	81	Gravel pit, I	HSG B	
*		0	88	Gravel pit, I	HSG C	
*		0	92	Gravel pit, I	HSG D	
*	2	29,248	98	Water body	,	
*		13,614		Gravel road	1	
*		0		Structure		
*		9,660		Panels		
*		0	98	Equipment	pad	
	1,7	02,429	73	Weighted A	verage	
	1,4	63,521		85.97% Pei	vious Area	
	2	38,908		14.03% Imp	pervious Ar	ea
	Тс	Length	Slope			Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.5	50	0.0140	0.13		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	7.5	626	0.0780	1.40		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	30.7	920	0.0100	0.50		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	44.7	1,596	Total			
		•				

Subcatchment 12aS: Drainage Area 12a



Summary for Subcatchment 12bS: Drainage Area 12b

Runoff = 27.45 cfs @ 12.21 hrs, Volume= 2.565 af, Depth= 2.77"

	A	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0	58 I	Meadow, no	on-grazed,	HSG B
	4	38,020	71	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
		0			od, HSG A	
		0		Woods, Go		
		0			od, HSG C	
		0			od, HSG D	
*		0		Gravel pit, l		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Water body		
*		8,877		Gravel road	1	
÷		0		Structure		
*		9,240		Panels		
*		1,258		Equipment	pad	
		26,794		Basin		
		84,189		Weighted A		
		46,897			rvious Area	
		37,292		7.70% impe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
	4.3	50	0.0400		(0.0)	Sheet Flow,
	4.0	00	0.0400	0.20		Grass: Short n= 0.150 P2= 3.20"
	10.2	852	0.0393	1.39		Shallow Concentrated Flow,
		002	510000			Short Grass Pasture Kv= 7.0 fps
	14.5	902	Total			

Subcatchment 12bS: Drainage Area 12b

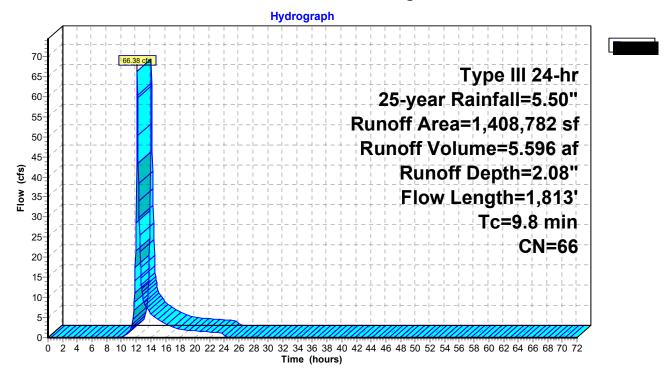


Summary for Subcatchment 12cS: Drainage Area 12

Runoff = 10.80 cfs @ 12.09 hrs, Volume= 0.783 af, Depth= 2.86"

Are	ea (sf)	CN	Description
	0	30	Meadow, non-grazed, HSG A
	0	58	Meadow, non-grazed, HSG B
12	2,234	71	Meadow, non-grazed, HSG C
	0	78	Meadow, non-grazed, HSG D
	0	30	Woods, Good, HSG A
	0	55	Woods, Good, HSG B
	0	70	Woods, Good, HSG C
	0	77	Woods, Good, HSG D
*	0	70	Gravel pit, HSG A
*	0	81	Gravel pit, HSG B
*	0	88	Gravel pit, HSG C
*	0	92	Gravel pit, HSG D
*	0	98	Water body
*	8,875	96	Gravel road
*	0	98	Structure
*	0	98	Panels
*	0	98	Equipment pad
<u>* 1</u>	1,997	98	Basin
14	3,106	75	Weighted Average
13	1,109		91.62% Pervious Area
1	1,997		8.38% Impervious Area
	Length	Slop	
(min)	(feet)	(ft/f	t) (ft/sec) (cfs)
6.0			Direct Entry,

Subcatchment 12cS: Drainage Area 12



Summary for Subcatchment 13S: Drainage Area 13

Runoff = 66.38 cfs @ 12.15 hrs, Volume= 5.596 af, Depth= 2.08"

	A	rea (sf)	CN	Description		
	1	37,390	30	Meadow, no	on-grazed,	HSG A
		0	58	Meadow, no	on-grazed,	HSG B
		0	71	Meadow, no	on-grazed,	HSG C
		0	78	Meadow, no	on-grazed,	HSG D
		0	30	Woods, Go	od, HSG A	
		0	55	Woods, Go	od, HSG B	
		0	70	Woods, Go	od, HSG C	
		0		Woods, Go		
*	1,2	66,167		Gravel pit, l	HSG A	
*		4,469		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		756		Water body		
*	0 96 Gravel road				1	
*		0	98	Structure		
	1,4	08,782		Weighted A		
	1,4	08,026		99.95% Pei		
		756		0.05% Impe	ervious Are	а
	т.	1	01.0.0.0	Mala alter	0	Description
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)		(cfs)	
	0.7	50	0.0200	1.20		Sheet Flow,
						Smooth surfaces $n = 0.011$ P2= 3.20"
	9.1	1,763	0.0403	3.23		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	9.8	1,813	Total			

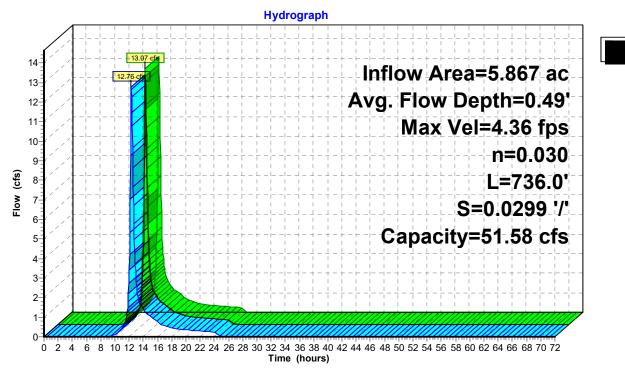
Subcatchment 13S: Drainage Area 13

Summary for Reach 10aR: Swale 10a

 Inflow Area =
 5.867 ac, 13.96% Impervious, Inflow Depth = 2.68" for 25-year event

 Inflow =
 13.07 cfs @ 12.24 hrs, Volume=
 1.310 af

 Outflow =
 12.76 cfs @ 12.33 hrs, Volume=
 1.310 af, Atten= 2%, Lag= 5.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 4.36 fps, Min. Travel Time= 2.8 min Avg. Velocity = 1.37 fps, Avg. Travel Time= 9.0 min

Peak Storage= 2,157 cf @ 12.28 hrs Average Depth at Peak Storage= 0.49' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 51.58 cfs

4.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 736.0' Slope= 0.0299 '/' Inlet Invert= 236.00', Outlet Invert= 214.00'

±

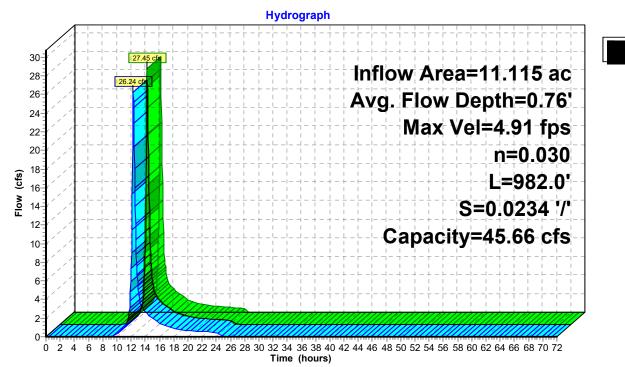
Reach 10aR: Swale 10a

Summary for Reach 12bR: Swale 12b

 Inflow Area =
 11.115 ac,
 7.70% Impervious, Inflow Depth =
 2.77"
 for 25-year event

 Inflow =
 27.45 cfs @
 12.21 hrs, Volume=
 2.565 af

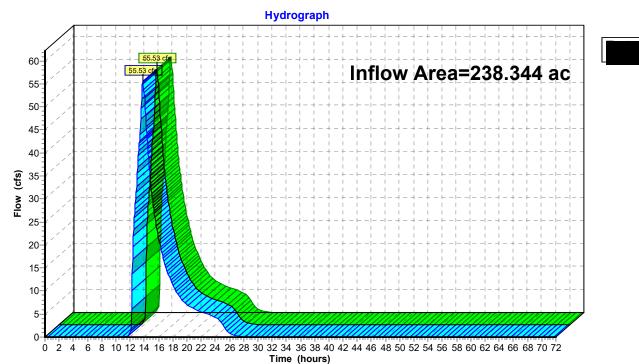
 Outflow =
 26.24 cfs @
 12.31 hrs, Volume=
 2.565 af, Atten= 4%, Lag= 6.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 4.91 fps, Min. Travel Time= 3.3 min Avg. Velocity = 1.46 fps, Avg. Travel Time= 11.2 min

Peak Storage= 5,268 cf @ 12.25 hrs Average Depth at Peak Storage= 0.76' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 45.66 cfs

4.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 982.0' Slope= 0.0234 '/' Inlet Invert= 276.00', Outlet Invert= 253.00'

Reach 12bR: Swale 12b

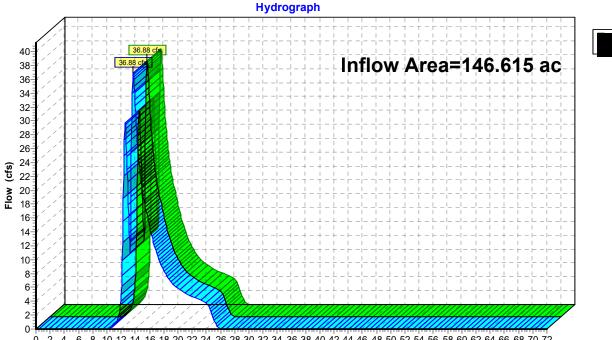


Summary for Reach DP-1: Off-Site West

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	238.344 ac, 10.57% Impervious, Inflow Depth = 0.88" for 25-year event	
Inflow	=	55.53 cfs @ 13.80 hrs, Volume= 17.542 af	
Outflow	=	55.53 cfs @ 13.80 hrs, Volume= 17.542 af, Atten= 0%, Lag= 0.0 min)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach DP-1: Off-Site West

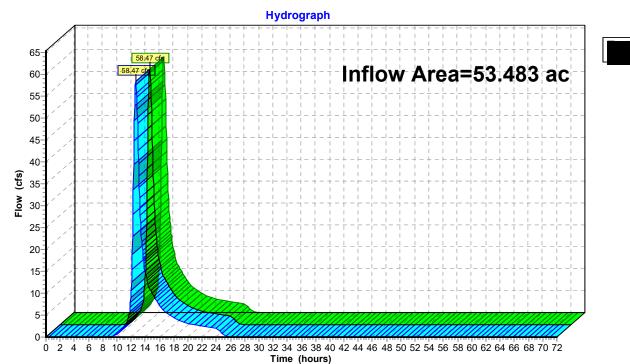
Summary for Reach DP-2: Off-Site South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	146.615 ac, 22.85% Impervious, Inflow Depth = 1.01" for 25-year event
Inflow	=	36.88 cfs @ 13.69 hrs, Volume= 12.321 af
Outflow	=	36.88 cfs @ 13.69 hrs, Volume= 12.321 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-2: Off-Site South

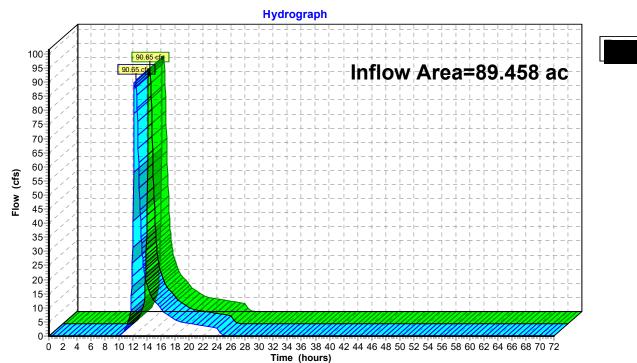

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Reach DP-3: Off-Site East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	53.483 ac, 12.37% Impervious, Inflow Depth = 2.28" for 25-year event
Inflow	=	58.47 cfs @ 12.67 hrs, Volume= 10.143 af
Outflow	=	58.47 cfs @ 12.67 hrs, Volume= 10.143 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach DP-3: Off-Site East

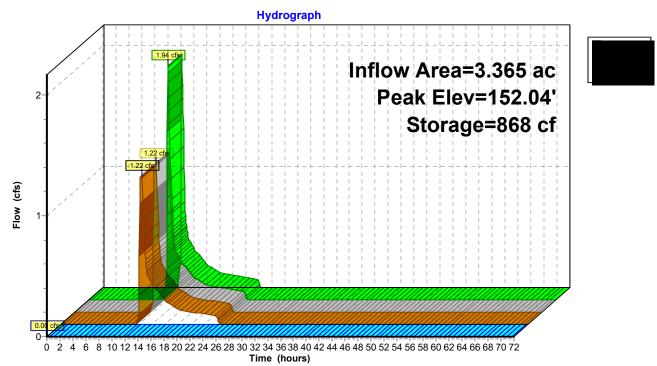
Summary for Reach DP-4: Off-Site Southeast

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	89.458 ac,	5.61% Impervious, Inflow	Depth = 1.98"	for 25-year event
Inflow =	90.65 cfs @	12.43 hrs, Volume=	14.785 af	
Outflow =	90.65 cfs @	12.43 hrs, Volume=	14.785 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-4: Off-Site Southeast

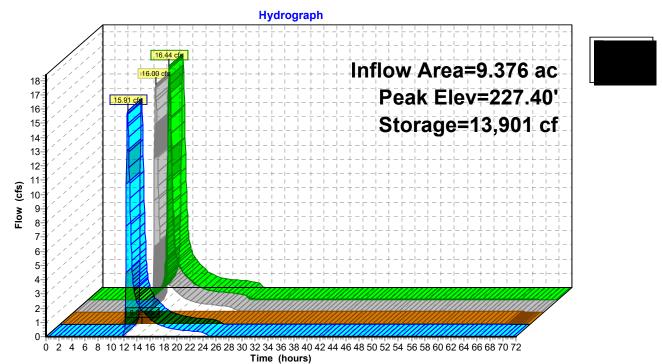

Summary for Pond 1bP: Proposed Basin

	1.94 cfs @ 1 1.22 cfs @ 1 1.22 cfs @ 1 0.00 cfs @	2.19 hrs, Volume= 2.48 hrs, Volume= 2.48 hrs, Volume= 0.00 hrs, Volume= e Span= 0.00-72.00 l	0.237 af 0.000 af nrs, dt= 0.05 hrs	for 25-year event n= 37%, Lag= 17.6 min		
Peak Elev= 152.0	4' @ 12.48 hrs	Surf.Area= 21,946 s	of Storage= 868 cf			
Center-of-Mass d	et. time= 6.9 mir	n calculated for 0.237 n(918.6 - 911.7)	7 af (100% of inflow)			
Volume Inv		orage Storage Desc	cription			
#1 152.0)0' 55,20	60 cf Custom Stag	ge Data (Irregular) Liste	ed below (Recalc)		
Elevation (feet)		Perim. Inc.Sto (feet) (cubic-fe		Wet.Area (sq-ft)		
152.00	21,729	681.0	0 0	21,729		
154.00	33,986	817.0 55,2	.60 55,260	38,010		
Device Routing	Invert	Outlet Devices				
#1 Primary 153.50' 20.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.0 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.66 2.70 2.74						
#2 Discarde	ed 152.00'	2.410 in/hr Exfiltra	ation over Surface ar	ea		
Discarded OutFlow Max=1.22 cfs @ 12.48 hrs HW=152.04' (Free Discharge)						

Discarded OutFlow Max=1.22 cfs @ 12.48 hrs HW=152.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.22 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=152.00' (Free Discharge)

Pond 1bP: Proposed Basin

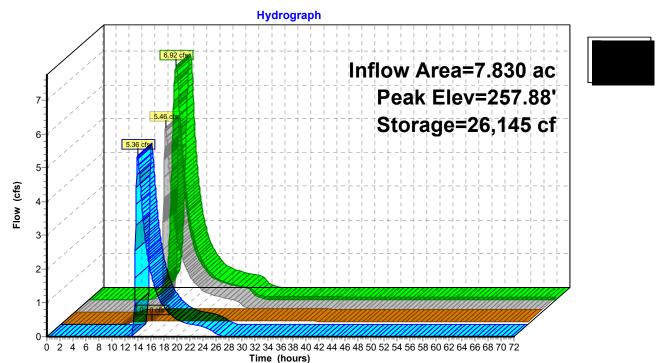

Summary for Pond 1cP: Proposed Basin

Inflow Area = Inflow = Outflow = Discarded = Primary =		12.43 hr 12.50 hr 12.50 hr	npervious, Inflow D s, Volume= s, Volume= s, Volume= s, Volume=	Depth = 2.68" for 2.093 af 2.093 af, Atten= 3 0.295 af 1.798 af	25-year event 3%, Lag= 4.1 min
			= 0.00-72.00 hrs, dt rea= 13,561 sf Sto		
Center-of-Mass	s det. time= 207.	1 min (1,	,	· · ·	
Volume	nvert Avail.	Storage	Storage Descriptio	n	
#1 22	26.00' 23	,156 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
226.00	6,727	408.0	0	0	6,727
228.00	17,238	601.0	23,156	23,156	22,256
Device Routi	ng Inve	ert Outle	t Devices		
#1 Prima	ary 227.0	0' 25.0'	long x 8.0' bread	th Broad-Crested I	Rectangular Weir
		Head	(feet) 0.20 0.40 (0.60 0.80 1.00 1.2	0 1.40 1.60 1.80 2.00
		2.50	3.00 3.50 4.00 4.	.50 5.00 5.50	
					2.68 2.66 2.64 2.64
				.66 2.68 2.70 2.74	
#2 Disca	rded 226.0	0' 0.270	in/hr Exfiltration	over Surface area	
Discorded Ou	tElow Max-0.09	cfe @ 12	50 brs H\\/=227 /	0' (Free Discharge)

Discarded OutFlow Max=0.08 cfs @ 12.50 hrs HW=227.40' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=15.91 cfs @ 12.50 hrs HW=227.40' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 15.91 cfs @ 1.60 fps)

Pond 1cP: Proposed Basin


Summary for Pond 1dP: Proposed Berm

	6.92 cfs @ 5.46 cfs @ 0.10 cfs @ 5.36 cfs @ nd method, Tir	13.45 hr 14.01 hr 14.01 hr 14.01 hr 14.01 hr		0.453 af 1.213 af = 0.05 hrs	25-year event 21%, Lag= 33.5 min
Plug-Flow detent	ion time= 495.0	6 min calo	culated for 1.667 af	(92% of inflow)	
Center-of-Mass c				· · · · · · · · · · · · · · · · · · ·	
			Ctorero Decemintio	_	
			Storage Description		
#1 256.	00' 28	,065 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
256.00	11,894	466.0	0	0	11,894
258.00	16,286	530.0	28,065	28,065	17,063
Device Routing	Inve	rt Outle	t Devices		
#1 Primary		0' 9.0' l a	ong x 8.0' breadth	Broad-Crested R	ectangular Weir
" i i i i i i i i i i i i i i i i i i i	20110				0 1.40 1.60 1.80 2.00
			3.00 3.50 4.00 4.		
		Coef.	(English) 2.43 2.5	54 2.70 2.69 2.68	2.68 2.66 2.64 2.64
				66 2.68 2.70 2.74	
#2 Discard	ed 256.00	0' 0.270	in/hr Exfiltration	over Surface area	
Discarded OutFlow Max=0.10 cfs @ 14.01 hrs HW=257.88' (Free Discharge)					

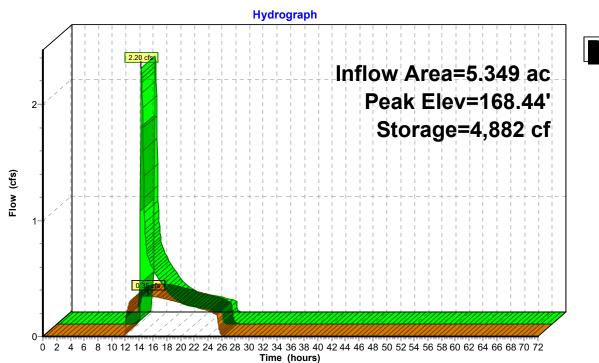
Discarded OutFlow Max=0.10 cfs @ 14.01 hrs HW=257.88' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=5.35 cfs @ 14.01 hrs HW=257.88' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 5.35 cfs @ 1.56 fps)

Pond 1dP: Proposed Berm

Summary for Pond 2P: Existing Depression

Inflow Area =	5.349 ac,	1.98% Impervious, Inflow De	epth = 0.73" for 25-year event
Inflow =	2.20 cfs @	12.26 hrs, Volume=	0.323 af
Outflow =	0.35 cfs @	15.32 hrs, Volume=	0.323 af, Atten= 84%, Lag= 183.7 min
Discarded =	0.35 cfs @	15.32 hrs, Volume=	0.323 af

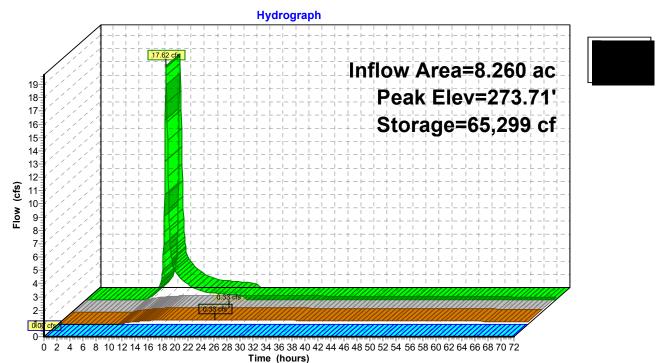

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 168.44' @ 15.32 hrs Surf.Area= 14,780 sf Storage= 4,882 cf

Plug-Flow detention time= 175.3 min calculated for 0.323 af (100% of inflow) Center-of-Mass det. time= 175.2 min (1,099.1 - 923.8)

Volume	Invert	Avai	I.Storage	Storage Description	n		
#1	168.00'		58,289 cf	Custom Stage Da	ata (Irregular)Listed b	pelow (Recalc)	
Elevation (feet)		ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
168.00 170.00		7,570 58,771	407.0 1,048.0	0 58,289	0 58,289	7,570 81,803	
Device I	Routing	In	vert Outle	et Devices			
#1 [Discarded	168	3.00' 1.02	0 in/hr Exfiltration	over Surface area		

Discarded OutFlow Max=0.35 cfs @ 15.32 hrs HW=168.44' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.35 cfs)

Pond 2P: Existing Depression


Summary for Pond 3aP: Proposed Berm

Inflow Area Inflow Outflow Discarded Primary	= 17.62 cfs (= 0.33 cfs (0) 12.27 h 0) 23.98 h 0) 23.98 h	Impervious, Inflow D nrs, Volume= nrs, Volume= nrs, Volume= nrs, Volume=	1.844 af	25-year event 98%, Lag= 702.6 min
			n= 0.00-72.00 hrs, dt Area= 52,433 sf Sto		
Center-of-	Mass det. time= 1,	520.3 min	. ,	· · · ·	
Volume	Invert Ava	I.Storage	Storage Description	1	
#1	272.00'	81,503 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
272.00		871.0	0	0	25,677
274.00	57,990	1,103.0	81,503	81,503	62,174
Device F	Routing In	vert Out	let Devices		
#1 F	Primary 273		long x 8.0' breadth		
					0 1.40 1.60 1.80 2.00
			3.00 3.50 4.00 4.		
					2.68 2.66 2.64 2.64
#0 F	Viscordad 070		2.65 2.65 2.66 2.0		
#2 C	Discarded 272	.00' 0.27	0 in/hr Exfiltration	over Suriace area	
Discarded OutFlow Max=0.33 cfs @ 23.98 hrs HW=273.71' (Free Discharge)					

Discarded OutFlow Max=0.33 cfs @ 23.98 hrs HW=273.71' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.33 cfs)

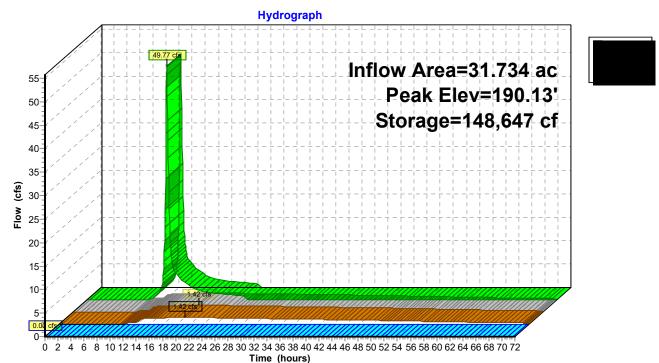
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=272.00' (Free Discharge)

Pond 3aP: Proposed Berm

Summary for Pond 3P: Existing Depression

Inflow Area =	31.734 ac,	4.54% Impervious,	Inflow Depth = 1.79" for 25-year event
Inflow =	49.77 cfs @	12.21 hrs, Volume=	= 4.723 af
Outflow =	1.42 cfs @	19.26 hrs, Volume=	= 4.718 af, Atten= 97%, Lag= 422.9 min
Discarded =	1.42 cfs @	19.26 hrs, Volume=	= 4.718 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 190.13' @ 19.26 hrs Surf.Area= 59,976 sf Storage= 148,647 cf


Plug-Flow detention time= 1,257.9 min calculated for 4.718 af (100% of inflow) Center-of-Mass det. time= 1,257.3 min (2,108.0 - 850.7)

Volume	Invert	Avail	.Storage	Storage Descripti	on			
#1	186.00'	27	77,396 cf	Custom Stage D	ata (Irregular)List	ted below (Recalc)		
Elevatio (fee	t)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
186.0	-	11,737	422.0	0	0	11,737		
188.0	-	36,683	753.0	46,113	46,113	42,709		
190.0	0	58,742	1,001.0	94,563	140,677	77,369		
192.0	0	78,452	1,254.0	136,720	277,396	122,825		
Device	Routing	Inv	vert Outl	et Devices				
#1	Discarded	186	.00' 1.02	0 in/hr Exfiltratio	n over Surface ar	rea		
#2	Primary	191	.00' 64.0 Hea	64.0' long x 16.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63				
Discarded OutFlow Max=1.42 cfs @ 19.26 hrs HW=190.13' (Free Discharge)								

1=Exfiltration (Exfiltration Controls 1.42 cfs)

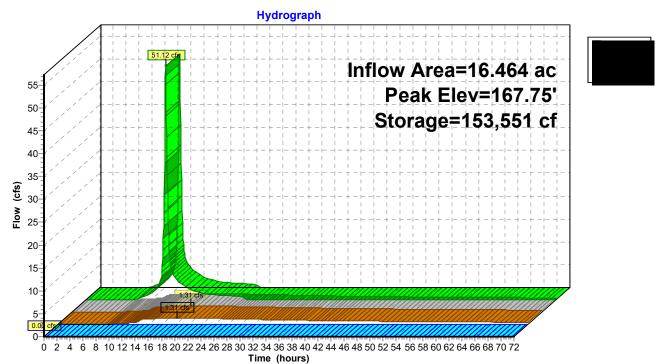
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=186.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 3P: Existing Depression

Summary for Pond 4P: Existing Depression

Inflow Area =	16.464 ac,	0.65% Impervious,	Inflow Depth = 3.43"	for 25-year event
Inflow =	51.12 cfs @	12.19 hrs, Volume	= 4.708 af	
Outflow =	1.31 cfs @	18.19 hrs, Volume	= 4.268 af, Atte	en= 97%, Lag= 360.1 min
Discarded =	1.31 cfs @	18.19 hrs, Volume	= 4.268 af	
Primary =	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.75' @ 18.19 hrs Surf.Area= 55,611 sf Storage= 153,551 cf


Plug-Flow detention time= 1,361.8 min calculated for 4.268 af (91% of inflow) Center-of-Mass det. time= 1,315.6 min (2,138.0 - 822.4)

Volume	Invert	Avail.Sto	orage	Storage Description	on		
#1	162.00'	1,773,2	03 cf	Custom Stage D	ata (Irregular) Liste	ed below (Recalc)	
Elevation (feet)		.Area F sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
162.00		8,040	387.0	0	0	8,040	
164.00	2	0,064	890.0	27,203	27,203	59,171	
166.00	3	1,393	894.0	51,036	78,239	61,043	
168.00	5	9,552 1,	582.0	89,455	167,695	196,625	
170.00	10	6,611 3,	162.0	163,895	331,590	793,118	
172.00	14	2,449 3,	012.0	248,196	579,786	867,073	
174.00	18	2,259 2,	708.0	323,891	903,678	1,005,567	
176.00	22	2,778 3,	083.0	404,360	1,308,037	1,178,477	
178.00	24	2,528 3,	031.0	465,166	1,773,203	1,204,505	
#1 C	Routing Discarded Primary	Invert 162.00' 177.00'	1.02 23.0 Head	d (feet) 0.20 0.40	adth Broad-Crest 0.60 0.80 1.00	ed Rectangular We	ir
			Coe	r. (Englisn) 2.68 2	.70 2.70 2.64 2.6	3 2.64 2.64 2.63	

Discarded OutFlow Max=1.31 cfs @ 18.19 hrs HW=167.75' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.31 cfs)

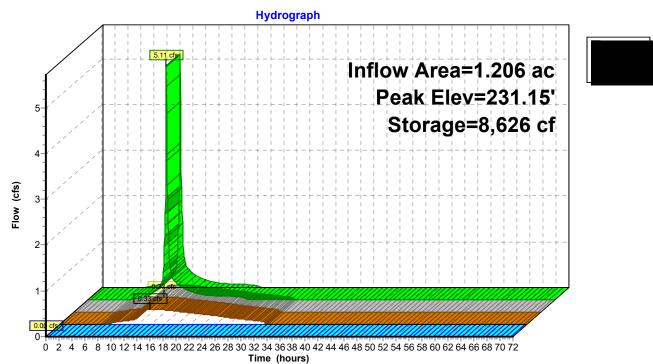
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=162.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 4P: Existing Depression

Summary for Pond 5bP: Proposed Berm

Inflow Area =	1.206 ac, 64.34% Impervious, Inflow De	epth = 3.73" for 25-year event
Inflow =	5.11 cfs @ 12.09 hrs, Volume=	0.375 af
Outflow =	0.33 cfs @ 13.82 hrs, Volume=	0.375 af, Atten= 93%, Lag= 103.9 min
Discarded =	0.33 cfs @ 13.82 hrs, Volume=	0.375 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 231.15' @ 13.82 hrs Surf.Area= 14,083 sf Storage= 8,626 cf


Plug-Flow detention time= 325.7 min calculated for 0.375 af (100% of inflow) Center-of-Mass det. time= 325.8 min (1,132.6 - 806.8)

Volume	Invert	Avail.S	Storage	Storage Descriptio	n	
#1	230.00'	26	,529 cf	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
230.0 232.0		2,519 28,762	275.0 1,204.0	0 26,529	0 26,529	2,519 111,868
Device	Routing	Inve	rt Outle	et Devices		
#1 #2	Discarded Primary	230.0 231.5	0' 10.0 Head 2.50 Coet	d (feet) 0.20 0.40 (3.00 3.50 4.00 4.	th Broad-Crested 0.60 0.80 1.00 1 .50 5.00 5.50 54 2.70 2.69 2.6	A Rectangular Weir .20 1.40 1.60 1.80 2.00 8 2.68 2.66 2.64 2.64

Discarded OutFlow Max=0.33 cfs @ 13.82 hrs HW=231.15' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.33 cfs)

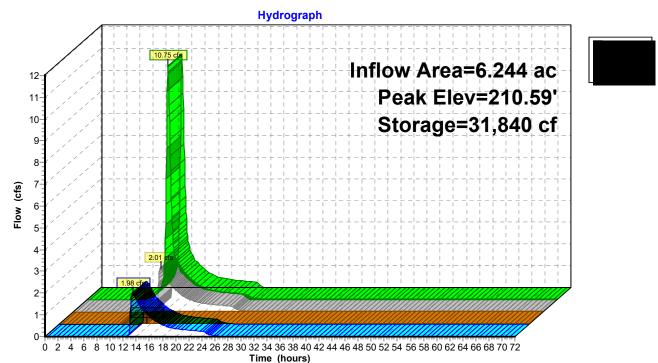
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=230.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 5bP: Proposed Berm

Summary for Pond 5cP: Proposed Berm

Inflow Area =	6.244 ac, 13.40% Impervious, Inflow Depth =	2.59" for 25-year event
Inflow =	10.75 cfs @ 12.42 hrs, Volume= 1.347	af
Outflow =	2.01 cfs @ 13.47 hrs, Volume= 0.792	af, Atten= 81%, Lag= 63.2 min
Discarded =	0.03 cfs @ 13.47 hrs, Volume= 0.116	af
Primary =	1.98 cfs @ 13.47 hrs, Volume= 0.676	af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 210.59' @ 13.47 hrs Surf.Area= 12,251 sf Storage= 31,840 cf


Plug-Flow detention time= 472.3 min calculated for 0.791 af (59% of inflow) Center-of-Mass det. time= 361.0 min (1,220.3 - 859.3)

Volume	Inver	t Avail	.Storage	Storage Description	on	
#1	206.00)' 3	37,107 cf	Custom Stage D	ata (Irregular) Liste	ed below (Recalc)
Elevatio (feet 206.0 208.0 210.0 211.0	t) 0 0 0	Surf.Area (sq-ft) 2,702 6,061 10,702 13,393	Perim. (feet) 340.0 500.0 660.0 685.0	Inc.Store (cubic-feet) 0 8,540 16,545 12,022	Cum.Store (cubic-feet) 0 8,540 25,084 37,107	Wet.Area (sq-ft) 2,702 13,430 28,245 31,004
Device	Routing	Inv	vert Outle	et Devices		
#1	Discarded	206	.00' 0.09	0 in/hr Exfiltratior	n over Surface ar	ea
#2	Primary	210				Rectangular Weir
			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00 4	4.50 5.00 5.50	
			Coe	f. (English) 2.43 2	.54 2.70 2.69 2.6	68 2.68 2.66 2.64 2.64
			2.64	2.65 2.65 2.66 2	2.66 2.68 2.70 2.	.74
Disconded QuitFlow May-0.02 of @ 12.17 http:////210.50/ (Erec. Discharge)						

Discarded OutFlow Max=0.03 cfs @ 13.47 hrs HW=210.59' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=1.98 cfs @ 13.47 hrs HW=210.59' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 1.98 cfs @ 1.46 fps)

Pond 5cP: Proposed Berm

Summary for Pond 5dP: Proposed Berm

Inflow Area =	1.360 ac, 44.82% Impervious, Inflow De	epth = 3.83" for 25-year event
Inflow =	5.32 cfs @ 12.13 hrs, Volume=	0.434 af
Outflow =	0.11 cfs @ 18.79 hrs, Volume=	0.434 af, Atten= 98%, Lag= 399.5 min
Discarded =	0.11 cfs @ 18.79 hrs, Volume=	0.434 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 284.88' @ 18.79 hrs Surf.Area= 16,830 sf Storage= 13,671 cf

Plug-Flow detention time= 1,278.1 min calculated for 0.434 af (100% of inflow) Center-of-Mass det. time= 1,278.0 min (2,084.7 - 806.8)

Volume	Invert	Avail.S	Storage	Storage Description	n		
#1	284.00	34	,488 cf	Custom Stage Da	ita (Irregular) Liste	d below (Recalc)	
Elevatio (fee 284.0 286.0	et) 00	urf.Area (sq-ft) 14,216 20,461	Perim. (feet) 751.0 810.0	Inc.Store (cubic-feet) 0 34,488	Cum.Store (cubic-feet) 0 34,488	Wet.Area (sq-ft) 14,216 21,709	
Device	Routing	Inve	rt Outle	et Devices			
#1 #2	Discarded Primary	284.00 285.00	0' 8.0' Head 2.50 Coet	3.00 3.50 4.00 4	h Broad-Crested 0.60 0.80 1.00 1 .50 5.00 5.50 54 2.70 2.69 2.6	Rectangular Weir .20 1.40 1.60 1.80 2 8 2.68 2.66 2.64 2.6	

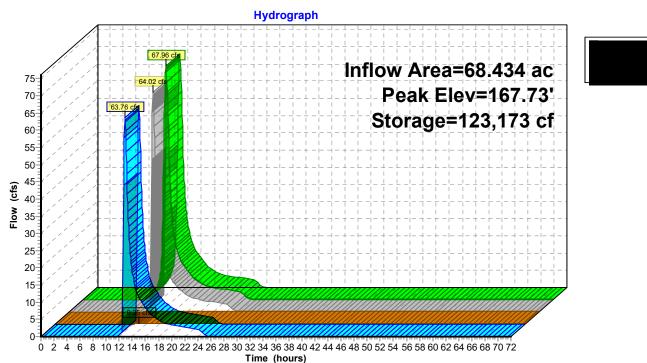
Discarded OutFlow Max=0.11 cfs @ 18.79 hrs HW=284.88' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.11 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=284.00' (Free Discharge) ☐ 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 5dP: Proposed Berm

Summary for Pond 5P: Existing Depression

Inflow Area =	68.434 ac, 25.36% Impervious, Inflow	Depth = 2.07" for 25-year event
Inflow =	67.96 cfs @ 12.70 hrs, Volume=	11.788 af
Outflow =	64.02 cfs @ 12.84 hrs, Volume=	10.196 af, Atten= 6%, Lag= 8.8 min
Discarded =	0.25 cfs @12.84 hrs, Volume=	1.090 af
Primary =	63.76 cfs @ 12.84 hrs, Volume=	9.107 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.73' @ 12.84 hrs Surf.Area= 40,492 sf Storage= 123,173 cf

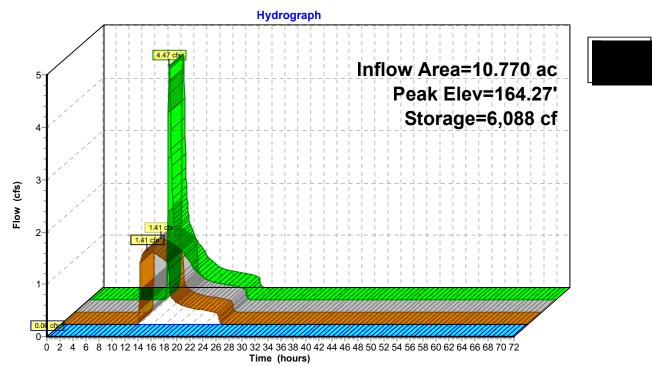
Plug-Flow detention time= 264.9 min calculated for 10.196 af (86% of inflow) Center-of-Mass det. time= 203.2 min (1,088.7 - 885.5)

Volume	Inver	t Avail.	Storage	Storage Description	on		
#1	162.00)' 13	4,374 cf	Custom Stage Data (Irregular)Listed below (Recalc)			
Elevatio (feet 162.0 164.0 166.0 168.0	t) 0 0 0	Surf.Area (sq-ft) 1,686 17,454 29,548 42,358	Perim. (feet) 164.0 653.0 840.0 938.0	Inc.Store (cubic-feet) 0 16,376 46,474 71,523	Cum.Store (cubic-feet) 0 16,376 62,851 134,374	Wet.Area (sq-ft) 1,686 33,489 55,756 69,736	
Device	Routing					,	
#1	Discarded	162.	00' 0.27	0 in/hr Exfiltratior	over Surface ar	ea	
#2 Primary 167.25' 71.0' long x 38.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 Coef. (English) 2.68 2.70 2.64 2.64 2.63							
Discarded OutFlow Max=0.25 cfs @ 12.84 hrs HW=167.73' (Free Discharge)							

1=Exfiltration (Exfiltration Controls 0.25 cfs)

Primary OutFlow Max=63.54 cfs @ 12.84 hrs HW=167.73' (Free Discharge) ☐ 2=Broad-Crested Rectangular Weir (Weir Controls 63.54 cfs @ 1.87 fps)

Pond 5P: Existing Depression


Summary for Pond 6bP: Proposed Berm

	4.47 cfs @ 1.41 cfs @ 1.41 cfs @ 0.00 cfs @ or-Ind method, ⁻	 12.39 h 13.19 h 13.19 h 0.00 h 	mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dr Area= 25,219 sf Ste	0.704 af 0.704 af, Atten= 0.704 af 0.000 af t= 0.05 hrs	25-year event 69%, Lag= 48.2 min
Plug-Flow detention time= 36.0 min calculated for 0.703 af (100% of inflow) Center-of-Mass det. time= 36.0 min (961.6 - 925.6)					
			Storage Descriptio		
#1 16	64.00' 8	3,016 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
164.00	20,590	712.0	0	0	20,590
166.00	66,837	1,639.0	83,016	83,016	194,035
Device Routi	ing Inv		et Devices	·	
#1 Prima					
#2 Disca	arded 164		0 in/hr Exfiltration		
Discarded OutFlow Max=1.41 cfs @ 13.19 hrs HW=164.27' (Free Discharge)					

Discarded OutFlow Max=1.41 cfs @ 13.19 hrs HW=164.27' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.41 cfs)

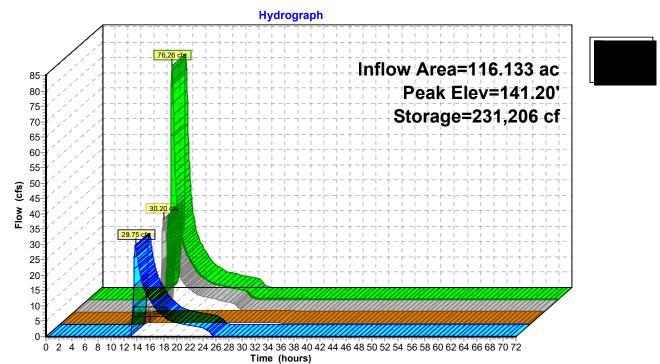
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=164.00' (Free Discharge) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Pond 6bP: Proposed Berm

Summary for Pond 6P: Existing Wetland

Inflow Area =	116.133 ac, 25.36% Impervious, Inflov	w Depth = 1.36" for 25-year event
Inflow =	76.26 cfs @ 12.84 hrs, Volume=	13.174 af
Outflow =	30.20 cfs @ 13.72 hrs, Volume=	9.963 af, Atten= 60%, Lag= 52.6 min
Discarded =	0.46 cfs @ 13.72 hrs, Volume=	2.072 af
Primary =	29.75 cfs @ 13.72 hrs, Volume=	7.891 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 141.20'@ 13.72 hrs Surf.Area= 115,708 sf Storage= 231,206 cf

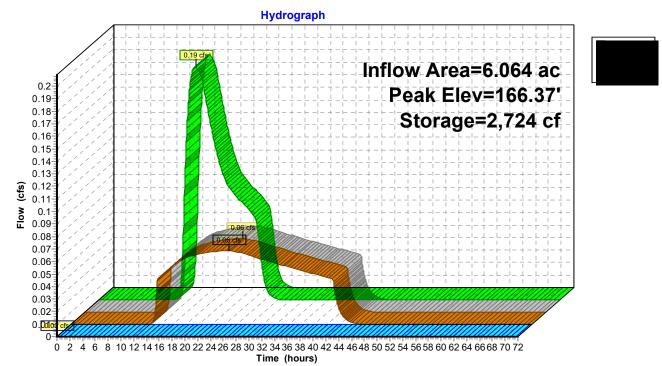

Plug-Flow detention time= 490.9 min calculated for 9.956 af (76% of inflow) Center-of-Mass det. time= 400.0 min (1,316.2 - 916.2)

Volume	Invert	Avail.Sto	rage	Storage Descriptio	n	
#1	138.00'	330,4	71 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)
Elevatio (fee	t)	(sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
138.0		-,	686.0	0	0	23,460
140.0	0 9	1,023 1,	816.0	107,129	107,129	248,460
142.0	0 13	3,681 2,	277.0	223,342	330,471	398,668
Device	Routing	Invert	Outl	et Devices		
#1	Discarded	138.00'	0.17	0 in/hr Exfiltration	over Surface are	а
#2	Primary	141.00'	121.	0' long x 19.0' bre	adth Broad-Crest	ted Rectangular Weir
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1	.20 1.40 1.60
			Coe	f. (Engĺish) 2.68 2.	70 2.70 2.64 2.6	3 2.64 2.64 2.63
Disconded OutFlow May 0.40 afr. (2.42.70 km 1/1/1/44.00) (Error Discharge)						

Discarded OutFlow Max=0.46 cfs @ 13.72 hrs HW=141.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.46 cfs)

Primary OutFlow Max=29.66 cfs @ 13.72 hrs HW=141.20' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 29.66 cfs @ 1.21 fps)

Pond 6P: Existing Wetland


Summary for Pond 7aP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary = Routing by Stor-I	0.06 cfs @ 0.06 cfs @ 0.00 cfs @	15.13 hi 24.70 hi 24.70 hi 0.00 hi	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt	0.116 af 0.116 af, Atten= 0 0.116 af 0.000 af	25-year event 69%, Lag= 574.2 min
			rea= 9,406 sf Stor		
Plug-Flow detention time= 527.5 min calculated for 0.116 af (100% of inflow) Center-of-Mass det. time= 527.1 min(1,616.7 - 1,089.6) Volume Invert Avail.Storage Storage Description					
Volume Inv #1 166.					holow (Pocolo)
#1 100.	.00 30	0,794 CI	Custom Stage Da	ia (integuiar)Listeu	below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
166.00	5,638	286.0	0	0	5,638
168.00	37,929	753.0	38,794	38,794	44,264
Device Routing	ı Inve	ert Outle	et Devices		
#1 Primary	y 167.5		ong x 8.0' breadth		
					0 1.40 1.60 1.80 2.00
			3.00 3.50 4.00 4.		
					2.68 2.66 2.64 2.64
#0 Dia	ad 100.0		2.65 2.65 2.66 2.		
#2 Discard	ed 166.0	U U.27) in/hr Exfiltration	over Surface area	
Discarded OutFlow Max=0.06 cfs @ 24.70 hrs HW=166.37' (Free Discharge)					

Discarded OutFlow Max=0.06 cfs @ 24.70 hrs HW=166.37' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.06 cfs)

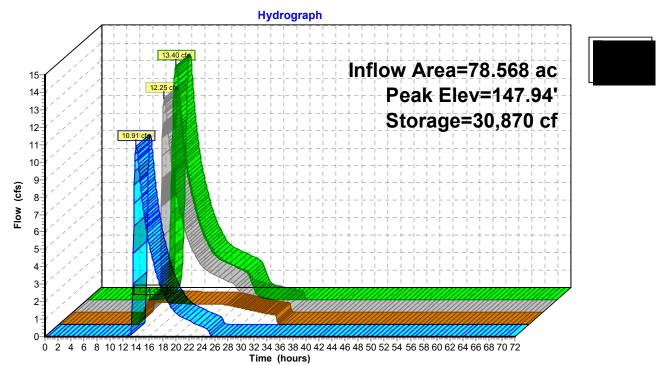
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=166.00' (Free Discharge)

Pond 7aP: Proposed Berm

Summary for Pond 7P: Existing Depression

Inflow Area =	78.568 ac, 13.71% Impervious, Inflow Depth = 0.72" f	or 25-year event
Inflow =	13.40 cfs @ 13.65 hrs, Volume= 4.739 af	
Outflow =	12.25 cfs @ 14.00 hrs, Volume= 4.739 af, Atten	n= 9%, Lag= 21.1 min
Discarded =	1.34 cfs @ 14.00 hrs, Volume= 1.792 af	
Primary =	10.91 cfs @ 14.00 hrs, Volume= 2.947 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 147.94' @ 14.00 hrs Surf.Area= 24,023 sf Storage= 30,870 cf


Plug-Flow detention time= 111.9 min calculated for 4.739 af (100% of inflow) Center-of-Mass det. time= 111.9 min (1,112.0 - 1,000.1)

Volume	Inver	t Avail	.Storage	Storage Description	on		
#1	146.00	' 3	32,409 cf	Custom Stage Da	ata (Irregular) Listed	l below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
146.0	00	9,050	771.0	0	0	9,050	
148.0	00	24,633	1,236.0	32,409	32,409	83,343	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	147.	50' 14.0	' long x 90.0' brea	dth Broad-Creste	d Rectangular Weir	(
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1.	20 1.40 1.60	
			Coe	f. (English) 2.68 2.	70 2.70 2.64 2.63	3 2.64 2.64 2.63	
#2	Discarded	146.	00' 2.41	0 in/hr Exfiltration	over Surface area	a	
Discard	Discarded OutFlow Max=1.34 cfs @ 14.00 hrs HW=147.94' (Free Discharge)						

2=Exfiltration (Exfiltration Controls 1.34 cfs)

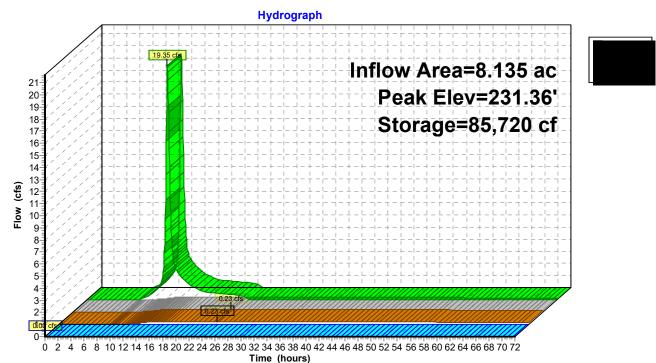
Primary OutFlow Max=10.91 cfs @ 14.00 hrs HW=147.94' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 10.91 cfs @ 1.78 fps)

Pond 7P: Existing Depression

Summary for Pond 8P: Existing Wetland

Inflow Area =	8.135 ac, 26.48% Impervious, Inflow D	epth = 3.24" for 25-year event
Inflow =	19.35 cfs @ 12.33 hrs, Volume=	2.194 af
Outflow =	0.23 cfs @ 24.27 hrs, Volume=	0.997 af, Atten= 99%, Lag= 716.7 min
Discarded =	0.23 cfs @ 24.27 hrs, Volume=	0.997 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 231.36' @ 24.27 hrs Surf.Area= 59,201 sf Storage= 85,720 cf


Plug-Flow detention time= 1,701.7 min calculated for 0.997 af (45% of inflow) Center-of-Mass det. time= 1,582.7 min (2,419.3 - 836.7)

Volume	Invert	Avail.	Storage	Storage Description	on	
#1	228.00'	130	0,034 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)
Elevatio	t)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
228.0 230.0	-	5,806 25,974	459.0 862.0	0 29.374	0 29,374	5,806 48,191
232.0	-	23,974 79,559	1,189.0	100,661	130,034	101,601
Device	Routing	Inve	ert Outle	et Devices		
#1	Discarded	228.0	00' 0.17	0 in/hr Exfiltratior	over Surface are	ea
#2	Primary	231.5	50' 158.	0' long x 196.0' b	readth Broad-Cre	sted Rectangular Weir
			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1	1.20 1.40 1.60
			Coet	f. (English) 2.68 2	.70 2.70 2.64 2.6	3 2.64 2.64 2.63
Discourt	a d OutFlau			4.07 has 100/-004		

Discarded OutFlow Max=0.23 cfs @ 24.27 hrs HW=231.36' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.23 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=228.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

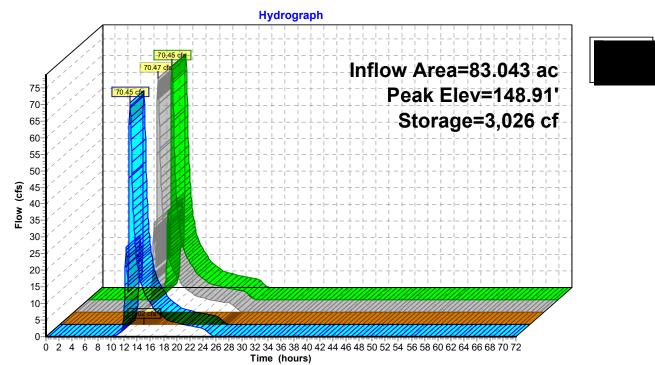
Pond 8P: Existing Wetland

Summary for Pond 9P: Existing Wetland

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =	83.043 ac, 27.18% Impervious, Inflow	Depth = 1.71" for 25-year event
Inflow =	70.45 cfs @ 12.83 hrs, Volume=	11.838 af
Outflow =	70.47 cfs @ 12.84 hrs, Volume=	11.838 af, Atten= 0%, Lag= 1.0 min
Discarded =	0.02 cfs @ 12.84 hrs, Volume=	0.012 af
Primary =	70.45 cfs @ 12.84 hrs, Volume=	11.826 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 148.91' @ 12.84 hrs Surf.Area= 4,711 sf Storage= 3,026 cf


Plug-Flow detention time= 0.9 min calculated for 11.838 af (100% of inflow) Center-of-Mass det. time= 0.9 min (912.0 - 911.1)

Volume	Inve	ert Avai	I.Storage	Storage Descripti	on		
#1	148.0	0' 8	34,530 cf	Custom Stage D	ata (Irregular)List	ted below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
148.0	00	2,138	180.0	0	0	2,138	
150.0	00	9,156	387.0	10,479	10,479	11,495	
152.0	00	135,719	2,199.0	120,084	130,563	384,391	
154.0	00	178,250	2,327.0	313,004	443,567	430,714	
156.0	00	213,235	2,588.0	390,963	834,530	532,915	
Device #1	Routing Discarde			et Devices 0 in/hr Exfiltratio	n over Surface a	2 02	
#2	Primary		-	long x 49.0' bre			Neir
	,			d (feet) 0.20 0.40		•	
			Coe	f. (English) 2.68 2	2.70 2.70 2.64 2.	63 2.64 2.64 2.6	3

Discarded OutFlow Max=0.02 cfs @ 12.84 hrs HW=148.90' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

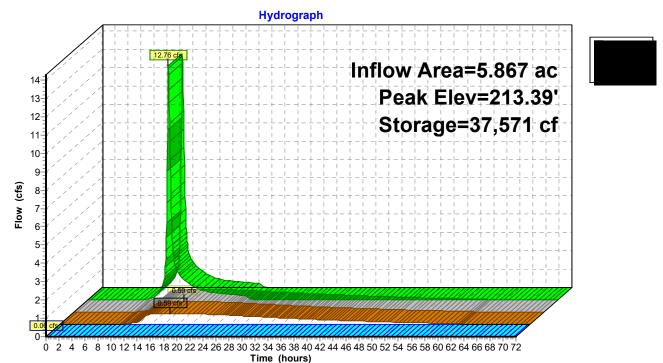
Primary OutFlow Max=70.27 cfs @ 12.84 hrs HW=148.90' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 70.27 cfs @ 2.51 fps)

Pond 9P: Existing Wetland

Summary for Pond 10aP: Proposed Berm

Inflow Area =	5.867 ac, 13.96% Impervious, Inflow	Depth = 2.68" for 25-year event
Inflow =	12.76 cfs @ 12.33 hrs, Volume=	1.310 af
Outflow =	0.59 cfs @ 16.93 hrs, Volume=	1.310 af, Atten= 95%, Lag= 276.0 min
Discarded =	0.59 cfs @ 16.93 hrs, Volume=	1.310 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 213.39' @ 16.93 hrs Surf.Area= 25,122 sf Storage= 37,571 cf

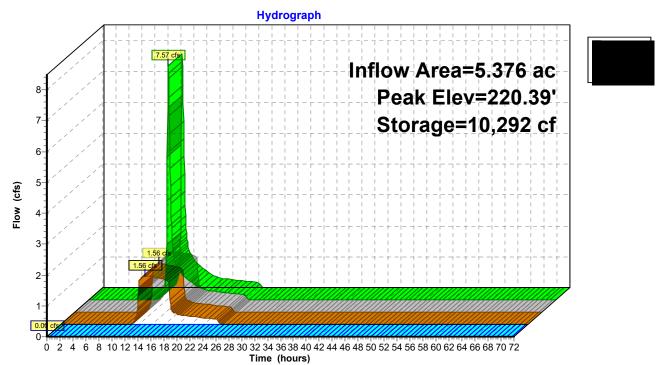

Plug-Flow detention time= 850.9 min calculated for 1.309 af (100% of inflow) Center-of-Mass det. time= 851.8 min (1,705.7 - 853.9)

Volume	Inve	rt Avail	.Storage	Storage Description	on		
#1	210.0	D' 5	55,040 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio (fee 210.0 212.0 214.0	t) 10 10	Surf.Area (sq-ft) 1,713 12,100 32,319	Perim. (feet) 254.0 654.0 899.0	Inc.Store (cubic-feet) 0 12,244 42,796	Cum.Store (cubic-feet) 0 12,244 55,040	Wet.Area (sq-ft) 1,713 30,630 60,948	
Device	Routing	Inv	vert Outle	et Devices			
#1	Discardeo	d 210.	.00' 1.02	0 in/hr Exfiltration	over Surface ar	ea	
#2	Primary	213.				d Rectangular Weir	
				· · ·		1.20 1.40 1.60 1.80 2.0	0
				3.00 3.50 4.00 4			
						68 2.68 2.66 2.64 2.64	
			2.64	2.65 2.65 2.66 2	2.66 2.68 2.70 2	.74	
Discarde	Discarded OutFlow Max=0.59 cfs @ 16.93 hrs HW=213.39' (Free Discharge)						

←1=Exfiltration (Exfiltration Controls 0.59 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=210.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 10aP: Proposed Berm

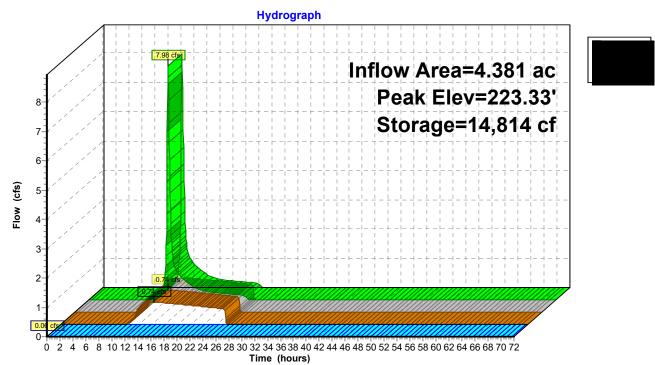

Summary for Pond 11bP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =		12.24 h 13.00 h 13.00 h	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume= rs, Volume=	Depth = 1.76" for 0.787 af 0.787 af, Atten= 0.787 af 0.000 af	25-year event 79%, Lag= 45.1 min			
	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 220.39' @ 13.00 hrs Surf.Area= 27,994 sf Storage= 10,292 cf							
Plug-Flow detention time= 54.5 min calculated for 0.786 af (100% of inflow) Center-of-Mass det. time= 54.5 min(927.0-872.5)								
Volume Inv	ert Avail.	Storage	Storage Descriptio	n				
#1 220.	00' 66	6,163 cf	Custom Stage Da	ta (Irregular) Listed	below (Recalc)			
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
220.00	25,086		0	0	25,086			
222.00			66,163	66,163	41,252			
Device Routing	Inve	ert Outle	et Devices					
#1 Primary	221.0			th Broad-Crested I				
					20 1.40 1.60 1.80 2.00			
			3.00 3.50 4.00 4.					
					2.68 2.66 2.64 2.64			
				.66 2.68 2.70 2.74				
#2 Discard	ed 220.0	U 2.4 1		over Surface area				
Discarded OutFlow Max=1.56 cfs @ 13.00 hrs HW=220.39' (Free Discharge)								

Discarded OutFlow Max=1.56 cfs @ 13.00 hrs HW=220.39' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.56 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=220.00' (Free Discharge)

Pond 11bP: Proposed Berm


Summary for Pond 11cP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	7.98 cfs @ 0.74 cfs @	12.21 hrs 14.37 hrs 14.37 hrs	npervious, Inflow D s, Volume= s, Volume= s, Volume= s, Volume=	0.758 af	25-year event 91%, Lag= 129.7 min			
	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 223.33' @ 14.37 hrs Surf.Area= 13,259 sf Storage= 14,814 cf							
Plug-Flow detention time= 223.7 min calculated for 0.758 af (100% of inflow) Center-of-Mass det. time= 223.6 min(1,083.6 - 860.0)								
Volume			Storage Description		halaw (Dagala)			
#1 2	222.00' 2	4,481 CT	Custom Stage Dat	a (Irregular)Listed	below (Recalc)			
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
222.00	9,148	421.0	0	0	9,148			
224.00	15,620	537.0	24,481	24,481	18,043			
Device Rou	ting Inv	ert Outlet	t Devices					
#1 Prin		75' 10.0'	long x 8.0' breadt	h Broad-Crested I	Rectangular Weir			
			10.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00					
			3.00 3.50 4.00 4.					
		Coef.	(English) 2.43 2.5	4 2.70 2.69 2.68	2.68 2.66 2.64 2.64			
		2.64	2.65 2.65 2.66 2.0	66 2.68 2.70 2.74				
#2 Disc	arded 222.0	00' 2.410	in/hr Exfiltration	over Surface area				
Discarded OutFlow Max=0.74 cfs @ 14.37 hrs HW=223.33' (Free Discharge)								

2=Exfiltration (Exfiltration Controls 0.74 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=222.00' (Free Discharge)

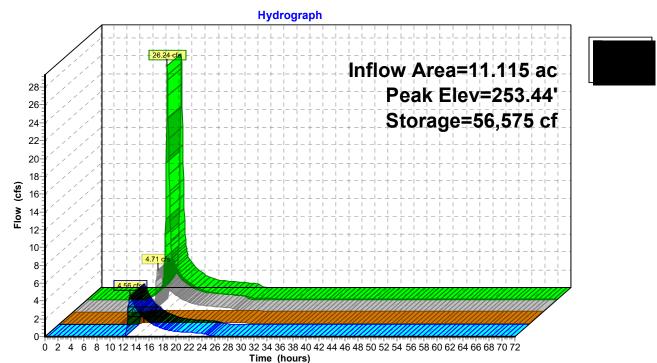
Pond 11cP: Proposed Berm

Summary for Pond 12bP: Proposed Berm

[62] Hint: Exceeded Reach 12bR OUTLET depth by 0.17' @ 13.25 hrs

Inflow Area =	11.115 ac,	7.70% Impervious, Inflow D	epth = 2.77" for 25-year event
Inflow =	26.24 cfs @	12.31 hrs, Volume=	2.565 af
Outflow =	4.71 cfs @	13.05 hrs, Volume=	2.036 af, Atten= 82%, Lag= 44.8 min
Discarded =	0.16 cfs @	13.05 hrs, Volume=	0.712 af
Primary =	4.56 cfs @	13.05 hrs, Volume=	1.324 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 253.44' @ 13.05 hrs Surf.Area= 25,062 sf Storage= 56,575 cf


Plug-Flow detention time= 713.5 min calculated for 2.035 af (79% of inflow) Center-of-Mass det. time= 634.3 min (1,484.6 - 850.3)

Volume	Invert		Storage					
#1	250.00'	71	1,013 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)		
Elevation	Su	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>		
250.00		4,608	359.0	0	0	4,608		
252.00		20,843	719.0	23,501	23,501	35,509		
254.00		26,794	769.0	47,513	71,013	41,614		
Device F	Routing	Inve	ert Outle	et Devices				
#1 F	Primary	253.0	00' 6.0'	.0' long x 8.0' breadth Broad-Crested Rectangular Weir				
	5			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00				
			2.50	3.00 3.50 4.00 4.	50 5.00 5.50			
			Coef	. (English) 2.43 2.5	54 2.70 2.69 2.68	2.68 2.66 2.64 2.64		
			2.64	2.65 2.65 2.66 2.	66 2.68 2.70 2.74	ļ		
#2 E	Discarded	250.0	00' 0.27	0 in/hr Exfiltration	over Surface area			
#1 F	Primary 253.00' 6.0' Hea 2.50 Coe 2.64			long x 8.0' breadth d (feet) 0.20 0.40 (3.00 3.50 4.00 4. C (English) 2.43 2.5 2.65 2.65 2.66 2.	0.60 0.80 1.00 1.2 50 5.00 5.50 54 2.70 2.69 2.68 66 2.68 2.70 2.74	20 1.40 1.60 1.80 2.00 2.68 2.66 2.64 2.64 4)	

Discarded OutFlow Max=0.16 cfs @ 13.05 hrs HW=253.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.16 cfs)

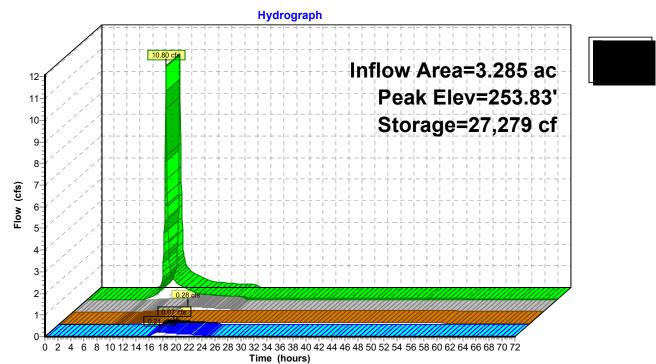
Primary OutFlow Max=4.55 cfs @ 13.05 hrs HW=253.44' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 4.55 cfs @ 1.71 fps)

Pond 12bP: Proposed Berm

Summary for Pond 12cP: Proposed Berm

Inflow Area =	3.285 ac,	8.38% Impervious, Inflow D	Depth = 2.86" for 25-year event
Inflow =	10.80 cfs @	12.09 hrs, Volume=	0.783 af
Outflow =	0.28 cfs @	17.54 hrs, Volume=	0.423 af, Atten= 97%, Lag= 326.8 min
Discarded =	0.07 cfs @	17.54 hrs, Volume=	0.328 af
Primary =	0.21 cfs @	17.54 hrs, Volume=	0.095 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 253.83' @ 17.54 hrs Surf.Area= 11,579 sf Storage= 27,279 cf


Plug-Flow detention time= 1,430.4 min calculated for 0.423 af (54% of inflow) Center-of-Mass det. time= 1,315.8 min (2,146.2 - 830.4)

Volume	Inve	ert Avail.	.Storage	e Storage Description				
#1	250.0)0' 2	29,339 cf	339 cf Custom Stage Data (Irregular)Listed below		d below (Recalc)		
Elevatio (fee 250.0 252.0 254.0	20 20 20	Surf.Area (sq-ft) 2,632 7,654 11,997	Perim. (feet) 234.0 458.0 575.0	Inc.Store (cubic-feet) 0 9,850 19,489	Cum.Store (cubic-feet) 0 9,850 29,339	Wet.Area (sq-ft) 2,632 14,987 24,660		
Device	Routing	Inv	vert Outle	et Devices				
#1	Primary	Primary 253.75' 4.0 Hea		4.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00				
#2	Coe 2.64		50 3.00 3.50 4.00 4.50 5.00 5.50 bef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 270 in/hr Exfiltration over Surface area					

Discarded OutFlow Max=0.07 cfs @ 17.54 hrs HW=253.83' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=0.20 cfs @ 17.54 hrs HW=253.83' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 0.20 cfs @ 0.67 fps)

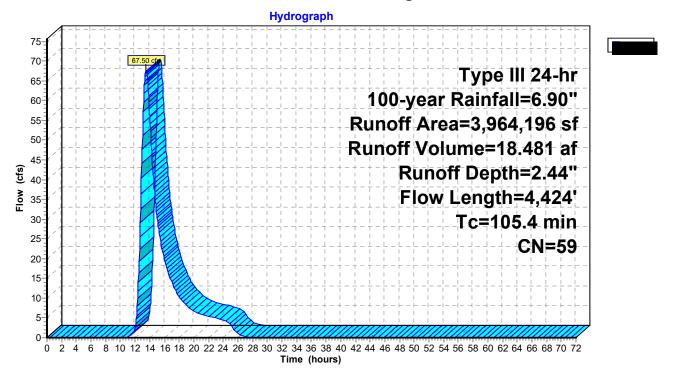
Pond 12cP: Proposed Berm

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Softw	Type III 24-hr 100-year Rainfall=6.90" Printed 10/3/2019 vare Solutions LLC Page 324
Time span=0.00-72.00 hrs, Runoff by SCS TR-20 metho Reach routing by Stor-Ind+Trans metho	d, UH=SCS, Weighted-CN
	3,964,196 sf 11.60% Impervious Runoff Depth=2.44" 4' Tc=105.4 min CN=59 Runoff=67.50 cfs 18.481 af
	a=146,589 sf 28.06% Impervious Runoff Depth=1.52" n=342' Tc=9.9 min CN=49 Runoff=4.39 cfs 0.428 af
U U	ea=408,420 sf 8.65% Impervious Runoff Depth=3.85" 734' Tc=30.4 min CN=73 Runoff=23.76 cfs 3.008 af
	ea=341,088 sf 7.37% Impervious Runoff Depth=3.96" 424' Tc=105.4 min CN=74 Runoff=9.94 cfs 2.581 af
U U	ea=233,007 sf 1.98% Impervious Runoff Depth=1.35" =289' Tc=12.1 min CN=47 Runoff=5.46 cfs 0.604 af
U U	ea=359,815 sf 3.27% Impervious Runoff Depth=3.85" 794' Tc=19.3 min CN=73 Runoff=25.45 cfs 2.650 af
	=1,022,537 sf 4.99% Impervious Runoff Depth=3.54" 119' Tc=14.7 min CN=70 Runoff=73.71 cfs 6.916 af
U U	ea=717,184 sf 0.65% Impervious Runoff Depth=4.71" 974' Tc=13.9 min CN=81 Runoff=69.69 cfs 6.465 af
	2,242,858 sf 25.20% Impervious Runoff Depth=3.74" 17' Tc=49.6 min CN=72 Runoff=98.99 cfs 16.065 af
Subcatchment5bS: Drainage Area 5 Runoff Area	ea=52,534 sf 64.34% Impervious Runoff Depth=5.04" Tc=6.0 min CN=84 Runoff=6.82 cfs 0.507 af
	a=271,995 sf 13.40% Impervious Runoff Depth=3.74" 346' Tc=29.3 min CN=72 Runoff=15.65 cfs 1.948 af
	ea=59,233 sf 44.82% Impervious Runoff Depth=5.16" n=157' Tc=9.1 min CN=85 Runoff=7.07 cfs 0.584 af
	a=972,255 sf 22.55% Impervious Runoff Depth=1.35" 544' Tc=44.6 min CN=47 Runoff=13.37 cfs 2.520 af
	a=469,126 sf 17.08% Impervious Runoff Depth=1.44" 549' Tc=19.6 min CN=48 Runoff=10.07 cfs 1.292 af
U U	ea=264,166 sf 2.54% Impervious Runoff Depth=0.60" ,124' Tc=95.4 min CN=37 Runoff=0.67 cfs 0.301 af
	3,158,253 sf 14.64% Impervious Runoff Depth=1.44" 232' Tc=99.9 min CN=48 Runoff=28.47 cfs 8.696 af

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 Hydro		1 <i>00-year Rainfall=6.90"</i> Printed 10/3/2019 <u>Page 325</u>
Subcatchment8S: Drainage Area 8	Runoff Area=354,352 sf 26.48% Impervi w Length=883' Tc=23.6 min CN=79 R	ous Runoff Depth=4.49"
	Runoff Area=636,379 sf 35.74% Impervi w Length=601' Tc=17.1 min CN=68 R	
	Runoff Area=255,546 sf 13.96% Impervi w Length=378' Tc=17.2 min CN=73 R	
Subcatchment10bS: Drainage Area 10 Ru Flow	unoff Area=1,072,278 sf 13.17% Impervi Length=1,752' Tc=40.2 min CN=67 F	
Subcatchment11aS: Drainage Area 11 Ru Flow L	unoff Area=2,062,963 sf 10.23% Impervi .ength=1,904' Tc=38.3 min CN=69 Rเ	
Subcatchment11bS: Drainage Area 11 Flow	Runoff Area=234,184 sf 1.97% Impervi Length=1,011' Tc=16.2 min CN=62 F	
Subcatchment11cS: Drainage Area 11 Flo	Runoff Area=190,846 sf 1.10% Impervi w Length=957' Tc=14.0 min CN=66 F	
Subcatchment12aS: Drainage Area 12a Ru Flow L	unoff Area=1,702,429 sf 14.03% Impervi .ength=1,596' Tc=44.7 min CN=73 Rเ	
Subcatchment12bS: Drainage Area 12b Flo	Runoff Area=484,189 sf 7.70% Impervi w Length=902' Tc=14.5 min CN=74 R	
Subcatchment12cS: Drainage Area 12	Runoff Area=143,106 sf 8.38% Impervi Tc=6.0 min CN=75 F	ious Runoff Depth=4.06" Runoff=15.32 cfs 1.112 af
	Runoff Area=1,408,782 sf 0.05% Impervi Length=1,813' Tc=9.8 min CN=66 Ru	
	g. Flow Depth=0.60' Max Vel=4.85 fps .0' S=0.0299 '/' Capacity=51.58 cfs Ou	
	g. Flow Depth=0.91' Max Vel=5.43 fps .0' S=0.0234 '/' Capacity=45.66 cfs Ou	
Reach DP-1: Off-Site West		low=117.65 cfs 31.164 af low=117.65 cfs 31.164 af
Reach DP-2: Off-Site South	Outf	low=123.74 cfs 23.593 af low=123.74 cfs 23.593 af
Reach DP-3: Off-Site East		nflow=96.14 cfs 15.364 af tflow=96.14 cfs 15.364 af
Reach DP-4: Off-Site Southeast		flow=141.20 cfs 22.076 af flow=141.20 cfs 22.076 af

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 Hydror		00-year Rainfall=6.90" Printed 10/3/2019 Page 326
Pond 1bP: Proposed Basin Discarded=1.27 cfs	Peak Elev=152.18' Storage=3,887 cf 0.428 af Primary=0.00 cfs 0.000 af Ou	
	Peak Elev=227.50' Storage=15,328 cf In .301 af Primary=23.20 cfs 2.706 af Out	
Pond 1dP: Proposed Berm Discarded=0.10 cfs 0	Peak Elev=258.07' Storage=28,065 cf 0.460 af Primary=10.46 cfs 1.978 af Out	
Pond 2P: Existing Depression	Peak Elev=168.82' Storage=11,806 cf I O	nflow=5.46 cfs 0.604 af utflow=0.54 cfs 0.604 af
	Peak Elev=273.92' Storage=77,126 cf In 1.485 af Primary=1.41 cfs 0.662 af Ou	
	eak Elev=191.09' Storage=209,971 cf In 6.022 af Primary=4.44 cfs 1.201 af Ou	
	Peak Elev=168.69' Storage=213,410 cf In 5 5.602 af Primary=0.00 cfs 0.000 af Ou	
Pond 5bP: Proposed Berm Discarded=0.41 cfs	Peak Elev=231.37' Storage=12,157 cf 0.507 af Primary=0.00 cfs 0.000 af Ou	
	Peak Elev=211.00' Storage=37,107 cf In 5 0.117 af Primary=7.01 cfs 1.275 af Ou	
Pond 5dP: Proposed Berm Discarded=0.11 cfs	Peak Elev=285.06' Storage=16,689 cf 0.499 af Primary=0.27 cfs 0.085 af Ou	
	ak Elev=167.92' Storage=130,811 cf Inflo af Primary=103.33 cfs 15.341 af Outflo	
•	Peak Elev=164.68' Storage=18,141 cf In 1.292 af Primary=0.00 cfs 0.000 af Ou	
U U	ak Elev=141.45' Storage=260,357 cf Inflo 92 af Primary=98.49 cfs 16.592 af Outfle	
Pond 7aP: Proposed Berm Discarded=0.10 cfs	Peak Elev=166.87' Storage=9,092 cf 0.301 af Primary=0.00 cfs 0.000 af Ou	
U 1	Peak Elev=148.48' Storage=32,409 cf In .899 af Primary=35.72 cfs 6.797 af Out	
U U	Peak Elev=231.53' Storage=96,027 cf In 5 1.096 af Primary=1.96 cfs 0.612 af Ou	
0	Peak Elev=149.25' Storage=4,885 cf Inflo af Primary=115.06 cfs 19.380 af Outflo	

Quinebaug Proposed Hydrology Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 Hydr	Type III 24-hr 100-year Rainfall=6.90"Printed 10/3/2019roCAD Software Solutions LLCPage 327
Pond 10aP: Proposed Berm	Peak Elev=213.67' Storage=45,007 cf Inflow=18.51 cfs 1.882 af
Discarded=0.67 c	cfs 1.502 af Primary=1.69 cfs 0.380 af Outflow=2.36 cfs 1.882 af
Pond 11bP: Proposed Berm	Peak Elev=220.72' Storage=19,970 cf Inflow=12.21 cfs 1.222 af
Discarded=1.71 c	fs 1.222 af Primary=0.00 cfs 0.000 af Outflow=1.71 cfs 1.222 af
Pond 11cP: Proposed Berm	Peak Elev=223.85' Storage=22,247 cf Inflow=12.27 cfs 1.141 af
Discarded=0.84 c	fs 1.036 af Primary=0.82 cfs 0.105 af Outflow=1.67 cfs 1.141 af
Pond 12bP: Proposed Berm Discarded=0.17 cfs	Peak Elev=253.92' Storage=69,005 cf Inflow=37.96 cfs 3.663 af 0.721 af Primary=14.32 cfs 2.411 af Outflow=14.49 cfs 3.132 af
Pond 12cP: Proposed Berm	Peak Elev=253.99' Storage=29,183 cf Inflow=15.32 cfs 1.112 af
Discarded=0.07 c	cfs 0.334 af Primary=1.13 cfs 0.417 af Outflow=1.21 cfs 0.751 af

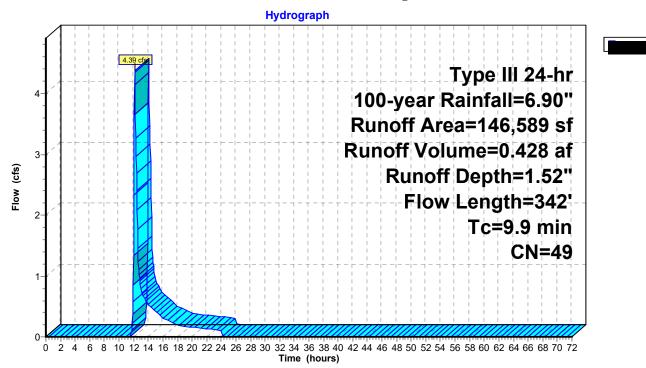

Total Runoff Area = 533.249 ac Runoff Volume = 130.291 af Average Runoff Depth = 2.93" 86.79% Pervious = 462.798 ac 13.21% Impervious = 70.450 ac

Summary for Subcatchment 1aS: Drainage Area 1a

Runoff 67.50 cfs @ 13.48 hrs, Volume= 18.481 af, Depth= 2.44" =

	Ai	rea (sf)	CN I	Description						
	4	82,442	30 I	Meadow, no	on-grazed,	HSG A				
	5	38,022	58 I							
	9	42,184	71 I	Meadow, non-grazed, HSG C						
		0	78 I	Meadow, no	on-grazed,	HSG D				
	5	15,616	30 \	Noods, Go	od, HSG A					
		04,263		Noods, Go						
		25,155	70 \	Noods, Go	od, HSG C					
		10,840		Noods, Go						
*		33,102		Gravel pit, I						
*		0		Gravel pit, I						
*		0		Gravel pit, I						
*		0		Gravel pit, I						
*		14,914		Nater body						
*		52,839		Gravel road						
*		0								
*		1,438		Panels						
*		4,403		Equipment	pad					
		38,978		Paved						
	,	64,196		Neighted A	•					
		04,463		38.40% Pei						
	4	59,733		11.60% Imp	bervious An	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·				
	9.3	50	0.0400	0.09		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	11.3	356	0.0110	0.52		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	23.1	433	0.0020	0.31		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	4.3	222	0.0300	0.87		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	10.5	766	0.0300	1.21		Shallow Concentrated Flow,				
	40.0	0 505	0.0040	0.00		Short Grass Pasture Kv= 7.0 fps				
	46.9	2,597	0.0340	0.92		Shallow Concentrated Flow,				
	105 1	1.10:	- · ·			Woodland Kv= 5.0 fps				
	105.4	4,424	Total							

Subcatchment 1aS: Drainage Area 1a

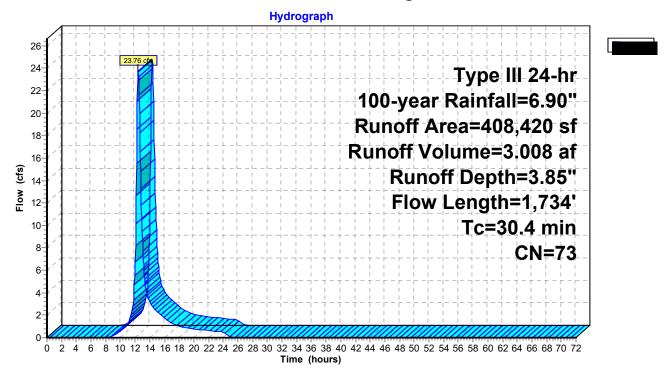

Summary for Subcatchment 1bS: Drainage Area 1b

Runoff = 4.39 cfs @ 12.16 hrs, Volume= 0.428 af, Depth= 1.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=6.90"

_	A	rea (sf)	CN E	Description					
	1	03,427	30 N	/leadow, no	on-grazed,	HSG A			
		2,036	58 N	Meadow, non-grazed, HSG B					
*		7,140	98 F	Panels					
*		33,986	98 E	Basin					
	1	46,589	49 V	Veighted A	verage				
	1	05,463	7	′1.94% Pei	vious Area				
		41,126	2	8.06% Imp?	pervious Ar	ea			
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	7.4	50	0.0100	0.11		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.20"			
	2.5	292	0.0762	1.93		Shallow Concentrated Flow,			
_						Short Grass Pasture Kv= 7.0 fps			
	9.9	342	Total						

Subcatchment 1bS: Drainage Area 1b

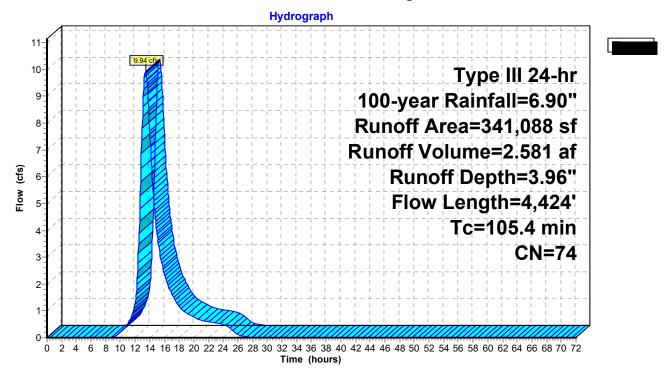

Summary for Subcatchment 1cS: Drainage Area 1c

Page 331

Runoff 23.76 cfs @ 12.42 hrs, Volume= 3.008 af, Depth= 3.85" =

	А	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0	58 I	Meadow, no	on-grazed,	HSG B
	3	51,878	71	Meadow, no	on-grazed,	HSG C
		0	78	Meadow, no	on-grazed,	HSG D
		0	30	Noods, Go	od, HSG A	
		0	55	Noods, Go	od, HSG B	
		18,313	70	Noods, Go	od, HSG C	
		0	77	Noods, Go	od, HSG D	
*		0		Gravel pit, I		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		0		Gravel pit, l		
*		2,416		Nater body		
*		2,918		Gravel roac	1	
*		0		Structure		
*		5,460		Panels		
*		0		Equipment	pad	
*		10,197		Paved		
*		17,238		Basin		
		08,420		Neighted A	•	
		73,109			rvious Area	
		35,311	i	3.65% Impe	ervious Are	а
	–	1	0		0	Description
	Tc	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.1	50	0.0800	0.12		Sheet Flow,
	00.0	4 00 4	0 0007	4.04		Woods: Light underbrush n= 0.400 P2= 3.20"
	23.3	1,684	0.0297	1.21		Shallow Concentrated Flow,
	00 (4 70 4	- + +			Short Grass Pasture Kv= 7.0 fps
	30.4	1,734	Total			

Subcatchment 1cS: Drainage Area 1c



Summary for Subcatchment 1dS: Drainage Area 1a

Runoff 9.94 cfs @ 13.44 hrs, Volume= 2.581 af, Depth= 3.96" =

_	Ai	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0		Meadow, no		
	2	69,007	71	Meadow, no	on-grazed,	HSG C
		0	78	Meadow, no	on-grazed,	HSG D
		0	30	Woods, Go	od, HSG A	
		0	55	Woods, Go	od, HSG B	
		34,713	70	Woods, Go	od, HSG C	
		0	77	Woods, Go	od, HSG D	
*		0	70	Gravel pit, I	HSG A	
*		0	81	Gravel pit, I	HSG B	
*		0	88	Gravel pit, I	HSG C	
*		0	92	Gravel pit, I	HSG D	
*		0	98	Water body		
*		12,239	96	Gravel road	l	
*		0	98	Structure		
*		7,140	98	Panels		
*		629	98	Equipment	pad	
*		1,074	98	Paved		
*		16,286	98	Basin		
	3	41,088	74	Weighted A	verage	
	3	15,959		92.63% Pei	vious Area	l
		25,129		7.37% Impe	ervious Are	а
	Tc	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.3	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	11.3	356	0.0110	0.52		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	23.1	433	0.0020	0.31		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	4.3	222	0.0300	0.87		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	10.5	766	0.0300) 1.21		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	46.9	2,597	0.0340	0.92		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	105.4	4,424	Total			

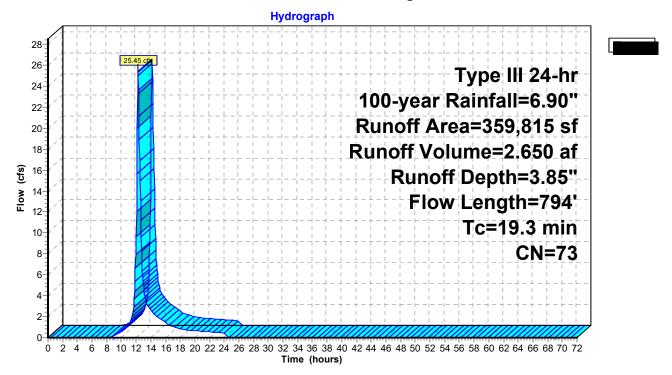
Subcatchment 1dS: Drainage Area 1a

Summary for Subcatchment 2S: Drainage Area 2

Runoff 5.46 cfs @ 12.21 hrs, Volume= 0.604 af, Depth= 1.35" =

	A	rea (sf)	CN	Description						
	1	17,788	30	Meadow, non-grazed, HSG A						
		29,605	58	Meadow, non-grazed, HSG B						
		0	71	Meadow, no	on-grazed,	HSG C				
		0	78	Meadow, no	on-grazed,	HSG D				
		16,114	30	Woods, Go	od, HSG A					
		0		Woods, Go						
		0		Woods, Go						
		0		Woods, Go						
*		58,620		Gravel pit, l						
*		0		Gravel pit, l						
*		0		Gravel pit, l						
*		0		Gravel pit, l						
*		0		Water body						
*		6,260		Gravel road	ł					
*		0		Structure						
<u>×</u>		4,620		Panels						
		33,007		Weighted A						
	2	28,387		98.02% Pe						
		4,620		1.98% Impe	ervious Are	а				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)		(cfs)	Description				
	6.8	50	0.0900		()	Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	5.3	239	0.0230	0.76		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	12.1	289	Total							

Subcatchment 2S: Drainage Area 2

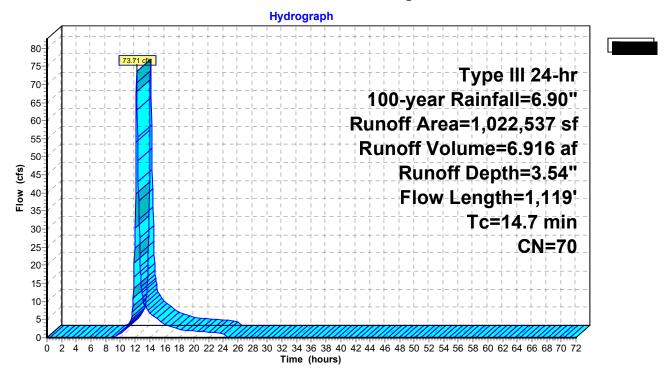


Summary for Subcatchment 3aS: Drainage Area 3a

Runoff 25.45 cfs @ 12.27 hrs, Volume= 2.650 af, Depth= 3.85" =

	A	rea (sf)	CN	Description						
		0	30	Meadow, n	on-grazed,	HSG A				
		0	0 58 Meadow, non-grazed, HSG B							
337,756 71 Meadow, non-grazed, HSG C						HSG C				
		0			on-grazed,					
		0			od, HSG A					
		0		Woods, Go						
		0			od, HSG C					
		0			od, HSG D					
*		0		Gravel pit, l						
*		0		Gravel pit, I						
*		0		Gravel pit, l						
*		0		Gravel pit, l						
*		0		Water body						
*		10,301		Gravel road	1					
*		0		Structure						
*		10,500		Panels						
		1,258		Equipment						
		59,815		Weighted A						
		48,057			rvious Area					
		11,758		3.27% Impe	ervious Are	a				
	Та	Longth	Slope	Volocity	Conocity	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
					(015)	Shoot Flow				
	7.4	50	0.0100	0.11		Sheet Flow, Grass: Short n= 0.150 P2= 3.20"				
	11.9	744	0.0222	1.04		Shallow Concentrated Flow,				
	11.9	/44	0.0222	1.04		Short Grass Pasture Kv= 7.0 fps				
	19.3	794	Total							
	19.3	794	rotal							

Subcatchment 3aS: Drainage Area 3a

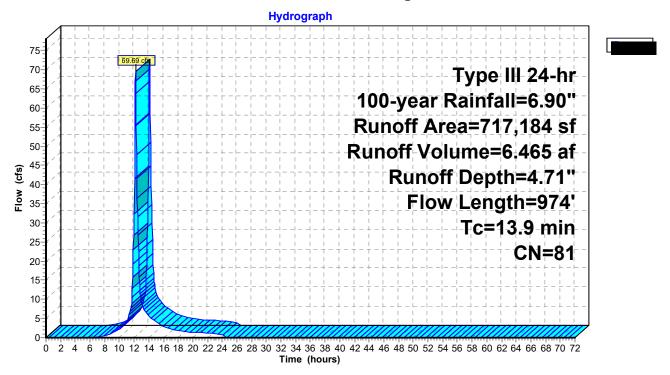


Page 339

Runoff 73.71 cfs @ 12.21 hrs, Volume= 6.916 af, Depth= 3.54" =

	А	rea (sf)	CN	Description					
	0 30 Meadow, non-grazed, H					HSG A			
		99,790	58	Meadow, non-grazed, HSG B Meadow, non-grazed, HSG C					
	5	32,219							
		0		Meadow, no					
		1,798		Woods, Go					
		07,172		Woods, Go					
		59,721		Woods, Go					
		14,571		Woods, Go					
*		59,918		Gravel pit, l					
*		96,280		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		51,068		Water body					
*		0		Gravel roac	1				
*		0		Structure					
*		0		Panels					
*		0		Equipment	•				
		22,537		Weighted A	0				
		71,469		95.01% Pei					
		51,068		4.99% Impe	ervious Are	а			
	–	1	0		0				
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)		(cfs)				
	5.6	50	0.0200	0.15		Sheet Flow,			
		4 0 0 0				Grass: Short n= 0.150 P2= 3.20"			
	9.1	1,069	0.0776	5 1.95		Shallow Concentrated Flow,			
_			-			Short Grass Pasture Kv= 7.0 fps			
	14.7	1,119	Total						

Subcatchment 3bS: Drainage Area 3b

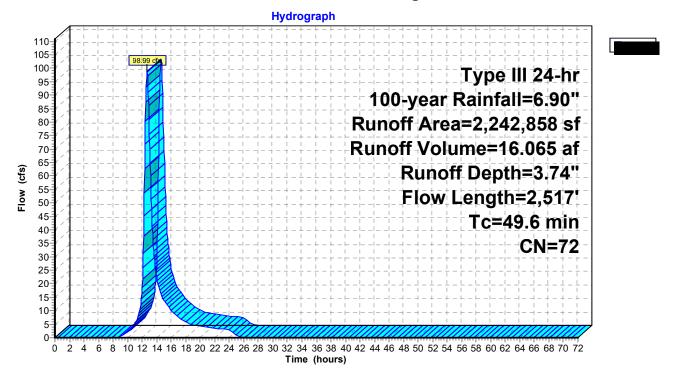


Summary for Subcatchment 4S: Drainage Area 4

Runoff 69.69 cfs @ 12.19 hrs, Volume= 6.465 af, Depth= 4.71" =

	Ai	rea (sf)	CN	Description		
		0	30	Meadow, no	on-grazed,	HSG A
		0		Meadow, no		
		0		Meadow, no		
		0		Meadow, no		
		0		Noods, Go		
		18,016		Noods, Go		
		19,532	70	Noods, Go	od, HSG C	
		5,054	77 \	Noods, Go	od, HSG D	
*		34,397	70	Gravel pit, I	HSG A	
*		00,725	81 (Gravel pit, I	HSG B	
*	1	34,831	88	Gravel pit, I	HSG C	
*		0	92	Gravel pit, I	HSG D	
*		4,629	98	Nater body		
*		0	96	Gravel road	l	
*		0	98	Structure		
	717,184 81 Weighted Average					
	7	12,555	9	99.35% Pei	vious Area	l
		4,629	().65% Impe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	50	0.0200	1.20		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.20"
	3.9	384	0.0102	1.63		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	45	0.2700	8.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.8	269	0.0010	0.51		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.4	226	0.3100	8.96		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	13.9	974	Total			

Subcatchment 4S: Drainage Area 4

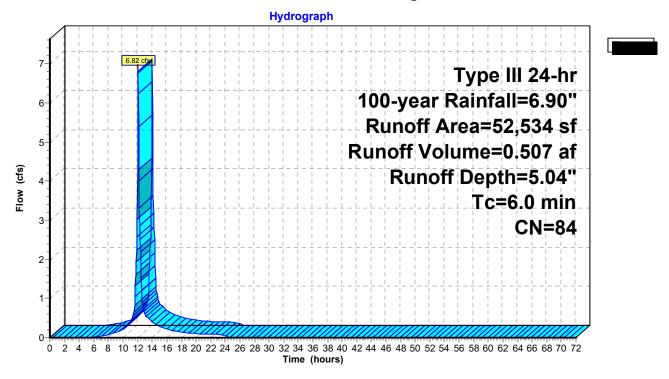


Summary for Subcatchment 5aS: Drainage Area 5

Runoff 98.99 cfs @ 12.68 hrs, Volume= 16.065 af, Depth= 3.74" =

	A	rea (sf)	CN [Description					
84,391 30 Meadow, non-grazed, HSG A						HSG A			
	1	17,637	58 N	8 Meadow, non-grazed, HSG B					
	2	39,197	71 N	Aeadow, no	on-grazed,	HSG C			
		91,068		Meadow, non-grazed, HSG D					
		0			od, HSG A				
		97,427			od, HSG B				
		04,182			od, HSG C				
		03,749			od, HSG D				
*		15,001		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*	_	0		Gravel pit, I					
*		62,885		Vater body					
*		25,012		Gravel road	1				
*		0		Structure					
Ŷ		1,680		Panels					
		629		Equipment	•				
		42,858		Veighted A					
	,	77,664			rvious Area				
	5	65,194	2	25.20% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•			
	7.4	50	0.0100	0.11		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.20"			
	3.4	238	0.0550	1.17		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	26.6	1,240	0.0242	0.78		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	7.6	509	0.0500	1.12		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	4.6	480	0.1200	1.73		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	49.6	2,517	Total						

Subcatchment 5aS: Drainage Area 5

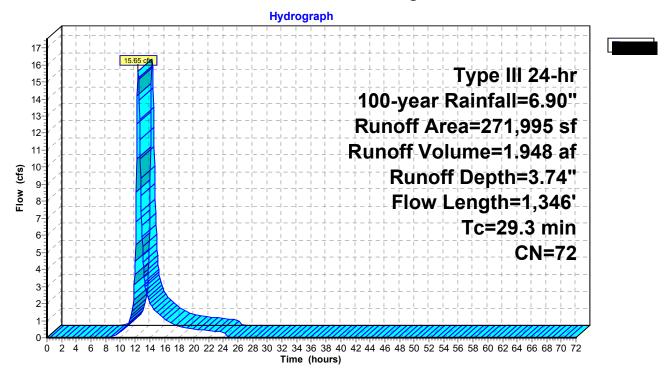


Summary for Subcatchment 5bS: Drainage Area 5

Runoff 6.82 cfs @ 12.09 hrs, Volume= 0.507 af, Depth= 5.04" =

Are	ea (sf)	CN	Description					
	0	30	Meadow, non-grazed, HSG A					
1	8,465	58	Meadow, non-grazed, HSG B					
	267	71	Meadow, non-grazed, HSG C					
	0	78	Meadow, non-grazed, HSG D					
	0	30	Woods, Good, HSG A					
	0	55	Woods, Good, HSG B					
	0	70	Woods, Good, HSG C					
	0	77	Woods, Good, HSG D					
*	0	70	Gravel pit, HSG A					
*	0	81	Gravel pit, HSG B					
*	0	88	Gravel pit, HSG C					
*	0	92	Gravel pit, HSG D					
*	0	98	Water body					
*	0	96	Gravel road					
*	0	98	Structure					
	5,040	98	Panels					
*	0	98	Equipment pad					
<u>* 2</u>	28,762	98	Basin					
5	52,534	84	Weighted Average					
1	8,732		35.66% Pervious Area					
3	3,802		64.34% Impervious Area					
Тс	Length	Slop	e Velocity Capacity Description					
(min)	(feet)	(ft/f						
6.0	· · /		Direct Entry,					

Subcatchment 5bS: Drainage Area 5

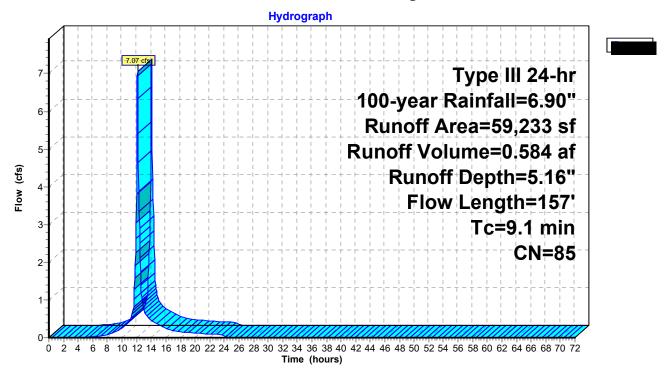


Summary for Subcatchment 5cS: Drainage Area 5

Runoff 15.65 cfs @ 12.41 hrs, Volume= 1.948 af, Depth= 3.74" =

	A	rea (sf)	CN	Description					
		0	30	Meadow, no	on-grazed,	HSG A			
		53,847	HSG B						
		27,788	71	Meadow, non-grazed, HSG C					
		HSG D							
		0	30	Woods, Go	od, HSG A				
		2,622	55	Woods, Go	od, HSG B				
	1	23,893	70	Woods, Go	od, HSG C				
		19,268	77	Woods, Go	od, HSG D				
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		20,354		Water body					
*		0		Gravel roac	1				
*		0		Structure					
*		5,460		Panels					
*		0		Equipment	pad				
*		10,640		Basin					
		71,995		Weighted A					
		35,541			rvious Area				
		36,454		13.40% Imp	pervious Are	ea			
	Та	Longth	Clana	Valaaitu	Consoitu	Description			
(Tc min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
				. ,	(015)	Sheet Flow			
	9.3	50	0.0400	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.20"			
	17.9	1,030	0.0369	0.96		0			
	17.9	1,030	0.0309	0.90		Shallow Concentrated Flow, Woodland Kv= 5.0 fps			
	2.1	266	0.0902	2.10		Shallow Concentrated Flow,			
	۲.۱	200	0.0302	2.10		Short Grass Pasture Kv= 7.0 fps			
	29.3	1,346	Total						
	29.3	1,340	rotar						

Subcatchment 5cS: Drainage Area 5

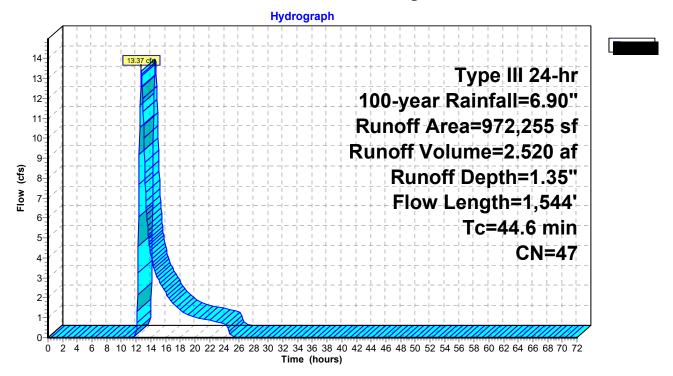


Summary for Subcatchment 5dS: Drainage Area 5

Runoff = 7.07 cfs @ 12.13 hrs, Volume= 0.584 af, Depth= 5.16"

	Area (sf)	CN I	Description		
	0	30 I	Meadow, no	on-grazed,	HSG A
	0	58 I	Meadow, no	on-grazed,	HSG B
	28,213			on-grazed,	
	0	78 I	Meadow, no	on-grazed,	HSG D
	0	30 \	Noods, Go	od, HSG A	
	0	55 \	Noods, Go	od, HSG B	
	0	70 \	Noods, Go	od, HSG C	
	0		,	od, HSG D	
*	0		Gravel pit, I		
*	0		Gravel pit, I		
*	0		Gravel pit, l		
*	0		Gravel pit, I		
*	0		Nater body		
*	4,470		Gravel road	1	
*	0		Structure		
*	5,460		Panels		
*	629		Equipment	pad	
*	20,461		Basin		
	59,233		Neighted A		
	32,683			rvious Area	
	26,550	2	14.82% Imp	pervious Are	ea
Та	L e le est le	Clana	Valasity	Conseitu	Description
Tc (min)	0	Slope		Capacity	Description
(min)		(ft/ft)	(ft/sec)	(cfs)	
7.4	50	0.0100	0.11		Sheet Flow,
4 7	107	0 0004	1 07		Grass: Short n= 0.150 P2= 3.20"
1.7	107	0.0234	1.07		Shallow Concentrated Flow,
	457	Tatal			Short Grass Pasture Kv= 7.0 fps
9.1	157	Total			

Subcatchment 5dS: Drainage Area 5

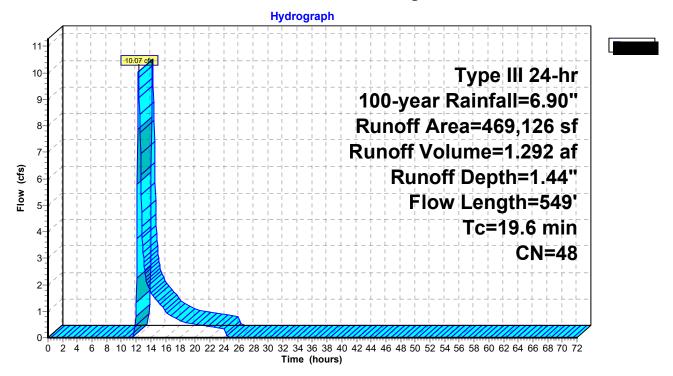


Summary for Subcatchment 6aS: Drainage Area 6

Runoff = 13.37 cfs @ 12.73 hrs, Volume= 2.520 af, Depth= 1.35"

301,060 30 Meadow, non-grazed, HSG A 0 58 Meadow, non-grazed, HSG B 0 71 Meadow, non-grazed, HSG C 0 78 Meadow, non-grazed, HSG D 390,620 30 Woods, Good, HSG A 50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D * 0 70 Gravel pit, HSG A		A	rea (sf)	CN	Description						
0 71 Meadow, non-grazed, HSG C 0 78 Meadow, non-grazed, HSG D 390,620 30 Woods, Good, HSG A 50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D		3	01,060	30	Meadow, no	on-grazed,	HSG A				
0 78 Meadow, non-grazed, HSG D 390,620 30 Woods, Good, HSG A 50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D			0	58 I	Meadow, no	on-grazed,	HSG B				
390,620 30 Woods, Good, HSG Á 50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D			0	71 I	Meadow, no	on-grazed,	HSG C				
50,036 55 Woods, Good, HSG B 0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D			-								
0 70 Woods, Good, HSG C 0 77 Woods, Good, HSG D		3	,								
0 77 Woods, Good, HSG D			50,036		Noods, Go	od, HSG B					
			-		,	,					
* 0 70 Gravel nit HSG A			0		,	,					
	*		0								
* 0 81 Gravel pit, HSG B	*		0								
* 0 88 Gravel pit, HSG C	*										
* 0 92 Gravel pit, HSG D	*		-								
* 219,272 98 Water body		2	,		,						
* 11,267 96 Gravel road	*		,		-	ł					
* 0 98 Structure	*		-								
0 90 Parleis	*										
* 0 98 Equipment pad											
972,255 47 Weighted Average					•	•					
752,983 77.45% Pervious Area					-						
219,272 22.55% Impervious Area		2	19,272		22.55% Imp	pervious Ar	ea				
Tc Length Slope Velocity Capacity Description		То	Longth	Slope	Volocity	Capacity	Description				
(min) (feet) (ft/ft) (ft/sec) (cfs)			•				Description				
			, ,	. ,		(013)	Shoot Flow				
4.3 50 0.0400 0.20 Sheet Flow, Grass: Short n= 0.150 P2= 3.20"		4.3	50	0.0400	0.20						
13.5 538 0.0090 0.66 Shallow Concentrated Flow,		13 5	538	0 0000	0.66						
Short Grass Pasture Kv= 7.0 fps		13.5	556	0.0090	0.00						
10.1 601 0.0391 0.99 Shallow Concentrated Flow,		10 1	601	0 0301	0 00						
Woodland Kv= 5.0 fps		10.1	001	0.0091	0.33						
16.7 355 0.0050 0.35 Shallow Concentrated Flow,		16 7	355	0 0050	0 35						
Woodland Kv= 5.0 fps		10.7	000	0.0000	0.00		•				
44.6 1,544 Total		44.6	1.544	Total							

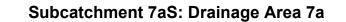
Subcatchment 6aS: Drainage Area 6

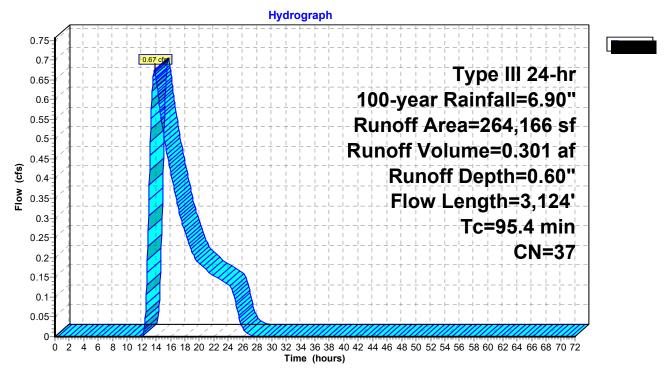


Summary for Subcatchment 6bS: Drainage Area 6

Runoff = 10.07 cfs @ 12.33 hrs, Volume= 1.292 af, Depth= 1.44"

	А	rea (sf)	CN I	Description					
	2	88,325	30 I	Meadow, n	on-grazed,	HSG A			
		91,050	58 I	Meadow, n	on-grazed,	HSG B			
		0	71 I	Meadow, n	on-grazed,	HSG C			
		0	78 I	Meadow, n	on-grazed,	HSG D			
		0	30	Noods, Go	od, HSG A				
		0	55	Noods, Go	od, HSG B				
		0	70	Woods, Good, HSG C					
		0	77 \	Woods, Good, HSG D					
*		0	70 (Gravel pit, l	HSG A				
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Gravel pit, l					
*		0		Water body					
*		9,625		Gravel road					
*		0		Structure					
*		12,660		Panels					
*		629		Equipment	pad				
*		66,837		Basin					
		69,126		Neighted A					
		89,000			rvious Area				
		80,126		17.08% Imp	pervious Ar	ea			
	_								
	ŢĊ	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	6.3	50	0.0150	0.13		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.20"			
	13.3	499	0.0080	0.63		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	19.6	549	Total						

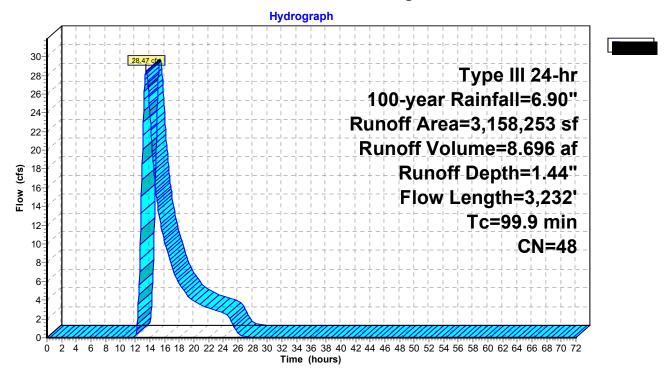

Subcatchment 6bS: Drainage Area 6



Summary for Subcatchment 7aS: Drainage Area 7a

Runoff = 0.67 cfs @ 13.79 hrs, Volume= 0.301 af, Depth= 0.60"

	Α	rea (sf)	CN [Description		
	2	31,002	30 I	Aeadow, no	on-grazed,	HSG A
		0			on-grazed,	
		0	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
		0	30 \	Noods, Go	od, HSG A	
		0		,	od, HSG B	
		0	70 \	Voods, Go	od, HSG C	
		0			od, HSG D	
*		7,059		Gravel pit, I		
*		9,519		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Vater body		
*		9,866		Gravel road	1	
*		0		Structure		
*		6,720		Panels		
<u>*</u>		0		Equipment	•	
		64,166		Veighted A		
	2	57,446		-	rvious Area	
		6,720		2.54% Impe	ervious Are	а
	Tc	Length	Slope	Velocitv	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.6	50	0.0600	0.23	· · ·	Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	2.9	238	0.0380	1.36		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	88.9	2,836	0.0113	0.53		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	95.4	3,124	Total			

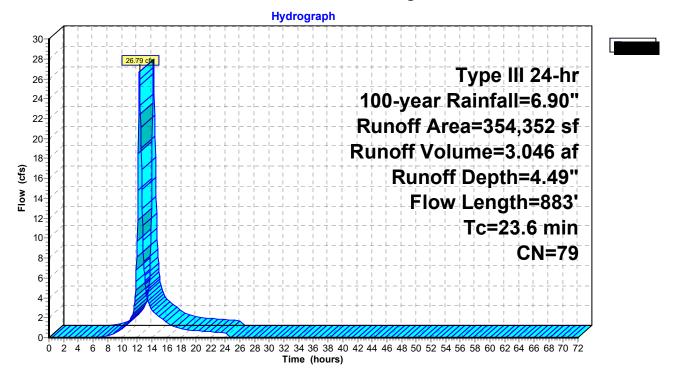


Summary for Subcatchment 7bS: Drainage Area 7b

Runoff 28.47 cfs @ 13.53 hrs, Volume= 8.696 af, Depth= 1.44" =

	А	rea (sf)	CN I	Description		
	6	48,318	30 I	Meadow, no	on-grazed,	HSG A
	1	10,037	58 I	Meadow, no	on-grazed,	HSG B
		0	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
	1,3	85,107	30	Noods, Go	od, HSG A	
	2	30,359	55	Noods, Go	od, HSG B	
		0	70	Noods, Go	od, HSG C	
		0	77 \	Noods, Go	od, HSG D	
*	1	65,079	70 (Gravel pit, I	HSG A	
*		79,347	81 (Gravel pit, I	HSG B	
*		0		Gravel pit, I	HSG C	
*		0		Gravel pit, I	HSG D	
*	4	53,314		Nater body		
*		77,609		Gravel road	1	
*		0		Structure		
*		8,454		Panels		
*		629	98 I	Equipment	pad	
	3,1	58,253	48	Neighted A	verage	
	2,6	95,856	8	35.36% Pei	rvious Area	
	4	62,397		14.64% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	5.4	50	0.1600		(010)	Sheet Flow,
	5.4	50	0.1000	0.10		Woods: Light underbrush n= 0.400 P2= 3.20"
	5.6	346	0.0430	1.04		Shallow Concentrated Flow,
	0.0	040	0.0400	1.04		Woodland Kv= 5.0 fps
	88.9	2,836	0.0113	0.53		Shallow Concentrated Flow,
		_,	5.0.10	0.00		Woodland Kv= 5.0 fps
	99.9	3,232	Total			·

Subcatchment 7bS: Drainage Area 7b

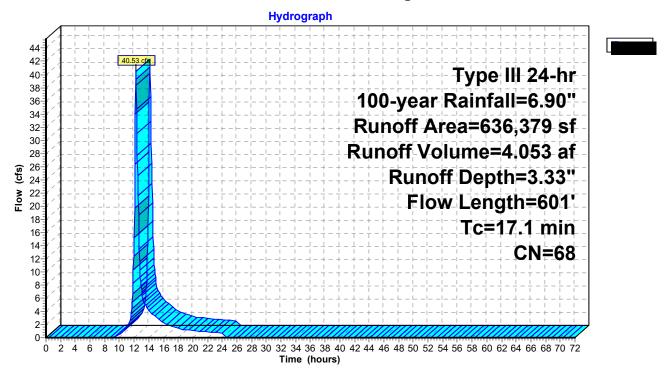


Summary for Subcatchment 8S: Drainage Area 8

Runoff 26.79 cfs @ 12.32 hrs, Volume= 3.046 af, Depth= 4.49" =

	A	rea (sf)	CN	Description					
		0	30	Meadow, n	on-grazed,	HSG A			
		0	58	Meadow, n	on-grazed,	HSG B			
		14,757	71	Meadow, non-grazed, HSG C					
		6,627	78	Meadow, no	on-grazed,	HSG D			
		0	30	Woods, Go	od, HSG A				
		7,700	55	Woods, Go	od, HSG B				
	1	75,484	70	Woods, Go	od, HSG C				
		40,001	77	Woods, Go	od, HSG D				
*		0	70	Gravel pit, I					
*		0	81	Gravel pit, I					
*		0	88	Gravel pit, l					
*		0	92	Gravel pit, l					
*		93,828	98	Water body					
*		15,955	96	Gravel road	ł				
*		0	98	Structure					
354,352 79 Weighted Average									
		60,524		73.52% Pe					
		93,828		26.48% Imp	pervious Ar	ea			
	Тс	Length	Slop	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft		(cfs)	Description			
	8.5	50	0.050	/ / /	(010)	Sheet Flow,			
	0.5	50	0.000	0 0.10		Woods: Light underbrush n= 0.400 P2= 3.20"			
	8.8	390	0.022	0 0.74		Shallow Concentrated Flow,			
	0.0	000	0.022	0 0.74		Woodland Kv= 5.0 fps			
	2.9	271	0.100	0 1.58		Shallow Concentrated Flow,			
	2.0	271	0.100			Woodland Kv= 5.0 fps			
	3.4	172	0.028	0 0.84		Shallow Concentrated Flow,			
			2.220			Woodland $Kv=5.0$ fps			
	23.6	883	Total			· · · ·			

Subcatchment 8S: Drainage Area 8

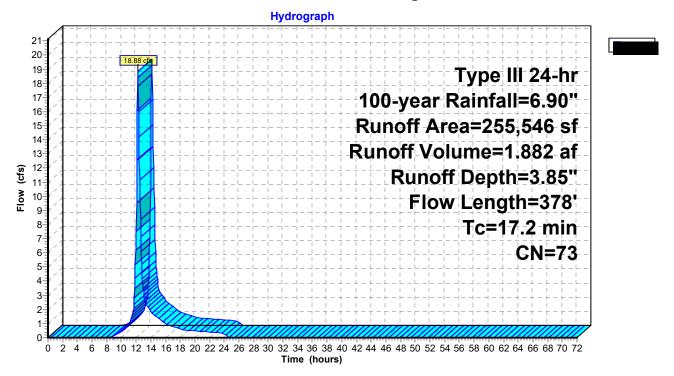


Summary for Subcatchment 9S: Drainage Area 9

Runoff = 40.53 cfs @ 12.24 hrs, Volume= 4.053 af, Depth= 3.33"

	Aı	rea (sf)	CN I	Description		
		80,020	30 I	Meadow, no	on-grazed,	HSG A
		29,044	58 I	Meadow, no	on-grazed,	HSG B
		8,254	71 I	Meadow, no	on-grazed,	HSG C
		0	78 I	Meadow, no	on-grazed,	HSG D
		24,186	30	Noods, Go	od, HSG A	
	2	29,102	55	Noods, Go	od, HSG B	
		19,896	70	Noods, Go	od, HSG C	
		0	77 \	Noods, Go	od, HSG D	
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		26,618		Nater body		
*		18,419		Gravel road	l	
*		0		Structure		
*		840		Panels		
		36,379		Neighted A		
		08,921		64.26% Pei		
	2	27,458		35.74% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocitv	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
	10.5	50	0.0300	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.4	106	0.0610	1.23		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	184	0.0330	0.91		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.8	261	0.2470	2.48		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	17.1	601	Total			

Subcatchment 9S: Drainage Area 9

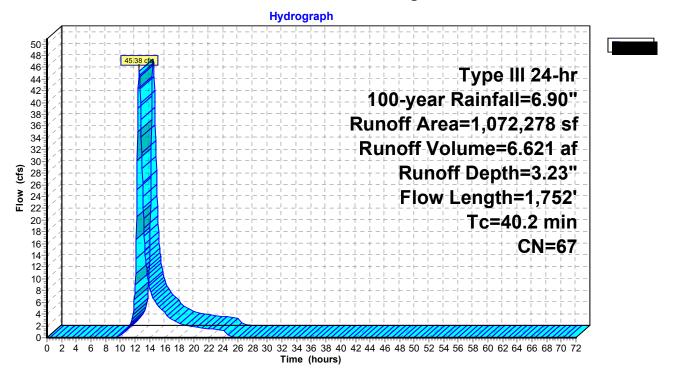


Summary for Subcatchment 10aS: Drainage Area 10

Runoff 18.88 cfs @ 12.24 hrs, Volume= 1.882 af, Depth= 3.85" =

A	Area (sf)	CN	Description				
	0	30	Meadow, n	on-grazed,	HSG A		
	40,805	58	Meadow, n	on-grazed,	HSG B		
	126,615	71	Meadow, n	on-grazed,	HSG C		
	0	78	Meadow, n	on-grazed,	HSG D		
	0		Woods, Go	od, HSG A			
	9,453		Woods, Go				
	37,133		Woods, Go				
	0		Woods, Go				
*	0		Gravel pit, l				
*	0		Gravel pit, l				
*	0		Gravel pit, l				
*	0		Gravel pit, l				
*	0		Water body				
*	5,861		Gravel road				
*	0		Structure				
*	3,360		Panels				
*	32,319		Basin				
	255,546		Weighted A				
	219,867		86.04% Pe				
	35,679		13.96% Imp	pervious Ar	ea		
–				o ''			
Tc	0	Slope		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)		(cfs)			
12.3	50	0.0200	0.07		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.20"		
4.9	328	0.0488	1.10		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
17.2	378	Total					

Subcatchment 10aS: Drainage Area 10

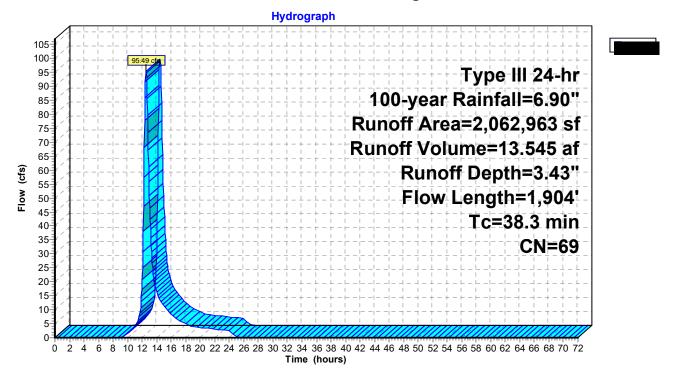


Summary for Subcatchment 10bS: Drainage Area 10

Runoff = 45.38 cfs @ 12.57 hrs, Volume= 6.621 af, Depth= 3.23"

	A	rea (sf)	CN	Description		
		13,076	30	Meadow, n	on-grazed,	HSG A
		9,872	58	Meadow, n	on-grazed,	HSG B
	1	62,839	71	Meadow, n	on-grazed,	HSG C
		21,857	78	Meadow, n	on-grazed,	HSG D
	1	10,901	30	Woods, Go	od, HSG A	
	2	22,199	55	Woods, Go	od, HSG B	
	2	84,517	70	Woods, Go	od, HSG C	
		72,773	77	Woods, Go	od, HSG D	
* 0 70 Gravel pit, HSG A						
*	0 81 Gravel pit, HSG B					
*		0	88	Gravel pit, I		
*		0	92	Gravel pit, I		
*		41,195	98	Water body		
* 33,049 96 Gravel road						
*		0	98	Structure		
*	0 98 Panels					
	1,072,278 67 Weighted Average					
		31,083		86.83% Pe		
	1	41,195		13.17% lm	pervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft		(cfs)	Description
	4.3	<u>(1001)</u> 50	0.040		(013)	Sheet Flow,
	4.5	50	0.0400	0.20		Grass: Short n= 0.150 P2= 3.20"
	29.4	1,139	0.0167	7 0.65		Shallow Concentrated Flow,
	23.4	1,100	0.010	0.00		Woodland $Kv= 5.0 \text{ fps}$
	0.4	72	0.0417	7 3.29		Shallow Concentrated Flow,
	0.4	12	0.041	0.20		Unpaved Kv= 16.1 fps
	6.1	491	0.0367	7 1.34		Shallow Concentrated Flow,
	0.1	101	5.000	1.04		Short Grass Pasture Kv= 7.0 fps
	40.2	1,752	Total			

Subcatchment 10bS: Drainage Area 10

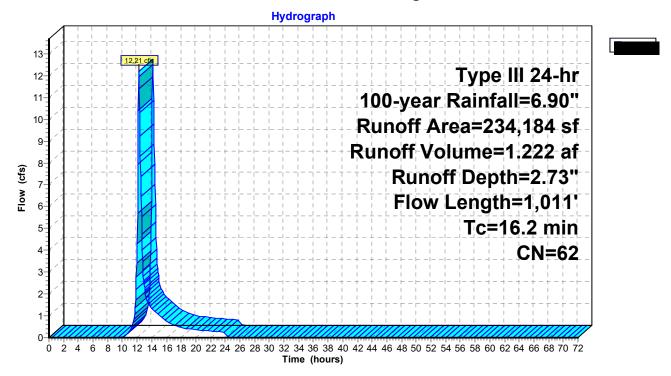


Summary for Subcatchment 11aS: Drainage Area 11

Runoff = 95.49 cfs @ 12.54 hrs, Volume= 13.545 af, Depth= 3.43"

	Ai	rea (sf)	CN	Description			
	2	30,381	30	Meadow, n	on-grazed,	HSG A	
		74,662	58	Meadow, n	on-grazed,	HSG B	
		45,920		Meadow, n			
		51,732		Meadow, n			
		5,299		Woods, Go			
		38,194		Woods, Go	•		
		16,983		Woods, Go			
		42,710		Woods, Go			
*		0		Gravel pit, l			
*		0		Gravel pit, l			
*		0		Gravel pit, l			
*	-	0		Gravel pit, HSG D			
*		01,207		Water body			
*		45,982		Gravel road	1		
*		8,006		Structure			
*		1,887		Equipment	pad		
<u>*</u>		0		Panels			
		62,963		Weighted A	0		
		51,863		89.77% Pe			
	2	11,100		10.23% Imp	pervious Ar	ea	
	Тс	Length	Slope	e Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)		(cfs)	Description	
	4.3	50	0.0400		(013)	Sheet Flow,	
	4.3	50	0.0400	0.20		Grass: Short $n= 0.150$ P2= 3.20"	
	34.0	1,854	0.0330	0.91		Shallow Concentrated Flow,	
	07.0	1,004	0.0000	0.01		Woodland Kv= 5.0 fps	
	38.3	1,904	Total				

Subcatchment 11aS: Drainage Area 11

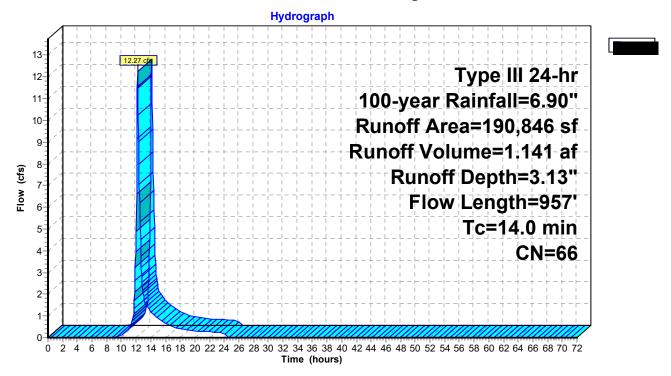


Summary for Subcatchment 11bS: Drainage Area 11

Runoff = 12.21 cfs @ 12.24 hrs, Volume= 1.222 af, Depth= 2.73"

	Α	rea (sf)	CN I	Description		
		62,296	30 I	Meadow, no	on-grazed,	HSG A
		0	58 I	Meadow, no	on-grazed,	HSG B
	1	53,054	71 I	Meadow, no	on-grazed,	HSG C
		0			on-grazed,	HSG D
		0			od, HSG A	
		0		Noods, Go		
		0			od, HSG C	
		0			od, HSG D	
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Gravel pit, I		
*		0		Nater body		
*		14,214		Gravel road	1	
^ +		0		Structure		
*		0		Equipment	pad	
		4,620		Panels		
		34,184		Neighted A		
	2	29,564			rvious Area	
		4,620		1.97% Impe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
_	5.6	<u>(1001)</u> 50	0.0200		(013)	Shoot Flow
	5.0	50	0.0200	0.15		Sheet Flow, Grass: Short n= 0.150 P2= 3.20"
	10.6	961	0.0468	1.51		Shallow Concentrated Flow,
	10.0	901	0.0400	1.01		Short Grass Pasture Kv= 7.0 fps
_	16.2	1,011	Total			
	10.2	1,011	illai			

Subcatchment 11bS: Drainage Area 11

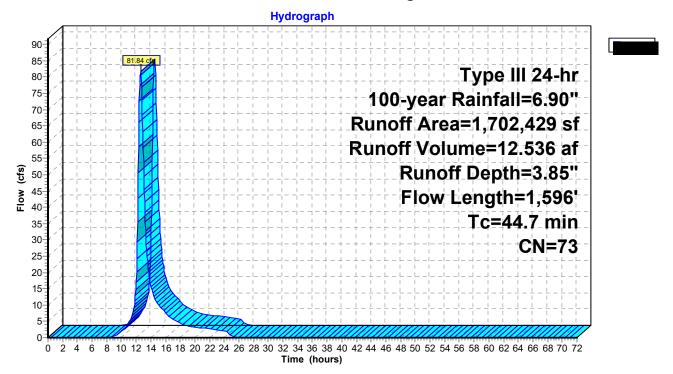


Summary for Subcatchment 11cS: Drainage Area 11

Runoff 12.27 cfs @ 12.20 hrs, Volume= 1.141 af, Depth= 3.13" =

	Ai	rea (sf)	CN	Description				
		27,259	30	Meadow, n	on-grazed,	HSG A		
		0	58	Meadow, n	on-grazed,	HSG B		
	1	58,821	71	Meadow, n	on-grazed,	HSG C		
		0	78	Meadow, n	on-grazed,	HSG D		
		0			od, HSG A			
		0		Woods, Go				
		0			od, HSG C			
		0			od, HSG D			
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, l				
*		0		Gravel pit, HSG D				
*		0		Water body				
т ~		2,666		Gravel road	1			
*		0		Structure				
*		0		Equipment	pad			
		2,100		Panels				
		90,846		Weighted A				
	1	88,746			rvious Area			
		2,100		1.10% impe	ervious Are	a		
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)		(cfs)	Decemption		
	4.3	50	0.0400			Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.20"		
	9.7	907	0.0496	1.56		Shallow Concentrated Flow,		
_						Short Grass Pasture Kv= 7.0 fps		
	14.0	957	Total					

Subcatchment 11cS: Drainage Area 11

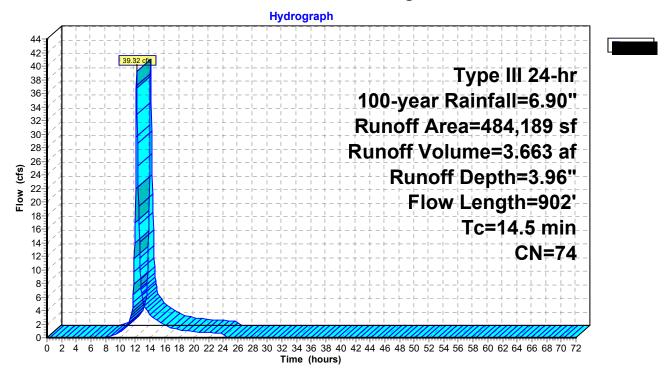

Summary for Subcatchment 12aS: Drainage Area 12a

Page 373

Runoff 81.84 cfs @ 12.62 hrs, Volume= 12.536 af, Depth= 3.85" =

	А	rea (sf)	CN	Description		
		23,018	30	Meadow, no	on-grazed,	HSG A
		9,439	58	Meadow, no	on-grazed,	HSG B
	6	54,323	71	Meadow, no	on-grazed,	HSG C
	2	10,828	78	Meadow, no	on-grazed,	HSG D
		22,923	30	Woods, Go	od, HSG A	
	1	83,438	55	Woods, Go	od, HSG B	
	2	93,907	70	Woods, Go	od, HSG C	
		52,031	77	Woods, Go	od, HSG D	
*		0	70	Gravel pit, I	HSG A	
*		0	81	Gravel pit, I	HSG B	
*		0	88	Gravel pit, I	HSG C	
*		0	92	Gravel pit, I	HSG D	
*	2	29,248	98	Water body	,	
*		13,614		Gravel road	1	
*		0		Structure		
*		9,660		Panels		
*		0	98	Equipment	pad	
	1,7	02,429	73	Weighted A	verage	
	1,4	63,521		85.97% Pei	rvious Area	
	2	38,908		14.03% Imp	pervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.5	50	0.0140	0.13		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	7.5	626	0.0780) 1.40		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	30.7	920	0.0100	0.50		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	44.7	1,596	Total			

Subcatchment 12aS: Drainage Area 12a

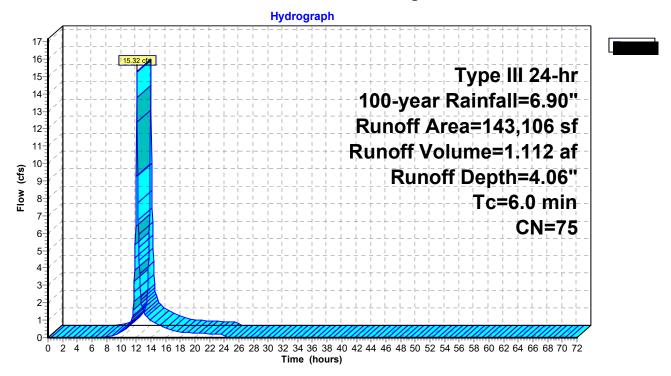


Summary for Subcatchment 12bS: Drainage Area 12b

Runoff 39.32 cfs @ 12.20 hrs, Volume= 3.663 af, Depth= 3.96" =

	A	rea (sf)	CN	Description					
		0	30	Meadow, no	on-grazed,	HSG A			
		0	58 I	Meadow, no	on-grazed,	HSG B			
	4	38,020	71	Meadow, no	on-grazed,	HSG C			
		0	78 I	Meadow, no	on-grazed,	HSG D			
		0			od, HSG A				
		0		Woods, Go					
		0		Woods, Good, HSG C					
		0			od, HSG D				
*		0		Gravel pit, l					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Gravel pit, I					
*		0		Water body					
*		8,877		Gravel road	1				
÷		0		Structure					
*		9,240		Panels					
*		1,258		Equipment	pad				
		26,794		Basin					
		84,189		Weighted A					
446,897 92.30% Pervi									
		37,292		7.70% impe	ervious Area	a			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption			
	4.3	50	0.0400		(0.0)	Sheet Flow,			
	4.0	00	0.0400	0.20		Grass: Short n= 0.150 P2= 3.20"			
	10.2	852	0.0393	1.39		Shallow Concentrated Flow,			
		002	510000			Short Grass Pasture Kv= 7.0 fps			
	14.5	902	Total						

Subcatchment 12bS: Drainage Area 12b

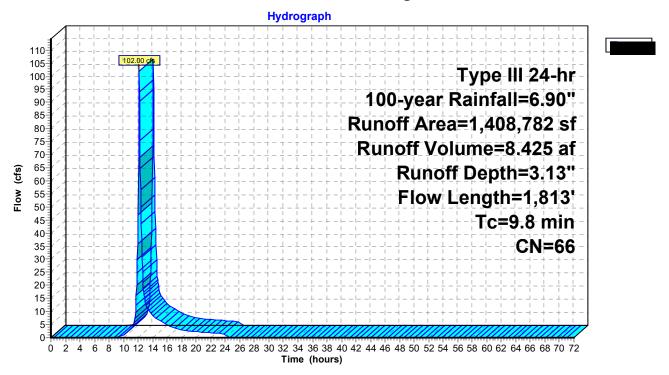


Summary for Subcatchment 12cS: Drainage Area 12

Runoff 15.32 cfs @ 12.09 hrs, Volume= 1.112 af, Depth= 4.06" =

Are	ea (sf)	CN	Description
	0	30	Meadow, non-grazed, HSG A
	0	58	Meadow, non-grazed, HSG B
12	2,234	71	Meadow, non-grazed, HSG C
	0	78	Meadow, non-grazed, HSG D
	0	30	Woods, Good, HSG A
	0	55	Woods, Good, HSG B
	0	70	Woods, Good, HSG C
	0	77	Woods, Good, HSG D
*	0	70	Gravel pit, HSG A
*	0	81	Gravel pit, HSG B
*	0	88	Gravel pit, HSG C
*	0	92	Gravel pit, HSG D
*	0	98	Water body
*	8,875	96	Gravel road
*	0	98	Structure
*	0	98	Panels
*	0	98	Equipment pad
<u>* 1</u>	1,997	98	Basin
14	3,106	75	Weighted Average
13	1,109		91.62% Pervious Area
1	1,997		8.38% Impervious Area
	Length	Slop	
(min)	(feet)	(ft/f	t) (ft/sec) (cfs)
6.0			Direct Entry,

Subcatchment 12cS: Drainage Area 12



Summary for Subcatchment 13S: Drainage Area 13

Runoff = 102.00 cfs @ 12.15 hrs, Volume= 8.425 af, Depth= 3.13"

	A	rea (sf)	CN	Description					
	1	37,390	30	Meadow, non-grazed, HSG A					
0 58 Meadow, non-grazed, HSG B 0 71 Meadow, non-grazed, HSG C						HSG B			
						HSG C			
		0	78	Meadow, non-grazed, HSG D					
		0	30	Woods, Go	od, HSG A				
0 55 Woods, Good, HSG B									
		0	70	Woods, Go	od, HSG C				
		0		Woods, Go					
*	1,2	66,167		Gravel pit, l	HSG A				
*		4,469		Gravel pit, l					
*		0		Gravel pit, l					
*		0		92 Gravel pit, HSG D					
*		756		Water body					
*		0		Gravel roac	1				
*		0	98	Structure					
	1,4	08,782		Weighted A					
1,408,026 99.95% Pervious Area 756 0.05% Impervious Area									
			0.05% Impe	ervious Are	а				
	т.	1	<u>Olana</u>	Mala alter	0	Description			
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)		(cfs)				
	0.7	50	0.0200	1.20		Sheet Flow,			
						Smooth surfaces $n = 0.011$ P2= 3.20"			
	9.1	1,763	0.0403	3.23		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	9.8	1,813	Total						

Subcatchment 13S: Drainage Area 13

L=736.0'

S=0.0299 '/'

Capacity=51.58 cfs

Summary for Reach 10aR: Swale 10a

 Inflow Area =
 5.867 ac, 13.96% Impervious, Inflow Depth =
 3.85" for 100-year event

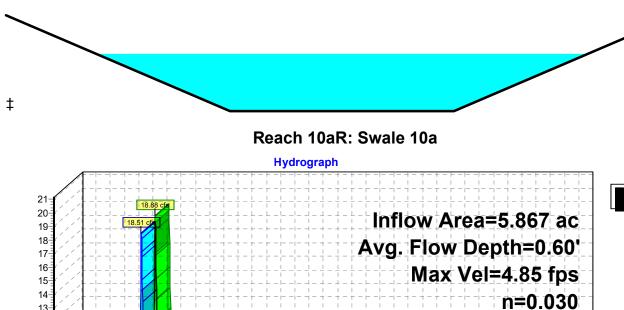
 Inflow =
 18.88 cfs @
 12.24 hrs, Volume=
 1.882 af

 Outflow =
 18.51 cfs @
 12.32 hrs, Volume=
 1.882 af, Atten= 2%, Lag= 4.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 4.85 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.51 fps, Avg. Travel Time= 8.1 min

Peak Storage= 2,815 cf @ 12.27 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 51.58 cfs

4.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 736.0' Slope= 0.0299 '/' Inlet Invert= 236.00', Outlet Invert= 214.00'


13-(5) 12-11-

0 11-0 10-0 10-0 10-

9-8-

7-6-5-4-3-2-

0-

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Reach 12bR: Swale 12b

 Inflow Area =
 11.115 ac,
 7.70% Impervious, Inflow Depth =
 3.96" for 100-year event

 Inflow =
 39.32 cfs @
 12.20 hrs, Volume=
 3.663 af

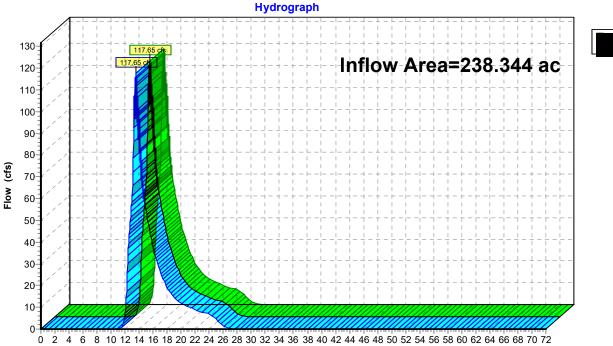
 Outflow =
 37.96 cfs @
 12.29 hrs, Volume=
 3.663 af, Atten= 3%, Lag= 5.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 5.43 fps, Min. Travel Time= 3.0 min Avg. Velocity = 1.60 fps, Avg. Travel Time= 10.2 min

Peak Storage= 6,866 cf @ 12.24 hrs Average Depth at Peak Storage= 0.91' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 45.66 cfs

4.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 982.0' Slope= 0.0234 '/' Inlet Invert= 276.00', Outlet Invert= 253.00'

Reach 12bR: Swale 12b



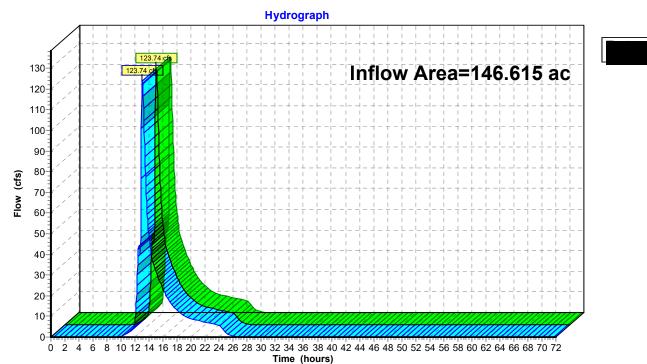
Summary for Reach DP-1: Off-Site West

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		238.344 ac, 10.57% Impervious, Inflow Depth = 1.57" for 100-year event
Inflow	=	117.65 cfs @ 13.55 hrs, Volume= 31.164 af
Outflow	=	117.65 cfs @ 13.55 hrs, Volume= 31.164 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-1: Off-Site West

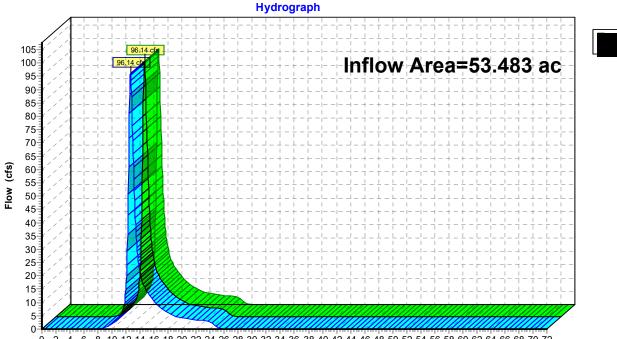

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 5 Time (hours)

Summary for Reach DP-2: Off-Site South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		146.615 ac, 22.85% Impervious, Inflow Depth = 1.93" for 100-year event
Inflow	=	123.74 cfs @ 13.04 hrs, Volume= 23.593 af
Outflow	=	123.74 cfs @ 13.04 hrs, Volume= 23.593 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach DP-2: Off-Site South

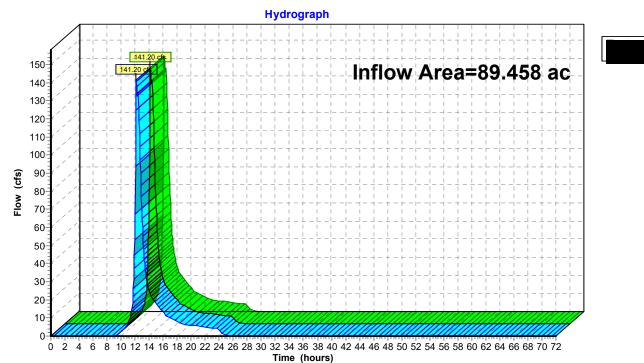
Summary for Reach DP-3: Off-Site East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	53.483 ac, 12.37% Impervious, Inflow Depth = 3.45" for 100-year event
Inflow	=	96.14 cfs @ 12.64 hrs, Volume= 15.364 af
Outflow	=	96.14 cfs @ 12.64 hrs, Volume= 15.364 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-3: Off-Site East


0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Reach DP-4: Off-Site Southeast

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		89.458 ac,	5.61% Impervious, Inflow	Depth = 2.96"	for 100-year event
Inflow	=	141.20 cfs @	12.17 hrs, Volume=	22.076 af	
Outflow	=	141.20 cfs @	12.17 hrs, Volume=	22.076 af, Atte	en= 0%, Lag= 0.0 min

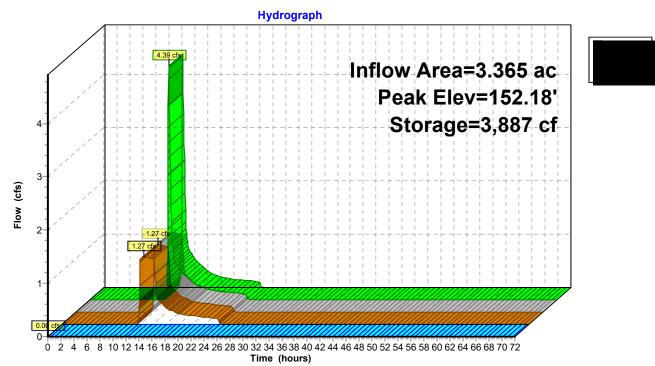
Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-4: Off-Site Southeast

Summary for Pond 1bP: Proposed Basin

Inflow Area =	3.365 ac, 28.06% Impervious, Inflow D	epth = 1.52" for 100-year event
Inflow =	4.39 cfs @ 12.16 hrs, Volume=	0.428 af
Outflow =	1.27 cfs @ 12.65 hrs, Volume=	0.428 af, Atten= 71%, Lag= 29.1 min
Discarded =	1.27 cfs @ 12.65 hrs, Volume=	0.428 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 152.18' @ 12.65 hrs Surf.Area= 22,693 sf Storage= 3,887 cf


Plug-Flow detention time= 21.1 min calculated for 0.427 af (100% of inflow) Center-of-Mass det. time= 21.0 min (910.0 - 888.9)

Volume	Inver	t Avail.St	orage	Storage Descripti	on		
#1	152.00	' 55,2	260 cf	Custom Stage D	ata (Irregular)Lis	ted below (Recalc)	
Elevatio	n S	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
152.0	00	21,729	681.0	0	0	21,729	
154.0)0	33,986	817.0	55,260	55,260	38,010	
Device	Routing	Invert	Outle	et Devices			
#1	Primary	153.50	20.0	' long x 8.0' brea	dth Broad-Crest	ed Rectangular Weir	
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80 2.0	0
			2.50	3.00 3.50 4.00	4.50 5.00 5.50		
						.68 2.68 2.66 2.64 2.64	
			2.64	2.65 2.65 2.66	2.66 2.68 2.70 2	2.74	
#2	Discarded	152.00	2.41	0 in/hr Exfiltratio	n over Surface a	rea	

Discarded OutFlow Max=1.27 cfs @ 12.65 hrs HW=152.18' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.27 cfs)

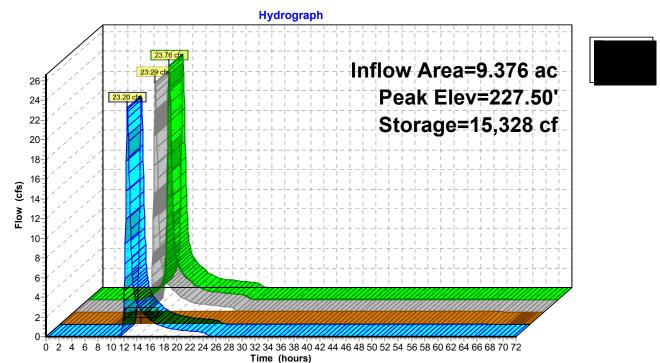
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=152.00' (Free Discharge)

Pond 1bP: Proposed Basin

Summary for Pond 1cP: Proposed Basin

Inflow Area =	9.376 ac,	8.65% Impervious, Inflow D	epth = 3.85" for 100-year event
Inflow =	23.76 cfs @	12.42 hrs, Volume=	3.008 af
Outflow =	23.29 cfs @	12.48 hrs, Volume=	3.007 af, Atten= 2%, Lag= 3.4 min
Discarded =	0.09 cfs @	12.48 hrs, Volume=	0.301 af
Primary =	23.20 cfs @	12.48 hrs, Volume=	2.706 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 227.50' @ 12.48 hrs Surf.Area= 14,158 sf Storage= 15,328 cf


Plug-Flow detention time= 147.1 min calculated for 3.005 af (100% of inflow) Center-of-Mass det. time= 148.9 min (996.4 - 847.5)

Volume	Inver	t Avail.S	torage	Storage Description	on	
#1	226.00)' 23,	156 cf	Custom Stage Da	ata (Irregular)Liste	ed below (Recalc)
Elevatio	et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
226.0 228.0	-	6,727 17,238	408.0 601.0	0 23,156	0 23,156	6,727 22,256
220.0		11,200	001.0	20,100	20,100	22,200
Device	Routing	Inver	t Outl	et Devices		
#1	Primary	227.00				d Rectangular Weir
						1.20 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00 4	1.50 5.00 5.50	
			Coe	f. (English) 2.43 2	.54 2.70 2.69 2.6	68 2.68 2.66 2.64 2.64
			2.64	2.65 2.65 2.66 2	2.66 2.68 2.70 2	.74
#2	Discardeo	226.00)' 0.27	0 in/hr Exfiltratior	over Surface ar	ea

Discarded OutFlow Max=0.09 cfs @ 12.48 hrs HW=227.50' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=23.12 cfs @ 12.48 hrs HW=227.50' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 23.12 cfs @ 1.85 fps)

Pond 1cP: Proposed Basin

Summary for Pond 1dP: Proposed Berm

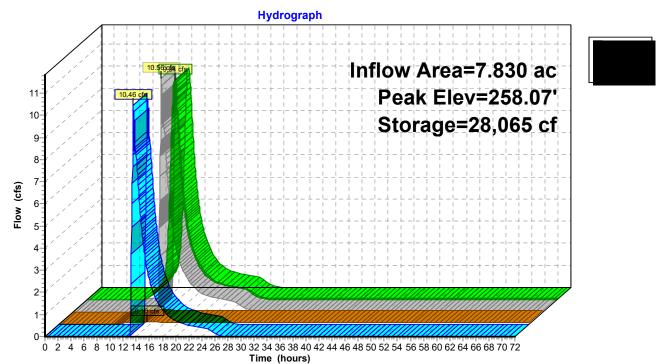
[93] Warning: Storage range exceeded by 0.07'

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area =	7.830 ac,	7.37% Impervious, Inflow D	epth = 3.96" for 100-year event
Inflow =	9.94 cfs @	13.44 hrs, Volume=	2.581 af
Outflow =	10.56 cfs @	13.55 hrs, Volume=	2.439 af, Atten= 0%, Lag= 7.0 min
Discarded =	0.10 cfs @	13.55 hrs, Volume=	0.460 af
Primary =	10.46 cfs @	13.55 hrs, Volume=	1.978 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 258.07' @ 13.55 hrs Surf.Area= 16,286 sf Storage= 28,065 cf


Plug-Flow detention time= 348.2 min calculated for 2.437 af (94% of inflow) Center-of-Mass det. time= 319.9 min (1,234.9 - 914.9)

Volume	Inve	ert Avail	l.Storage	Storage Descriptio	n		
#1	256.0	0' 2	28,065 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)	
Flavesti			Devive	la c Otono	Ourse Otherse		
Elevatio		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
256.0	00	11,894	466.0	0	0	11,894	
258.0	00	16,286	530.0	28,065	28,065	17,063	
Device	Routing	١n	vert Outle	et Devices			
#1	Primary	257.	.50' 9.0'	long x 8.0' breadtl	h Broad-Crested R	Rectangular Weir	
			Head	d (feet) 0.20 0.40 (0.60 0.80 1.00 1.2	20 1.40 1.60 1.80 2.00	
				3.00 3.50 4.00 4			
						2.68 2.66 2.64 2.64	
				2.65 2.65 2.66 2.			
40	Disconde						
#2	Discarde	d 256.	.00 0.27	0 in/hr Exfiltration	over Surface area	l	

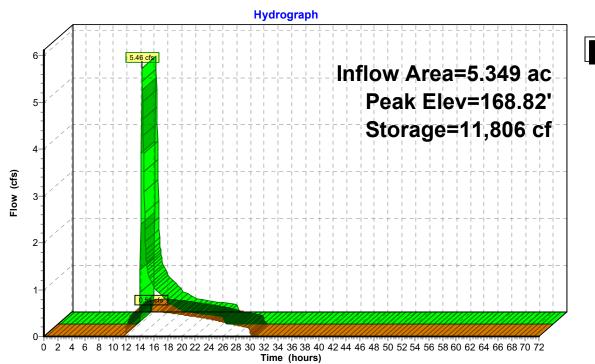
Discarded OutFlow Max=0.10 cfs @ 13.55 hrs HW=258.07' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=10.33 cfs @ 13.55 hrs HW=258.07' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 10.33 cfs @ 2.02 fps)

Pond 1dP: Proposed Berm

Summary for Pond 2P: Existing Depression

Inflow Area =	5.349 ac,	1.98% Impervious, Inflow D	epth = 1.35" for 100-year event
Inflow =	5.46 cfs @	12.21 hrs, Volume=	0.604 af
Outflow =	0.54 cfs @	15.58 hrs, Volume=	0.604 af, Atten= 90%, Lag= 202.3 min
Discarded =	0.54 cfs @	15.58 hrs, Volume=	0.604 af

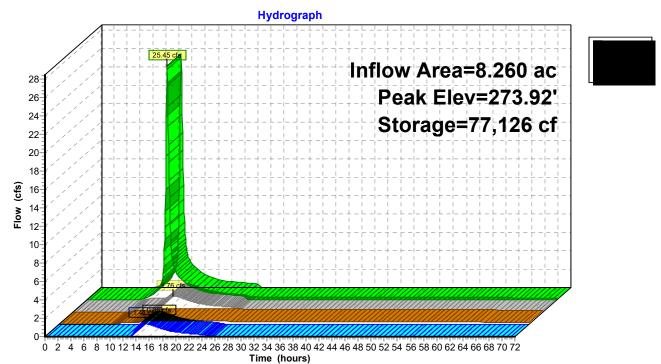

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 168.82' @ 15.58 hrs Surf.Area= 22,660 sf Storage= 11,806 cf

Plug-Flow detention time= 290.4 min calculated for 0.604 af (100% of inflow) Center-of-Mass det. time= 290.4 min (1,188.6 - 898.2)

Volume	Invert	Ava	il.Storage	Storage Descript	on		
#1	168.00'		58,289 cf	Custom Stage D	a ta (Irregular) Liste	ed below (Recalc)	
Elevation (feet)	Su	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
168.00 170.00		7,570 58,771	407.0 1,048.0	0 58,289	0 58,289	7,570 81,803	
Device F	Routing	In	vert Out	et Devices			
#1 C	Discarded	168	3.00' 1.02	0 in/hr Exfiltratio	n over Surface ar	ea	

Discarded OutFlow Max=0.54 cfs @ 15.58 hrs HW=168.82' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.54 cfs)

Pond 2P: Existing Depression


Summary for Pond 3aP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	25.45 cfs @ 1.76 cfs @ 0.35 cfs @	12.27 hrs 15.34 hrs 15.34 hrs		epth = 3.85" for 2.650 af 2.148 af, Atten= 9 1.485 af 0.662 af	100-year event 93%, Lag= 184.0 min	
			: 0.00-72.00 hrs, dt rea= 56,516 sf Sto			
	Plug-Flow detention time= 1,177.9 min calculated for 2.148 af (81% of inflow) Center-of-Mass det. time= 1,102.6 min(1,939.8 - 837.2)					
Volume Ir	nvert Avail.S	torage	Storage Descriptior	า		
#1 272	2.00' 81,	,503 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
272.00		871.0	0	0	25,677	
274.00	57,990	1,103.0	81,503	81,503	62,174	
Device Routin	g Inve	rt Outlet	t Devices			
#1 Primary 273.75' 8.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.8 2.50 3.00 3.50 4.00 4.50 5.00 5.50			0 1.40 1.60 1.80 2.00			
				66 2.68 2.70 2.69 2.68	2.68 2.66 2.64 2.64	
#2 Discar	ded 272.00			over Surface area		
Discarded OutFlow Max=0.35 cfs @ 15.34 hrs. HW=273.92' (Free Discharge)						

Discarded OutFlow Max=0.35 cfs @ 15.34 hrs HW=273.92' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.35 cfs)

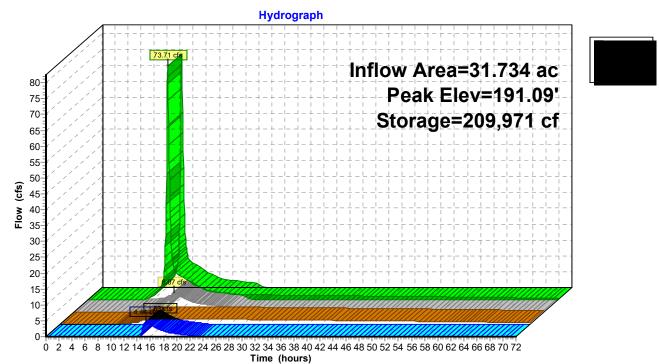
Primary OutFlow Max=1.41 cfs @ 15.34 hrs HW=273.92' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 1.41 cfs @ 1.01 fps)

Pond 3aP: Proposed Berm

Summary for Pond 3P: Existing Depression

Inflow Area =	31.734 ac,	4.54% Impervious, Inflow	Depth = 2.87" for 100-year event
Inflow =	73.71 cfs @	12.21 hrs, Volume=	7.578 af
Outflow =	6.07 cfs @	15.35 hrs, Volume=	7.224 af, Atten= 92%, Lag= 188.4 min
Discarded =	1.63 cfs @	15.35 hrs, Volume=	6.022 af
Primary =	4.44 cfs @	15.35 hrs, Volume=	1.201 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 191.09' @ 15.35 hrs Surf.Area= 69,085 sf Storage= 209,971 cf


Plug-Flow detention time= 1,175.7 min calculated for 7.219 af (95% of inflow) Center-of-Mass det. time= 1,151.6 min (2,009.6 - 858.1)

Volume	Invert	Avail	.Storage	Storage Descripti	on	
#1	186.00	27	7,396 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
186.0	00	11,737	422.0	0	0	11,737
188.0	00	36,683	753.0	46,113	46,113	42,709
190.0	00	58,742	1,001.0	94,563	140,677	77,369
192.0	00	78,452	1,254.0	136,720	277,396	122,825
Device	Routing	Inv	vert Outl	et Devices		
#1	Discarded	186.	00' 1.02	0 in/hr Exfiltration	n over Surface ar	ea
#2	Primary	191.	00' 64.0	' long x 16.0' brea	adth Broad-Crest	ted Rectangular Weir
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60
			Coe	f. (English) 2.68 2	2.70 2.70 2.64 2.	63 2.64 2.64 2.63
Discard	Discarded OutFlow Max=1.63 cfs @ 15.35 hrs HW=191.09' (Free Discharge)					

1=Exfiltration (Exfiltration Controls 1.63 cfs)

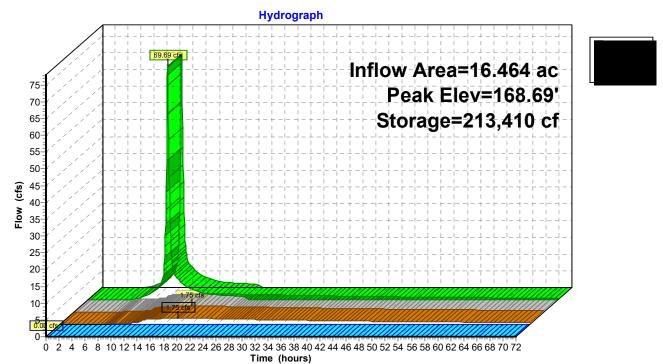
Primary OutFlow Max=4.28 cfs @ 15.35 hrs HW=191.09' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 4.28 cfs @ 0.78 fps)

Pond 3P: Existing Depression

Summary for Pond 4P: Existing Depression

Inflow Area =	16.464 ac,	0.65% Impervious, In	flow Depth = 4.71" for 100-year event
Inflow =	69.69 cfs @	12.19 hrs, Volume=	6.465 af
Outflow =	1.75 cfs @	18.09 hrs, Volume=	5.602 af, Atten= 97%, Lag= 354.1 min
Discarded =	1.75 cfs @	18.09 hrs, Volume=	5.602 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 168.69' @ 18.09 hrs Surf.Area= 74,143 sf Storage= 213,410 cf


Plug-Flow detention time= 1,361.5 min calculated for 5.602 af (87% of inflow) Center-of-Mass det. time= 1,302.0 min (2,115.4 - 813.4)

Volume	Invert	Avail.St	orage	Storage Description	on		
#1	162.00'	1,773,2	203 cf	Custom Stage D	ata (Irregular) Liste	ed below (Recalc)	
Elevatior (feet		rf.Area l (sq-ft)	[⊃] erim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
162.00)	8,040	387.0	0	0	8,040	
164.00) 2	20,064	890.0	27,203	27,203	59,171	
166.00) (31,393	894.0	51,036	78,239	61,043	
168.00) :	59,552 1	,582.0	89,455	167,695	196,625	
170.00) 10	06,611 3	,162.0	163,895	331,590	793,118	
172.00) 14	42,449 3	,012.0	248,196	579,786	867,073	
174.00) 18	82,259 2	,708.0	323,891	903,678	1,005,567	
176.00) 22	22,778 3	,083.0	404,360	1,308,037	1,178,477	
178.00) 24	42,528 3	,031.0	465,166	1,773,203	1,204,505	
#1	Routing Discarded Primary	Invert 162.00' 177.00'	1.02 23.0 Hea	d (feet) 0.20 0.40	adth Broad-Crest 0.60 0.80 1.00	ed Rectangular We	eir

Discarded OutFlow Max=1.75 cfs @ 18.09 hrs HW=168.69' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.75 cfs)

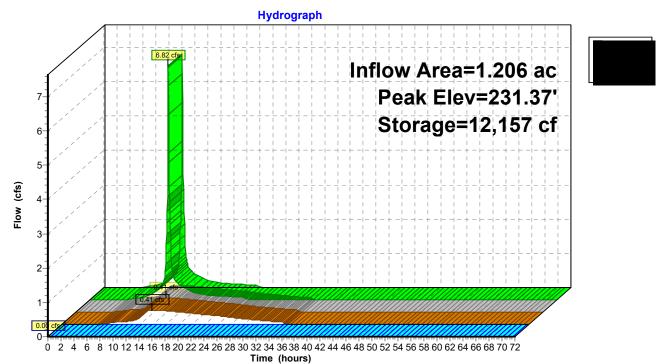
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=162.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 4P: Existing Depression

Summary for Pond 5bP: Proposed Berm

Inflow Area =	1.206 ac, 64.34% Impervious, Inflow De	epth = 5.04" for 100-year event
Inflow =	6.82 cfs @ 12.09 hrs, Volume=	0.507 af
Outflow =	0.41 cfs @ 13.93 hrs, Volume=	0.507 af, Atten= 94%, Lag= 110.4 min
Discarded =	0.41 cfs @ 13.93 hrs, Volume=	0.507 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 231.37' @ 13.93 hrs Surf.Area= 17,444 sf Storage= 12,157 cf


Plug-Flow detention time= 374.4 min calculated for 0.507 af (100% of inflow) Center-of-Mass det. time= 374.6 min (1,172.9 - 798.3)

Volume	Inver	: Avail	.Storage	Storage Description	on		
#1	230.00	' 2	26,529 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
230.0	-	2,519	275.0	0	0	2,519	
232.0	00	28,762	1,204.0	26,529	26,529	111,868	
Device	Routing	١nv	vert Outle	et Devices			
#1	Discarded	230.	.00' 1.02	20 in/hr Exfiltration over Surface area			
#2	Primary	231.		.0' long x 8.0' breadth Broad-Crested Rectangular Weir			
			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1	1.20 1.40 1.60 1.80 2.00	
			2.50	3.00 3.50 4.00 4	1.50 5.00 5.50		
			Coe	f. (English) 2.43 2	.54 2.70 2.69 2.6	68 2.68 2.66 2.64 2.64	
			2.64	2.65 2.65 2.66 2	2.66 2.68 2.70 2.	74	

Discarded OutFlow Max=0.41 cfs @ 13.93 hrs HW=231.37' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.41 cfs)

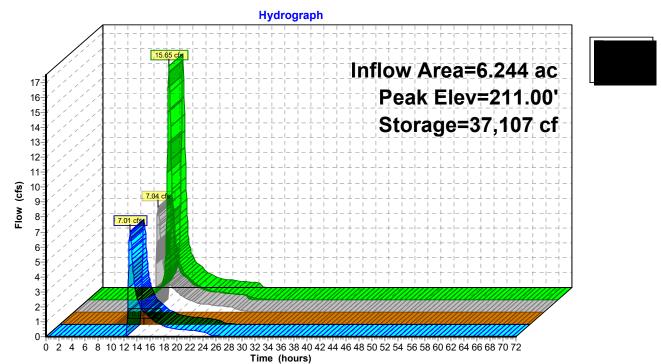
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=230.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 5bP: Proposed Berm

Summary for Pond 5cP: Proposed Berm

Inflow Area =	6.244 ac, 13.40% Impervious, Inflow	Depth = 3.74" for 100-year event
Inflow =	15.65 cfs @ 12.41 hrs, Volume=	1.948 af
Outflow =	7.04 cfs @ 12.87 hrs, Volume=	1.392 af, Atten= 55%, Lag= 27.7 min
Discarded =	0.03 cfs @ 12.87 hrs, Volume=	0.117 af
Primary =	7.01 cfs @ 12.87 hrs, Volume=	1.275 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 211.00'@ 12.87 hrs Surf.Area= 13,393 sf Storage= 37,107 cf


Plug-Flow detention time= 314.8 min calculated for 1.392 af (71% of inflow) Center-of-Mass det. time= 220.2 min (1,068.9 - 848.7)

Volume	Inver	t Avai	I.Storage	Storage Descripti	on		
#1	206.00)' :	37,107 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)	
Elevatio (fee 206.0 208.0 210.0 211.0	t) 00 00 00	Surf.Area (sq-ft) 2,702 6,061 10,702 13,393	Perim. (feet) 340.0 500.0 660.0 685.0	Inc.Store (cubic-feet) 0 8,540 16,545 12,022	Cum.Store (cubic-feet) 0 8,540 25,084 37,107	Wet.Area (sq-ft) 2,702 13,430 28,245 31,004	
Device	Routing	In	vert Outl	et Devices			
#1	Discarded	206	.00' 0.09	0 in/hr Exfiltration	n over Surface ar	ea	
#2	Primary	210		I.0' long x 8.0' breadth Broad-Crested Rectangular Weir			
			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80 2.00	
			2.50	3.00 3.50 4.00 4	4.50 5.00 5.50		
			Coe	f. (English) 2.43 2	.54 2.70 2.69 2.	68 2.68 2.66 2.64 2.64	
			2.64	2.65 2.65 2.66 2	2.66 2.68 2.70 2	.74	
Disconded QuitFlow Move 0.02 of a 20.07 bro UNA-211.001 (Erec Discharge)							

Discarded OutFlow Max=0.03 cfs @ 12.87 hrs HW=211.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

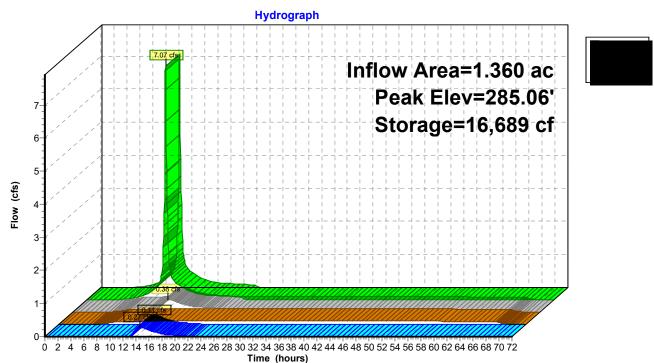
Primary OutFlow Max=6.99 cfs @ 12.87 hrs HW=211.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 6.99 cfs @ 2.33 fps)

Pond 5cP: Proposed Berm

Summary for Pond 5dP: Proposed Berm

Inflow Area =	1.360 ac, 44.82% Impervious, Inflow D	Depth = 5.16" for 100-year event
Inflow =	7.07 cfs @ 12.13 hrs, Volume=	0.584 af
Outflow =	0.38 cfs @ 14.66 hrs, Volume=	0.584 af, Atten= 95%, Lag= 152.0 min
Discarded =	0.11 cfs @ 14.66 hrs, Volume=	0.499 af
Primary =	0.27 cfs @14.66 hrs, Volume=	0.085 af
-	-	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 285.06' @ 14.66 hrs Surf.Area= 17,379 sf Storage= 16,689 cf


Plug-Flow detention time= 1,247.2 min calculated for 0.584 af (100% of inflow) Center-of-Mass det. time= 1,248.2 min (2,046.7 - 798.5)

Volume	Invert	: Avail.St	orage	Storage Description	on	
#1	284.00	' 34,4	488 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)
Elevatio (fee 284.0 286.0	et) 00	urf.Area (sq-ft) 14,216 20,461	Perim. (feet) 751.0 810.0	Inc.Store (cubic-feet) 0 34,488	Cum.Store (cubic-feet) 0 34,488	Wet.Area (sq-ft) 14,216 21,709
Device	Routing	Inver	t Outle	et Devices		
#1 #2	Discarded Primary	284.00 285.00	' 8.0' Head 2.50 Coet	d (feet) 0.20 0.40 3.00 3.50 4.00 4	th Broad-Crested 0.60 0.80 1.00 4.50 5.00 5.50 .54 2.70 2.69 2.	Rectangular Weir 1.20 1.40 1.60 1.80 2.00 68 2.68 2.66 2.64 2.64

Discarded OutFlow Max=0.11 cfs @ 14.66 hrs HW=285.06' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.11 cfs)

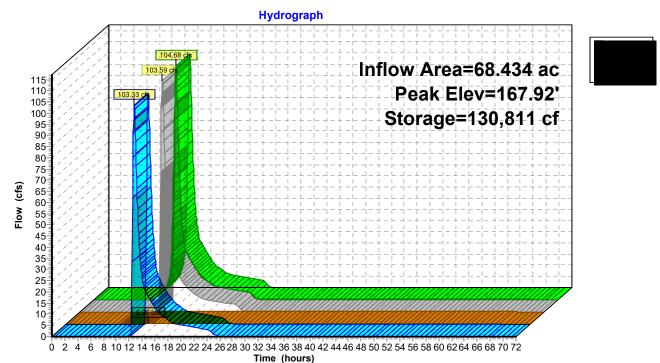
Primary OutFlow Max=0.27 cfs @ 14.66 hrs HW=285.06' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.27 cfs @ 0.59 fps)

Pond 5dP: Proposed Berm

Summary for Pond 5P: Existing Depression

Inflow Area =	68.434 ac, 2	5.36% Impervious, Ir	flow Depth = 3.16	" for 100-year event
Inflow =	104.68 cfs @	12.71 hrs, Volume=	18.038 af	
Outflow =	103.59 cfs @	12.77 hrs, Volume=	16.444 af, A	tten= 1%, Lag= 3.3 min
Discarded =	0.26 cfs @	12.77 hrs, Volume=	1.103 af	
Primary =	103.33 cfs @	12.77 hrs, Volume=	15.341 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 167.92' @ 12.77 hrs Surf.Area= 41,769 sf Storage= 130,811 cf

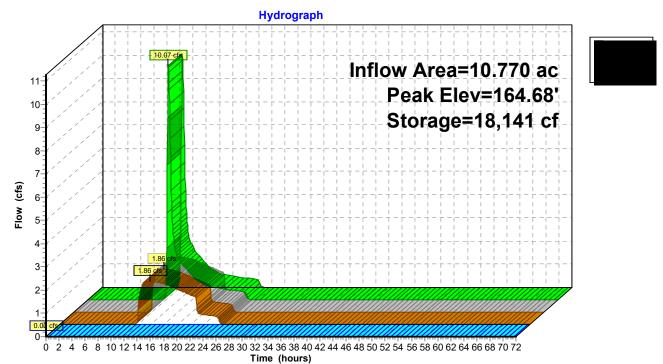

Plug-Flow detention time= 173.0 min calculated for 16.433 af (91% of inflow) Center-of-Mass det. time= 130.9 min (1,010.4 - 879.5)

Volume	Inver	t Avail	.Storage	Storage Descripti	on			
#1	162.00)' 13	34,374 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)		
Elevatio	et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
162.0	-	1,686	164.0	0	0	1,686		
164.0	0	17,454	653.0	16,376	16,376	33,489		
166.0	00	29,548	840.0	46,474	62,851	55,756		
168.0	00	42,358	938.0	71,523	134,374	69,736		
Device	Routing	Inv	vert Outle	et Devices				
#1	Discarded	l 162.	.00' 0.27	0.270 in/hr Exfiltration over Surface area				
#2 Primary 167.25' 71.0' long x 38.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.64 2.63 2.64 2.63								
Discarded OutFlow Max=0.26 cfs @ 12.77 hrs HW=167.91' (Free Discharge)								

1=Exfiltration (Exfiltration Controls 0.26 cfs)

Primary OutFlow Max=103.05 cfs @ 12.77 hrs HW=167.91' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 103.05 cfs @ 2.18 fps)

Pond 5P: Existing Depression


Summary for Pond 6bP: Proposed Berm

Inflow Area =10.770 ac, 17.08% Impervious, Inflow Depth =1.44"for 100-year eventInflow =10.07 cfs @12.33 hrs, Volume=1.292 afOutflow =1.86 cfs @13.81 hrs, Volume=1.292 af, Atten=Discarded =1.86 cfs @13.81 hrs, Volume=1.292 afPrimary =0.00 cfs @0.00 hrs, Volume=0.000 afRouting by Stor-Ind method, Time Span=0.00-72.00 hrs, dt=0.05 hrsPeak Elev=164.68' @13.81 hrsSurf.Area=33,330 sfStorage=18,141 cf						
Plug-Flow detention time= 104.7 min calculated for 1.291 af (100% of inflow) Center-of-Mass det. time= 104.7 min (1,006.1 - 901.4) Volume Invert Avail.Storage Storage Description						
#1 1	64.00'	83,016 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
164.00	20,590	712.0	0	0	20,590	
166.00	66,837	1,639.0	83,016	83,016	194,035	
Device Rou	ting In	vert Outle	et Devices			
#1 Primary 165.00' 10.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.0 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.68 2.68 2.64 2.64 2.64 2.65 2.66 2.66 2.68 2.70 2.74					20 1.40 1.60 1.80 2.00 2.68 2.66 2.64 2.64	
#2 Disc	arded 164	.00' 2.41	0 in/hr Exfiltration	over Surface area		
Discarded OutFlow Max=1.86 cfs @ 13.81 hrs HW=164.68' (Free Discharge)						

Discarded OutFlow Max=1.86 cfs @ 13.81 hrs HW=164.68' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.86 cfs)

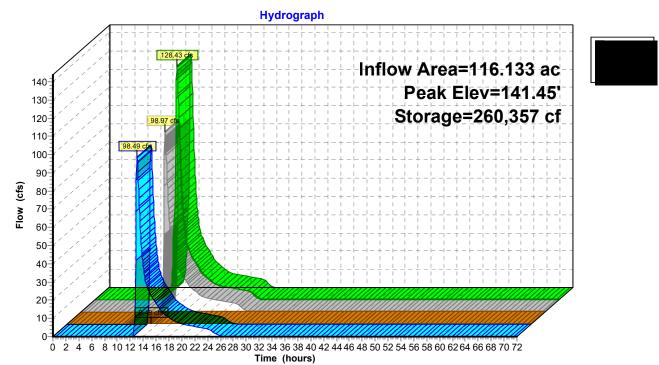
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=164.00' (Free Discharge) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Pond 6bP: Proposed Berm

Summary for Pond 6P: Existing Wetland

Inflow Area =	116.133 ac, 2	25.36% Impervious, Ir	nflow Depth = 2.26" for 100-year event
Inflow =	128.43 cfs @	12.73 hrs, Volume=	21.900 af
Outflow =	98.97 cfs @	13.07 hrs, Volume=	18.685 af, Atten= 23%, Lag= 20.1 min
Discarded =	0.48 cfs @	13.07 hrs, Volume=	2.092 af
Primary =	98.49 cfs @	13.07 hrs, Volume=	16.592 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 141.45' @ 13.07 hrs Surf.Area= 121,123 sf Storage= 260,357 cf

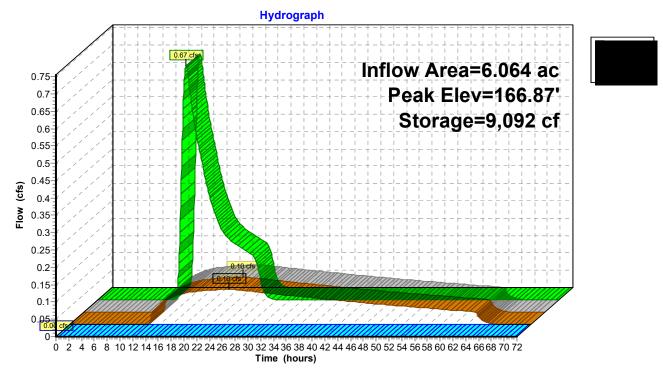

Plug-Flow detention time= 283.5 min calculated for 18.672 af (85% of inflow) Center-of-Mass det. time= 220.6 min (1,121.0 - 900.4)

Volume	Invert	Avail.Sto	orage	Storage Description	n	
#1	138.00'	330,4	71 cf	Custom Stage Da	ita (Irregular) Liste	d below (Recalc)
Elevatio (fee		rf.Area F (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
138.0		-)	686.0	0	0	23,460
140.0)0	91,023 1	816.0	107,129	107,129	248,460
142.0	0 1	33,681 2	277.0	223,342	330,471	398,668
Device	Routing	Invert	Outl	et Devices		
#1	Discarded	138.00'	0.17	0 in/hr Exfiltration	over Surface are	a
#2	Primary	141.00'	121.	0' long x 19.0' bre	adth Broad-Cres	ted Rectangular Weir
	-		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1	.20 1.40 1.60
			Coe	f. (English) 2.68 2.	70 2.70 2.64 2.6	3 2.64 2.64 2.63

Discarded OutFlow Max=0.48 cfs @ 13.07 hrs HW=141.45' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.48 cfs)

Primary OutFlow Max=98.03 cfs @ 13.07 hrs HW=141.45' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 98.03 cfs @ 1.81 fps)

Pond 6P: Existing Wetland


Summary for Pond 7aP: Proposed Berm

Inflow Area = Inflow = Outflow = Discarded = Primary =	6.064 ac, 0.67 cfs @ 0.10 cfs @ 0.10 cfs @ 0.00 cfs @	13.79 hrs, 24.86 hrs, 24.86 hrs,	Volume=	epth = 0.60" for 0.301 af 0.301 af, Atten= 8 0.301 af 0.000 af	100-year event 35%, Lag= 664.4 min		
	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 166.87' @ 24.86 hrs Surf.Area= 16,166 sf Storage= 9,092 cf						
Center-of-Mass of	let. time= 1,07	1.3 min (2,	102.3 - 1,031.1)	af (100% of inflow)			
Volume Inv	<u>vert Avail.S</u>	torage S	torage Descriptior	1			
#1 166.	00' 38	,794 cf C	ustom Stage Dat	a (Irregular)Listed	below (Recalc)		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
166.00	5,638	286.0	0	0	5,638		
168.00	37,929	753.0	38,794	38,794	44,264		
	- ,		, -	, -	, -		
Device Routing	Inve	rt Outlet I	Devices				
#1 Primary 167.50' 8.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.66 2.68 2.70 2.74							
#2 Discard	ed 166.00) [°] 0.270 i	n/hr Exfiltration	over Surface area			

Discarded OutFlow Max=0.10 cfs @ 24.86 hrs HW=166.87' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=166.00' (Free Discharge)

Pond 7aP: Proposed Berm

Summary for Pond 7P: Existing Depression

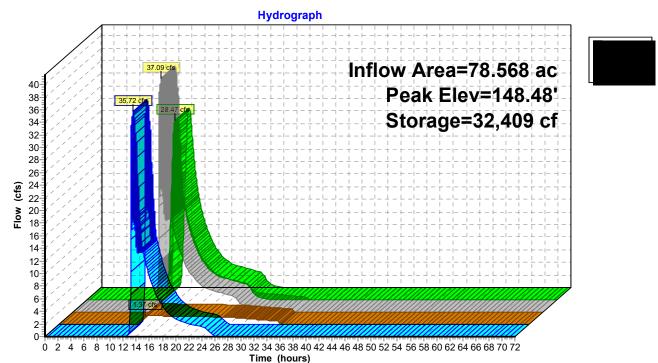
[93] Warning: Storage range exceeded by 0.48'

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=15)

Inflow Area =	78.568 ac, 1	3.71% Impervious, Inflow E	Depth = 1.33" for 100-year event
Inflow =	28.47 cfs @	13.53 hrs, Volume=	8.696 af
Outflow =	37.09 cfs @	13.55 hrs, Volume=	8.696 af, Atten= 0%, Lag= 1.1 min
Discarded =	1.37 cfs @	13.20 hrs, Volume=	1.899 af
Primary =	35.72 cfs @	13.55 hrs, Volume=	6.797 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 148.48' @ 13.55 hrs Surf.Area= 24,633 sf Storage= 32,409 cf


Plug-Flow detention time= 67.3 min calculated for 8.690 af (100% of inflow) Center-of-Mass det. time= 67.5 min (1,043.5 - 976.0)

Volume	Inve	ert Avail.S	torage	Storage Descripti	on		
#1	146.0	0' 32,	409 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
146.0 148.0		9,050 24,633	771.0 1,236.0	0 32,409	0 32,409	9,050 83,343	
Device	Routing	Inver	t Outl	et Devices			
#1	Primary	147.50	Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	ed Rectangular Weir 1.20 1.40 1.60 63 2.64 2.64 2.63	
#2	Discarde	d 146.00		0 in/hr Exfiltratio			

Discarded OutFlow Max=1.37 cfs @ 13.20 hrs HW=148.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.37 cfs)

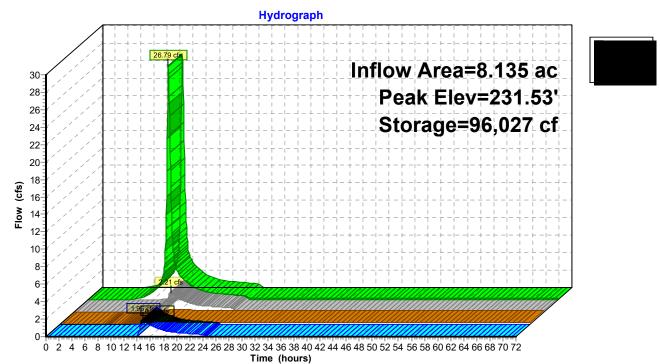
Primary OutFlow Max=35.69 cfs @ 13.55 hrs HW=148.48' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 35.69 cfs @ 2.60 fps)

Pond 7P: Existing Depression

Summary for Pond 8P: Existing Wetland

Inflow Area =	8.135 ac, 26.48% Impervious, Inflow	Depth = 4.49" for 100-year event
Inflow =	26.79 cfs @ 12.32 hrs, Volume=	3.046 af
Outflow =	2.21 cfs @ 14.80 hrs, Volume=	1.709 af, Atten= 92%, Lag= 148.7 min
Discarded =	0.25 cfs $\overline{@}$ 14.80 hrs, Volume=	1.096 af
Primary =	1.96 cfs $\overline{@}$ 14.80 hrs, Volume=	0.612 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 231.53' @ 14.80 hrs Surf.Area= 64,218 sf Storage= 96,027 cf


Plug-Flow detention time= 1,192.1 min calculated for 1.707 af (56% of inflow) Center-of-Mass det. time= 1,084.9 min (1,912.2 - 827.3)

Volume	Invert	Avail.St	orage	Storage Descripti	on	
#1	228.00'	130,	034 cf	Custom Stage D	ata (Irregular)List	ted below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
228.0	-	5,806	459.0	0	0	5,806
230.0	0	25,974	862.0	29,374	29,374	48,191
232.0	0	79,559 1	,189.0	100,661	130,034	101,601
Device #1 #2	Routing Discarded Primary	Inver 228.00 231.50	' 0.17 ' 158 . Hea	d (feet) 0.20 0.40	oreadth Broad-Cr 0.60 0.80 1.00	ested Rectangular Weir

Discarded OutFlow Max=0.25 cfs @ 14.80 hrs HW=231.53' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.25 cfs)

Primary OutFlow Max=1.78 cfs @ 14.80 hrs HW=231.53' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 1.78 cfs @ 0.43 fps)

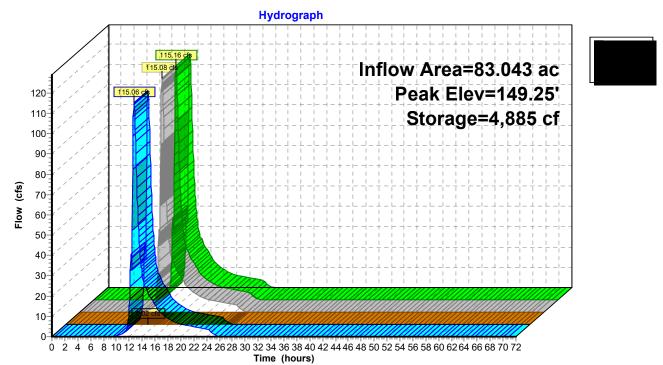
Pond 8P: Existing Wetland

Summary for Pond 9P: Existing Wetland

Inflow Area =	83.043 ac, 27	7.18% Impervious, Ir	nflow Depth = 2.80"	for 100-year event
Inflow =	115.16 cfs @	12.72 hrs, Volume=	19.394 af	
Outflow =	115.08 cfs @	12.73 hrs, Volume=	19.394 af, Atte	en= 0%, Lag= 0.7 min
Discarded =	0.02 cfs @	12.73 hrs, Volume=	0.014 af	
Primary =	115.06 cfs @	12.73 hrs, Volume=	19.380 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 149.25' @ 12.73 hrs Surf.Area= 5,969 sf Storage= 4,885 cf

Plug-Flow detention time= 0.8 min calculated for 19.381 af (100% of inflow) Center-of-Mass det. time= 0.8 min (896.8 - 896.0)


Volume	Invert	Avail.St	orage	Storage Description	on		
#1	#1 148.00' 834,530 d		530 cf	Custom Stage Da	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet) 148.00 150.00 152.00 154.00 156.00))) 1) 1	(sq-ft) 2,138 9,156 35,719 2 78,250 2	Perim. (feet) 180.0 387.0 2,199.0 2,327.0 2,588.0	Inc.Store (cubic-feet) 0 10,479 120,084 313,004 390,963	Cum.Store (cubic-feet) 0 10,479 130,563 443,567 834,530	Wet.Area (sq-ft) 2,138 11,495 384,391 430,714 532,915	
Device	Routing	Inver	t Outle	et Devices			
	Discarded Primary	148.00 148.00	' 31.0 Hea	d (feet) 0.20 0.40	adth Broad-Crest 0.60 0.80 1.00	ted Rectangular Weir	
Discarded OutFlow Max=0.02 cfs @ 12.73 hrs HW=149.25' (Free Discharge)							

Primary OutFlow Max=114.84 cfs @ 12.73 hrs HW=149.25' (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.02 cfs)

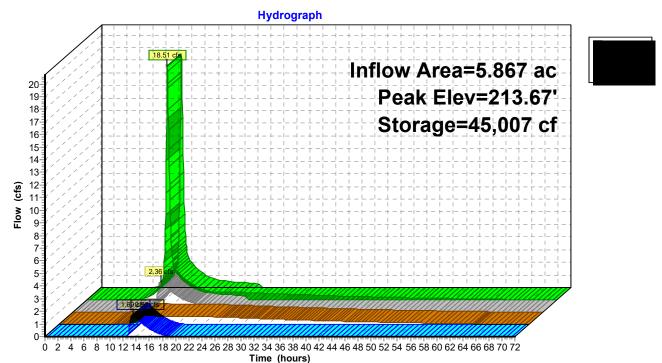
1-2=Broad-Crested Rectangular Weir (Weir Controls 114.84 cfs @ 2.96 fps)

Pond 9P: Existing Wetland

Summary for Pond 10aP: Proposed Berm

Inflow Area =	5.867 ac, 13.96% Impervious, Inflow	/ Depth = 3.85" for 100-year event
Inflow =	18.51 cfs @ 12.32 hrs, Volume=	1.882 af
Outflow =	2.36 cfs @ 13.45 hrs, Volume=	1.882 af, Atten= 87%, Lag= 68.1 min
Discarded =	0.67 cfs @ 13.45 hrs, Volume=	1.502 af
Primary =	1.69 cfs @13.45 hrs, Volume=	0.380 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 213.67' @ 13.45 hrs Surf.Area= 28,297 sf Storage= 45,007 cf


Plug-Flow detention time= 713.6 min calculated for 1.882 af (100% of inflow) Center-of-Mass det. time= 713.6 min (1,556.2 - 842.6)

Volume	Inve	rt Avai	I.Storage	Storage Description	on		
#1	210.0	0' !	55,040 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio (fee 210.0 212.0 214.0	t) 10 10	Surf.Area (sq-ft) 1,713 12,100 32,319	Perim. (feet) 254.0 654.0 899.0	Inc.Store (cubic-feet) 0 12,244 42,796	Cum.Store (cubic-feet) 0 12,244 55,040	Wet.Area (sq-ft) 1,713 30,630 60,948	
Device	Routing	In	vert Outle	et Devices			
#1	Discarde	d 210	.00' 1.02	0 in/hr Exfiltratior	n over Surface ar	ea	
#2	Primary	213				ed Rectangular Weir	
				· · ·		1.20 1.40 1.60 1.80 2.	.00
				3.00 3.50 4.00 4			
Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64						1	
			2.64	2.65 2.65 2.66 2	2.66 2.68 2.70 2	.74	
Discarded OutFlow Max=0.67 cfs @ 13.45 hrs HW=213.67' (Free Discharge)							

T—1=Exfiltration (Exfiltration Controls 0.67 cfs)
Primary OutFlow Max=1.68 cfs @ 13.45 hrs HW=213.67' (Free Discharge)

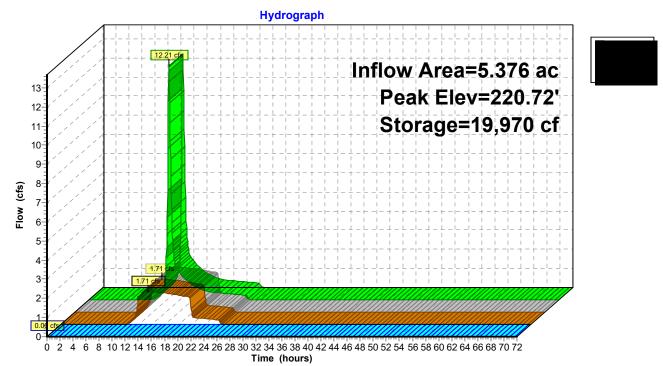
2=Broad-Crested Rectangular Weir (Weir Controls 1.68 cfs @ 1.00 fps)

Pond 10aP: Proposed Berm

Summary for Pond 11bP: Proposed Berm

Inflow Area =	5.376 ac,	1.97% Impervious, Inflo	ow Depth = 2.73" for 100-year event
Inflow =	12.21 cfs @	12.24 hrs, Volume=	1.222 af
Outflow =	1.71 cfs @	13.35 hrs, Volume=	1.222 af, Atten= 86%, Lag= 66.5 min
Discarded =	1.71 cfs @	13.35 hrs, Volume=	1.222 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 220.72' @ 13.35 hrs Surf.Area= 30,596 sf Storage= 19,970 cf

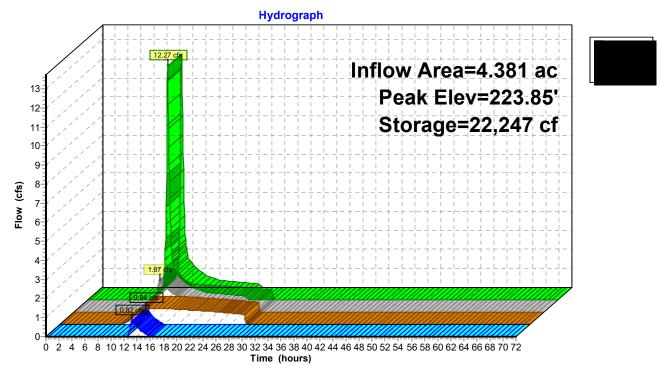

Plug-Flow detention time= 111.9 min calculated for 1.221 af (100% of inflow) Center-of-Mass det. time= 111.9 min (970.9 - 859.1)

Volume	Inver	t Avail.St	orage	Storage Description	on	
#1	220.00	' 66,	163 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)
Elevatio (fee 220.0 222.0	et) 00	urf.Area (sq-ft) 25,086 41,783	Perim. (feet) 664.0 802.0	Inc.Store (cubic-feet) 0 66,163	Cum.Store (cubic-feet) 0 66,163	Wet.Area (sq-ft) 25,086 41,252
Device	Routing	Inver	t Outl	et Devices	,	, -
#1	Primary	221.00				d Rectangular Weir
			2.50	3.00 3.50 4.00 4	4.50 5.00 5.50	1.20 1.40 1.60 1.80 2.00
				f. (English) 2.43 2 2.65 2.65 2.66 2		68 2.68 2.66 2.64 2.64 74
#2	Discarded	220.00		0 in/hr Exfiltration		

Discarded OutFlow Max=1.71 cfs @ 13.35 hrs HW=220.72' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.71 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=220.00' (Free Discharge)

Pond 11bP: Proposed Berm


Summary for Pond 11cP: Proposed Berm

Inflow A Inflow Outflow Discarde Primary	= =	4.381 ac, 12.27 cfs @ 1.67 cfs @ 0.84 cfs @ 0.82 cfs @	12.20 h 13.17 h 13.17 h	mpervious, Inflow rs, Volume= rs, Volume= rs, Volume= rs, Volume=	Depth = 3.13" fo 1.141 af 1.141 af, Atten= 1.036 af 0.105 af	r 100-year event 86%, Lag= 57.8 min		
				= 0.00-72.00 hrs, c Area= 15,091 sf S				
	Plug-Flow detention time= 270.3 min calculated for 1.141 af (100% of inflow) Center-of-Mass det. time= 270.3 min(1,118.1 - 847.9)							
Volume	Inv	ert Avail.	Storage	Storage Description	on			
#1	222.	00' 24	,481 cf	Custom Stage Da	ata (Irregular) Listed	d below (Recalc)		
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
222.0)0	9,148	421.0	0	0	9,148		
224.0	00	15,620	537.0	24,481	24,481	18,043		
Device	Routing	Inve	ert Outle	et Devices				
#1	Primary	mary 223.75' 10.0' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.68 2.68 2.66 2.64 2						
#2	Discard	ed 222.0	0' 2.41	0 in/hr Exfiltration	over Surface area	a		

Discarded OutFlow Max=0.84 cfs @ 13.17 hrs HW=223.85' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.84 cfs)

Primary OutFlow Max=0.82 cfs @ 13.17 hrs HW=223.85' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 0.82 cfs @ 0.79 fps)

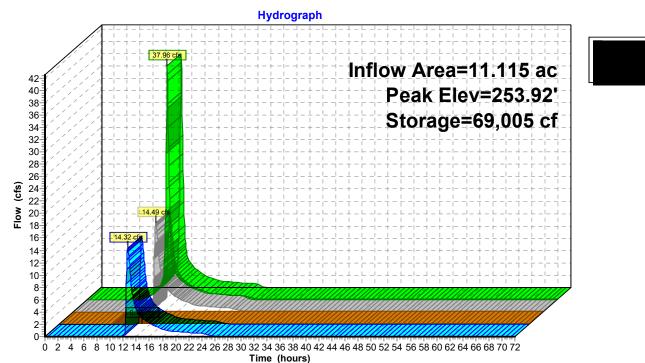
Pond 11cP: Proposed Berm

Summary for Pond 12bP: Proposed Berm

[62] Hint: Exceeded Reach 12bR OUTLET depth by 0.46' @ 12.80 hrs

Inflow Area =	11.115 ac,	7.70% Impervious, Inflow D	epth = 3.96" for 100-year event
Inflow =	37.96 cfs @	12.29 hrs, Volume=	3.663 af
Outflow =	14.49 cfs @	12.69 hrs, Volume=	3.132 af, Atten= 62%, Lag= 23.9 min
Discarded =	0.17 cfs @	12.69 hrs, Volume=	0.721 af
Primary =	14.32 cfs @	12.69 hrs, Volume=	2.411 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 253.92' @ 12.69 hrs Surf.Area= 26,556 sf Storage= 69,005 cf


Plug-Flow detention time= 489.1 min calculated for 3.130 af (85% of inflow) Center-of-Mass det. time= 426.9 min (1,266.0 - 839.1)

Volume	Inve	rt Avail.	Storage	Storage Description	on	
#1	250.00	0' 7'	1,013 cf	Custom Stage Da	ata (Irregular)Listeo	l below (Recalc)
Elevatic (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
250.0 252.0 254.0	00	4,608 20,843 26,794	359.0 719.0 769.0	0 23,501 47,513	0 23,501 71,013	4,608 35,509 41,614
Device	Routing	Inve	ert Outle	et Devices		
#1	Primary	253.0	Head 2.50 Coet	3.00 3.50 4.00 4	0.60 0.80 1.00 1. .50 5.00 5.50 54 2.70 2.69 2.68	20 1.40 1.60 1.80 2.00 3 2.68 2.66 2.64 2.64
#2	Discardeo	d 250.0		0 in/hr Exfiltration		

Discarded OutFlow Max=0.17 cfs @ 12.69 hrs HW=253.92' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.17 cfs)

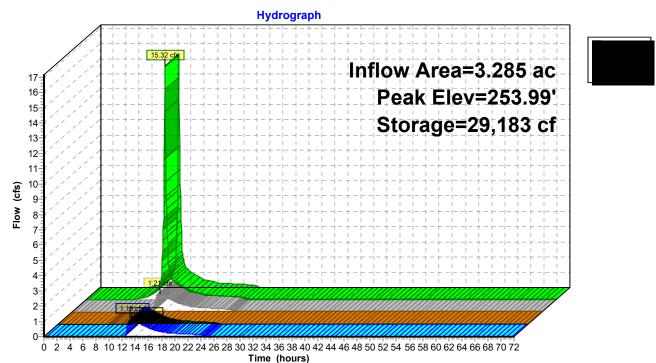
Primary OutFlow Max=14.29 cfs @ 12.69 hrs HW=253.92' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 14.29 cfs @ 2.58 fps)

Pond 12bP: Proposed Berm

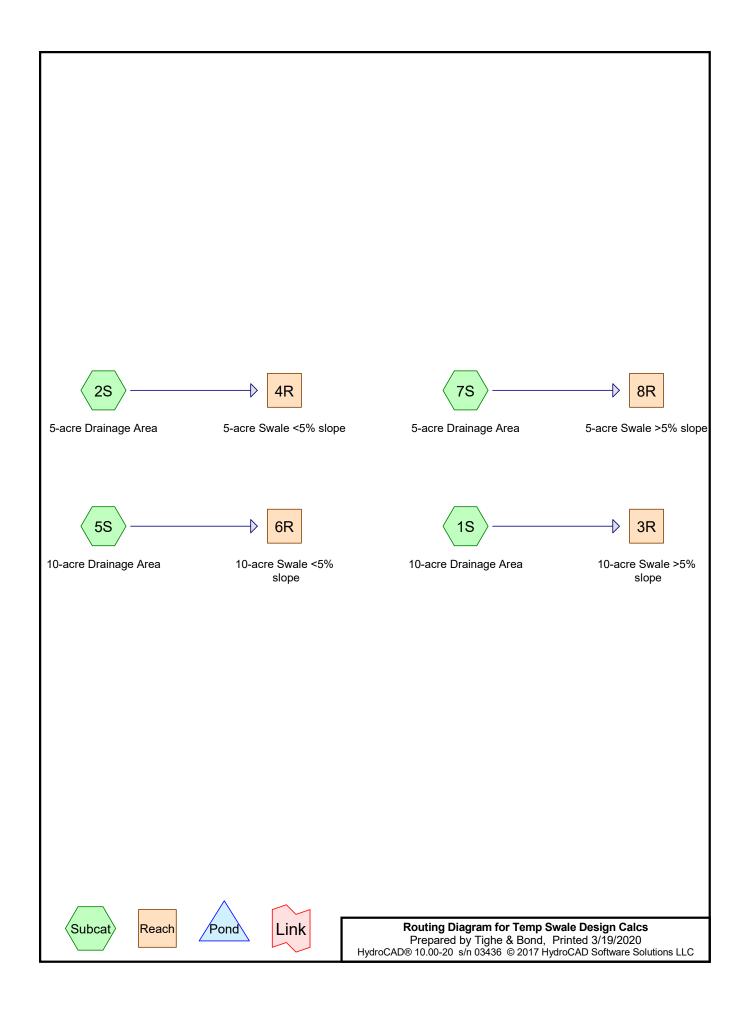
Summary for Pond 12cP: Proposed Berm

Inflow Area =	3.285 ac,	8.38% Impervious, Inflow D	epth = 4.06" for 100-year event
Inflow =	15.32 cfs @	12.09 hrs, Volume=	1.112 af
Outflow =	1.21 cfs @	13.47 hrs, Volume=	0.751 af, Atten= 92%, Lag= 82.8 min
Discarded =	0.07 cfs @	13.47 hrs, Volume=	0.334 af
Primary =	1.13 cfs @	13.47 hrs, Volume=	0.417 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 253.99' @ 13.47 hrs Surf.Area= 11,966 sf Storage= 29,183 cf


Plug-Flow detention time= 886.2 min calculated for 0.750 af (67% of inflow) Center-of-Mass det. time= 789.1 min (1,609.4 - 820.3)

Volume	Inve	ert Avail.	Storage	ge Storage Description					
#1	250.0	0' 2	9,339 cf	Custom Stage Da	ta (Irregular)Listed	d below (Recalc)			
Elevatio (fee	et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
250.0	-	2,632	234.0	0	0	2,632			
252.0	00	7,654	458.0	9,850	9,850	14,987			
254.0	00	11,997	575.0	19,489	29,339	24,660			
Device	Routing	Inv	ert Outle	et Devices					
#1	Primary	253.	75' 4.0'	long x 8.0' breadth	n Broad-Crested I	Rectangular Weir			
	,			-		20 1.40 1.60 1.80	2.00		
				3.00 3.50 4.00 4.					
			Coet	f. (English) 2.43 2.5	54 2.70 2.69 2.68	3 2.68 2.66 2.64 2	2.64		
			2.64	2.65 2.65 2.66 2.	.66 2.68 2.70 2.7	4			
#2	Discarde	d 250.	00' 0.27	0 in/hr Exfiltration	over Surface area	a			


Discarded OutFlow Max=0.07 cfs @ 13.47 hrs HW=253.99' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=1.13 cfs @ 13.47 hrs HW=253.99' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 1.13 cfs @ 1.19 fps)

Pond 12cP: Proposed Berm

Temporary Swale Design Hydrology

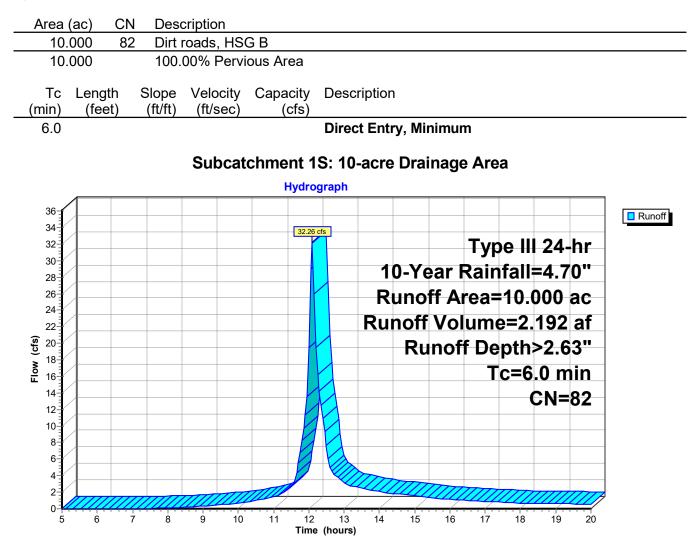
Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
30.000	82	Dirt roads, HSG B (1S, 2S, 5S, 7S)
30.000	82	TOTAL AREA

Soil Listing (all nodes)

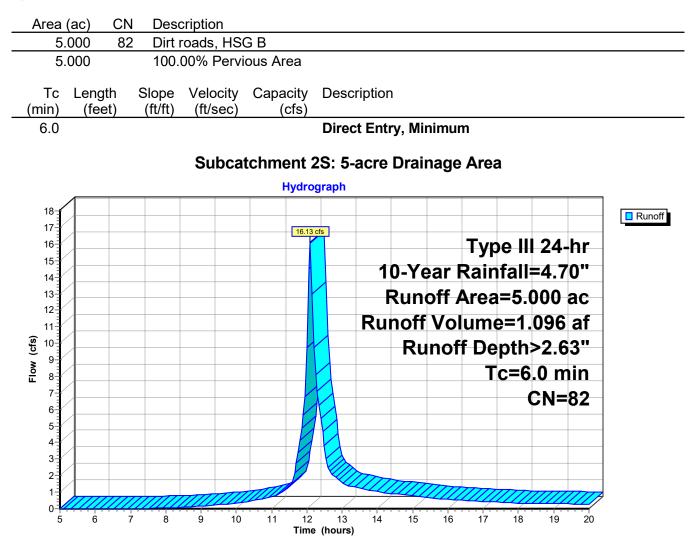
Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
30.000	HSG B	1S, 2S, 5S, 7S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
30.000		TOTAL AREA

Ground	Covers	(all	nodes)	

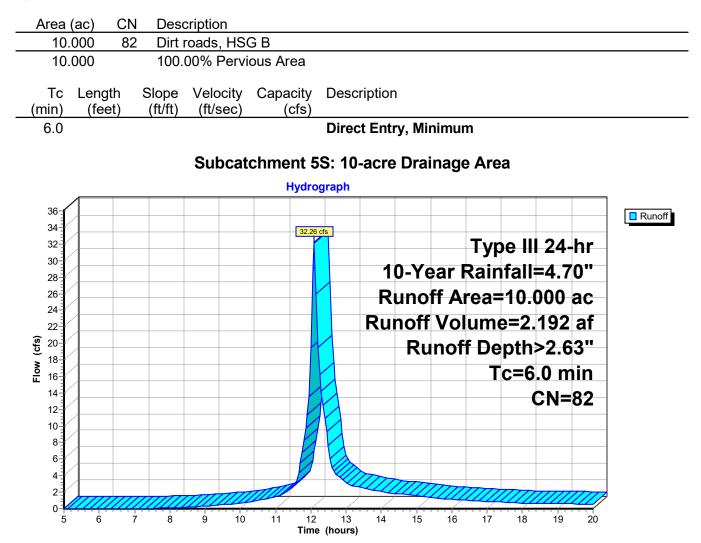

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	30.000	0.000	0.000	0.000	30.000	Dirt roads	1S, 2S, 5S, 7S
0.000	30.000	0.000	0.000	0.000	30.000	TOTAL AREA	

Temp Swale Design CalcsType III 24-hr10-Year Rainfall=4.70"Prepared by Tighe & BondPrinted 3/19/2020HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLCPage 5								
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method								
Subcatchment 1S: 10-acre Drainage Area Runoff Area=10.000 ac 0.00% Impervious Runoff Depth>2.63" Tc=6.0 min CN=82 Runoff=32.26 cfs 2.192 af								
Subcatchment 2S: 5-acre Drainage AreaRunoff Area=5.000 ac0.00% ImperviousRunoff Depth>2.63"Tc=6.0 minCN=82Runoff=16.13 cfs1.096 af								
Subcatchment 5S: 10-acre Drainage Area Runoff Area=10.000 ac 0.00% Impervious Runoff Depth>2.63" Tc=6.0 min CN=82 Runoff=32.26 cfs 2.192 af								
Subcatchment 7S: 5-acre Drainage AreaRunoff Area=5.000 ac0.00% ImperviousRunoff Depth>2.63"Tc=6.0 minCN=82Runoff=16.13 cfs1.096 af								
Reach 3R: 10-acre Swale >5% slope Avg. Flow Depth=0.81' Max Vel=7.35 fps Inflow=32.26 cfs 2.192 af n=0.030 L=100.0' S=0.0500 '/' Capacity=49.53 cfs Outflow=32.00 cfs 2.191 af								
Reach 4R: 5-acre Swale <5% slope								
Reach 6R: 10-acre Swale <5% slope								
Reach 8R: 5-acre Swale >5% slope Avg. Flow Depth=0.77' Max Vel=6.35 fps Inflow=16.13 cfs 1.096 af n=0.030 L=100.0' S=0.0500 '/' Capacity=29.60 cfs Outflow=15.98 cfs 1.096 af								

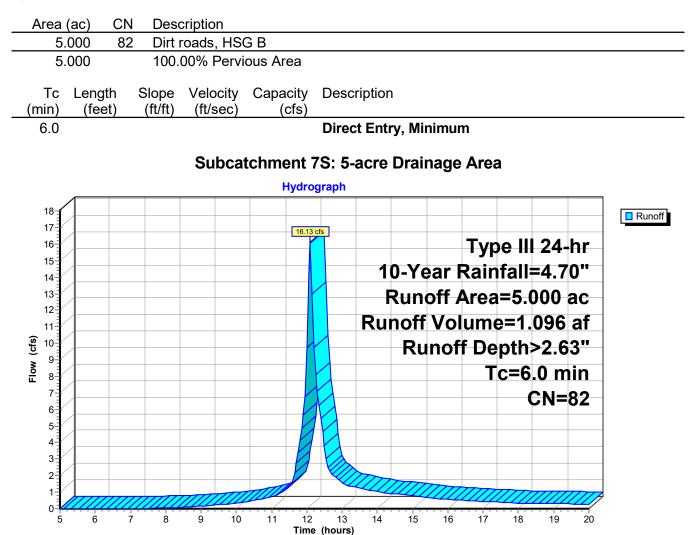
Total Runoff Area = 30.000 acRunoff Volume = 6.576 af
100.00% Pervious = 30.000 acAverage Runoff Depth = 2.63"
0.00% Impervious = 0.000 ac


Summary for Subcatchment 1S: 10-acre Drainage Area

Runoff = 32.26 cfs @ 12.09 hrs, Volume= 2.192 af, Depth> 2.63"

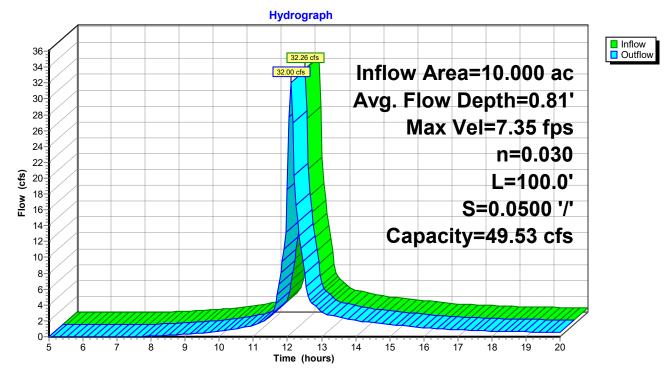

Summary for Subcatchment 2S: 5-acre Drainage Area

Runoff = 16.13 cfs @ 12.09 hrs, Volume= 1.096 af, Depth> 2.63"


Summary for Subcatchment 5S: 10-acre Drainage Area

Runoff = 32.26 cfs @ 12.09 hrs, Volume= 2.192 af, Depth> 2.63"

Summary for Subcatchment 7S: 5-acre Drainage Area


Runoff = 16.13 cfs @ 12.09 hrs, Volume= 1.096 af, Depth> 2.63"

Summary for Reach 3R: 10-acre Swale >5% slope

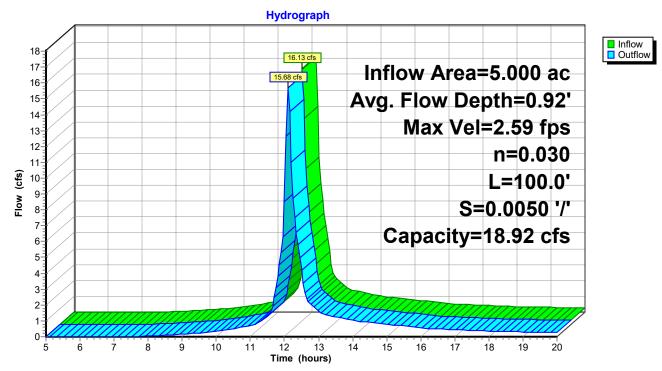
10.000 ac, 0.00% Impervious, Inflow Depth > 2.63" for 10-Year event Inflow Area = Inflow = 32.26 cfs @ 12.09 hrs, Volume= 2.192 af 32.00 cfs @ 12.10 hrs, Volume= Outflow = 2.191 af, Atten= 1%, Lag= 0.4 min Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.35 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.61 fps, Avg. Travel Time= 0.6 min Peak Storage= 440 cf @ 12.09 hrs Average Depth at Peak Storage= 0.81' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 49.53 cfs Custom cross-section, Length= 100.0' Slope= 0.0500 '/' Constant n= 0.030 Short grass Inlet Invert= 5.00', Outlet Invert= 0.00' ‡ Offset Elevation Chan.Depth (feet) (feet) (feet) 0.00 0.00 0.00 3.00 -1.00 1.00 6.00 -1.00 1.00 9.00 0.00 0.00 Storage Discharge Donth End Aroa

Perim.	Storage	Discharge
(feet)	(cubic-feet)	(cfs)
3.0	0	0.00
9.3	600	49.53
	(feet) 3.0	(feet)(cubic-feet)3.00

Reach 3R: 10-acre Swale >5% slope

Summary for Reach 4R: 5-acre Swale <5% slope

Inflow Area = 5.000 ac, 0.00% Impervious, Inflow Depth > 2.63" for 10-Year event Inflow = 16.13 cfs @ 12.09 hrs, Volume= 1.096 af Outflow = 15.68 cfs @ 12.11 hrs, Volume= 1.095 af, Atten= 3%, Lag= 1.0 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 2.59 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.90 fps, Avg. Travel Time= 1.9 min

Peak Storage= 624 cf @ 12.10 hrs Average Depth at Peak Storage= 0.92' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 18.92 cfs

Custom cross-section, Length= 100.0' Slope= 0.0050 '/' Constant n= 0.030 Short grass Inlet Invert= 0.50', Outlet Invert= 0.00'

‡

_		set et)		tion eet)	Cha	n.Deptl (feet			
	0	.00	C	00.0		0.0	0		
	3	.00	-1	.00		1.0	0		
	7	.00	-1	.00		1.0	0		
	10	.00	C	00.		0.0	0		
	Depth	End	Area	Pe	rim.		Storage	Dis	charge
_	(feet)	()	sq-ft)	(f	eet)	(ต	ubic-feet)		(cfs)
	0.00		0.0		4.0		0		0.00
	1.00		7.0		10.3		700		18.92

Reach 4R: 5-acre Swale <5% slope

0.00

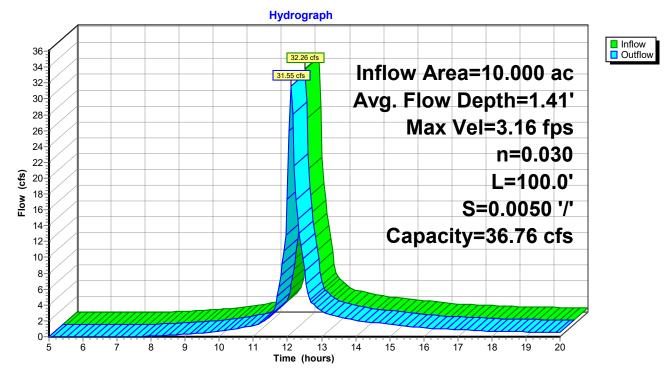
1.50

0.0

11.3

3.0

12.5


Summary for Reach 6R: 10-acre Swale <5% slope

10.000 ac, 0.00% Impervious, Inflow Depth > 2.63" for 10-Year event Inflow Area = Inflow 32.26 cfs @ 12.09 hrs, Volume= 2.192 af = Outflow = 31.55 cfs @ 12.11 hrs, Volume= 2.190 af, Atten= 2%, Lag= 0.8 min Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.16 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.20 fps, Avg. Travel Time= 1.4 min Peak Storage= 1,023 cf @ 12.10 hrs Average Depth at Peak Storage= 1.41' Bank-Full Depth= 1.50' Flow Area= 11.3 sf, Capacity= 36.76 cfs Custom cross-section, Length= 100.0' Slope= 0.0050 '/' Constant n= 0.030 Short grass Inlet Invert= 0.50', Outlet Invert= 0.00' ‡ Elevation Chan.Depth Offset (feet) (feet) (feet) 0.00 0.00 0.00 4.50 -1.50 1.50 7.50 -1.50 1.50 12.00 0.00 0.00 Depth End Area Perim. Storage Discharge (feet) (sq-ft) (feet) (cubic-feet) (cfs) 0.00

0

36.76

1,125

Reach 6R: 10-acre Swale <5% slope

Summary for Reach 8R: 5-acre Swale >5% slope

 Inflow Area =
 5.000 ac,
 0.00% Impervious, Inflow Depth >
 2.63" for 10-Year event

 Inflow =
 16.13 cfs @
 12.09 hrs, Volume=
 1.096 af

 Outflow =
 15.98 cfs @
 12.10 hrs, Volume=
 1.096 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.35 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.55 fps, Avg. Travel Time= 0.7 min

Peak Storage= 255 cf @ 12.10 hrs Average Depth at Peak Storage= 0.77' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 29.60 cfs

Custom cross-section, Length= 100.0' Slope= 0.0500 '/' Constant n= 0.030 Short grass Inlet Invert= 5.00', Outlet Invert= 0.00'

Offset	Elevation	Chan.Depth
(feet)	(feet)	(feet)
0.00	0.00	0.00
3.00	-1.00	1.00
4.00	-1.00	1.00
7.00	0.00	0.00

Depth E	End Area	Perim.	Storage	Discharge
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cfs)
0.00	0.0	1.0	0	0.00
1.00	4.0	7.3	400	29.60

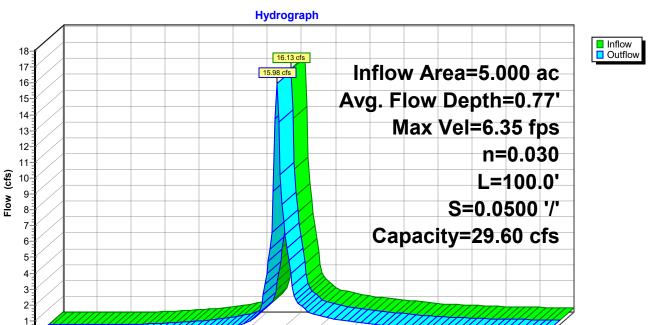
0-

5

6

7

8


ģ

10

11

12

Time (hours)

14

13

15

16

17

18

19

20

Reach 8R: 5-acre Swale >5% slope

Tighe&Bond

APPENDIX E

Project Name: Quinebaug Solar Project Stormwater Pollution Control Plan

Sweeping Schedule and Reciepts

All parking areas, sidewalks, driveways and other impervious surfaces (except roofs) shall be swept clean of sand, litter and any other pollutants at least twice a year, once between November 14 and December 15 (after leaf fall) and once during the month of April (after snow melt) and at other times as may be necessary. The following table shall be completed by a member of the Pollution Prevention Team (PPT) after each sweeping. Reciepts shall be kept in a pocket accompanying the schedule sheets in this attachment

Date	Company/Person	Supervising Team	
(MM/DD/YY)	Sweeping	Member	Comments
-	-	•	

Tighe&Bond

APPENDIX F

Project Name: Quinebaug Solar Project Stormwater Pollution Control Plan Potential Spill Location Information
Spill cleanup equipment is kept
(where)
And includes-
(what; speedi-dri, brooms, etc.)
And all personal are instructed in its location and use.
Types of materials present on-site which could potentially spill and discharge to stormwater include:
1.
2.
3.
4.
5.
6.
Areas where spills may potentially occur and discharge to stormwater include:
1.
2.
3.
4.
5.
6.
Measures used to minimize the possibility of spills include:
1.
2.
3.
4.
5.
6.

Tighe&Bond

APPENDIX G

Project Name: Quinebaug Solar Project

Stormwater Pollution Control Plan

Spill Incident Recording Form

A history of spills and/or leaks is shown below. (Make additional copie	es of table if needed).	

Date	(checl	cone)	Location	Description					Maasuras ta provant
(MM/DD/ YY)	Spill	Leak	(as indicated	Type of Material	Quantity	Source if Known	Reason	Response Procedures	Measures to prevent reoccurance

Tighe&Bond

APPENDIX H

Connecticut Department of Environmental Protection	
Oil and Chemical Spill Response Division	
Report of Petroleum or Chemical Product Discharge, Spillage or R	elease

1. When did the incident occur? Date / / Time month/day/year

.

2. Where did the incident occur?

3. How did the incident occur? (describe the cause)

4. Under whose control was the hazardous material at the time of the incident? Name:

Mailing & Street Address:

Town:

State: Zip: .5. Who is the owner of the property onto which the spill occurred?

If this is a corporate property or jointly owned property, who represents the owner?

Corporate Property

Jointly-owned property

Phone:

Name: T

Mailing & Street address

Town:______State:___Zip:____Phone:_____ 6. When was the incident verbally reported to the Department of Environmental

Protection? Date 1 1 Time

Month/day/year

7. Who reported the incident and whom were they representing? Name: _____

Mailing & Street Address:

Town:

State: Zip: Phone:

8. What were the chemicals or petroleum products, etc. released, spilled or discharged? Give an exact description of each of the materials involved in the incident, including chemical names, percent concentrations, trade names, etc.

If the chemicals are Extremely Hazardous substances or CERCLA hazardous substances they must be identified as such and include the reportable quantity (RQ). Please attach a Material Safety Data Sheet (MSDS) for each chemical involved.

in the second second

.

1

What were the quantities of hazardous materials that were released, spilled or discharged to each environmental medium (air, surface water, soil, and/or ground water)? [NOTE: Connecticut General Statutes requires the reporting of any amount of any substance or material released to the environment].

1 · ... Did any of these hazardous materials travel beyond the property line? [NOTE: Materials that enter the ground water are considered to have gone beyond the property line.]

** 1

.

10. What actions were taken to respond to and contain the release, spill or discharge?

11. What actions are being taken to prevent reoccurrence of an incident of this type? (Attach additional sheets if necessary.)

.

- ×

7 -

12. Were there any injuries as a result of the incident? If so, list the names of injured individuals, their addresses, phone numbers and describe their injuries. (Attach additional sheets if necessary)

Name:

Mailing & Street Address:

Town: State: Zip: Telephone:

13. What is the appropriate advice regarding medical attention necessary for exposed individuals?

14. Are there any known or anticipated health risks, acute or chronic, associated with the release of these hazardous materials or medical advice that should be communicated?

15. Was the incident completely cleaned up by the time this report was submitted? If not, what are the anticipated remedial actions and their duration?

16. CERTIFICATION: I hereby affirm that the foregoing statement is true to the best of my knowledge.

Signature

Title

Date

Print Name

Telephone

Street Address/P.O. Box

City/Town

State & Zip

This form may be reproduced as long as it contains all of the information requested and is on an $81/2 \times 11$ sheet of white paper, black type format. For serious incidents the questions may be answered in narrative format which must include the preparer's affidavit.

Mail to:

State of Connecticut Department of Environmental Protection Bureau of Waste Management Oil and Chemical Response Division 79 Elm Street Hartford, CT 06106-5127 www.dep.state.ct.us

Phone: Routine calls (860) 424-3024 Emergency 24 hrs (860) 424-3338

APPENDIX I

Project Name: Quinebaug Solar Project

Stormwater Pollution Control Plan

Monthly Inspection Checklist for Year 20____

The site is inspected weekly for trash and debris. The table on this page is initialed each month by a member of the PPT. If any problems are observed, write "No" in the "OK?" column and note the problem and measures taken in the space in the following table. Make a new copy of this table for each new year.

Data (List Davi	L.a.'tt' a l.a	0//2	
Date (List Day	Initials	OK?	Problems Noted and Measures Taken
January			
February			
March			
April			
May			
June			
July			
August			
September			
October			
November			
December			
Drainage Structure	es and outfa	alls were	e cleaned on ,, (Month, day, year)
Ву			
(Company)			

APPENDIX J

Project Name: Quinebaug Solar Project Stormwater Pollution Control Plan

Report Number:

Page:

Weekly Inspection Checklist for Year 20____

The site is inspected weekly for trash and debris. The table on this page is initialed each week by a member of the PPT. If any problems are observed, write "No" in the "OK?" column and note the problem and measures taken in the space following the table. Make a new copy of this table for each new year

Date (MM/DD/YY)	Initials	OK?	Date (MM/DD/YY)	Initials	OK?	Date (MM/DD/YY)	Initials	OK?

Comments or problems and measures taken:

Project Name: Quinebaug So Stormwater Pollution (Inspection Report Form for	Report Num	ber:	Page:				
Project Phase:							
Initial		D Intermediat	e	Final			
Inspector:			-	Date:			
No. of Days Since Last R	ainfall:		-	Inches:			
Area	Date Last Disturbed	Date of Next Disturbance	Stabilized?	Stabilized With	Condition		
Stabilization Notes:							
Stabilization Key							
CE = Construction Entrance PV = Permanent Vegetation	TV = Temporary Vege	tation					
To be performed by:			On	or before:			

Project Name: Quinebaug Solar Project Stormwater Pollution Control Plan Inspection Report Form for Stabilization Me	Report Num	ber:	Page:	
Project Phase:				
Initial	Intermedia	te	Final	
Inspector:		-	Date:	
No. of Days Since Last Rainfall:		-	Inches:	
Control Location	In Place?	Condition	Sediment Depth	Washed Out/ Overtopped?
Structural Notes:				
To be performed by:		On	or before:	

Project Name: Quinebaug Solar Project Stormwater Pollution Control Pla Inspection Report Form for Stabilization		Report Number:	Page:
Project Phase:			
Initial	Intermediat	e 🛛 🛛 Final	
Inspector:		Dates	
No. of Days Since Last Rainfall:		Inche	S:
Summary of Required Changes			
Reasons for Change			
-]
To be performed by:		On or before:	

Project Name: Quinebaug Solar Project Stormwater Pollution Control Plan Inspection Report Form for Stabilization	L	Report Number:	Page:
Project Phase:			
Initial	Intermediat	e 🛛 🗆 Final	
Inspector:		Date):
No. of Days Since Last Rainfall:		Inche	es:
Comments			
Maintenance and Other Actions Re	quired (Not Not	ted Elsewhere):	
To be performed by:		On or before:	

Project Name: Quinebaug Solar Project

Stormwater Pollution Control Plan

Inspection Report Form for Stabilization Measures

Report Number:

Page:

This certification must be completed after each inspection to signify that the inspection has been properly completed and the site has been found to be in compliance with the Stormwater Pollution Control Plan.

"I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify that, based on reasonable investigation, including my inquiry of those individuals respossible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief. I understand that a false statement made in this document or its attachments may be punishable as a criminal offense, in accordance with Section 22a-6 of the General Statutes, pursuant to Section 53a-157b of the General Statutes, and in accordance with any other applicable statute.

Signed:	
Name:	
Title:	
Company:	
Address:	
Telephone:	
Date:	

APPENDIX K

Project Name: Quinebaug Solar Project Stormwater Pollution Control Plan

Comprehensive Annual Stormwater Evaluation and Inspection Report

Once a year, a member of the PPT shall conduct a Comprehensive Annual Stormwater Evaluation and Inspection of all aspects and provisions of the SWPCP. The following report is prepared and a copy maintained on site in the files of the facility. The Comprehensive Annual Stormwater Evaluation and Inspection Report is reviewed and signed by the same party who signed the registration or by their replacement of equivalent position.

Inspection:			
Date of Inspection:			
Reviewed By:			
Update the PPT if necessary. PPT updated?	[]Yes	[] No	
Review the SMP. Areas of SMP need to be updated?	[]Yes	[] No	

Review the checklists within the Attachments K & L of the SWPCP. Update the checklists, spill plan and maintenance practices as necessary. Changes to the checklists, spill plan or maintenance practices are noted here and in the appropriate section of the Plan. (Copy this sheet as necessary).

Additional Comments:

APPENDIX L

Connecticut Department of Energy & Environmental Protection Bureau of Materials Management & Compliance Assurance Water Permitting & Enforcement Division

General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities, issued 8/21/13, effective 10/1/13 Stormwater Monitoring Report

SITE INFORMATION

Permittee:		
Mailing Address:		
Business Phone:		
Contact Person:	Title:	
Site Name:		
Site Address:		
Receiving Water (name, basin):		
Stormwater Permit No. <u>GSN</u>		

SAMPLING INFORMATION (Submit a separate form for each outfall)

Outfall Designation:	Date/Time Collected:
Outfall Location(s) (lat/lon or map link):	
Person Collecting Sample:	
Storm Magnitude (inches):	Storm Duration (hours):
Size of Disturbed Area at any time:	

MONITORING RESULTS

Sample #	Parameter	Method	Results (units)	Laboratory (if applicable)
1	Turbidity			
2	Turbidity			
3	Turbidity			
4	Turbidity			
(provide an attachment if more than 4 samples were taken for this outfall)			Avg =	

STATEMENT OF ACKNOWLEDGMENT

I certify that the data reported on this document were prepared under my direction or supervision in accordance with the General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities. The information submitted is, to the best of my knowledge and belief, true, accurate and complete.

Authorized Official:		
Signature:	Date:	
Please send completed form to:	DEPARTMENT OF ENERGY & ENVIRONMENTAL PROTECTION BUREAU OF MATERIALS MANAGEMENT AND COMPLIANCE ASSURANCE 79 ELM STREET HARTFORD, CT 06106-5127 ATTN: NEAL WILLIAMS	

APPENDIX M

General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities

Notice of Termination Form

Please complete and submit this form in accordance with the general permit (DEP-PED-GP-015) in order to ensure the proper handling of your termination. Print or type unless otherwise noted.

Note: Ensure that for commercial and industrial facilities, registrations under the *General Permit for the Discharge* of *Stormwater Associated with Industrial Activity* (DEP-PED-GP-014) or the *General Permit for the Discharge* of *Stormwater from Commercial Activities* (DEP-PED-GP-004) have been filed where applicable. For questions about the applicability of these general permits, please call the Department at 860-424-3018.

Part I: Registrant Information

1.	Permit number: GSN				
2.	Fill in the name of the registrant(s) as indicated on the registration certificate:				
	Registrant:				
3.	Site Address:				
	City/Town: State: Zip Code:				
4.	Date all storm drainage structures were cleaned of construction sediment:				
Date of Completion of Construction:					
Date of Last Inspection (must be at least three months after final stabilization pursuant to Section 6(b)(6 the general permit):					
5.	Check the post-construction activities at the site (check all that apply):				
	Industrial Residential Commercial Capped Landfill				
	Other (describe):				

Part II: Certification

 "I have personally examined and am familiar with the information submitted in this document and all attachments

 thereto, and I certify that, based on reasonable investigation, including my inquiry of those individuals responsible for

 obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and

 belief. I understand that a false statement made in this document or its attachments may be punishable as a

 criminal offense, in accordance with Section 22a-6 of the Connecticut General Statutes, pursuant to Section 53a

 157b of the Connecticut General Statutes, and in accordance with any other applicable statute."

 Signature of Permittee
 Date

 Name of Permittee (print or type)
 Title (if applicable)

 Note:
 Please submit this Notice of Termination Form to:

 STORMWATER PERMIT COORDINATOR
 Store of Termination Form to:

STORMWATER PERMIT COORDINATOR BUREAU OF WATER MANAGEMENT DEPARTMENT OF ENVIRONMENTAL PROTECTION 79 ELM STREET HARTFORD, CT 06106-5127

APPENDIX N

	Tighe&Bond						
	Estimated Stormwater Control Measure Costs						
	Quinebaug Solar Brooklyn & Canterbury, CT March 2020						
Item	Description	Quantity	Unit	Unit Price	Total		
1	Temporary Erosion & Sediment Control	75,000	LF	\$8	\$600,000		
2	Hydroseed and Mulch	234	AC	\$3,500	\$819,000		
3	Temporary Sediment Trap	29	EA	\$15,600	\$452,400		
4	Temporary Sediment Basin	18	EA	\$20,000	\$360,000		
5	Temporary Soil Stockpiling	1	LS	\$18,500	\$18,500		
6	CT DEEP Approved Monitor Visit	26	EA	\$1,500	\$39,000		
7	8" HDPE Culvert	139	LF	\$68	\$9,452		
8	15" HDPE Culvert	111	LF	\$78	\$8,658		
9	Outlet Protection	5	EA	\$1,200	\$6,000		
				Subtotal	\$2,313,010		
			\$231,301				
				\$578,253			
	Administration Fee (10%)				\$231,301		
				Totaĺ	\$3,353,865		

ATTACHMENT D – EASTERN SPADEFOOT TOAD PROTECTION SUMMARY

January 17, 2020

Ms. Dawn McKay and Ms. Robin Blum Wildlife Division, Bureau of Natural Resources Connecticut Department of Energy and Environmental Protection 79 Elm Street Hartford, Connecticut 06106-5127

Subject: Quinebaug Solar Project, Eastern Spadefoot Toad Protection – Request #201904603

Dear Ms. McKay and Ms. Blum,

We are writing to follow up with you regarding the avoidance and mitigation measures to be implemented for the protection of eastern spadefoot toad (*Scaphiopus holbrookii*) at the Quinebaug Solar Project (Project) site located in Brooklyn and Canterbury, Connecticut. This supplemental information is being provided in response to requests from you and other representatives from the Department of Energy and Environmental Protection (DEEP) and the Natural Diversity Data Base (NDDB) Program. This letter provides a summary of field surveys completed and their results, and the measures proposed by the Project to protect eastern spadefoot toads.

During a December 18, 2019 meeting between members of DEEP and representatives of the Quinebaug Solar team, additional information was requested concerning the basis for the Project's Avoidance and Mitigation Plan as it applies to the protection of eastern spadefoot toad. Specifically, we were asked to provide information regarding the protection of potential breeding pools that were identified during the two-year field study, documentation of conservation restrictions as they apply to the 'conservation areas', the location of the potential breeding pools plotted together with the areas proposed for development and conservation, rationale for any changes in the number, location or spatial extent of the previously defined potential breeding pools, and the proposed mitigation strategies for encroachments on any/all breeding pool areas. Our team also was informed during this meeting that an Incidental Take Report would not be required for this Project.

Based on the results of two years of species-specific surveys, the three identified potential breeding pools were not found to be utilized for breeding by eastern spadefoot toads and therefore were not prioritized for protection in the original avoidance and mitigation plan for the Project. Although we acknowledge that this particular species can skip more than two consecutive years of breeding, concurrent surveys of known eastern spadefoot toad breeding pools in the Town of Plainfield were conducted in August of 2019 that indicated a breeding event likely occurred nearby that year. Furthermore, 161.5 person hours of searching during suitable conditions yielded only three individual toads during this survey period, which suggests that population density of the species within the survey area might be low.

Nevertheless, we understand the NDDB has identified these potential breeding pools and adjacent upland habitat as an area of concern despite the absence of any observations of breeding over a two-year period. In recognition of these concerns, Quinebaug Solar proposes a revised layout of the Project. This proposed

layout will protect potential breeding pool C and adjacent upland habitat which we believe is the most appropriate area to conserve for several reasons discussed below. Attachment A, Figure 1 and Figure 2 show the approximately 8 additional acres of species-specific habitat protection now incorporated into the Project design. In other words, based on NDDB's concerns, we will treat potential breeding pool C *as though it were a confirmed eastern spadefoot toad breeding pool*, and provide a connection between this pool, adjacent upland habitat and the previously designated herpetofauna protection area. Figure 1 and Figure 2 outline proposed Project changes that include protection of potential breeding pool C, as well as an expanded protection area within eastern spadefoot toad preferred habitat along the edge of the existing gravel extraction area and the slight modifications that will be made to the Project's development footprint upon approval by NDDB.

Eastern Spadefoot Toad Field Studies

Nocturnal field surveys were completed by FB Environmental over the summer of 2018 to determine presence of the eastern spadefoot toad within the Project's Study Area¹. During this survey period, three eastern spadefoot toads were observed in the Study Area. All were radio-tagged and tracked to monitor their movements within the site. Additionally, potential breeding pools identified within the Study Area were checked during appropriate conditions (i.e., following heavy rain events) to determine if breeding activity had occurred. In addition to the 16 nights spent on site in 2018 performing these nocturnal surveys, diurnal herpetofauna surveys were completed over the summer of 2018 and included completion of a general herpetofauna inventory and vernal pool surveys.

Due to the observations of individual eastern spadefoot toads on the site in 2018, and to account for the sporadic and unpredictable breeding behavior of eastern spadefoot toad (no eastern spadefoot toad breeding events were observed/reported in Connecticut in 2018). Quinebaug Solar elected to conduct a second year of eastern spadefoot toad surveys over the spring and summer of 2019 to determine the possible presence of eastern spadefoot toad breeding pools within the Project Study Area. Furthermore, a known eastern spadefoot toad breeding site in proximity to the Project Study Area was surveyed concurrently in 2019 as a reference site.

Over the summer of 2019, eight separate surveys were conducted at three potential breeding pools identified within the Study Area, generally within 24 hours after a heavy rainfall event. Two of these pools were identified in the summer of 2018 and one additional potential breeding pool was identified during the 2019 survey effort. The location of all three pools are identified in Attachment A, Figure 1 and Figure 2. These pools have very short hydroperiods and do not meet the criteria to be considered wetlands per U.S. Army Corps of Engineers or State of Connecticut definitions, but they nonetheless have the potential to provide breeding habitat for eastern spadefoot toads.² A brief summary of survey activities at the potential breeding pools follows. Further details of the 2018 and 2019 field surveys are provided in the respective technical report and memorandum previously submitted to NDDB.

¹ An area approximately 460 acres in size that encompasses the proposed footprint.

² Note, however, that the hydroperiods of these pools are too short to support other pool-breeding species such as wood frog (*Lithobates sylvaticus*) and spotted salamander (*Ambystoma maculatum*).

Potential Breeding Pools

Potential Breeding Pool A

Potential breeding pool A lies northeast of the gravel extraction area at the center of the site. An access road to an adjacent hayfield traverses the pool. On April 19, 2018 the pool was observed to be approximately 50 to 75 feet in diameter with 2+ feet of standing water at its deepest point. Later, during a field investigation on May 7, 2018 the pool was observed to be completely dry. Tire ruts in the pool contained only several inches of water on September 19, 2018 after precipitation events resulted in a total of 2+ inches of rain in the preceding week.

During 2019 field surveys Potential breeding pool A was observed to be inundated on April 17. No amphibian egg masses were observed in the pool. The pool was found to be dry on all subsequent visits with the exception of a visit on August 7, 2019 where the interior of the pool had one inch of water due to a heavy rainfall event that occurred preceding the survey. No amphibian egg masses or larvae were observed in the pool during any of the 2018 or 2019 site visits.

Potential Breeding Pool B

Potential breeding pool B is located in an active corn field near the intersection of Rukstela Road and Allen Hill Road. On April 19, 2018 the pool was observed to be approximately 50 feet in diameter with up to 1 foot of standing water. During this time American toad (*Anaxyrus americanus*) tadpoles were observed in this pool, but the pool dried up prior to their metamorphosis.

In 2019 potential breeding pool B was observed to contain three American toad egg masses on April 17, 2019. The pool contained no water during subsequent site visits. Planted corn was growing from the pool area during July and August 2019 site visits. Corn was harvested before or during early September, at which time the pool contained no water.

Potential Breeding Pool C

Potential breeding pool C was first observed on June 20, 2019³, at which time its basin contained no standing water, but did contain a visibly damp substrate. This pool is located within an active agricultural field and is approximately 60-feet in diameter following larger rain events. Visual encounter searches in and around the pool depression during the 2019 season yielded the detection of American toad metamorphs, which likely originated from the pool.

On July 26, 2019 the pool contained no standing water, but soil within its basin was damp, indicating recent inundation. Furthermore, no corn was observed in the basin undoubtedly due to the previous presence of enough standing water to inhibit vegetation growth in this area.

Potential breeding pool C contained no water at the start of a nocturnal survey event on August 7, 2019. During heavy rainfall that occurred that night, the pool filled to a depth of one foot in approximately 30 minutes, mainly from run-off from the access road to the athletic field. No eastern spadefoot toad breeding activity was detected, nor were any individuals detected in the vicinity of the pool or elsewhere on site during the survey.

³ Potential breeding pool C was not initially observed during the 2018 surveys due to the pool being obscured by vegetation (corn).

On August 29, 2019 the pool contained 12 to 18 inches of water following a heavy rainfall event that occurred the previous evening. No amphibian egg masses were observed in the pool. The pool was dry on September 7 and September 26, 2019.

Species Protection

Of the Project's conserved wetland and buffer areas, all of which may serve as eastern spadefoot toad habitat and connectivity corridors, the most notable is the intact forested area comprised of the Blackwell Brook floodplain and a relict stream channel that extends to the east. This area, designated as the herpetofauna protection area, is home to the greatest diversity and abundance of herpetofauna on the site (see FB Environmental's 2018 *Vernal Pool Survey and General Herpetological Inventory of the Quinebaug Solar Project* report, provided in April 2019). With the addition of conserved zones around potential breeding pool C (approximately one acre) and the edge of the gravel extraction area (approximately 7 acres), this combined forested-open canopy complex serves as the core conservation asset for eastern spadefoot toad within the Study Area. Of specific benefit to eastern spadefoot toads, this combined area is largely underlain by Hinckley soils, has open canopy areas that provide the eastern spadefoot toad's preferred groundcover types, and was the site of one of the three eastern spadefoot toad detections in the Study Area (Attachment A, Figure 1 and Figure 2).

Despite considerable survey efforts completed in 2018 and 2019, there was no confirmation that the eastern spadefoot toad breeds anywhere within the Study Area. However, as an additional precautionary measure, we have included the pool which we feel has the greatest potential to be a breeding pool (potential breeding pool C) within the overall herpetological conservation area, along with a directional buffer that connects the pool to the core conservation area and the area of suitable eastern spadefoot toad habitat that is present along the edge of the gravel extraction area. The effort made to protect this additional area addresses concerns raised by NDDB that increased protection of habitat and potential breeding areas are warranted due to the possibility of a local breeding population.

Based on the physical characteristics of potential breeding pool C, its proximity to preferred eastern spadefoot toad habitat including Hinckley soils, and its location near one individual eastern spadefoot toad that was observation in 2018, we feel this area has the highest probability of successfully supporting a breeding population of eastern spadefoot toads if a significant population were to exist. Specifically, potential breeding pool C's hydroperiod was likely long enough to produce the American toad metamorphs encountered in the vicinity of the pool depression in 2019, making it a reasonable assumption that the eastern spadefoot toad also could successfully breed there in some years.⁴ Potential breeding pool C also is situated just over 500 feet west of where one of the three individual eastern spadefoot toads was observed in 2018 (Attachment A, Figure 1 and Figure 2).

Potential breeding pools A and B are not good candidates for the same precautionary measures afforded to potential breeding pool C because their physical characteristics make them less likely to be used by eastern spadefoot toads. Eastern spadefoot toads have been documented to breed anywhere from March through October in Connecticut. Pools capable of becoming inundated at any time during this time

⁴ Eastern spadefoot toad metamorphs can emerge in as little as two weeks after eggs are laid; American toads need somewhat longer, while wood frogs and other vernal pool amphibians need a considerably longer timeframe.

window provide more opportunities for use by the species and are thus more likely to be used. Potential breeding pools A and B were not observed to have any significant degree of inundation other than during spring, despite numerous observations of the pool during the summer and fall seasons over multiple years. In our experience, Potential breeding pool A when dry, becomes almost completely covered with upland vegetation, leaving hardened ruts in the access road that bisects the pool as the only indication that the depression is ever inundated. No amphibian egg masses of any kind have been observed in potential breeding pool A. Potential breeding pool B is situated within an active cornfield and becomes indistinguishable once planted corn matures; the depression is undetectable when not inundated. In contrast, Potential breeding pool C's depression remains visible throughout the year, and as mentioned above, prevents the growth of corn. Unlike potential breeding pool C, which appears to have successfully produced American toads, potential breeding pool B served as a sink (i.e. a reproductive dead end) for American toads.

We understand that the conservation of preferred habitat is important for protection of the species. The additional protection areas described in this letter and depicted in Attachment A, Figure 1 and Figure 2, along with a properly implemented Avoidance and Mitigation Plan will protect habitat as well as individuals or potential breeding populations that could occur at the site.

The identified protection areas will be designated as such for the life of the Project, which means they will remain as-is, excluded from development and not disturbed by Project construction, operation, or decommissioning activities. The Project land use agreement (Attachment B) includes the conservation restrictions for the protection of all designated conservation or protection areas for wetlands, watercourses, herpetofauna and eastern spadefoot toad. This draft agreement will be signed by the all parties once all conservation areas are finalized upon receipt of a final determination from NDDB.

Project Development and Operation

We believe these additional protection areas adequately protect a potential breeding population of eastern spadefoot toads as well as other sensitive species that are known to occur or may occur within the Project Site. The habitat conservation around the gravel extraction area is the result of recent negotiations between Quinebaug Solar and the current landowner. Based on these negotiations, arrays have been re-arranged slightly and additional protection areas have been incorporated into the Project design, the updated development footprint is depicted in both figures in Attachment A. An example of the habitat conservation agreement is provided in Attachment B. Upon issuance of final determination by NDDB, the agreement will be signed by Quinebaug Solar, the landowner, and the mineral rights owner. This agreement will protect the designated area for the life of the project.

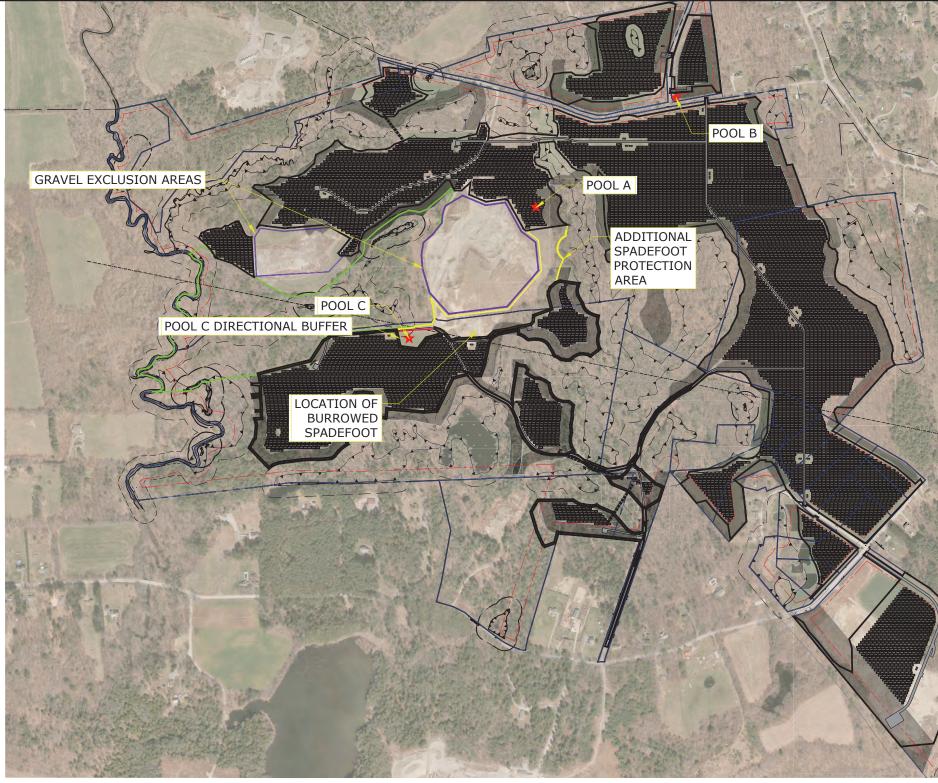
The Herpetofauna Avoidance and Mitigation Plan submitted to NDDB along with the Environmental Site Conditions Report outlines the measures that will be implemented during construction to protect eastern spadefoot toad. This includes environmental monitoring of the site during construction, installation of exclusion fencing, and provision of contractor training. These measures will apply to the additional areas described in this letter. Potential breeding pool C and adjacent areas will be monitored during Project construction. If individual eastern spadefoot toads are observed within the construction area, they will be relocated to areas outside of the exclusion fence. In addition, the protection area will be specifically flagged to prevent construction activities. Monitoring during construction will be done by a qualified biologist with a scientific collection permit and the ability to handle this listed species. During the operations phase of the Project, potential breeding pool C and directional buffer area will be avoided except for vegetation maintenance which would occur outside of the actual depression. Permanent signage will be installed to prevent mechanized vegetation maintenance equipment from entering the depression.

The attached figures depict all the areas within the Project Study Area that are currently being protected from development. These protection areas will preserve habitat and serve as a refuge for sensitive natural resources and listed species known to occur on the Project site, including eastern spadefoot toad. It is this Project team's position that the protections being offered by Quinebaug Solar are adequate for the scope of the Project and the anticipated resulting environmental impacts.

We hope that this supplemental submission addresses DEEP's concerns. Please feel free contact us if you have any further questions regarding any of the environmental reports, data or supporting Project information that has been previously provided, or regarding any of the information provided in this letter. We would appreciate a response as soon as practicable.

Respectfully submitted,

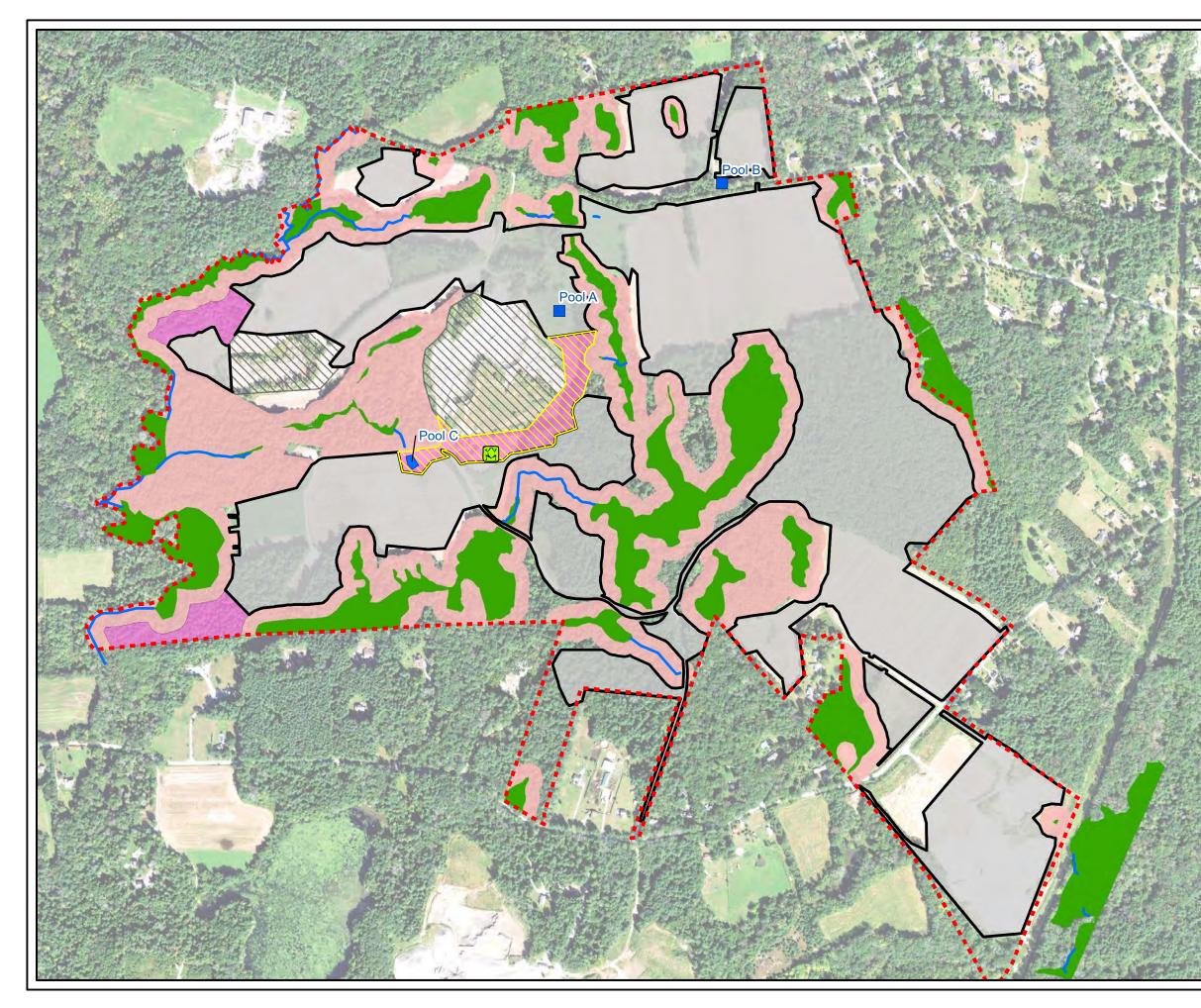
Katelin Nickerson Katelin Nickerson Project Manager, Senior Wetland Scientist Tetra Tech, Inc. 451 Presumpscot Street Portland, ME 04103 katelin.nickerson@tetratech.com

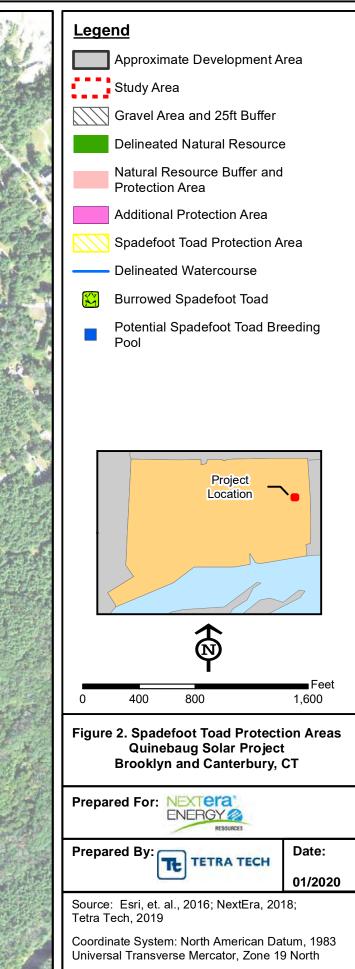

Kevin Ryan

Kevin J. Ryan, Ph.D. Manager, Ecological Services FB Environmental Associates 97A Exchange St., Suite 305 Portland, ME 04101 kevinr@fbenvironmental.com

cc. Hagen Lee, Jon Gravel – NextEra

Attachments Attachment A – Figures Attachment B – Conservation Agreement


Attachment A – Figures



LEGEND	
★ POTENTIAL BREEDING POOL	
PROPERTY LINE	
PROPERTY LINE SETBACK	
HERPETOFAUNA PROTECTION AREA	
GRAVEL EXCLUSION AREA	
DEVELOPMENT AREA	
ADDITIONAL SPADEFOOT PROTECTION AREA	
************* UNDERGROUND CONDUIT -	N IN N IN
DIRECTIONAL DRILLING	
VEGETATION SETBACK	

DRAFT - Conceptual layout for N

	N	Tighe&Bond Engineers Environmental Specialists www.tighebond.com
		NOT FOR CONSTRUCTION
		Quinebaug Solar Project
5-5-		Quinebaug Solar, LLC
The second		Brooklyn & Canterbury, Connecticut VERIFY SCALE BAR IS 1 INCH ON ORIGINAL DRAWING OGIGINAL DRAWING IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY
		MARK DATE DESCRIPTION PROJECT NO: R-0317
		PROSECTIVO. INCOMP DATE: 01/2020 FILE:Quinebaug Design 4.4 - Pool C.dwg DRAWN BY: ALG CHECKED: BA/BSH APPROVED: FJH POOL "C" PROTECTION
IDDB review	GRAPHIC SCALE IN FEET	SCALE: 1"=400' FIGURE 1

Attachment B – Conservation Agreement

January 10, 2020

Connecticut Department of Energy and Environmental Protection 79 Elm Street Hartford, Connecticut 06106

Re: Quinebaug Solar Project - Conservation Areas on the River Junction Estates Land

To Whom This May Concern:

Quinebaug Solar, LLC ("**Quinebaug Solar**") is currently proposing to construct a solar project on several parcels of land in the towns of Canterbury and Brooklyn, Connecticut. Quinebaug Solar understands the value of placing certain areas of the solar project in conservation for the duration of the solar project and therefore agrees that it will not develop solar on the areas shown in pink as further denoted on **Exhibit A**, the Conservation Areas Map, attached hereto and hereinafter incorporated by reference (the "**Conservation Areas**").

Further, the landowner, River Junction Estates, LLC and the mineral rights owners O&G Industries, Inc. and Strategic Commercial Realty, Inc. DBA Rawson Materials (collectively, referred to as the "Land **Parties**"), represent and warrant that for the duration of the solar project, the Land Parties will not develop or grant others the right to develop, the Conservation Areas.

Quinebaug Solar and the Land Parties agree that a short form of this letter in a format acceptable to all parties, may be recorded at the request of the Connecticut Department of Energy and Environmental Protection in the land records of the towns where such Conservation Areas lie.

QUINEBAUG SOLAR

Quinebaug Solar, LLC

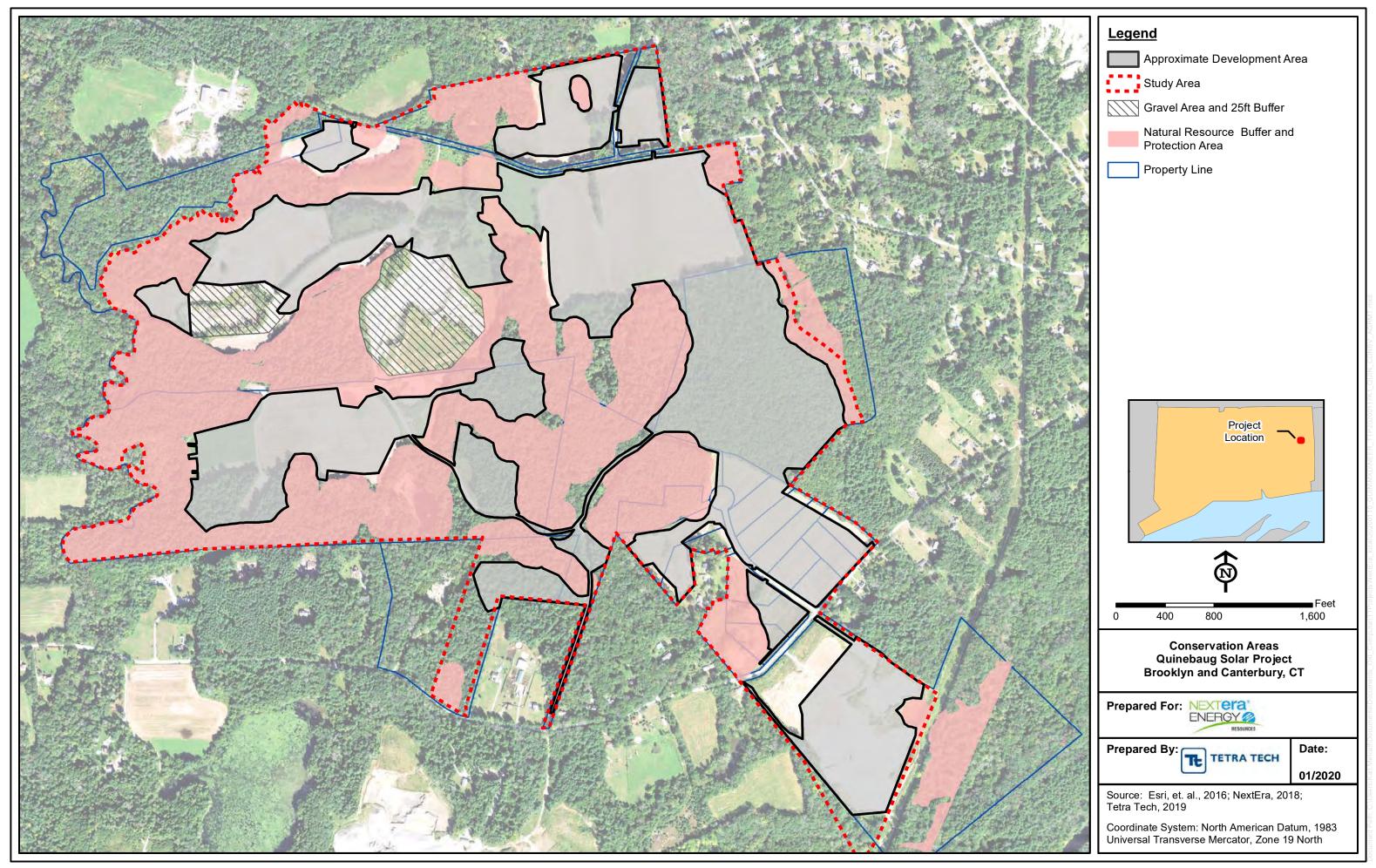
By: Title:

LAND PARTIES

Strategic Commercial Realty, Inc. dba Rawson Materials

By: Title:

O&G Industries, Inc.


By: Title:

River Junction Estates, LLC

By: Title:

EXHIBIT A

Conservation Areas Map

