

**STORMWATER MANAGEMENT PLAN WITH STORMWATER
POLLUTION PREVENTION PLAN
(SWPPP)
VOLUME 2**

**WIND COLEBROOK SOUTH
COLEBROOK, CONNECTICUT**

Prepared for:

**BNE Energy
29 South Main Street
Town Center, Suite 200
West Hartford, CT 06107**

by:

**CIVIL 1
43 Sherman Hill Road
Woodbury, CT 06798**

**AUGUST 2011
REVISED AUGUST 2012**

Existing Flows – DL3

Table of Contents

***** MASTER SUMMARY *****

Watershed..... Master Network Summary 1.01

***** DESIGN STORMS SUMMARY *****

Litchfield Co... Design Storms 2.01

Litchfield Co... 2 YR
Design Storms 2.02

***** TC CALCULATIONS *****

EXDA 3..... Tc Calcs 3.01

***** CN CALCULATIONS *****

EXDA 3..... Runoff CN-Area 4.01

***** RUNOFF HYDROGRAPHS *****

Unit Hyd. Equations 5.01

EXDA 3..... 2 YR
Unit Hyd. Summary 5.03EXDA 3..... 10 YR
Unit Hyd. Summary 5.04

Table of Contents (continued)

EXDA 3.....	25 YR	
	Unit Hyd. Summary	5.05
EXDA 3.....	50 YR	
	Unit Hyd. Summary	5.06
EXDA 3.....	100 YR	
	Unit Hyd. Summary	5.07

***** HYG ADDITION *****

DP 3.....	2 YR	
	Node: Addition Summary	6.01
DP 3.....	10 YR	
	Node: Addition Summary	6.04
DP 3.....	25 YR	
	Node: Addition Summary	6.07
DP 3.....	50 YR	
	Node: Addition Summary	6.10
DP 3.....	100 YR	
	Node: Addition Summary	6.13

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return Event	Total Depth in	Rainfall Type	RNF ID
2 YR	3.2000	Synthetic Curve	TypeIII 24hr
10 YR	4.7000	Synthetic Curve	TypeIII 24hr
25 YR	5.5000	Synthetic Curve	TypeIII 24hr
50 YR	6.2000	Synthetic Curve	TypeIII 24hr
100 YR	7.0000	Synthetic Curve	TypeIII 24hr

MASTER NETWORK SUMMARY
SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Right; LR=Left&Right)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Pond Storage ac-ft
*DP 3	JCT	2	.146	--	12.4000	.73		
*DP 3	JCT	10	.448	--	12.3000	3.49		
*DP 3	JCT	25	.653	--	12.2500	5.53		
*DP 3	JCT	50	.850	--	12.2500	7.49		
*DP 3	JCT	100	1.093	--	12.2500	9.90		
EXDA 3	AREA	2	.146	--	12.4000	.73		
EXDA 3	AREA	10	.448	--	12.3000	3.49		
EXDA 3	AREA	25	.653	--	12.2500	5.53		
EXDA 3	AREA	50	.850	--	12.2500	7.49		
EXDA 3	AREA	100	1.093	--	12.2500	9.90		

File.... C:\Program Files\Haestad\PPKW\PPW\
Title... Project Date: 4/16/2009
Project Engineer: Curtis Jones
Project Title: Watershed
Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Type.... Design Storms
Name.... Litchfield Co.
File.... C:\Program Files\Haestad\PPKW\PPW\
Storm... TypeIII 24hr Tag: 2 YR

Page 2.02
Event: 2 yr

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

:::::::::::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::::::::::

Segment #1: Tc: TR-55 Sheet

Mannings n .3000
Hydraulic Length 250.00 ft
2yr, 24hr P 3.2000 in
Slope .120000 ft/ft

Avg.Velocity .24 ft/sec

Segment #1 Time: .2890 hrs

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 335.00 ft
Slope .131000 ft/ft
Unpaved

Avg.Velocity 5.84 ft/sec

Segment #2 Time: .0159 hrs

=====
Total Tc: .3049 hrs
=====

File.... C:\Program Files\Haestad\PPKW\PPW\3092\EXDA 3.PPW

Tc Equations used...

===== SCS TR-55 Sheet Flow =====

$$Tc = (.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))$$

Where: Tc = Time of concentration, hrs
n = Mannings n
Lf = Flow length, ft
P = 2yr, 24hr Rain depth, inches
Sf = Slope, %

===== SCS TR-55 Shallow Concentrated Flow =====

Unpaved surface:

$$V = 16.1345 * (Sf^{0.5})$$

Paved surface:

$$V = 20.3282 * (Sf^{0.5})$$

$$Tc = (Lf / V) / (3600sec/hr)$$

Where: V = Velocity, ft/sec
Sf = Slope, ft/ft
Tc = Time of concentration, hrs
Lf = Flow length, ft

Type.... Runoff CN-Area
Name.... EXDA 3

Page 4.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious		Adjusted CN
			%C	%UC	
Soil Type B - Wooded	55	4.710			55.00
Soil Type B - Grass/Meadow	60	.820			60.00
Impervious	98	.140			98.00

COMPOSITE AREA & WEIGHTED CN ---> 5.670 56.78 (57)

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

DEFINITION OF TERMS: -----

At = Total area (acres): At = Ai+Ap
 Ai = Impervious area (acres)
 Ap = Pervious area (acres)
 CNi = Runoff curve number for impervious area
 CNp = Runoff curve number for pervious area
 fLoss = f loss constant infiltration (depth/time)
 gKs = Saturated Hydraulic Conductivity (depth/time)
 Md = Volumetric Moisture Deficit
 Psi = Capillary Suction (length)
 hK = Horton Infiltration Decay Rate (time^-1)
 fo = Initial Infiltration Rate (depth/time)
 fc = Ultimate(capacity)Infiltration Rate (depth/time)
 Ia = Initial Abstraction (length)
 dt = Computational increment (duration of unit excess rainfall)
 Default dt is smallest value of 0.1333Tc, rtm, and th
 (Smallest dt is then adjusted to match up with Tp)
 UDdt = User specified override computational main time increment
 (only used if UDdt is => .1333Tc)
 D(t) = Point on distribution curve (fraction of P) for time step t

 K = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67)
 Ks = Hydrograph shape factor
 = Unit Conversions * K:
 = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * K
 Default Ks = 645.333 * 0.75 = 484

 Lag = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc
 P = Total precipitation depth, inches
 Pa(t) = Accumulated rainfall at time step t
 Pi(t) = Incremental rainfall at time step t
 qp = Peak discharge (cfs) for lin. runoff, for 1hr, for 1 sq.mi.
 = (Ks * A * Q) / Tp (where Q = lin. runoff, A=sq.mi.)
 Qu(t) = Unit hydrograph ordinate (cfs) at time step t
 Q(t) = Final hydrograph ordinate (cfs) at time step t
 Rai(t) = Accumulated runoff (inches) at time step t for impervious area
 Rap(t) = Accumulated runoff (inches) at time step t for pervious area
 Rii(t) = Incremental runoff (inches) at time step t for impervious area
 Rip(t) = Incremental runoff (inches) at time step t for pervious area
 R(t) = Incremental weighted total runoff (inches)
 Rtm = Time increment for rainfall table
 Si = S for impervious area: Si = (1000/CNi) - 10
 Sp = S for pervious area: Sp = (1000/CNp) - 10
 t = Time step (row) number
 Tc = Time of concentration
 Tb = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr
 Tp = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag
 Tr = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

PRECIPITATION: -----

Column (1): Time for time step t
Column (2): $D(t)$ = Point on distribution curve for time step t
Column (3): $P_i(t) = P_a(t) - P_a(t-1)$: Col.(4) - Preceding Col.(4)
Column (4): $P_a(t) = D(t) \times P$: Col.(2) $\times P$

PERVERIOUS AREA RUNOFF (using SCS Runoff CN Method) -----

Column (5): $R_{ap}(t)$ = Accumulated pervious runoff for time step t
If $(P_a(t)) \leq 0.2Sp$ then use: $R_{ap}(t) = 0.0$
If $(P_a(t)) > 0.2Sp$ then use:
$$R_{ap}(t) = (Col.(4) - 0.2Sp)^{**2} / (Col.(4) + 0.8Sp)$$

Column (6): $R_{ip}(t)$ = Incremental pervious runoff for time step t
$$R_{ip}(t) = R_{ap}(t) - R_{ap}(t-1)$$

$$R_{ip}(t) = Col.(5) \text{ for current row} - Col.(5) \text{ for preceding row.}$$

IMPERVIOUS AREA RUNOFF -----

Column (7 & 8)... Did not specify to use impervious areas.

INCREMENTAL WEIGHTED RUNOFF: -----

Column (9): $R(t) = (A_p/A_t) \times R_{ip}(t) + (A_i/A_t) \times R_{ii}(t)$
$$R(t) = (A_p/A_t) \times Col.(6) + (A_i/A_t) \times Col.(8)$$

SCS UNIT HYDROGRAPH METHOD: -----

Column (10): $Q(t)$ is computed with the SCS unit hydrograph method
using $R()$ and $Q_u()$.

Type.... Unit Hyd. Summary
Name.... EXDA 3 Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 5.03
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 3 2 YR
Tc = .3049 hrs
Drainage Area = 5.670 acres Runoff CN= 57

=====

Computational Time Increment = .04066 hrs
Computed Peak Time = 12.4414 hrs
Computed Peak Flow = .74 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.4500 hrs
Peak Flow, Interpolated Output = .73 cfs

=====

DRAINAGE AREA

ID:EXDA 3
CN = 57
Area = 5.670 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

.3097 in
.146 ac-ft

HYG Volume... .146 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3)
Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfs
Unit peak time Tp = .20329 hrs
Unit receding limb, Tr = .81316 hrs
Total unit time, Tb = 1.01645 hrs

Type.... Unit Hyd. Summary
Name.... EXDA 3 Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 5.04
Event: 10 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm
Duration = 24.0000 hrs Rain Depth = 4.7000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 3 10 YR
Tc = .3049 hrs
Drainage Area = 5.670 acres Runoff CN= 57

=====

Computational Time Increment = .04066 hrs
Computed Peak Time = 12.2788 hrs
Computed Peak Flow = 3.52 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 3.49 cfs

=====

DRAINAGE AREA

ID:EXDA 3
CN = 57
Area = 5.670 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

.9487 in
.448 ac-ft

HYG Volume... .448 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3)
Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfs
Unit peak time Tp = .20329 hrs
Unit receding limb, Tr = .81316 hrs
Total unit time, Tb = 1.01645 hrs

Type.... Unit Hyd. Summary
Name.... EXDA 3 Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 5.05
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 3 25 YR
Tc = .3049 hrs
Drainage Area = 5.670 acres Runoff CN= 57

=====

Computational Time Increment = .04066 hrs
Computed Peak Time = 12.2381 hrs
Computed Peak Flow = 5.53 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.2500 hrs
Peak Flow, Interpolated Output = 5.53 cfs

=====

DRAINAGE AREA

ID:EXDA 3
CN = 57
Area = 5.670 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

1.3810 in
.653 ac-ft

HYG Volume... .653 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3)
Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfs
Unit peak time Tp = .20329 hrs
Unit receding limb, Tr = .81316 hrs
Total unit time, Tb = 1.01645 hrs

Type.... Unit Hyd. Summary
Name.... EXDA 3 Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 5.06
Event: 50 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm
Duration = 24.0000 hrs Rain Depth = 6.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 3 50 YR
Tc = .3049 hrs
Drainage Area = 5.670 acres Runoff CN= 57

=====

Computational Time Increment = .04066 hrs
Computed Peak Time = 12.2381 hrs
Computed Peak Flow = 7.51 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.2500 hrs
Peak Flow, Interpolated Output = 7.49 cfs

=====

DRAINAGE AREA

ID:EXDA 3
CN = 57
Area = 5.670 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

1.7987 in
.850 ac-ft

HYG Volume... .850 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3)
Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfs
Unit peak time Tp = .20329 hrs
Unit receding limb, Tr = .81316 hrs
Total unit time, Tb = 1.01645 hrs

Type.... Unit Hyd. Summary
Name.... EXDA 3 Tag: 100 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 5.07
Event: 100 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm
Duration = 24.0000 hrs Rain Depth = 7.0000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 3 100 YR
Tc = .3049 hrs
Drainage Area = 5.670 acres Runoff CN= 57

=====
Computational Time Increment = .04066 hrs
Computed Peak Time = 12.2381 hrs
Computed Peak Flow = 9.95 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.2500 hrs
Peak Flow, Interpolated Output = 9.90 cfs
=====

DRAINAGE AREA

ID:EXDA 3
CN = 57
Area = 5.670 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

2.3133 in
1.093 ac-ft

HYG Volume... 1.093 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3)
Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfs
Unit peak time Tp = .20329 hrs
Unit receding limb, Tr = .81316 hrs
Total unit time, Tb = 1.01645 hrs

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.01
Event: 2 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 3	EXDA 3		EXDA 3	2 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 3		2 YR	.146	12.4000	.73

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 3		2 YR	.146	12.4000	.73

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.02
Event: 2 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 3
HYG Tag = 2 YR

Peak Discharge = .73 cfs
Time to Peak = 12.4000 hrs
HYG Volume = .146 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

11.9500 | .00 .00 .03 .09 .22
12.2000 | .38 .53 .64 .70 .73
12.4500 | .73 .71 .67 .61 .55
12.7000 | .50 .45 .42 .39 .37
12.9500 | .35 .34 .32 .31 .30
13.2000 | .29 .28 .27 .27 .26
13.4500 | .26 .26 .26 .25 .25
13.7000 | .25 .24 .24 .24 .24
13.9500 | .23 .23 .23 .22 .22
14.2000 | .22 .21 .21 .21 .21
14.4500 | .21 .20 .20 .20 .20
14.7000 | .20 .20 .19 .19 .19
14.9500 | .19 .19 .19 .18 .18
15.2000 | .18 .18 .18 .17 .17
15.4500 | .17 .17 .16 .16 .16
15.7000 | .16 .16 .15 .15 .15
15.9500 | .15 .14 .14 .14 .14
16.2000 | .13 .13 .13 .13 .13
16.4500 | .13 .13 .13 .12 .12
16.7000 | .12 .12 .12 .12 .12
16.9500 | .12 .12 .12 .11 .11
17.2000 | .11 .11 .11 .11 .11
17.4500 | .11 .11 .10 .10 .10
17.7000 | .10 .10 .10 .10 .10
17.9500 | .09 .09 .09 .09 .09
18.2000 | .09 .09 .09 .09 .09
18.4500 | .09 .09 .09 .09 .08
18.7000 | .08 .08 .08 .08 .08
18.9500 | .08 .08 .08 .08 .08
19.2000 | .08 .08 .08 .08 .08
19.4500 | .08 .08 .08 .08 .08

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.03
Event: 2 yr

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
19.7000	.08	.08	.08	.08	.08
19.9500	.08	.08	.08	.08	.07
20.2000	.07	.07	.07	.07	.07
20.4500	.07	.07	.07	.07	.07
20.7000	.07	.07	.07	.07	.07
20.9500	.07	.07	.07	.07	.07
21.2000	.07	.07	.07	.07	.07
21.4500	.07	.07	.07	.07	.07
21.7000	.07	.07	.07	.07	.07
21.9500	.07	.07	.06	.06	.06
22.2000	.06	.06	.06	.06	.06
22.4500	.06	.06	.06	.06	.06
22.7000	.06	.06	.06	.06	.06
22.9500	.06	.06	.06	.06	.06
23.2000	.06	.06	.06	.06	.06
23.4500	.06	.06	.06	.06	.06
23.7000	.06	.05	.05	.05	.05
23.9500	.05	.05	.05	.05	.04
24.2000	.03	.02	.01	.01	.01
24.4500	.00	.00	.00	.00	.00

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092_EXDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.04
Event: 10 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 3	EXDA 3		EXDA 3	10 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 3		10 YR	.448	12.3000	3.49

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 3		10 YR	.448	12.3000	3.49

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.05
Event: 10 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 3
HYG Tag = 10 YR

Peak Discharge = 3.49 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .448 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.
-----|-----|-----|-----|-----|-----|
11.6500 | .00 .00 .02 .05 .13
11.9000 | .25 .44 .78 1.31 1.98
12.1500 | 2.68 3.23 3.48 3.49 3.35
12.4000 | 3.15 2.91 2.66 2.38 2.10
12.6500 | 1.83 1.61 1.43 1.29 1.18
12.9000 | 1.10 1.03 .97 .92 .87
13.1500 | .83 .80 .77 .75 .74
13.4000 | .72 .71 .70 .69 .68
13.6500 | .67 .66 .65 .64 .63
13.9000 | .62 .61 .60 .59 .58
14.1500 | .57 .56 .55 .54 .54
14.4000 | .53 .53 .52 .51 .51
14.6500 | .50 .50 .49 .49 .48
14.9000 | .48 .47 .47 .46 .46
15.1500 | .45 .44 .44 .43 .43
15.4000 | .42 .42 .41 .40 .40
15.6500 | .39 .39 .38 .37 .37
15.9000 | .36 .35 .35 .34 .34
16.1500 | .33 .32 .32 .32 .31
16.4000 | .31 .31 .30 .30 .30
16.6500 | .29 .29 .29 .29 .28
16.9000 | .28 .28 .28 .27 .27
17.1500 | .27 .26 .26 .26 .26
17.4000 | .25 .25 .25 .24 .24
17.6500 | .24 .24 .23 .23 .23
17.9000 | .22 .22 .22 .22 .21
18.1500 | .21 .21 .21 .20 .20
18.4000 | .20 .20 .20 .20 .20
18.6500 | .20 .20 .20 .19 .19
18.9000 | .19 .19 .19 .19 .19
19.1500 | .19 .19 .19 .19 .19

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.06
Event: 10 yr

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
19.4000	.18	.18	.18	.18	.18
19.6500	.18	.18	.18	.18	.18
19.9000	.18	.18	.17	.17	.17
20.1500	.17	.17	.17	.17	.17
20.4000	.17	.17	.17	.17	.17
20.6500	.16	.16	.16	.16	.16
20.9000	.16	.16	.16	.16	.16
21.1500	.16	.16	.16	.16	.16
21.4000	.16	.15	.15	.15	.15
21.6500	.15	.15	.15	.15	.15
21.9000	.15	.15	.15	.15	.15
22.1500	.15	.14	.14	.14	.14
22.4000	.14	.14	.14	.14	.14
22.6500	.14	.14	.14	.14	.14
22.9000	.13	.13	.13	.13	.13
23.1500	.13	.13	.13	.13	.13
23.4000	.13	.13	.13	.13	.12
23.6500	.12	.12	.12	.12	.12
23.9000	.12	.12	.12	.11	.10
24.1500	.09	.07	.05	.03	.02
24.4000	.01	.01	.01	.00	.00
24.6500	.00	.00	.00		

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.07
Event: 25 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 3	EXDA 3		EXDA 3	25 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 3		25 YR	.653	12.2500	5.53

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 3		25 YR	.653	12.2500	5.53

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.08
Event: 25 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 3
HYG Tag = 25 YR

Peak Discharge = 5.53 cfs
Time to Peak = 12.2500 hrs
HYG Volume = .653 ac-ft

Time hrs	HYDROGRAPH ORDINATES (cfs)				
	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
11.3500	.00	.00	.01	.02	.04
11.6000	.06	.11	.17	.26	.39
11.8500	.57	.82	1.17	1.73	2.56
12.1000	3.56	4.55	5.28	5.53	5.43
12.3500	5.12	4.73	4.33	3.91	3.47
12.6000	3.04	2.64	2.30	2.03	1.83
12.8500	1.67	1.55	1.45	1.36	1.29
13.1000	1.22	1.16	1.12	1.08	1.05
13.3500	1.02	1.00	.99	.97	.95
13.6000	.94	.92	.91	.90	.88
13.8500	.87	.85	.84	.82	.81
14.1000	.79	.78	.76	.75	.74
14.3500	.73	.73	.72	.71	.70
14.6000	.70	.69	.68	.67	.67
14.8500	.66	.65	.64	.63	.63
15.1000	.62	.61	.60	.60	.59
15.3500	.58	.57	.56	.55	.55
15.6000	.54	.53	.52	.51	.50
15.8500	.50	.49	.48	.47	.46
16.1000	.45	.44	.44	.43	.43
16.3500	.42	.42	.41	.41	.40
16.6000	.40	.40	.39	.39	.39
16.8500	.38	.38	.37	.37	.37
17.1000	.36	.36	.36	.35	.35
17.3500	.34	.34	.34	.33	.33
17.6000	.32	.32	.32	.31	.31
17.8500	.30	.30	.30	.29	.29
18.1000	.28	.28	.28	.27	.27
18.3500	.27	.27	.27	.27	.27
18.6000	.26	.26	.26	.26	.26
18.8500	.26	.26	.26	.26	.25

Type.... Node: Addition Summary

Page 6.09

Name.... DP 3

Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 25 YR

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs				
	Time on left represents time for first value in each row.				
19.1000	.25	.25	.25	.25	.25
19.3500	.25	.25	.25	.24	.24
19.6000	.24	.24	.24	.24	.24
19.8500	.24	.23	.23	.23	.23
20.1000	.23	.23	.23	.23	.23
20.3500	.23	.22	.22	.22	.22
20.6000	.22	.22	.22	.22	.22
20.8500	.22	.21	.21	.21	.21
21.1000	.21	.21	.21	.21	.21
21.3500	.21	.21	.21	.20	.20
21.6000	.20	.20	.20	.20	.20
21.8500	.20	.20	.20	.20	.19
22.1000	.19	.19	.19	.19	.19
22.3500	.19	.19	.19	.19	.18
22.6000	.18	.18	.18	.18	.18
22.8500	.18	.18	.18	.18	.18
23.1000	.17	.17	.17	.17	.17
23.3500	.17	.17	.17	.17	.17
23.6000	.17	.16	.16	.16	.16
23.8500	.16	.16	.16	.16	.15
24.1000	.14	.12	.09	.06	.04
24.3500	.03	.02	.01	.01	.01
24.6000	.00	.00	.00	.00	

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.10
Event: 50 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 3	EXDA 3		EXDA 3	50 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 3		50 YR	.850	12.2500	7.49

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 3		50 YR	.850	12.2500	7.49

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.11
Event: 50 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 3
HYG Tag = 50 YR

Peak Discharge = 7.49 cfs
Time to Peak = 12.2500 hrs
HYG Volume = .850 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

11.0000 | .00 .00 .01 .02 .03
11.2500 | .04 .06 .08 .11 .14
11.5000 | .17 .21 .26 .33 .44
11.7500 | .59 .80 1.07 1.43 1.92
12.0000 | 2.69 3.80 5.11 6.37 7.25
12.2500 | 7.49 7.28 6.80 6.24 5.67
12.5000 | 5.09 4.50 3.92 3.40 2.95
12.7500 | 2.60 2.33 2.13 1.97 1.84
13.0000 | 1.73 1.63 1.54 1.47 1.41
13.2500 | 1.36 1.32 1.29 1.26 1.24
13.5000 | 1.22 1.20 1.18 1.16 1.14
13.7500 | 1.12 1.10 1.08 1.06 1.05
14.0000 | 1.03 1.01 .99 .97 .95
14.2500 | .94 .93 .92 .90 .89
14.5000 | .88 .87 .87 .86 .85
14.7500 | .84 .83 .82 .81 .80
15.0000 | .79 .78 .77 .76 .75
15.2500 | .74 .73 .72 .71 .70
15.5000 | .69 .68 .67 .66 .64
15.7500 | .63 .62 .61 .60 .59
16.0000 | .58 .57 .56 .55 .54
16.2500 | .53 .53 .52 .51 .51
16.5000 | .50 .50 .49 .49 .48
16.7500 | .48 .48 .47 .47 .46
17.0000 | .46 .45 .45 .44 .44
17.2500 | .43 .43 .42 .42 .41
17.5000 | .41 .40 .40 .39 .39
17.7500 | .38 .38 .37 .37 .36
18.0000 | .36 .35 .35 .34 .34
18.2500 | .34 .34 .33 .33 .33
18.5000 | .33 .33 .33 .32 .32

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.12
Event: 50 yr

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
18.7500	.32	.32	.32	.32	.32
19.0000	.31	.31	.31	.31	.31
19.2500	.31	.31	.30	.30	.30
19.5000	.30	.30	.30	.30	.29
19.7500	.29	.29	.29	.29	.29
20.0000	.28	.28	.28	.28	.28
20.2500	.28	.28	.28	.27	.27
20.5000	.27	.27	.27	.27	.27
20.7500	.27	.27	.26	.26	.26
21.0000	.26	.26	.26	.26	.26
21.2500	.26	.25	.25	.25	.25
21.5000	.25	.25	.25	.25	.25
21.7500	.24	.24	.24	.24	.24
22.0000	.24	.24	.24	.24	.23
22.2500	.23	.23	.23	.23	.23
22.5000	.23	.23	.23	.22	.22
22.7500	.22	.22	.22	.22	.22
23.0000	.22	.21	.21	.21	.21
23.2500	.21	.21	.21	.21	.21
23.5000	.20	.20	.20	.20	.20
23.7500	.20	.20	.20	.19	.19
24.0000	.19	.19	.17	.14	.11
24.2500	.08	.05	.03	.02	.01
24.5000	.01	.01	.00	.00	.00
24.7500	.00	.00			

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.13
Event: 100 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 3	EXDA 3		EXDA 3	100 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 3		100 YR	1.093	12.2500	9.90

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 3		100 YR	1.093	12.2500	9.90

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.14
Event: 100 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 3
HYG Tag = 100 YR

Peak Discharge = 9.90 cfs
Time to Peak = 12.2500 hrs
HYG Volume = 1.093 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
10.5500	.00	.00	.00	.01	.02
10.8000	.03	.04	.06	.07	.09
11.0500	.11	.13	.15	.17	.20
11.3000	.23	.26	.30	.34	.39
11.5500	.45	.52	.63	.79	1.02
11.8000	1.33	1.72	2.20	2.87	3.89
12.0500	5.35	7.04	8.62	9.68	9.90
12.3000	9.53	8.85	8.06	7.28	6.51
12.5500	5.74	4.98	4.30	3.73	3.28
12.8000	2.94	2.67	2.47	2.30	2.16
13.0500	2.03	1.93	1.83	1.76	1.69
13.3000	1.64	1.60	1.57	1.54	1.51
13.5500	1.49	1.46	1.44	1.41	1.39
13.8000	1.37	1.34	1.32	1.29	1.27
14.0500	1.24	1.22	1.20	1.18	1.16
14.3000	1.14	1.13	1.12	1.10	1.09
14.5500	1.08	1.07	1.05	1.04	1.03
14.8000	1.02	1.01	.99	.98	.97
15.0500	.96	.94	.93	.92	.91
15.3000	.89	.88	.87	.86	.84
15.5500	.83	.82	.80	.79	.78
15.8000	.76	.75	.74	.72	.71
16.0500	.70	.68	.67	.66	.65
16.3000	.64	.64	.63	.62	.62
16.5500	.61	.60	.60	.59	.59
16.8000	.58	.58	.57	.56	.56
17.0500	.55	.55	.54	.53	.53
17.3000	.52	.52	.51	.50	.50
17.5500	.49	.49	.48	.47	.47
17.8000	.46	.46	.45	.44	.44
18.0500	.43	.43	.42	.42	.41

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.15
Event: 100 yr

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

18.3000	.41	.41	.40	.40	.40
18.5500	.40	.40	.39	.39	.39
18.8000	.39	.39	.39	.38	.38
19.0500	.38	.38	.38	.37	.37
19.3000	.37	.37	.37	.37	.36
19.5500	.36	.36	.36	.36	.36
19.8000	.35	.35	.35	.35	.35
20.0500	.34	.34	.34	.34	.34
20.3000	.34	.34	.33	.33	.33
20.5500	.33	.33	.33	.33	.32
20.8000	.32	.32	.32	.32	.32
21.0500	.32	.31	.31	.31	.31
21.3000	.31	.31	.31	.31	.30
21.5500	.30	.30	.30	.30	.30
21.8000	.30	.29	.29	.29	.29
22.0500	.29	.29	.29	.28	.28
22.3000	.28	.28	.28	.28	.28
22.5500	.27	.27	.27	.27	.27
22.8000	.27	.27	.26	.26	.26
23.0500	.26	.26	.26	.26	.25
23.3000	.25	.25	.25	.25	.25
23.5500	.25	.24	.24	.24	.24
23.8000	.24	.24	.24	.23	.23
24.0500	.22	.21	.17	.13	.09
24.3000	.06	.04	.03	.02	.01
24.5500	.01	.01	.00	.00	.00
24.8000	.00				

Index of Starting Page Numbers for ID Names

----- D -----

DP 3 2 YR... 6.01, 6.04, 6.07, 6.10,
6.13

----- E -----

EXDA 3... 3.01, 4.01, 5.03, 5.04,
5.05, 5.06, 5.07

----- L -----

Litchfield Co.... 2.01, 2.02

----- W -----

Watershed... 1.01

Proposed Flows - DL3

Table of Contents

*****MASTER SUMMARY*****

Watershed..... Master Network Summary 1.01

*****DESIGN STORMS SUMMARY*****

Litchfield Co... Design Storms 2.01

Litchfield Co... 2 YR
Design Storms 2.02

*****TC CALCULATIONS*****

PRDA 3D..... Tc Calcs 3.01

PRDA 3ND..... Tc Calcs 3.03

*****CN CALCULATIONS*****

PRDA 3D..... Runoff CN-Area 4.01

PRDA 3ND..... Runoff CN-Area 4.02

*****RUNOFF HYDROGRAPHS*****

Unit Hyd. Equations 5.01

PRDA 3D..... 2 YR
Unit Hyd. Summary 5.03

Table of Contents (continued)

PRDA 3D.....	10 YR	
	Unit Hyd. Summary	5.04
PRDA 3D.....	25 YR	
	Unit Hyd. Summary	5.05
PRDA 3D.....	50 YR	
	Unit Hyd. Summary	5.06
PRDA 3D.....	100 YR	
	Unit Hyd. Summary	5.07
PRDA 3ND.....	2 YR	
	Unit Hyd. Summary	5.08
PRDA 3ND.....	10 YR	
	Unit Hyd. Summary	5.09
PRDA 3ND.....	25 YR	
	Unit Hyd. Summary	5.10
PRDA 3ND.....	50 YR	
	Unit Hyd. Summary	5.11
PRDA 3ND.....	100 YR	
	Unit Hyd. Summary	5.12

***** HYG ADDITION *****

DP 3.....	2 YR	
	Node: Addition Summary	6.01
DP 3.....	10 YR	
	Node: Addition Summary	6.03
DP 3.....	25 YR	
	Node: Addition Summary	6.05
DP 3.....	50 YR	
	Node: Addition Summary	6.08
DP 3.....	100 YR	
	Node: Addition Summary	6.11

***** POND VOLUMES *****

POND 1.....	Vol: Elev-Area	7.01
-------------	----------------------	------

Table of Contents (continued)

***** OUTLET STRUCTURES *****

Outlet 1.....	Outlet Input Data	8.01
	Individual Outlet Curves	8.03
	Composite Rating Curve	8.07

***** POND ROUTING *****

POND 1.....	Pond Infiltration Calcs	9.01
	Pond E-V-Q Table	9.02
POND 1	OUT 2 YR	
	Pond Routing Summary	9.05
POND 1	OUT 10 YR	
	Pond Routing Summary	9.06
POND 1	OUT 25 YR	
	Pond Routing Summary	9.07
POND 1	OUT 50 YR	
	Pond Routing Summary	9.08
POND 1	OUT 100 YR	
	Pond Routing Summary	9.09

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return Event	Total Depth in	Rainfall Type	RNF ID
2 YR	3.2000	Synthetic Curve	TypeIII 24hr
10 YR	4.7000	Synthetic Curve	TypeIII 24hr
25 YR	5.5000	Synthetic Curve	TypeIII 24hr
50 YR	6.2000	Synthetic Curve	TypeIII 24hr
100 YR	7.0000	Synthetic Curve	TypeIII 24hr

MASTER NETWORK SUMMARY
 SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
 (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Pond Storage ac-ft
*DP 3	JCT	2	.162		12.4000	.95		
*DP 3	JCT	10	.507		12.3000	3.41		
*DP 3	JCT	25	.737		12.3000	5.00		
*DP 3	JCT	50	.958		12.3000	6.73		
*DP 3	JCT	100	1.231		12.3000	9.19		
JUNCTION	JCT	2	.162		12.4000	.95		
JUNCTION	JCT	10	.507		12.3000	3.41		
JUNCTION	JCT	25	.737		12.3000	5.00		
JUNCTION	JCT	50	.958		12.3000	6.73		
JUNCTION	JCT	100	1.231		12.3000	9.19		
POND 1	IN POND	2	.133		12.1000	1.36		
POND 1	IN POND	10	.297		12.1000	3.38		
POND 1	IN POND	25	.397		12.1000	4.60		
POND 1	IN POND	50	.490		12.1000	5.71		
POND 1	IN POND	100	.600		12.1000	7.03		

MASTER NETWORK SUMMARY
SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Right; LR=Left&Right)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
POND 1	OUT POND	2	.056		12.5000	.43	1443.97	.030
POND 1	OUT POND	10	.182		12.5000	.92	1444.69	.084
POND 1	OUT POND	25	.263		12.5000	1.15	1445.12	.122
POND 1	OUT POND	50	.341		12.5000	1.70	1445.43	.151
POND 1	OUT POND	100	.437		12.4000	2.47	1445.71	.180
PRDA 3D	AREA	2	.133		12.1000	1.36		
PRDA 3D	AREA	10	.297		12.1000	3.38		
PRDA 3D	AREA	25	.397		12.1000	4.60		
PRDA 3D	AREA	50	.490		12.1000	5.71		
PRDA 3D	AREA	100	.600		12.1000	7.03		
PRDA 3ND	AREA	2	.106		12.4000	.54		
PRDA 3ND	AREA	10	.326		12.3000	2.55		
PRDA 3ND	AREA	25	.474		12.3000	3.95		
PRDA 3ND	AREA	50	.618		12.2000	5.33		
PRDA 3ND	AREA	100	.794		12.2000	7.11		

File.... C:\Program Files\Haestad\PPKW\PPW\
Title... Project Date: 4/16/2009
Project Engineer: Curtis Jones
Project Title: Watershed
Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Type.... Design Storms
Name.... Litchfield Co.
File.... C:\Program Files\Haestad\PPKW\PPW\
Storm... TypeIII 24hr Tag: 2 YR

Page 2.02
Event: 2 yr

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Type.... Tc Calcs
Name.... PRDA 3D

Page 3.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

:::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::

Segment #1: Tc: User Defined

Segment #1 Time: .1300 hrs

=====
Total Tc: .1300 hrs
=====

Type.... Tc Calcs
Name.... PRDA 3D

Page 3.02

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Tc Equations used...

===== User Defined =====

Tc = Value entered by user

Where: Tc = Time of concentration

Type.... Tc Calcs
Name.... PRDA 3ND

Page 3.03

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

:::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::

Segment #1: Tc: User Defined

Segment #1 Time: .3000 hrs

=====
Total Tc: .3000 hrs
=====

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Tc Equations used...

===== User Defined =====

Tc = Value entered by user

Where: Tc = Time of concentration

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious		Adjusted CN
			%C	%UC	
Soil Type B - Grass/Meadow	60	1.520			60.00
Soil Type B - Wooded	55	.030			55.00
Impervious Area	98	.500			98.00

COMPOSITE AREA & WEIGHTED CN ---> 2.050 69.20 (69)

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

RUNOFF CURVE NUMBER DATA

::

Soil/Surface Description	CN	Area acres	Impervious		Adjusted CN
			Adjustment %C	%UC	
Soil Type B - Wooded	55	2.730		55.00	
Soil Type B - Grass/Meadow	58	1.320		58.00	
Impervious	98	.070		98.00	

COMPOSITE AREA & WEIGHTED CN ---> 4.120 56.69 (57)

::

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

DEFINITION OF TERMS: -----

At = Total area (acres): At = Ai+Ap
 Ai = Impervious area (acres)
 Ap = Pervious area (acres)
 CNi = Runoff curve number for impervious area
 CNp = Runoff curve number for pervious area
 fLoss = f loss constant infiltration (depth/time)
 gKs = Saturated Hydraulic Conductivity (depth/time)
 Md = Volumetric Moisture Deficit
 Psi = Capillary Suction (length)
 hK = Horton Infiltration Decay Rate (time^-1)
 fo = Initial Infiltration Rate (depth/time)
 fc = Ultimate(capacity) Infiltration Rate (depth/time)
 Ia = Initial Abstraction (length)
 dt = Computational increment (duration of unit excess rainfall)
 Default dt is smallest value of 0.1333Tc, rtm, and th
 (Smallest dt is then adjusted to match up with Tp)
 UDdt = User specified override computational main time increment
 (only used if UDdt is => .1333Tc)
 D(t) = Point on distribution curve (fraction of P) for time step t

 K = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67)
 Ks = Hydrograph shape factor
 = Unit Conversions * K:
 = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * K
 Default Ks = 645.333 * 0.75 = 484

 Lag = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc
 P = Total precipitation depth, inches
 Pa(t) = Accumulated rainfall at time step t
 Pi(t) = Incremental rainfall at time step t
 qp = Peak discharge (cfs) for lin. runoff, for 1hr, for 1 sq.mi.
 = (Ks * A * Q) / Tp (where Q = lin. runoff, A=sq.mi.)
 Qu(t) = Unit hydrograph ordinate (cfs) at time step t
 Q(t) = Final hydrograph ordinate (cfs) at time step t
 Rai(t) = Accumulated runoff (inches) at time step t for impervious area
 Rap(t) = Accumulated runoff (inches) at time step t for pervious area
 Rii(t) = Incremental runoff (inches) at time step t for impervious area
 Rip(t) = Incremental runoff (inches) at time step t for pervious area
 R(t) = Incremental weighted total runoff (inches)
 Rtm = Time increment for rainfall table
 Si = S for impervious area: Si = (1000/CNi) - 10
 Sp = S for pervious area: Sp = (1000/CNp) - 10
 t = Time step (row) number
 Tc = Time of concentration
 Tb = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr
 Tp = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag
 Tr = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

PRECIPITATION: -----

Column (1): Time for time step t
 Column (2): $D(t)$ = Point on distribution curve for time step t
 Column (3): $P_i(t) = P_a(t) - P_a(t-1)$: Col.(4) - Preceding Col.(4)
 Column (4): $P_a(t) = D(t) \times P$: Col.(2) $\times P$

PERVERIOUS AREA RUNOFF (using SCS Runoff CN Method) -----

Column (5): $R_a(t) =$ Accumulated pervious runoff for time step t
 If $(P_a(t) \leq 0.2S_p)$ then use: $R_a(t) = 0.0$
 If $(P_a(t) > 0.2S_p)$ then use:

$$R_a(t) = (Col.(4) - 0.2S_p)^{**2} / (Col.(4) + 0.8S_p)$$

Column (6): $R_i(t) =$ Incremental pervious runoff for time step t

$$R_i(t) = R_a(t) - R_a(t-1)$$

$R_i(t) = Col.(5)$ for current row - $Col.(5)$ for preceding row.

IMPERVIOUS AREA RUNOFF -----

Column (7 & 8)... Did not specify to use impervious areas.

INCREMENTAL WEIGHTED RUNOFF: -----

Column (9): $R(t) = (A_p/A_t) \times R_i(t) + (A_i/A_t) \times R_{ii}(t)$
 $R(t) = (A_p/A_t) \times Col.(6) + (A_i/A_t) \times Col.(8)$

SCS UNIT HYDROGRAPH METHOD: -----

Column (10): $Q(t)$ is computed with the SCS unit hydrograph method
 using $R()$ and $Q_u()$.

Type.... Unit Hyd. Summary
Name.... PRDA 3D Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 5.03
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3D 2 YR
Tc = .1300 hrs
Drainage Area = 2.050 acres Runoff CN= 69

=====

Computational Time Increment = .01733 hrs
Computed Peak Time = 12.1333 hrs
Computed Peak Flow = 1.45 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.1000 hrs
Peak Flow, Interpolated Output = 1.36 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%

=====

DRAINAGE AREA

ID:PRDA 3D
CN = 69
Area = 2.050 acres
S = 4.4928 in
0.2S = .8986 in

Cumulative Runoff

.7796 in
.133 ac-ft

HYG Volume... .133 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D)
Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs
Unit peak time Tp = .08667 hrs
Unit receding limb, Tr = .34667 hrs
Total unit time, Tb = .43333 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 3D Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 5.04
Event: 10 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm
Duration = 24.0000 hrs Rain Depth = 4.7000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3D 10 YR
Tc = .1300 hrs
Drainage Area = 2.050 acres Runoff CN= 69

=====

Computational Time Increment = .01733 hrs
Computed Peak Time = 12.1333 hrs
Computed Peak Flow = 3.50 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.1000 hrs
Peak Flow, Interpolated Output = 3.38 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%

=====

DRAINAGE AREA

ID:PRDA 3D
CN = 69
Area = 2.050 acres
S = 4.4928 in
0.2S = .8986 in

Cumulative Runoff

1.7423 in
.298 ac-ft

HYG Volume... .297 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D)
Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs
Unit peak time Tp = .08667 hrs
Unit receding limb, Tr = .34667 hrs
Total unit time, Tb = .43333 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 3D Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 5.05
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3D 25 YR
Tc = .1300 hrs
Drainage Area = 2.050 acres Runoff CN= 69

=====

Computational Time Increment = .01733 hrs
Computed Peak Time = 12.1333 hrs
Computed Peak Flow = 4.72 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.1000 hrs
Peak Flow, Interpolated Output = 4.60 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%

=====

DRAINAGE AREA

ID:PRDA 3D
CN = 69
Area = 2.050 acres
S = 4.4928 in
0.2S = .8986 in

Cumulative Runoff

2.3282 in
.398 ac-ft

HYG Volume... .397 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D)
Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs
Unit peak time Tp = .08667 hrs
Unit receding limb, Tr = .34667 hrs
Total unit time, Tb = .43333 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 3D Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 5.06
Event: 50 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm
Duration = 24.0000 hrs Rain Depth = 6.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3D 50 YR
Tc = .1300 hrs
Drainage Area = 2.050 acres Runoff CN= 69

=====

Computational Time Increment = .01733 hrs
Computed Peak Time = 12.1333 hrs
Computed Peak Flow = 5.84 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.1000 hrs
Peak Flow, Interpolated Output = 5.71 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%

=====

DRAINAGE AREA

ID:PRDA 3D
CN = 69
Area = 2.050 acres
S = 4.4928 in
0.2S = .8986 in

Cumulative Runoff

2.8696 in
.490 ac-ft

HYG Volume... .490 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D)
Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs
Unit peak time Tp = .08667 hrs
Unit receding limb, Tr = .34667 hrs
Total unit time, Tb = .43333 hrs

Type.... Unit Hyd. Summary

Page 5.07

Name.... PRDA 3D Tag: 100 YR

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in

Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 3D 100 YR

Tc = .1300 hrs

Drainage Area = 2.050 acres Runoff CN= 69

=====

Computational Time Increment = .01733 hrs

Computed Peak Time = 12.1160 hrs

Computed Peak Flow = 7.16 cfs

Time Increment for HYG File = .1000 hrs

Peak Time, Interpolated Output = 12.1000 hrs

Peak Flow, Interpolated Output = 7.03 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID:PRDA 3D

CN = 69

Area = 2.050 acres

S = 4.4928 in

0.2S = .8986 in

Cumulative Runoff

3.5140 in

.600 ac-ft

HYG Volume... .600 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D)

Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs

Unit peak time Tp = .08667 hrs

Unit receding limb, Tr = .34667 hrs

Total unit time, Tb = .43333 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 3ND Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 5.08
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3ND 2 YR
Tc = .3000 hrs
Drainage Area = 4.120 acres Runoff CN= 57

=====

Computational Time Increment = .04000 hrs
Computed Peak Time = 12.4400 hrs
Computed Peak Flow = .54 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = .54 cfs

=====

DRAINAGE AREA

ID:PRDA 3ND
CN = 57
Area = 4.120 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

.3097 in
.106 ac-ft

HYG Volume... .106 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND)
Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs
Unit peak time Tp = .20000 hrs
Unit receding limb, Tr = .80000 hrs
Total unit time, Tb = 1.00000 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 3ND Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 5.09
Event: 10 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm
Duration = 24.0000 hrs Rain Depth = 4.7000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3ND 10 YR
Tc = .3000 hrs
Drainage Area = 4.120 acres Runoff CN= 57

=====

Computational Time Increment = .04000 hrs
Computed Peak Time = 12.2800 hrs
Computed Peak Flow = 2.57 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 2.55 cfs

=====

DRAINAGE AREA

ID:PRDA 3ND
CN = 57
Area = 4.120 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

.9487 in
.326 ac-ft

HYG Volume... .326 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND)
Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs
Unit peak time Tp = .20000 hrs
Unit receding limb, Tr = .80000 hrs
Total unit time, Tb = 1.00000 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 3ND Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 5.10
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3ND 25 YR
Tc = .3000 hrs
Drainage Area = 4.120 acres Runoff CN= 57

=====

Computational Time Increment = .04000 hrs
Computed Peak Time = 12.2400 hrs
Computed Peak Flow = 4.05 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 3.95 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%

=====

DRAINAGE AREA

ID:PRDA 3ND
CN = 57
Area = 4.120 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

1.3810 in
.474 ac-ft

HYG Volume... .474 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND)
Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs
Unit peak time Tp = .20000 hrs
Unit receding limb, Tr = .80000 hrs
Total unit time, Tb = 1.00000 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 3ND Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 5.11
Event: 50 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm
Duration = 24.0000 hrs Rain Depth = 6.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3ND 50 YR
Tc = .3000 hrs
Drainage Area = 4.120 acres Runoff CN= 57

=====
Computational Time Increment = .04000 hrs
Computed Peak Time = 12.2400 hrs
Computed Peak Flow = 5.50 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.2000 hrs
Peak Flow, Interpolated Output = 5.33 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%
=====

DRAINAGE AREA

ID:PRDA 3ND
CN = 57
Area = 4.120 acres
S = 7.5439 in
0.2S = 1.5088 in

Cumulative Runoff

1.7987 in
.618 ac-ft

HYG Volume... .618 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND)
Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs
Unit peak time Tp = .20000 hrs
Unit receding limb, Tr = .80000 hrs
Total unit time, Tb = 1.00000 hrs

Type.... Unit Hyd. Summary

Page 5.12

Name.... PRDA 3ND

Tag: 100 YR

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in

Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 3ND 100 YR

Tc = .3000 hrs

Drainage Area = 4.120 acres Runoff CN= 57

=====

Computational Time Increment = .04000 hrs

Computed Peak Time = 12.2400 hrs

Computed Peak Flow = 7.27 cfs

Time Increment for HYG File = .1000 hrs

Peak Time, Interpolated Output = 12.2000 hrs

Peak Flow, Interpolated Output = 7.11 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID:PRDA 3ND

CN = 57

Area = 4.120 acres

S = 7.5439 in

0.2S = 1.5088 in

Cumulative Runoff

2.3133 in

.794 ac-ft

HYG Volume... .794 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND)
Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs

Unit peak time Tp = .20000 hrs

Unit receding limb, Tr = .80000 hrs

Total unit time, Tb = 1.00000 hrs

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.01
Event: 2 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP3	JUNCTION		JUNCTION	2 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
		JUNCTION	2 YR	.162	12.4000

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
		DP 3	2 YR	.162	12.4000

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.02
Event: 2 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 3
HYG Tag = 2 YR

Peak Discharge = .95 cfs
Time to Peak = 12,4000 hrs
HYG Volume = .162 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .1000 hrs Time on left represents time for first value in each row.				
11.6000	.00	.00	.00	.01	.03
12.1000	.18	.53	.82	.95	.95
12.6000	.86	.74	.64	.57	.52
13.1000	.47	.43	.40	.38	.36
13.6000	.34	.32	.31	.29	.28
14.1000	.26	.25	.24	.23	.22
14.6000	.22	.21	.20	.19	.19
15.1000	.18	.17	.17	.16	.15
15.6000	.14	.14	.13	.13	.12
16.1000	.12	.12	.11	.11	.11
16.6000	.11	.10	.10	.10	.10
17.1000	.10	.09	.09	.09	.09
17.6000	.09	.08	.08	.08	.08
18.1000	.08	.07	.07	.07	.07
18.6000	.07	.07	.07	.07	.07
19.1000	.07	.07	.07	.07	.07
19.6000	.07	.06	.06	.06	.06
20.1000	.06	.06	.06	.06	.06
20.6000	.06	.06	.06	.06	.06
21.1000	.06	.06	.06	.06	.06
21.6000	.06	.06	.05	.05	.05
22.1000	.05	.05	.05	.05	.05
22.6000	.05	.05	.05	.05	.05
23.1000	.05	.05	.05	.05	.05
23.6000	.05	.05	.05	.04	.04
24.1000	.04	.03	.01	.01	.00
24.6000	.00	.00	.00	.00	.00

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.03
Event: 10 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

=====
Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag
TO DP3 JUNCTION JUNCTION 10 YR
=====

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
JUNCTION		10 YR	.507	12.3000	3.41

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 3		10 YR	.507	12.3000	3.41

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.04
Event: 10 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 3
HYG Tag = 10 YR

Peak Discharge = 3.41 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .507 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .1000 hrs Time on left represents time for first value in each row.				
10.5000	.00	.00	.00	.00	.00
11.0000	.01	.01	.01	.01	.01
11.5000	.01	.02	.03	.10	.32
12.0000	.92	2.09	3.16	3.41	3.18
12.5000	2.84	2.42	2.05	1.79	1.64
13.0000	1.52	1.42	1.34	1.27	1.22
13.5000	1.17	1.12	1.07	1.03	.97
14.0000	.93	.87	.81	.75	.71
14.5000	.67	.64	.61	.59	.56
15.0000	.54	.52	.50	.48	.46
15.5000	.45	.43	.41	.39	.38
16.0000	.36	.34	.33	.32	.31
16.5000	.30	.29	.28	.27	.27
17.0000	.26	.25	.24	.23	.23
17.5000	.22	.21	.20	.20	.19
18.0000	.18	.18	.17	.17	.17
18.5000	.16	.16	.16	.16	.16
19.0000	.16	.15	.15	.15	.15
19.5000	.15	.15	.15	.14	.14
20.0000	.14	.14	.14	.14	.14
20.5000	.14	.13	.13	.13	.13
21.0000	.13	.13	.13	.13	.13
21.5000	.12	.12	.12	.12	.12
22.0000	.12	.12	.12	.12	.11
22.5000	.11	.11	.11	.11	.11
23.0000	.11	.11	.11	.10	.10
23.5000	.10	.10	.10	.10	.10
24.0000	.10	.09	.05	.03	.01
24.5000	.01	.01	.00	.00	.00
25.0000	.00	.00	.00	.00	.00

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.05
Event: 25 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP3	JUNCTION		JUNCTION	25 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
JUNCTION		25 YR	.737	12.3000	5.00

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 3		25 YR	.737	12.3000	5.00

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.06
Event: 25 yr

TOTAL NODE INFLOW...

HYG file =

HYG ID = DP 3

HYG Tag = 25 YR

Peak Discharge = 5.00 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .737 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .1000 hrs Time on left represents time for first value in each row.				
9.9000	.00	.00	.00	.00	.00
10.4000	.00	.01	.01	.01	.01
10.9000	.01	.01	.01	.02	.02
11.4000	.02	.05	.10	.21	.45
11.9000	.92	1.85	3.43	4.84	5.00
12.4000	4.54	3.97	3.33	2.76	2.39
12.9000	2.17	2.01	1.88	1.78	1.71
13.4000	1.65	1.59	1.54	1.49	1.44
13.9000	1.39	1.33	1.28	1.23	1.18
14.4000	1.13	1.09	1.04	1.00	.96
14.9000	.90	.84	.79	.75	.72
15.4000	.68	.65	.62	.59	.57
15.9000	.54	.52	.49	.47	.45
16.4000	.44	.43	.41	.40	.39
16.9000	.38	.36	.35	.34	.33
17.4000	.32	.31	.31	.30	.29
17.9000	.28	.27	.26	.25	.24
18.4000	.24	.23	.23	.22	.22
18.9000	.21	.21	.21	.20	.20
19.4000	.20	.20	.20	.19	.19
19.9000	.19	.19	.19	.18	.18
20.4000	.18	.18	.18	.18	.17
20.9000	.17	.17	.17	.17	.17
21.4000	.17	.16	.16	.16	.16
21.9000	.16	.16	.16	.15	.15
22.4000	.15	.15	.15	.15	.15
22.9000	.14	.14	.14	.14	.14
23.4000	.14	.13	.13	.13	.13
23.9000	.13	.13	.11	.07	.04
24.4000	.02	.01	.01	.00	.00
24.9000	.00	.00	.00	.00	.00

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.07
Event: 25 yr

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .1000 hrs
hrs	Time on left represents time for first value in each row.
25.4000 | .00

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.08
Event: 50 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP3	JUNCTION		JUNCTION	50 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	50 YR	.958	12.3000	6.73

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 3	50 YR	.958	12.3000	6.73

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.09
Event: 50 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 3
HYG Tag = 50 YR

Peak Discharge = 6.73 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .958 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .1000 hrs
hrs	Time on left represents time for first value in each row.
9.4000 | .00 .00 .00 .00 .00
9.9000 | .00 .00 .01 .01 .01
10.4000 | .01 .01 .01 .01 .02
10.9000 | .02 .02 .03 .05 .09
11.4000 | .14 .20 .29 .49 .88
11.9000 | 1.55 2.68 4.70 6.45 6.73
12.4000 | 6.16 5.38 4.45 3.63 3.07
12.9000 | 2.71 2.45 2.25 2.11 2.01
13.4000 | 1.94 1.89 1.83 1.78 1.72
13.9000 | 1.67 1.61 1.55 1.50 1.45
14.4000 | 1.40 1.36 1.31 1.27 1.22
14.9000 | 1.18 1.13 1.09 1.04 1.00
15.4000 | .93 .88 .83 .78 .74
15.9000 | .70 .67 .64 .61 .58
16.4000 | .56 .54 .53 .51 .50
16.9000 | .48 .47 .45 .44 .43
17.4000 | .41 .40 .39 .37 .36
17.9000 | .35 .34 .33 .32 .31
18.4000 | .31 .30 .29 .29 .29
18.9000 | .28 .28 .27 .27 .26
19.4000 | .26 .25 .25 .25 .24
19.9000 | .24 .23 .23 .23 .22
20.4000 | .22 .22 .22 .22 .21
20.9000 | .21 .21 .21 .21 .20
21.4000 | .20 .20 .20 .20 .20
21.9000 | .19 .19 .19 .19 .19
22.4000 | .18 .18 .18 .18 .18
22.9000 | .17 .17 .17 .17 .17
23.4000 | .17 .16 .16 .16 .16
23.9000 | .16 .15 .14 .09 .04
24.4000 | .02 .01 .01 .01 .00

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.10
Event: 50 yr

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .1000 hrs
hrs	Time on left represents time for first value in each row.
24.9000 | .00 .00 .00 .00 .00
25.4000 | .00 .00

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.11
Event: 100 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP3	JUNCTION		JUNCTION	100 YR

INFLOWS TO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	100 YR	1.231	12.3000	9.19

TOTAL FLOW INTO: DP 3

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 3	100 YR	1.231	12.3000	9.19

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.12
Event: 100 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 3
HYG Tag = 100 YR

Peak Discharge = 9.19 cfs
Time to Peak = 12.3000 hrs
HYG Volume = 1.231 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .1000 hrs Time on left represents time for first value in each row.				
8.9000	.00	.00	.00	.00	.00
9.4000	.00	.00	.01	.01	.01
9.9000	.01	.01	.01	.01	.01
10.4000	.02	.02	.02	.03	.05
10.9000	.08	.11	.15	.20	.25
11.4000	.34	.44	.58	.88	1.45
11.9000	2.25	3.69	6.25	8.80	9.19
12.4000	8.30	7.15	5.85	4.72	3.93
12.9000	3.41	3.04	2.75	2.52	2.37
13.4000	2.26	2.18	2.11	2.05	1.99
13.9000	1.94	1.87	1.81	1.76	1.70
14.4000	1.66	1.61	1.57	1.52	1.47
14.9000	1.43	1.38	1.34	1.29	1.24
15.4000	1.19	1.14	1.09	1.05	.98
15.9000	.92	.87	.81	.77	.74
16.4000	.71	.69	.66	.64	.62
16.9000	.60	.59	.57	.55	.54
17.4000	.52	.51	.49	.47	.46
17.9000	.44	.43	.41	.40	.39
18.4000	.38	.38	.37	.37	.36
18.9000	.35	.35	.34	.34	.33
19.4000	.33	.33	.32	.32	.31
19.9000	.31	.30	.30	.29	.29
20.4000	.29	.28	.28	.27	.27
20.9000	.27	.26	.26	.26	.25
21.4000	.25	.25	.24	.24	.24
21.9000	.23	.23	.23	.23	.23
22.4000	.22	.22	.22	.22	.21
22.9000	.21	.21	.21	.20	.20
23.4000	.20	.20	.20	.19	.19
23.9000	.19	.19	.17	.11	.05

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.13
Event: 100 yr

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .1000 hrs
hrs	Time on left represents time for first value in each row.
24.4000 | .03 .02 .01 .01 .00
24.9000 | .00 .00 .00 .00 .00
25.4000 | .00 .00 .00 .00 .00

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Elevation (ft)	Planimeter (sq.in)	Area (acres)	A1+A2+sqr(A1*A2)	Volume (acres)	Volume (ac-ft)	Volume Sum (ac-ft)
1443.50	-----	.0600	.0000	.000	.000	
1445.50	-----	.1000	.2375	.158	.158	
1447.50	-----	.1400	.3583	.239	.397	

POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2-EL1) * (Area1 + Area2 + sq.rt.(Area1*Area2))

where: EL1, EL2 = Lower and upper elevations of the increment
Area1,Area2 = Areas computed for EL1, EL2, respectively
Volume = Incremental volume between EL1 and EL2

Type.... Outlet Input Data
Name.... Outlet 1

Page 8.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

REQUESTED POND WS ELEVATIONS:

Min. Elev.= 1443.50 ft
Increment = .10 ft
Max. Elev.= 1447.50 ft

OUTLET CONNECTIVITY

--> Forward Flow Only (UpStream to DnStream)
<-- Reverse Flow Only (DnStream to UpStream)
<--> Forward and Reverse Both Allowed

Structure	No.	Outfall	E1, ft	E2, ft
Orifice-Circular	2	---> TW	1445.000	1447.500
Orifice-Circular	1	---> TW	1443.500	1447.500
TW SETUP, DS Channel				

Type.... Outlet Input Data
Name.... Outlet 1

Page 8.02

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID = 2
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1445.00 ft
Diameter = .7500 ft
Orifice Coeff. = .600

Structure ID = 1
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1443.50 ft
Diameter = .5000 ft
Orifice Coeff. = .600

Structure ID = TW
Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...
Maximum Iterations= 30
Min. TW tolerance = .01 ft
Max. TW tolerance = .01 ft
Min. HW tolerance = .01 ft
Max. HW tolerance = .01 ft
Min. Q tolerance = .10 cfs
Max. Q tolerance = .10 cfs

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q	Tail Water			Notes	
WS Elev. ft	Q cfs	TW Elev ft	Converge +/-ft	Computation	Messages
1443.50	.00	Free Outfall		HW & TW below invert	
1443.60	.00	Free Outfall		HW & TW below invert	
1443.70	.00	Free Outfall		HW & TW below invert	
1443.80	.00	Free Outfall		HW & TW below invert	
1443.90	.00	Free Outfall		HW & TW below invert	
1444.00	.00	Free Outfall		HW & TW below invert	
1444.10	.00	Free Outfall		HW & TW below invert	
1444.20	.00	Free Outfall		HW & TW below invert	
1444.30	.00	Free Outfall		HW & TW below invert	
1444.40	.00	Free Outfall		HW & TW below invert	
1444.50	.00	Free Outfall		HW & TW below invert	
1444.60	.00	Free Outfall		HW & TW below invert	
1444.70	.00	Free Outfall		HW & TW below invert	
1444.80	.00	Free Outfall		HW & TW below invert	
1444.90	.00	Free Outfall		HW & TW below invert	
1445.00	.00	Free Outfall		Upstream HW & DNstream TW < Inv. El	
1445.10	.03	Free Outfall		CRIT.DEPTH CONTROL Vh= .024ft Dcr= .076ft	CRIT.DEPTH
1445.20	.11	Free Outfall		CRIT.DEPTH CONTROL Vh= .053ft Dcr= .146ft	CRIT.DEPTH
1445.30	.24	Free Outfall		CRIT.DEPTH CONTROL Vh= .080ft Dcr= .220ft	CRIT.DEPTH
1445.40	.42	Free Outfall		CRIT.DEPTH CONTROL Vh= .109ft Dcr= .291ft	CRIT.DEPTH
1445.50	.63	Free Outfall		CRIT.DEPTH CONTROL Vh= .140ft Dcr= .360ft	CRIT.DEPTH
1445.60	.86	Free Outfall		CRIT.DEPTH CONTROL Vh= .175ft Dcr= .425ft	CRIT.DEPTH
1445.70	1.12	Free Outfall		CRIT.DEPTH CONTROL Vh= .212ft Dcr= .488ft	CRIT.DEPTH
1445.80	1.39	Free Outfall	H =.43		
1445.90	1.54	Free Outfall	H =.53		
1446.00	1.68	Free Outfall	H =.63		
1446.10	1.81	Free Outfall	H =.72		
1446.20	1.93	Free Outfall	H =.82		
1446.30	2.05	Free Outfall	H =.93		
1446.40	2.15	Free Outfall	H =1.03		
1446.50	2.26	Free Outfall	H =1.13		
1446.60	2.35	Free Outfall	H =1.22		
1446.70	2.45	Free Outfall	H =1.32		
1446.80	2.54	Free Outfall	H =1.43		

Type.... Individual Outlet Curves
Name.... Outlet 1

Page 8.04

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q	Tail Water			Notes
WS Elev. ft	Q cfs	TW Elev ft	Converge +/-ft	Computation Messages
1446.90	2.63	Free Outfall	H =1.53	
1447.00	2.71	Free Outfall	H =1.63	
1447.10	2.79	Free Outfall	H =1.72	
1447.20	2.87	Free Outfall	H =1.82	
1447.30	2.95	Free Outfall	H =1.93	
1447.40	3.03	Free Outfall	H =2.03	
1447.50	3.10	Free Outfall	H =2.13	

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q		Tail Water	Notes
WS Elev.	Q	TW Elev Converge	
ft	cfs	ft	+/-ft
1443.50	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El
1443.60	.02	Free Outfall	CRIT.DEPTH CONTROL Vh= .022ft Dcr= .078ft CRIT.DEPTH
1443.70	.09	Free Outfall	CRIT.DEPTH CONTROL Vh= .051ft Dcr= .148ft CRIT.DEPTH
1443.80	.19	Free Outfall	CRIT.DEPTH CONTROL Vh= .081ft Dcr= .219ft CRIT.DEPTH
1443.90	.31	Free Outfall	CRIT.DEPTH CONTROL Vh= .116ft Dcr= .283ft CRIT.DEPTH
1444.00	.47	Free Outfall	H =.25
1444.10	.56	Free Outfall	H =.35
1444.20	.63	Free Outfall	H =.45
1444.30	.70	Free Outfall	H =.55
1444.40	.76	Free Outfall	H =.65
1444.50	.82	Free Outfall	H =.75
1444.60	.87	Free Outfall	H =.85
1444.70	.92	Free Outfall	H =.95
1444.80	.97	Free Outfall	H =1.05
1444.90	1.01	Free Outfall	H =1.15
1445.00	1.06	Free Outfall	H =1.25
1445.10	1.10	Free Outfall	H =1.35
1445.20	1.14	Free Outfall	H =1.45
1445.30	1.18	Free Outfall	H =1.55
1445.40	1.21	Free Outfall	H =1.65
1445.50	1.25	Free Outfall	H =1.75
1445.60	1.29	Free Outfall	H =1.85
1445.70	1.32	Free Outfall	H =1.95
1445.80	1.35	Free Outfall	H =2.05
1445.90	1.39	Free Outfall	H =2.15
1446.00	1.42	Free Outfall	H =2.25
1446.10	1.45	Free Outfall	H =2.35
1446.20	1.48	Free Outfall	H =2.45
1446.30	1.51	Free Outfall	H =2.55
1446.40	1.54	Free Outfall	H =2.65
1446.50	1.57	Free Outfall	H =2.75
1446.60	1.60	Free Outfall	H =2.85
1446.70	1.62	Free Outfall	H =2.95
1446.80	1.65	Free Outfall	H =3.05

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q	Tail Water			Notes
WS Elev. ft	Q cfs	TW Elev ft	Converge +/-ft	Computation Messages
1446.90	1.68	Free Outfall	H =3.15	
1447.00	1.70	Free Outfall	H =3.25	
1447.10	1.73	Free Outfall	H =3.35	
1447.20	1.76	Free Outfall	H =3.45	
1447.30	1.78	Free Outfall	H =3.55	
1447.40	1.81	Free Outfall	H =3.65	
1447.50	1.83	Free Outfall	H =3.75	

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

***** COMPOSITE OUTFLOW SUMMARY *****

WS Elev, Total Q		Converge			Notes
Elev. ft	Q cfs	TW Elev ft	Error +/-ft	Contributing Structures	
1443.50	.00	Free Outfall		None contributing	
1443.60	.02	Free Outfall	1		
1443.70	.09	Free Outfall	1		
1443.80	.19	Free Outfall	1		
1443.90	.31	Free Outfall	1		
1444.00	.47	Free Outfall	1		
1444.10	.56	Free Outfall	1		
1444.20	.63	Free Outfall	1		
1444.30	.70	Free Outfall	1		
1444.40	.76	Free Outfall	1		
1444.50	.82	Free Outfall	1		
1444.60	.87	Free Outfall	1		
1444.70	.92	Free Outfall	1		
1444.80	.97	Free Outfall	1		
1444.90	1.01	Free Outfall	1		
1445.00	1.06	Free Outfall	1		
1445.10	1.13	Free Outfall	2 +1		
1445.20	1.25	Free Outfall	2 +1		
1445.30	1.42	Free Outfall	2 +1		
1445.40	1.63	Free Outfall	2 +1		
1445.50	1.88	Free Outfall	2 +1		
1445.60	2.15	Free Outfall	2 +1		
1445.70	2.44	Free Outfall	2 +1		
1445.80	2.74	Free Outfall	2 +1		
1445.90	2.93	Free Outfall	2 +1		
1446.00	3.10	Free Outfall	2 +1		
1446.10	3.26	Free Outfall	2 +1		
1446.20	3.41	Free Outfall	2 +1		
1446.30	3.55	Free Outfall	2 +1		
1446.40	3.69	Free Outfall	2 +1		
1446.50	3.82	Free Outfall	2 +1		
1446.60	3.95	Free Outfall	2 +1		
1446.70	4.07	Free Outfall	2 +1		
1446.80	4.19	Free Outfall	2 +1		
1446.90	4.30	Free Outfall	2 +1		
1447.00	4.41	Free Outfall	2 +1		
1447.10	4.52	Free Outfall	2 +1		
1447.20	4.63	Free Outfall	2 +1		

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

***** COMPOSITE OUTFLOW SUMMARY *****

WS Elev, Total Q				Notes
Converge				-----
Elev.	Q	TW Elev	Error	Contributing Structures
ft	cfs	ft	+/-ft	-----
1447.30	4.73	Free Outfall	2 +1	
1447.40	4.83	Free Outfall	2 +1	
1447.50	4.93	Free Outfall	2 +1	

INFILTRATION RATING TABLE CALCULATIONS

Infilt.(cfs) = (2.0000 (in/hr) * Area) * Ku
Where: Ku = units conversion factor

W.S.Elev ft	Total Area acres	Infilt. cfs
1443.50	.0600	.00
1443.60	.0618	.12
1443.70	.0635	.13
1443.80	.0654	.13
1443.90	.0672	.14
1444.00	.0690	.14
1444.10	.0709	.14
1444.20	.0728	.15
1444.30	.0748	.15
1444.40	.0767	.15
1444.50	.0787	.16
1444.60	.0807	.16
1444.70	.0828	.17
1444.80	.0848	.17
1444.90	.0869	.18
1445.00	.0890	.18
1445.10	.0912	.18
1445.20	.0934	.19
1445.30	.0955	.19
1445.40	.0978	.20
1445.50	.1000	.20
1445.60	.1018	.21
1445.70	.1037	.21
1445.80	.1056	.21
1445.90	.1075	.22
1446.00	.1094	.22
1446.10	.1113	.22
1446.20	.1132	.23
1446.30	.1152	.23
1446.40	.1172	.24
1446.50	.1192	.24
1446.60	.1212	.24
1446.70	.1232	.25
1446.80	.1252	.25
1446.90	.1273	.26
1447.00	.1294	.26
1447.10	.1315	.27
1447.20	.1336	.27
1447.30	.1357	.27
1447.40	.1378	.28
1447.50	.1400	.28

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + O cfs
1443.50	.00	.000	.0600	.00	.00	.00
1443.60	.02	.006	.0618	.12	.15	1.62
1443.70	.09	.012	.0635	.13	.22	3.21
1443.80	.19	.019	.0654	.13	.32	4.87
1443.90	.31	.025	.0672	.14	.45	6.60
1444.00	.47	.032	.0690	.14	.61	8.41
1444.10	.56	.039	.0709	.14	.70	10.20
1444.20	.63	.046	.0728	.15	.78	12.01
1444.30	.70	.054	.0748	.15	.85	13.87
1444.40	.76	.061	.0767	.15	.92	15.77
1444.50	.82	.069	.0787	.16	.98	17.71
1444.60	.87	.077	.0807	.16	1.03	19.70
1444.70	.92	.085	.0828	.17	1.09	21.73
1444.80	.97	.094	.0848	.17	1.14	23.81
1444.90	1.01	.102	.0869	.18	1.19	25.94
1445.00	1.06	.111	.0890	.18	1.24	28.12
1445.10	1.13	.120	.0912	.18	1.31	30.37
1445.20	1.25	.129	.0934	.19	1.44	32.73
1445.30	1.42	.139	.0955	.19	1.61	35.19
1445.40	1.63	.148	.0978	.20	1.83	37.75

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + O cfs
1445.50	1.88	.158	.1000	.20	2.08	40.39
1445.60	2.15	.168	.1018	.21	2.36	43.11
1445.70	2.44	.179	.1037	.21	2.65	45.89
1445.80	2.74	.189	.1056	.21	2.95	48.73
1445.90	2.93	.200	.1075	.22	3.14	51.49
1446.00	3.10	.211	.1094	.22	3.32	54.29
1446.10	3.26	.222	.1113	.22	3.48	57.13
1446.20	3.41	.233	.1132	.23	3.64	60.00
1446.30	3.55	.244	.1152	.23	3.79	62.91
1446.40	3.69	.256	.1172	.24	3.93	65.86
1446.50	3.82	.268	.1192	.24	4.06	68.86
1446.60	3.95	.280	.1212	.24	4.19	71.90
1446.70	4.07	.292	.1232	.25	4.32	74.98
1446.80	4.19	.304	.1252	.25	4.44	78.11
1446.90	4.30	.317	.1273	.26	4.56	81.28
1447.00	4.41	.330	.1294	.26	4.68	84.50
1447.10	4.52	.343	.1315	.27	4.79	87.77
1447.20	4.63	.356	.1336	.27	4.90	91.09
1447.30	4.73	.370	.1357	.27	5.00	94.45
1447.40	4.83	.383	.1378	.28	5.11	97.87

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation	Outflow	Storage	Area	Infilt.	Q Total	2S/t + O
ft	cfs	ac-ft	acres	cfs	cfs	cfs
1447.50	4.93	.397	.1400	.28	5.21	101.33

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 9.05
Event: 2 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 1.36 cfs at 12.1000 hrs
Peak Outflow = .43 cfs at 12.5000 hrs
Peak Infiltration = .14 cfs at 12.5000 hrs

Peak Elevation = 1443.97 ft
Peak Storage = .030 ac-ft
=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .133
- Infiltration = .077
- HYG Vol OUT = .056
- Retained Vol = .000

Unrouted Vol = -.000 ac-ft (.000% of Inflow Volume)

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 9.06
Event: 10 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 10 YR
Outflow HYG file = NONE STORED - POND 1 OUT 10 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 3.38 cfs at 12.1000 hrs
Peak Outflow = .92 cfs at 12.5000 hrs
Peak Infiltration = .17 cfs at 12.5000 hrs

Peak Elevation = 1444.69 ft
Peak Storage = .084 ac-ft

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .297
- Infiltration = .116
- HYG Vol OUT = .182
- Retained Vol = .000

Unrouted Vol = -.000 ac-ft (.001% of Inflow Volume)

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 9.07
Event: 25 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 25 YR
Outflow HYG file = NONE STORED - POND 1 OUT 25 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 4.60 cfs at 12.1000 hrs
Peak Outflow = 1.15 cfs at 12.5000 hrs
Peak Infiltration = .18 cfs at 12.5000 hrs
=====
Peak Elevation = 1445.12 ft
Peak Storage = .122 ac-ft
=====

MASS BALANCE (ac-ft)

=====
+ Initial Vol = .000
+ HYG Vol IN = .397
- Infiltration = .135
- HYG Vol OUT = .263
- Retained Vol = .000
=====
Unrouted Vol = -.000 ac-ft (.001% of Inflow Volume)

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 9.08
Event: 50 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 50 YR
Outflow HYG file = NONE STORED - POND 1 OUT 50 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 5.71 cfs at 12.1000 hrs
Peak Outflow = 1.70 cfs at 12.5000 hrs
Peak Infiltration = .20 cfs at 12.5000 hrs

Peak Elevation = 1445.43 ft
Peak Storage = .151 ac-ft
=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .490
- Infiltration = .149
- HYG Vol OUT = .341
- Retained Vol = .000

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 100 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 9.09
Event: 100 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 100 YR
Outflow HYG file = NONE STORED - POND 1 OUT 100 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 7.03 cfs at 12.1000 hrs
Peak Outflow = 2.47 cfs at 12.4000 hrs
Peak Infiltration = .21 cfs at 12.4000 hrs
=====
Peak Elevation = 1445.71 ft
Peak Storage = .180 ac-ft
=====

MASS BALANCE (ac-ft)

=====
+ Initial Vol = .000
+ HYG Vol IN = .600
- Infiltration = .163
- HYG Vol OUT = .437
- Retained Vol = .000
=====
Unrouted Vol = -.000 ac-ft (.001% of Inflow Volume)

Index of Starting Page Numbers for ID Names

----- D -----

DP 3 2 YR... 6.01, 6.03, 6.05, 6.08,
6.11

----- L -----

Litchfield Co... 2.01, 2.02

----- O -----

Outlet 1... 8.01, 8.03, 8.07

----- P -----

POND 1... 7.01, 9.01, 9.02
POND 1 OUT 2 YR... 9.05, 9.06,
9.07, 9.08, 9.09
PRDA 3D... 3.01, 4.01, 5.03, 5.04,
5.05, 5.06, 5.07
PRDA 3ND... 3.03, 4.02, 5.08, 5.09,
5.10, 5.11, 5.12

----- W -----

Watershed... 1.01

Existing Flows – DL4

Table of Contents

*****MASTER SUMMARY*****

Watershed..... Master Network Summary 1.01

*****DESIGN STORMS SUMMARY*****

Litchfield Co... Design Storms 2.01

Litchfield Co... 2 YR
Design Storms 2.02

*****TC CALCULATIONS*****

EXDA 4..... Tc Calcs 3.01

*****CN CALCULATIONS*****

EXDA 4..... Runoff CN-Area 4.01

*****RUNOFF HYDROGRAPHS*****

Unit Hyd. Equations 5.01

EXDA 4..... 2 YR
Unit Hyd. Summary 5.03EXDA 4..... 10 YR
Unit Hyd. Summary 5.04

Table of Contents (continued)

EXDA 4.....	25 YR	
	Unit Hyd. Summary	5.05
EXDA 4.....	50 YR	
	Unit Hyd. Summary	5.06
EXDA 4.....	100 YR	
	Unit Hyd. Summary	5.07

***** HYG ADDITION *****

DP 4.....	2 YR	
	Node: Addition Summary	6.01
DP 4.....	10 YR	
	Node: Addition Summary	6.04
DP 4.....	25 YR	
	Node: Addition Summary	6.07
DP 4.....	50 YR	
	Node: Addition Summary	6.10
DP 4.....	100 YR	
	Node: Addition Summary	6.13

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return Event	Total Depth in	Rainfall Type	RNF ID
2 YR	3.2000	Synthetic Curve	TypeIII 24hr
10 YR	4.7000	Synthetic Curve	TypeIII 24hr
25 YR	5.5000	Synthetic Curve	TypeIII 24hr
50 YR	6.2000	Synthetic Curve	TypeIII 24hr
100 YR	7.0000	Synthetic Curve	TypeIII 24hr

MASTER NETWORK SUMMARY
SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation; Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Pond Storage ac-ft
*DP 4	JCT	2	.167		12.5000	.68		
*DP 4	JCT	10	.554		12.3500	3.90		
*DP 4	JCT	25	.823		12.3000	6.44		
*DP 4	JCT	50	1.085		12.3000	8.91		
*DP 4	JCT	100	1.411		12.2500	11.96		
EXDA 4	AREA	2	.167		12.5000	.68		
EXDA 4	AREA	10	.554		12.3500	3.90		
EXDA 4	AREA	25	.823		12.3000	6.44		
EXDA 4	AREA	50	1.085		12.3000	8.91		
EXDA 4	AREA	100	1.411		12.2500	11.96		

File.... C:\Program Files\Haestad\PPKW\PPW\
Title... Project Date: 4/16/2009
Project Engineer: Curtis Jones
Project Title: Watershed
Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Type.... Design Storms
Name.... Litchfield Co.
File.... C:\Program Files\Haestad\PPKW\PPW\
Storm... TypeIII 24hr Tag: 2 YR

Page 2.02
Event: 2 yr

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

:::::::::::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::::::::::

Segment #1: Tc: TR-55 Sheet

Mannings n .4000
Hydraulic Length 225.00 ft
2yr, 24hr P 3.2000 in
Slope .132000 ft/ft

Avg.Velocity .19 ft/sec

Segment #1 Time: .3219 hrs

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 365.00 ft
Slope .082000 ft/ft
Unpaved

Avg.Velocity 4.62 ft/sec

Segment #2 Time: .0219 hrs

=====
Total Tc: .3438 hrs
=====

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Tc Equations used...

===== SCS TR-55 Sheet Flow =====

$$Tc = (.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))$$

Where: Tc = Time of concentration, hrs
n = Mannings n
Lf = Flow length, ft
P = 2yr, 24hr Rain depth, inches
Sf = Slope, %

===== SCS TR-55 Shallow Concentrated Flow =====

Unpaved surface:

$$V = 16.1345 * (Sf^{0.5})$$

Paved surface:

$$V = 20.3282 * (Sf^{0.5})$$

$$Tc = (Lf / V) / (3600sec/hr)$$

Where: V = Velocity, ft/sec
Sf = Slope, ft/ft
Tc = Time of concentration, hrs
Lf = Flow length, ft

Type.... Runoff CN-Area
Name.... EXDA 4

Page 4.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious Adjustment %C %UC	Adjusted CN
Soil Type B - Wooded	55	7.770		55.00
Soil Type B - Grass/Meadow	60	.200		60.00

COMPOSITE AREA & WEIGHTED CN ---> 7.970 55.13 (55)

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

DEFINITION OF TERMS: -----

At = Total area (acres): At = Ai+Ap
 Ai = Impervious area (acres)
 Ap = Pervious area (acres)
 CNi = Runoff curve number for impervious area
 CNp = Runoff curve number for pervious area
 fLoss = f loss constant infiltration (depth/time)
 gKs = Saturated Hydraulic Conductivity (depth/time)
 Md = Volumetric Moisture Deficit
 Psi = Capillary Suction (length)
 hK = Horton Infiltration Decay Rate (time^-1)
 fo = Initial Infiltration Rate (depth/time)
 fc = Ultimate(capacity) Infiltration Rate (depth/time)
 Ia = Initial Abstraction (length)
 dt = Computational increment (duration of unit excess rainfall)
 Default dt is smallest value of 0.1333Tc, rtm, and th
 (Smallest dt is then adjusted to match up with Tp)
 UDdt = User specified override computational main time increment
 (only used if UDdt is => .1333Tc)
 D(t) = Point on distribution curve (fraction of P) for time step t

 K = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67)
 Ks = Hydrograph shape factor
 = Unit Conversions * K:
 = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * K
 Default Ks = 645.333 * 0.75 = 484

 Lag = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc
 P = Total precipitation depth, inches
 Pa(t) = Accumulated rainfall at time step t
 Pi(t) = Incremental rainfall at time step t
 qp = Peak discharge (cfs) for lin. runoff, for 1hr, for 1 sq.mi.
 = (Ks * A * Q) / Tp (where Q = lin. runoff, A=sq.mi.)
 Qu(t) = Unit hydrograph ordinate (cfs) at time step t
 Q(t) = Final hydrograph ordinate (cfs) at time step t
 Rai(t) = Accumulated runoff (inches) at time step t for impervious area
 Rap(t) = Accumulated runoff (inches) at time step t for pervious area
 Rii(t) = Incremental runoff (inches) at time step t for impervious area
 Rip(t) = Incremental runoff (inches) at time step t for pervious area
 R(t) = Incremental weighted total runoff (inches)
 Rtm = Time increment for rainfall table
 Si = S for impervious area: Si = (1000/CNi) - 10
 Sp = S for pervious area: Sp = (1000/CNp) - 10
 t = Time step (row) number
 Tc = Time of concentration
 Tb = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr
 Tp = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag
 Tr = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

PRECIPITATION: -----

Column (1): Time for time step t
 Column (2): $D(t)$ = Point on distribution curve for time step t
 Column (3): $P_i(t) = P_a(t) - P_a(t-1)$: Col.(4) - Preceding Col.(4)
 Column (4): $P_a(t) = D(t) \times P$: Col.(2) $\times P$

PERVIOUS AREA RUNOFF (using SCS Runoff CN Method) -----

Column (5): $R_{ap}(t)$ = Accumulated pervious runoff for time step t
 If $(P_a(t)) \leq 0.2Sp$ then use: $R_{ap}(t) = 0.0$
 If $(P_a(t)) > 0.2Sp$ then use:

$$R_{ap}(t) = (Col.(4) - 0.2Sp)^{**2} / (Col.(4) + 0.8Sp)$$

 Column (6): $R_{ip}(t)$ = Incremental pervious runoff for time step t

$$R_{ip}(t) = R_{ap}(t) - R_{ap}(t-1)$$

$$R_{ip}(t) = Col.(5) \text{ for current row} - Col.(5) \text{ for preceding row.}$$

IMPERVIOUS AREA RUNOFF -----

Column (7 & 8)... Did not specify to use impervious areas.

INCREMENTAL WEIGHTED RUNOFF: -----

Column (9): $R(t) = (A_p/A_t) \times R_{ip}(t) + (A_i/A_t) \times R_{ii}(t)$

$$R(t) = (A_p/A_t) \times Col.(6) + (A_i/A_t) \times Col.(8)$$

SCS UNIT HYDROGRAPH METHOD: -----

Column (10): $Q(t)$ is computed with the SCS unit hydrograph method
 using $R()$ and $Qu()$.

Type.... Unit Hyd. Summary
Name.... EXDA 4 Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 5.03
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 4 2 YR
Tc = .3438 hrs
Drainage Area = 7.970 acres Runoff CN= 55

=====

Computational Time Increment = .04584 hrs
Computed Peak Time = 12.5150 hrs
Computed Peak Flow = .69 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.5000 hrs
Peak Flow, Interpolated Output = .68 cfs

=====

DRAINAGE AREA

ID:EXDA 4
CN = 55
Area = 7.970 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

.2509 in
.167 ac-ft

HYG Volume... .167 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4)
Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs
Unit peak time Tp = .22921 hrs
Unit receding limb, Tr = .91685 hrs
Total unit time, Tb = 1.14607 hrs

Type.... Unit Hyd. Summary

Page 5.04

Name.... EXDA 4

Tag: 10 YR

Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 in

Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 4 10 YR

Tc = .3438 hrs

Drainage Area = 7.970 acres Runoff CN= 55

=====

Computational Time Increment = .04584 hrs

Computed Peak Time = 12.3317 hrs

Computed Peak Flow = 3.93 cfs

Time Increment for HYG File = .0500 hrs

Peak Time, Interpolated Output = 12.3500 hrs

Peak Flow, Interpolated Output = 3.90 cfs

=====

DRAINAGE AREA

ID:EXDA 4

CN = 55

Area = 7.970 acres

S = 8.1818 in

0.2S = 1.6364 in

Cumulative Runoff

.8346 in

.554 ac-ft

HYG Volume... .554 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4)

Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs

Unit peak time Tp = .22921 hrs

Unit receding limb, Tr = .91685 hrs

Total unit time, Tb = 1.14607 hrs

Type.... Unit Hyd. Summary
Name.... EXDA 4 Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 5.05
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 4 25 YR
Tc = .3438 hrs
Drainage Area = 7.970 acres Runoff CN= 55

=====

Computational Time Increment = .04584 hrs
Computed Peak Time = 12.2858 hrs
Computed Peak Flow = 6.46 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 6.44 cfs

=====

DRAINAGE AREA

ID:EXDA 4
CN = 55
Area = 7.970 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

1.2393 in
.823 ac-ft

HYG Volume... .823 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4)
Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs
Unit peak time Tp = .22921 hrs
Unit receding limb, Tr = .91685 hrs
Total unit time, Tb = 1.14607 hrs

Type.... Unit Hyd. Summary

Page 5.06

Name.... EXDA 4

Tag: 50 YR

Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm

Duration = 24.0000 hrs Rain Depth = 6.2000 in

Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 4 50 YR

Tc = .3438 hrs

Drainage Area = 7.970 acres Runoff CN= 55

=====

Computational Time Increment = .04584 hrs

Computed Peak Time = 12.2858 hrs

Computed Peak Flow = 8.97 cfs

Time Increment for HYG File = .0500 hrs

Peak Time, Interpolated Output = 12.3000 hrs

Peak Flow, Interpolated Output = 8.91 cfs

=====

DRAINAGE AREA

ID:EXDA 4

CN = 55

Area = 7.970 acres

S = 8.1818 in

0.2S = 1.6364 in

Cumulative Runoff

1.6341 in

1.085 ac-ft

HYG Volume... 1.085 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4)

Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs

Unit peak time Tp = .22921 hrs

Unit receding limb, Tr = .91685 hrs

Total unit time, Tb = 1.14607 hrs

Type.... Unit Hyd. Summary

Page 5.07

Name.... EXDA 4

Tag: 100 YR

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in

Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 4 100 YR

Tc = .3438 hrs

Drainage Area = 7.970 acres Runoff CN= 55

=====

Computational Time Increment = .04584 hrs

Computed Peak Time = 12.2858 hrs

Computed Peak Flow = 12.06 cfs

Time Increment for HYG File = .0500 hrs

Peak Time, Interpolated Output = 12.2500 hrs

Peak Flow, Interpolated Output = 11.96 cfs

=====

DRAINAGE AREA

ID:EXDA 4

CN = 55

Area = 7.970 acres

S = 8.1818 in

0.2S = 1.6364 in

Cumulative Runoff

2.1239 in

1.411 ac-ft

HYG Volume... 1.411 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4)

Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs

Unit peak time Tp = .22921 hrs

Unit receding limb, Tr = .91685 hrs

Total unit time, Tb = 1.14607 hrs

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.01
Event: 2 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 4	EXDA 4		EXDA 4	2 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	EXDA 4	2 YR	.167	12.5000	.68

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 4	2 YR	.167	12.5000	.68

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.02
Event: 2 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 4
HYG Tag = 2 YR

Peak Discharge = .68 cfs
Time to Peak = 12.5000 hrs
HYG Volume = .167 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .0500 hrs
hrs	Time on left represents time for first value in each row.
12.0000 | .00 .00 .03 .08 .18
12.2500 | .31 .43 .54 .62 .67
12.5000 | .68 .68 .65 .60 .56
12.7500 | .51 .48 .45 .43 .41
13.0000 | .39 .37 .36 .35 .34
13.2500 | .33 .32 .31 .31 .31
13.5000 | .30 .30 .30 .29 .29
13.7500 | .29 .29 .28 .28 .28
14.0000 | .27 .27 .26 .26 .26
14.2500 | .25 .25 .25 .25 .25
14.5000 | .24 .24 .24 .24 .24
14.7500 | .24 .23 .23 .23 .23
15.0000 | .23 .22 .22 .22 .22
15.2500 | .22 .21 .21 .21 .21
15.5000 | .20 .20 .20 .20 .19
15.7500 | .19 .19 .18 .18 .18
16.0000 | .18 .17 .17 .17 .17
16.2500 | .16 .16 .16 .16 .16
16.5000 | .16 .15 .15 .15 .15
16.7500 | .15 .15 .15 .15 .14
17.0000 | .14 .14 .14 .14 .14
17.2500 | .14 .13 .13 .13 .13
17.5000 | .13 .13 .13 .13 .12
17.7500 | .12 .12 .12 .12 .12
18.0000 | .12 .11 .11 .11 .11
18.2500 | .11 .11 .11 .11 .11
18.5000 | .11 .11 .11 .10 .10
18.7500 | .10 .10 .10 .10 .10
19.0000 | .10 .10 .10 .10 .10
19.2500 | .10 .10 .10 .10 .10
19.5000 | .10 .10 .10 .10 .10

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.03
Event: 2 yr

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

19.7500	.10	.10	.10	.09	.09
20.0000	.09	.09	.09	.09	.09
20.2500	.09	.09	.09	.09	.09
20.5000	.09	.09	.09	.09	.09
20.7500	.09	.09	.09	.09	.09
21.0000	.09	.09	.09	.09	.09
21.2500	.09	.09	.09	.08	.08
21.5000	.08	.08	.08	.08	.08
21.7500	.08	.08	.08	.08	.08
22.0000	.08	.08	.08	.08	.08
22.2500	.08	.08	.08	.08	.08
22.5000	.08	.08	.08	.08	.08
22.7500	.08	.08	.08	.07	.07
23.0000	.07	.07	.07	.07	.07
23.2500	.07	.07	.07	.07	.07
23.5000	.07	.07	.07	.07	.07
23.7500	.07	.07	.07	.07	.07
24.0000	.07	.06	.06	.05	.04
24.2500	.03	.02	.02	.01	.01
24.5000	.01	.00	.00	.00	.00
24.7500	.00				

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.04
Event: 10 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 4	EXDA 4		EXDA 4	10 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 4		10 YR	.554	12.3500	3.90

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 4		10 YR	.554	12.3500	3.90

Type.... Node: Addition Summary

Page 6.05

Name.... DP 4

Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 10 YR

TOTAL NODE INFLOW...

HYG file =

HYG ID = DP 4

HYG Tag = 10 YR

Peak Discharge = 3.90 cfs
Time to Peak = 12.3500 hrs
HYG Volume = .554 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
11.7500	.00	.01	.03	.10	.25
12.0000	.54	1.02	1.70	2.49	3.20
12.2500	3.68	3.89	3.90	3.78	3.57
12.5000	3.33	3.05	2.74	2.44	2.16
12.7500	1.92	1.73	1.58	1.47	1.37
13.0000	1.29	1.21	1.15	1.10	1.05
13.2500	1.01	.98	.95	.93	.92
13.5000	.90	.89	.87	.86	.85
13.7500	.84	.82	.81	.80	.78
14.0000	.77	.76	.74	.73	.72
14.2500	.71	.70	.69	.68	.68
14.5000	.67	.66	.66	.65	.64
14.7500	.64	.63	.62	.62	.61
15.0000	.60	.60	.59	.58	.58
15.2500	.57	.56	.55	.55	.54
15.5000	.53	.52	.52	.51	.50
15.7500	.49	.49	.48	.47	.46
16.0000	.45	.45	.44	.43	.42
16.2500	.42	.41	.41	.40	.40
16.5000	.39	.39	.39	.38	.38
16.7500	.38	.37	.37	.37	.36
17.0000	.36	.36	.35	.35	.34
17.2500	.34	.34	.33	.33	.33
17.5000	.32	.32	.32	.31	.31
17.7500	.30	.30	.30	.29	.29
18.0000	.29	.28	.28	.27	.27
18.2500	.27	.27	.26	.26	.26
18.5000	.26	.26	.26	.26	.26
18.7500	.25	.25	.25	.25	.25
19.0000	.25	.25	.25	.25	.25
19.2500	.24	.24	.24	.24	.24

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.06
Event: 10 yr

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .0500 hrs
hrs	Time on left represents time for first value in each row.
19.5000 | .24 .24 .24 .24 .23
19.7500 | .23 .23 .23 .23 .23
20.0000 | .23 .23 .23 .22 .22
20.2500 | .22 .22 .22 .22 .22
20.5000 | .22 .22 .22 .22 .21
20.7500 | .21 .21 .21 .21 .21
21.0000 | .21 .21 .21 .21 .21
21.2500 | .21 .20 .20 .20 .20
21.5000 | .20 .20 .20 .20 .20
21.7500 | .20 .20 .20 .19 .19
22.0000 | .19 .19 .19 .19 .19
22.2500 | .19 .19 .19 .19 .18
22.5000 | .18 .18 .18 .18 .18
22.7500 | .18 .18 .18 .18 .18
23.0000 | .17 .17 .17 .17 .17
23.2500 | .17 .17 .17 .17 .17
23.5000 | .17 .16 .16 .16 .16
23.7500 | .16 .16 .16 .16 .16
24.0000 | .16 .15 .14 .12 .10
24.2500 | .08 .05 .04 .03 .02
24.5000 | .01 .01 .01 .00 .00
24.7500 | .00 .00 .00 .00 .00

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.07
Event: 25 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 4	EXDA 4		EXDA 4	25 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 4		25 YR	.823	12.3000	6.44

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 4		25 YR	.823	12.3000	6.44

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.08
Event: 25 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 4
HYG Tag = 25 YR

Peak Discharge = 6.44 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .823 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
11.5500	.00	.00	.02	.05	.12
11.8000	.23	.39	.63	1.00	1.57
12.0500	2.41	3.51	4.69	5.70	6.28
12.3000	6.44	6.30	5.97	5.55	5.10
12.5500	4.62	4.12	3.64	3.20	2.83
12.8000	2.54	2.31	2.13	1.98	1.85
13.0500	1.74	1.65	1.56	1.49	1.44
13.3000	1.39	1.35	1.32	1.29	1.27
13.5500	1.25	1.23	1.21	1.19	1.17
13.8000	1.15	1.14	1.12	1.10	1.08
14.0500	1.06	1.04	1.02	1.00	.99
14.3000	.98	.96	.95	.94	.93
14.5500	.92	.91	.90	.89	.88
14.8000	.87	.86	.85	.84	.83
15.0500	.82	.81	.80	.79	.78
15.3000	.77	.76	.75	.74	.73
15.5500	.72	.71	.70	.69	.68
15.8000	.67	.66	.64	.63	.62
16.0500	.61	.60	.59	.58	.57
16.3000	.56	.56	.55	.54	.54
16.5500	.53	.53	.52	.52	.51
16.8000	.51	.50	.50	.49	.49
17.0500	.48	.48	.47	.47	.46
17.3000	.46	.45	.45	.44	.44
17.5500	.43	.43	.42	.42	.41
17.8000	.41	.40	.40	.39	.39
18.0500	.38	.38	.37	.37	.36
18.3000	.36	.36	.36	.35	.35
18.5500	.35	.35	.35	.35	.34
18.8000	.34	.34	.34	.34	.34
19.0500	.34	.33	.33	.33	.33

Type.... Node: Addition Summary

Page 6.09

Name.... DP 4

Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 25 YR

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

19.3000	.33	.33	.33	.32	.32
19.5500	.32	.32	.32	.32	.31
19.8000	.31	.31	.31	.31	.31
20.0500	.31	.30	.30	.30	.30
20.3000	.30	.30	.30	.30	.29
20.5500	.29	.29	.29	.29	.29
20.8000	.29	.29	.28	.28	.28
21.0500	.28	.28	.28	.28	.28
21.3000	.28	.27	.27	.27	.27
21.5500	.27	.27	.27	.27	.26
21.8000	.26	.26	.26	.26	.26
22.0500	.26	.26	.26	.25	.25
22.3000	.25	.25	.25	.25	.25
22.5500	.25	.24	.24	.24	.24
22.8000	.24	.24	.24	.24	.23
23.0500	.23	.23	.23	.23	.23
23.3000	.23	.23	.22	.22	.22
23.5500	.22	.22	.22	.22	.22
23.8000	.21	.21	.21	.21	.21
24.0500	.20	.19	.16	.13	.10
24.3000	.07	.05	.03	.02	.02
24.5500	.01	.01	.01	.00	.00
24.8000	.00	.00	.00		

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.10
Event: 50 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 4	EXDA 4		EXDA 4	50 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 4		50 YR	1.085	12.3000	8.91

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 4		50 YR	1.085	12.3000	8.91

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.11
Event: 50 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 4
HYG Tag = 50 YR

Peak Discharge = 8.91 cfs
Time to Peak = 12.3000 hrs
HYG Volume = 1.085 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

11.2000	.00	.00	.00	.01	.02
11.4500	.04	.07	.11	.15	.22
11.7000	.32	.47	.68	.96	1.34
11.9500	1.88	2.69	3.86	5.35	6.89
12.2000	8.15	8.82	8.91	8.61	8.08
12.4500	7.45	6.80	6.12	5.43	4.77
12.7000	4.18	3.69	3.30	2.99	2.74
12.9500	2.55	2.38	2.24	2.11	2.00
13.2000	1.91	1.83	1.77	1.72	1.68
13.4500	1.65	1.62	1.59	1.56	1.54
13.7000	1.51	1.49	1.46	1.44	1.41
13.9500	1.39	1.36	1.34	1.31	1.29
14.2000	1.27	1.25	1.23	1.21	1.20
14.4500	1.19	1.17	1.16	1.15	1.13
14.7000	1.12	1.11	1.10	1.08	1.07
14.9500	1.06	1.05	1.03	1.02	1.01
15.2000	1.00	.98	.97	.96	.94
15.4500	.93	.92	.90	.89	.87
15.7000	.86	.85	.83	.82	.80
15.9500	.79	.78	.76	.75	.74
16.2000	.72	.71	.70	.69	.69
16.4500	.68	.67	.67	.66	.65
16.7000	.65	.64	.63	.63	.62
16.9500	.61	.61	.60	.60	.59
17.2000	.58	.58	.57	.56	.56
17.4500	.55	.55	.54	.53	.53
17.7000	.52	.51	.51	.50	.49
17.9500	.49	.48	.47	.47	.46
18.2000	.46	.45	.45	.44	.44
18.4500	.44	.44	.44	.43	.43
18.7000	.43	.43	.43	.42	.42

Type.... Node: Addition Summary

Page 6.12

Name.... DP 4

Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .0500 hrs

hrs | Time on left represents time for first value in each row.

18.9500	.42	.42	.42	.41	.41
19.2000	.41	.41	.41	.40	.40
19.4500	.40	.40	.40	.40	.39
19.7000	.39	.39	.39	.39	.38
19.9500	.38	.38	.38	.38	.37
20.2000	.37	.37	.37	.37	.37
20.4500	.36	.36	.36	.36	.36
20.7000	.36	.36	.35	.35	.35
20.9500	.35	.35	.35	.35	.34
21.2000	.34	.34	.34	.34	.34
21.4500	.34	.33	.33	.33	.33
21.7000	.33	.33	.32	.32	.32
21.9500	.32	.32	.32	.32	.31
22.2000	.31	.31	.31	.31	.31
22.4500	.31	.30	.30	.30	.30
22.7000	.30	.30	.29	.29	.29
22.9500	.29	.29	.29	.29	.28
23.2000	.28	.28	.28	.28	.28
23.4500	.27	.27	.27	.27	.27
23.7000	.27	.27	.26	.26	.26
23.9500	.26	.26	.25	.23	.20
24.2000	.16	.12	.09	.06	.04
24.4500	.03	.02	.01	.01	.01
24.7000	.00	.00	.00	.00	.00

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.13
Event: 100 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 4	EXDA 4		EXDA 4	100 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 4		100 YR	1.411	12.2500	11.96

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 4		100 YR	1.411	12.2500	11.96

Type.... Node: Addition Summary

Page 6.14

Name.... DP 4

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

TOTAL NODE INFLOW...

HYG file =

HYG ID = DP 4

HYG Tag = 100 YR

Peak Discharge = 11.96 cfs
Time to Peak = 12.2500 hrs
HYG Volume = 1.411 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
10.8500	.00	.00	.01	.02	.03
11.1000	.05	.07	.09	.12	.15
11.3500	.19	.23	.28	.33	.39
11.6000	.47	.58	.75	.98	1.30
11.8500	1.72	2.27	3.02	4.13	5.70
12.1000	7.65	9.64	11.20	11.96	11.95
12.3500	11.44	10.65	9.76	8.85	7.93
12.6000	7.01	6.14	5.36	4.72	4.21
12.8500	3.80	3.49	3.23	3.01	2.83
13.1000	2.66	2.52	2.40	2.31	2.23
13.3500	2.16	2.11	2.07	2.03	1.99
13.6000	1.96	1.92	1.89	1.86	1.83
13.8500	1.80	1.76	1.73	1.70	1.67
14.1000	1.64	1.61	1.58	1.55	1.53
14.3500	1.51	1.49	1.48	1.46	1.44
14.6000	1.43	1.41	1.39	1.38	1.36
14.8500	1.35	1.33	1.31	1.30	1.28
15.1000	1.27	1.25	1.23	1.22	1.20
15.3500	1.18	1.17	1.15	1.13	1.12
15.6000	1.10	1.08	1.06	1.05	1.03
15.8500	1.01	.99	.98	.96	.94
16.1000	.92	.91	.89	.88	.87
16.3500	.86	.85	.84	.83	.82
16.6000	.81	.80	.80	.79	.78
16.8500	.77	.77	.76	.75	.74
17.1000	.73	.73	.72	.71	.70
17.3500	.69	.69	.68	.67	.66
17.6000	.66	.65	.64	.63	.62
17.8500	.61	.61	.60	.59	.58
18.1000	.57	.57	.56	.55	.55
18.3500	.55	.54	.54	.54	.53

Type.... Node: Addition Summary

Page 6.15

Name.... DP 4

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

18.6000	.53	.53	.53	.52	.52
18.8500	.52	.52	.51	.51	.51
19.1000	.51	.51	.50	.50	.50
19.3500	.50	.49	.49	.49	.49
19.6000	.48	.48	.48	.48	.47
19.8500	.47	.47	.47	.47	.46
20.1000	.46	.46	.46	.45	.45
20.3500	.45	.45	.45	.44	.44
20.6000	.44	.44	.44	.44	.43
20.8500	.43	.43	.43	.43	.42
21.1000	.42	.42	.42	.42	.42
21.3500	.41	.41	.41	.41	.41
21.6000	.40	.40	.40	.40	.40
21.8500	.40	.39	.39	.39	.39
22.1000	.39	.38	.38	.38	.38
22.3500	.38	.37	.37	.37	.37
22.6000	.37	.37	.36	.36	.36
22.8500	.36	.36	.35	.35	.35
23.1000	.35	.35	.34	.34	.34
23.3500	.34	.34	.34	.33	.33
23.6000	.33	.33	.33	.32	.32
23.8500	.32	.32	.32	.31	.30
24.1000	.28	.25	.20	.15	.11
24.3500	.08	.05	.04	.03	.02
24.6000	.01	.01	.01	.00	.00
24.8500	.00	.00	.00		

Index of Starting Page Numbers for ID Names

----- D -----

DP 4 2 YR... 6.01, 6.04, 6.07, 6.10,
6.13

----- E -----

EXDA 4... 3.01, 4.01, 5.03, 5.04,
5.05, 5.06, 5.07

----- L -----

Litchfield Co.... 2.01, 2.02

----- W -----

Watershed... 1.01

Proposed Flows - DL4

Table of Contents

***** MASTER SUMMARY *****

Watershed..... Master Network Summary 1.01

***** DESIGN STORMS SUMMARY *****

Litchfield Co... Design Storms 2.01

Litchfield Co... 2 YR
Design Storms 2.02

***** TC CALCULATIONS *****

PRDA 4D..... Tc Calcs 3.01

PRDA 4ND..... Tc Calcs 3.04

***** CN CALCULATIONS *****

PRDA 4D..... Runoff CN-Area 4.01

PRDA 4ND..... Runoff CN-Area 4.02

***** RUNOFF HYDROGRAPHS *****

Unit Hyd. Equations 5.01

PRDA 4D..... 2 YR
Unit Hyd. Summary 5.03

Table of Contents (continued)

PRDA 4D.....	10 YR	
	Unit Hyd. Summary	5.04
PRDA 4D.....	25 YR	
	Unit Hyd. Summary	5.05
PRDA 4D.....	50 YR	
	Unit Hyd. Summary	5.06
PRDA 4D.....	100 YR	
	Unit Hyd. Summary	5.07
PRDA 4ND.....	2 YR	
	Unit Hyd. Summary	5.08
PRDA 4ND.....	10 YR	
	Unit Hyd. Summary	5.09
PRDA 4ND.....	25 YR	
	Unit Hyd. Summary	5.10
PRDA 4ND.....	50 YR	
	Unit Hyd. Summary	5.11
PRDA 4ND.....	100 YR	
	Unit Hyd. Summary	5.12

***** HYG ADDITION *****

DP 4.....	2 YR	
	Node: Addition Summary	6.01
DP 4.....	10 YR	
	Node: Addition Summary	6.03
DP 4.....	25 YR	
	Node: Addition Summary	6.05
DP 4.....	50 YR	
	Node: Addition Summary	6.07
DP 4.....	100 YR	
	Node: Addition Summary	6.09

***** POND VOLUMES *****

POND 1.....	Vol: Elev-Area	7.01
-------------	----------------------	------

Table of Contents (continued)

***** OUTLET STRUCTURES *****

Outlet 1.....	Outlet Input Data	8.01
	Individual Outlet Curves	8.03
	Composite Rating Curve	8.05

***** POND ROUTING *****

POND 1.....	Pond Infiltration Calcs	9.01
	Pond E-V-Q Table	9.02
POND 1	OUT 2 YR	
	Pond Routing Summary	9.04
POND 1	OUT 10 YR	
	Pond Routing Summary	9.05
POND 1	OUT 25 YR	
	Pond Routing Summary	9.06
POND 1	OUT 50 YR	
	Pond Routing Summary	9.07
POND 1	OUT 100 YR	
	Pond Routing Summary	9.08

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return Event	Total Depth in	Rainfall Type	RNF ID
2 YR	3.2000	Synthetic Curve	TypeIII 24hr
10 YR	4.7000	Synthetic Curve	TypeIII 24hr
25 YR	5.5000	Synthetic Curve	TypeIII 24hr
50 YR	6.2000	Synthetic Curve	TypeIII 24hr
100 YR	7.0000	Synthetic Curve	TypeIII 24hr

MASTER NETWORK SUMMARY
 SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;
 (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Pond Storage ac-ft
*DP 4	JCT	2	.162	--	12.5000	.67		
*DP 4	JCT	10	.590		12.3000	3.80		
*DP 4	JCT	25	.913		12.3000	6.39		
*DP 4	JCT	50	1.234		12.3000	8.92		
*DP 4	JCT	100	1.638		12.3000	11.97		
JUNCTION	JCT	2	.162		12.5000	.67		
JUNCTION	JCT	10	.590		12.3000	3.80		
JUNCTION	JCT	25	.913		12.3000	6.39		
JUNCTION	JCT	50	1.234		12.3000	8.92		
JUNCTION	JCT	100	1.638		12.3000	11.97		
POND 1	IN	POND	2	.142	12.3000	1.14		
POND 1	IN	POND	10	.317	12.3000	2.77		
POND 1	IN	POND	25	.423	12.3000	3.74		
POND 1	IN	POND	50	.522	12.3000	4.63		
POND 1	IN	POND	100	.639	12.3000	5.67		

MASTER NETWORK SUMMARY
SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
POND 1	OUT POND	2	.000	--	11.5000	.00	1432.82	.036
POND 1	OUT POND	10	.051	--	13.1000	.25	1433.52	.115
POND 1	OUT POND	25	.114	--	13.0000	.37	1433.95	.164
POND 1	OUT POND	50	.180	--	13.0000	.69	1434.31	.205
POND 1	OUT POND	100	.268	--	12.8000	1.37	1434.63	.241
PRDA 4D	AREA	2	.142	--	12.3000	1.14		
PRDA 4D	AREA	10	.317	--	12.3000	2.77		
PRDA 4D	AREA	25	.423	--	12.3000	3.74		
PRDA 4D	AREA	50	.522	--	12.3000	4.63		
PRDA 4D	AREA	100	.639	--	12.3000	5.67		
PRDA 4ND	AREA	2	.162	--	12.5000	.67		
PRDA 4ND	AREA	10	.538	--	12.3000	3.80		
PRDA 4ND	AREA	25	.799	--	12.3000	6.28		
PRDA 4ND	AREA	50	1.054	--	12.3000	8.68		
PRDA 4ND	AREA	100	1.370	--	12.3000	11.64		

File.... C:\Program Files\Haestad\PPKW\PPW\
Title... Project Date: 4/16/2009
Project Engineer: Curtis Jones
Project Title: Watershed
Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Type.... Design Storms
Name.... Litchfield Co.
File.... C:\Program Files\Haestad\PPKW\PPW\
Storm... TypeIII 24hr Tag: 2 YR

Page 2.02
Event: 2 yr

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

:::::::::::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::::::::::

Segment #1: Tc: TR-55 Sheet

Mannings n .3000
Hydraulic Length 225.00 ft
2yr, 24hr P 3.2000 in
Slope .110000 ft/ft

Avg.Velocity .23 ft/sec

Segment #1 Time: .2750 hrs

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 50.00 ft
Slope .300000 ft/ft
Unpaved

Avg.Velocity 8.84 ft/sec

Segment #2 Time: .0016 hrs

Segment #3: Tc: TR-55 Channel

Flow Area 2.5000 sq.ft
Wetted Perimeter 5.50 ft
Hydraulic Radius .45 ft
Slope .035000 ft/ft
Mannings n .0400
Hydraulic Length 1040.00 ft

Avg.Velocity 4.12 ft/sec

Segment #3 Time: .0701 hrs

=====
Total Tc: .3467 hrs
=====

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Tc Equations used...

==== SCS TR-55 Sheet Flow =====

$$Tc = (.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))$$

Where: Tc = Time of concentration, hrs
n = Mannings n
Lf = Flow length, ft
P = 2yr, 24hr Rain depth, inches
Sf = Slope, %

==== SCS TR-55 Shallow Concentrated Flow =====

Unpaved surface:

$$V = 16.1345 * (Sf^{0.5})$$

Paved surface:

$$V = 20.3282 * (Sf^{0.5})$$

$$Tc = (Lf / V) / (3600sec/hr)$$

Where: V = Velocity, ft/sec
Sf = Slope, ft/ft
Tc = Time of concentration, hrs
Lf = Flow length, ft

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

===== SCS Channel Flow =====

R = Aq / Wp
V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n
Tc = (Lf / V) / (3600sec/hr)

Where: R = Hydraulic radius
Aq = Flow area, sq.ft.
Wp = Wetted perimeter, ft
V = Velocity, ft/sec
Sf = Slope, ft/ft
n = Mannings n
Tc = Time of concentration, hrs
Lf = Flow length, ft

Type.... Tc Calcs
Name.... PRDA 4ND

Page 3.04

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

:::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::

Segment #1: Tc: User Defined

Segment #1 Time: .3400 hrs

=====
Total Tc: .3400 hrs
=====

Type.... Tc Calcs
Name.... PRDA 4ND

Page 3.05

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Tc Equations used...

===== User Defined =====

Tc = Value entered by user

Where: Tc = Time of concentration

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious		Adjusted CN
			%C	%UC	
Soil Type B - Grass/Meadow	60	1.620			60.00
Soil Type B - Wooded	55	.030			55.00
Impervious Area	98	.530			98.00

COMPOSITE AREA & WEIGHTED CN --> 2.180 69.17 (69)

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious		Adjusted CN
			%C	%UC	
Soil Type B - Wooded	55	7.370			55.00
Soil Type B - Grass/Meadow	60	.320			60.00
Impervious	98	.050			98.00

COMPOSITE AREA & WEIGHTED CN ---> 7.740 55.48 (55)

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

DEFINITION OF TERMS: -----

At = Total area (acres): At = Ai+Ap
Ai = Impervious area (acres)
Ap = Pervious area (acres)
CNI = Runoff curve number for impervious area
CNP = Runoff curve number for pervious area
fLoss = f loss constant infiltration (depth/time)
gKs = Saturated Hydraulic Conductivity (depth/time)
Md = Volumetric Moisture Deficit
Psi = Capillary Suction (length)
hK = Horton Infiltration Decay Rate (time^-1)
fo = Initial Infiltration Rate (depth/time)
fc = Ultimate(capacity) Infiltration Rate (depth/time)
Ia = Initial Abstraction (length)
dt = Computational increment (duration of unit excess rainfall)
Default dt is smallest value of 0.1333Tc, rtm, and th
(Smallest dt is then adjusted to match up with Tp)
UDdt = User specified override computational main time increment
(only used if UDdt is => .1333Tc)
D(t) = Point on distribution curve (fraction of P) for time step t

K = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67)
Ks = Hydrograph shape factor
= Unit Conversions * K:
= ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * K
Default Ks = 645.333 * 0.75 = 484

Lag = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc
P = Total precipitation depth, inches
Pa(t) = Accumulated rainfall at time step t
Pi(t) = Incremental rainfall at time step t
qp = Peak discharge (cfs) for 1in. runoff, for 1hr, for 1 sq.mi.
= (Ks * A * Q) / Tp (where Q = 1in. runoff, A=sq.mi.)
Qu(t) = Unit hydrograph ordinate (cfs) at time step t
Q(t) = Final hydrograph ordinate (cfs) at time step t
Rai(t) = Accumulated runoff (inches) at time step t for impervious area
Rap(t) = Accumulated runoff (inches) at time step t for pervious area
Rii(t) = Incremental runoff (inches) at time step t for impervious area
Rip(t) = Incremental runoff (inches) at time step t for pervious area
R(t) = Incremental weighted total runoff (inches)
Rtm = Time increment for rainfall table
Si = S for impervious area: Si = (1000/CNI) - 10
Sp = S for pervious area: Sp = (1000/CNP) - 10
t = Time step (row) number
Tc = Time of concentration
Tb = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr
Tp = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag
Tr = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

PRECIPITATION: -----

Column (1): Time for time step t
 Column (2): $D(t)$ = Point on distribution curve for time step t
 Column (3): $P_i(t) = P_a(t) - P_a(t-1)$: Col. (4) - Preceding Col. (4)
 Column (4): $P_a(t) = D(t) \times P$: Col. (2) $\times P$

PERVERIOUS AREA RUNOFF (using SCS Runoff CN Method) -----

Column (5): $R_a(t) = \text{Accumulated pervious runoff for time step } t$
 If $(P_a(t) \leq 0.2S_p)$ then use: $R_a(t) = 0.0$
 If $(P_a(t) > 0.2S_p)$ then use:

$$R_a(t) = (Col. (4) - 0.2S_p)^{**2} / (Col. (4) + 0.8S_p)$$

Column (6): $R_i(t) = \text{Incremental pervious runoff for time step } t$

$$R_i(t) = R_a(t) - R_a(t-1)$$

$$R_i(t) = Col. (5) \text{ for current row} - Col. (5) \text{ for preceding row.}$$

IMPERVIOUS AREA RUNOFF -----

Column (7 & 8)... Did not specify to use impervious areas.

INCREMENTAL WEIGHTED RUNOFF: -----

Column (9): $R(t) = (A_p/A_t) \times R_i(t) + (A_i/A_t) \times R_{ii}(t)$

$$R(t) = (A_p/A_t) \times Col. (6) + (A_i/A_t) \times Col. (8)$$

SCS UNIT HYDROGRAPH METHOD: -----

Column (10): $Q(t)$ is computed with the SCS unit hydrograph method
 using $R()$ and $Q_u()$.

Type.... Unit Hyd. Summary
Name.... PRDA 4D Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 5.03
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4D 2 YR
Tc = .3467 hrs
Drainage Area = 2.180 acres Runoff CN= 69

=====
Computational Time Increment = .04623 hrs
Computed Peak Time = 12.2978 hrs
Computed Peak Flow = 1.14 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 1.14 cfs
=====

DRAINAGE AREA

ID:PRDA 4D
CN = 69
Area = 2.180 acres
S = 4.4928 in
0.2S = .8986 in

Cumulative Runoff

.7796 in
.142 ac-ft

HYG Volume... .142 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D)
Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfs
Unit peak time Tp = .23116 hrs
Unit receding limb, Tr = .92464 hrs
Total unit time, Tb = 1.15581 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 4D Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 5.04
Event: 10 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm
Duration = 24.0000 hrs Rain Depth = 4.7000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4D 10 YR
Tc = .3467 hrs
Drainage Area = 2.180 acres Runoff CN= 69

=====

Computational Time Increment = .04623 hrs
Computed Peak Time = 12.2515 hrs
Computed Peak Flow = 2.80 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 2.77 cfs

=====

DRAINAGE AREA

ID:PRDA 4D
CN = 69
Area = 2.180 acres
S = 4.4928 in
0.2S = .8986 in

Cumulative Runoff

1.7423 in
.317 ac-ft

HYG Volume... .317 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D)
Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfs
Unit peak time Tp = .23116 hrs
Unit receding limb, Tr = .92464 hrs
Total unit time, Tb = 1.15581 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 4D Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 5.05
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4D 25 YR
Tc = .3467 hrs
Drainage Area = 2.180 acres Runoff CN= 69

=====

Computational Time Increment = .04623 hrs
Computed Peak Time = 12.2515 hrs
Computed Peak Flow = 3.81 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 3.74 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID:PRDA 4D
CN = 69
Area = 2.180 acres
S = 4.4928 in
0.2S = .8986 in

Cumulative Runoff

2.3282 in
.423 ac-ft

HYG Volume... .423 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D)
Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfs
Unit peak time Tp = .23116 hrs
Unit receding limb, Tr = .92464 hrs
Total unit time, Tb = 1.15581 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 4D Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 5.06
Event: 50 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm
Duration = 24.000 hrs Rain Depth = 6.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4D 50 YR
Tc = .3467 hrs
Drainage Area = 2.180 acres Runoff CN= 69

=====

Computational Time Increment = .04623 hrs
Computed Peak Time = 12.2515 hrs
Computed Peak Flow = 4.73 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 4.63 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%

=====

DRAINAGE AREA

ID:PRDA 4D
CN = 69
Area = 2.180 acres
S = 4.4928 in
0.2S = .8986 in

Cumulative Runoff

2.8696 in
.521 ac-ft

HYG Volume... .522 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D)
Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfs
Unit peak time Tp = .23116 hrs
Unit receding limb, Tr = .92464 hrs
Total unit time, Tb = 1.15581 hrs

Type.... Unit Hyd. Summary

Page 5.07

Name.... PRDA 4D Tag: 100 YR

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in

Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 4D 100 YR

Tc = .3467 hrs

Drainage Area = 2.180 acres Runoff CN= 69

=====

Computational Time Increment = .04623 hrs

Computed Peak Time = 12.2515 hrs

Computed Peak Flow = 5.82 cfs

Time Increment for HYG File = .1000 hrs

Peak Time, Interpolated Output = 12.3000 hrs

Peak Flow, Interpolated Output = 5.67 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID:PRDA 4D

CN = 69

Area = 2.180 acres

S = 4.4928 in

0.2S = .8986 in

Cumulative Runoff

3.5140 in

.638 ac-ft

HYG Volume... .639 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D)

Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))

Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfs

Unit peak time Tp = .23116 hrs

Unit receding limb, Tr = .92464 hrs

Total unit time, Tb = 1.15581 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 4ND Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 5.08
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4ND 2 YR
Tc = .3400 hrs
Drainage Area = 7.740 acres Runoff CN= 55

=====

Computational Time Increment = .04533 hrs
Computed Peak Time = 12.5120 hrs
Computed Peak Flow = .67 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.5000 hrs
Peak Flow, Interpolated Output = .67 cfs

=====

DRAINAGE AREA

ID:PRDA 4ND
CN = 55
Area = 7.740 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

.2509 in
.162 ac-ft

HYG Volume... .162 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (ID: PRDA 4ND)
Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs
Unit peak time Tp = .22667 hrs
Unit receding limb, Tr = .90667 hrs
Total unit time, Tb = 1.13333 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 4ND Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 5.09
Event: 10 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm
Duration = 24.0000 hrs Rain Depth = 4.7000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4ND 10 YR
Tc = .3400 hrs
Drainage Area = 7.740 acres Runoff CN= 55

=====

Computational Time Increment = .04533 hrs
Computed Peak Time = 12.3307 hrs
Computed Peak Flow = 3.84 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 3.80 cfs

=====

DRAINAGE AREA

ID:PRDA 4ND
CN = 55
Area = 7.740 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

.8346 in
.538 ac-ft

HYG Volume... .538 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (ID: PRDA 4ND)
Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs
Unit peak time Tp = .22667 hrs
Unit receding limb, Tr = .90667 hrs
Total unit time, Tb = 1.13333 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 4ND Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 5.10
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4ND 25 YR
Tc = .3400 hrs
Drainage Area = 7.740 acres Runoff CN= 55

=====

Computational Time Increment = .04533 hrs
Computed Peak Time = 12.2853 hrs
Computed Peak Flow = 6.30 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 6.28 cfs

=====

DRAINAGE AREA

ID:PRDA 4ND
CN = 55
Area = 7.740 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

1.2393 in
.799 ac-ft

HYG Volume... .799 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (ID: PRDA 4ND)
Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs
Unit peak time Tp = .22667 hrs
Unit receding limb, Tr = .90667 hrs
Total unit time, Tb = 1.13333 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 4ND Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 5.11
Event: 50 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm
Duration = 24.0000 hrs Rain Depth = 6.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4ND 50 YR
Tc = .3400 hrs
Drainage Area = 7.740 acres Runoff CN= 55

=====
Computational Time Increment = .04533 hrs
Computed Peak Time = 12.2853 hrs
Computed Peak Flow = 8.75 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 8.68 cfs

DRAINAGE AREA

ID:PRDA 4ND
CN = 55
Area = 7.740 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

1.6341 in
1.054 ac-ft

HYG Volume... 1.054 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (ID: PRDA 4ND)
Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs
Unit peak time Tp = .22667 hrs
Unit receding limb, Tr = .90667 hrs
Total unit time, Tb = 1.13333 hrs

Type.... Unit Hyd. Summary

Page 5.12

Name.... PRDA 4ND Tag: 100 YR

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4ND 100 YR
Tc = .3400 hrs
Drainage Area = 7.740 acres Runoff CN= 55

=====

Computational Time Increment = .04533 hrs
Computed Peak Time = 12.2853 hrs
Computed Peak Flow = 11.75 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 11.64 cfs

=====

DRAINAGE AREA

ID:PRDA 4ND
CN = 55
Area = 7.740 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

2.1239 in
1.370 ac-ft

HYG Volume... 1.370 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (ID: PRDA 4ND)
Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs
Unit peak time Tp = .22667 hrs
Unit receding limb, Tr = .90667 hrs
Total unit time, Tb = 1.13333 hrs

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.01
Event: 2 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

=====
Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag

TO DP4 JUNCTION JUNCTION 2 YR
=====

INFLOWS TO: DP 4

----- Volume Peak Time Peak Flow
HYG file HYG ID HYG tag ac-ft hrs cfs

JUNCTION 2 YR .162 12.5000 .67

TOTAL FLOW INTO: DP 4

----- Volume Peak Time Peak Flow
HYG file HYG ID HYG tag ac-ft hrs cfs

DP 4 2 YR .162 12.5000 .67

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm.... TypeIII 24hr Tag: 2 YR

Page 6.02
Event: 2 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 4
HYG Tag = 2 YR

Peak Discharge = .67 cfs
Time to Peak = 12.5000 hrs
HYG Volume = .162 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .1000 hrs
hrs | Time on left represents time for first value in each row.

12.0000 | .00 .02 .18 .43 .61
12.5000 | .67 .63 .54 .46 .41
13.0000 | .38 .35 .33 .31 .30
13.5000 | .29 .29 .28 .28 .27
14.0000 | .26 .26 .25 .25 .24
14.5000 | .24 .23 .23 .23 .22
15.0000 | .22 .22 .21 .21 .20
15.5000 | .20 .19 .19 .18 .18
16.0000 | .17 .17 .16 .16 .15
16.5000 | .15 .15 .15 .14 .14
17.0000 | .14 .14 .13 .13 .13
17.5000 | .13 .12 .12 .12 .11
18.0000 | .11 .11 .11 .10 .10
18.5000 | .10 .10 .10 .10 .10
19.0000 | .10 .10 .10 .10 .10
19.5000 | .10 .09 .09 .09 .09
20.0000 | .09 .09 .09 .09 .09
20.5000 | .09 .09 .09 .09 .09
21.0000 | .08 .08 .08 .08 .08
21.5000 | .08 .08 .08 .08 .08
22.0000 | .08 .08 .08 .08 .08
22.5000 | .08 .07 .07 .07 .07
23.0000 | .07 .07 .07 .07 .07
23.5000 | .07 .07 .07 .07 .07
24.0000 | .06 .06 .04 .02 .01
24.5000 | .01 .00 .00 .00 .00

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.03
Event: 10 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP4	JUNCTION		JUNCTION	10 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	10 YR	.590	12.3000	3.80

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 4	10 YR	.590	12.3000	3.80

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6,04
Event: 10 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 4
HYG Tag = 10 YR

Peak Discharge = 3.80 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .590 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .1000 hrs Time on left represents time for first value in each row.				
11.7000	.00	.01	.10	.53	1.68
12.2000	3.15	3.80	3.72	3.37	2.85
12.7000	2.31	1.91	1.66	1.49	1.36
13.2000	1.26	1.19	1.15	1.11	1.08
13.7000	1.05	1.02	.99	.96	.93
14.2000	.90	.87	.84	.82	.80
14.7000	.78	.75	.73	.71	.69
15.2000	.66	.64	.61	.59	.57
15.7000	.55	.52	.50	.48	.46
16.2000	.44	.42	.41	.40	.39
16.7000	.38	.37	.36	.35	.34
17.2000	.33	.33	.32	.31	.31
17.7000	.30	.29	.28	.28	.27
18.2000	.26	.26	.26	.25	.25
18.7000	.25	.25	.24	.24	.24
19.2000	.24	.24	.23	.23	.23
19.7000	.23	.23	.22	.22	.22
20.2000	.22	.22	.21	.21	.21
20.7000	.21	.21	.20	.20	.20
21.2000	.20	.20	.20	.20	.19
21.7000	.19	.19	.19	.19	.19
22.2000	.18	.18	.18	.18	.18
22.7000	.17	.17	.17	.17	.17
23.2000	.17	.16	.16	.16	.16
23.7000	.16	.16	.15	.15	.14
24.2000	.10	.05	.02	.01	.01
24.7000	.00	.00	.00		

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.05
Event: 25 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP4	JUNCTION		JUNCTION	25 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
JUNCTION		25 YR	.913	12.3000	6.39

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 4		25 YR	.913	12.3000	6.39

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.06
Event: 25 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 4
HYG Tag = 25 YR

Peak Discharge = 6.39 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .913 ac-ft

Time hrs	HYDROGRAPH ORDINATES (cfs)				
	Output Time increment = .1000 hrs Time on left represents time for first value in each row.				
11.5000	.00	.00	.05	.22	.62
12.0000	1.55	3.46	5.59	6.39	6.03
12.5000	5.23	4.31	3.43	2.81	2.42
13.0000	2.16	1.96	1.82	1.72	1.65
13.5000	1.60	1.56	1.52	1.48	1.43
14.0000	1.39	1.35	1.31	1.28	1.25
14.5000	1.23	1.20	1.18	1.15	1.13
15.0000	1.10	1.08	1.05	1.02	1.00
15.5000	.97	.94	.91	.88	.85
16.0000	.82	.79	.76	.73	.70
16.5000	.68	.66	.63	.61	.59
17.0000	.57	.55	.52	.51	.49
17.5000	.47	.45	.44	.42	.40
18.0000	.39	.38	.37	.36	.35
18.5000	.34	.34	.34	.33	.33
19.0000	.33	.32	.32	.32	.32
19.5000	.31	.31	.31	.30	.30
20.0000	.30	.30	.29	.29	.29
20.5000	.29	.28	.28	.28	.28
21.0000	.27	.27	.27	.27	.26
21.5000	.26	.26	.26	.26	.25
22.0000	.25	.25	.25	.24	.24
22.5000	.24	.24	.23	.23	.23
23.0000	.23	.23	.22	.22	.22
23.5000	.22	.21	.21	.21	.21
24.0000	.20	.18	.13	.07	.03
24.5000	.02	.01	.00	.00	.00

Type..., Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.07
Event: 50 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP4	JUNCTION		JUNCTION	50 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	50 YR	1.234	12,3000	8.92

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 4	50 YR	1,234	12,3000	8.92

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.08
Event: 50 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 4
HYG Tag = 50 YR

Peak Discharge = 8.92 cfs
Time to Peak = 12.3000 hrs
HYG Volume = 1.234 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .1000 hrs
hrs | Time on left represents time for first value in each row.

11.2000 | .00 .00 .02 .07 .15
11.7000 | .32 .67 1.32 2.65 5.26
12.2000 | 8.06 8.92 8.16 6.96 5.70
12.7000 | 4.60 3.82 3.33 2.99 2.72
13.2000 | 2.51 2.35 2.24 2.15 2.07
13.7000 | 2.00 1.93 1.86 1.79 1.73
14.2000 | 1.66 1.62 1.58 1.54 1.51
14.7000 | 1.47 1.44 1.41 1.38 1.35
15.2000 | 1.32 1.29 1.26 1.23 1.19
15.7000 | 1.16 1.13 1.09 1.06 1.02
16.2000 | .99 .96 .94 .92 .90
16.7000 | .88 .85 .83 .81 .79
17.2000 | .77 .74 .71 .69 .66
17.7000 | .64 .61 .58 .56 .53
18.2000 | .51 .49 .48 .47 .45
18.7000 | .44 .43 .43 .42 .41
19.2000 | .41 .40 .39 .39 .38
19.7000 | .38 .38 .37 .37 .37
20.2000 | .36 .36 .36 .35 .35
20.7000 | .35 .34 .34 .34 .34
21.2000 | .33 .33 .33 .32 .32
21.7000 | .32 .32 .31 .31 .31
22.2000 | .30 .30 .30 .29 .29
22.7000 | .29 .29 .28 .28 .28
23.2000 | .27 .27 .27 .27 .26
23.7000 | .26 .26 .25 .25 .23
24.2000 | .16 .08 .04 .02 .01
24.7000 | .00 .00 .00 .00 .00

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.09
Event: 100 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP4	JUNCTION		JUNCTION	100 YR

INFLOWS TO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	100 YR	1.638	12.3000	11.97

TOTAL FLOW INTO: DP 4

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 4	100 YR	1.638	12.3000	11.97

Type.... Node: Addition Summary
Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.10
Event: 100 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 4
HYG Tag = 100 YR

Peak Discharge = 11.97 cfs
Time to Peak = 12.3000 hrs
HYG Volume = 1.638 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .1000 hrs
hrs | Time on left represents time for first value in each row.

10.8000	.00	.00	.02	.05	.09
11.3000	.15	.23	.32	.46	.73
11.8000	1.28	2.22	4.07	7.55	11.18
12.3000	11.97	10.78	9.37	7.89	6.48
12.8000	5.42	4.71	4.19	3.78	3.45
13.3000	3.20	3.01	2.86	2.73	2.61
13.8000	2.50	2.39	2.29	2.20	2.11
14.3000	2.03	1.97	1.91	1.86	1.81
14.8000	1.76	1.72	1.68	1.63	1.59
15.3000	1.55	1.51	1.47	1.43	1.40
15.8000	1.36	1.32	1.27	1.24	1.20
16.3000	1.17	1.14	1.12	1.09	1.07
16.8000	1.05	1.02	1.00	.98	.95
17.3000	.93	.91	.88	.86	.83
17.8000	.81	.78	.75	.72	.69
18.3000	.67	.65	.63	.61	.59
18.8000	.58	.56	.55	.54	.53
19.3000	.52	.50	.49	.49	.48
19.8000	.47	.46	.46	.45	.44
20.3000	.44	.44	.43	.43	.42
20.8000	.42	.42	.41	.41	.41
21.3000	.40	.40	.40	.39	.39
21.8000	.39	.38	.38	.37	.37
22.3000	.37	.36	.36	.36	.35
22.8000	.35	.35	.34	.34	.33
23.3000	.33	.33	.32	.32	.32
23.8000	.31	.31	.30	.27	.19
24.3000	.10	.05	.02	.01	.01
24.8000	.00	.00			

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Elevation (ft)	Planimeter (sq.in)	Area (acres)	A1+A2+sqr(A1*A2) (acres)	Volume (ac-ft)	Volume Sum (ac-ft)
1432.50	-----	.1131	.0000	.000	.000
1435.20	-----	.1131	.3393	.305	.305

POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = $(1/3) * (EL2-EL1) * (Areal + Area2 + \sqrt{Areal*Area2})$

where: EL1, EL2 = Lower and upper elevations of the increment
Areal,Area2 = Areas computed for EL1, EL2, respectively
Volume = Incremental volume between EL1 and EL2

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

REQUESTED POND WS ELEVATIONS:

Min. Elev.= 1432.50 ft
Increment = .10 ft
Max. Elev.= 1435.20 ft

OUTLET CONNECTIVITY

---> Forward Flow Only (UpStream to DnStream)
<--- Reverse Flow Only (DnStream to UpStream)
<---> Forward and Reverse Both Allowed

Structure	No.	Outfall	E1, ft	E2, ft
Orifice-Circular	2	---	1434.000	1435.200
Orifice-Circular	1	---	1433.000	1435.200
TW SETUP, DS Channel				

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID = 2
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1434.00 ft
Diameter = .6670 ft
Orifice Coeff. = .600

Structure ID = 1
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1433.00 ft
Diameter = .3330 ft
Orifice Coeff. = .600

Structure ID = TW
Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...
Maximum Iterations= 30
Min. TW tolerance = .01 ft
Max. TW tolerance = .01 ft
Min. HW tolerance = .01 ft
Max. HW tolerance = .01 ft
Min. Q tolerance = .10 cfs
Max. Q tolerance = .10 cfs

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q	Tail Water			Notes
WS Elev. ft	Q cfs	TW Elev ft	Converge +/-ft	Computation Messages
1432.50	.00	Free Outfall	HW & TW below invert	
1432.60	.00	Free Outfall	HW & TW below invert	
1432.70	.00	Free Outfall	HW & TW below invert	
1432.80	.00	Free Outfall	HW & TW below invert	
1432.90	.00	Free Outfall	HW & TW below invert	
1433.00	.00	Free Outfall	HW & TW below invert	
1433.10	.00	Free Outfall	HW & TW below invert	
1433.20	.00	Free Outfall	HW & TW below invert	
1433.30	.00	Free Outfall	HW & TW below invert	
1433.40	.00	Free Outfall	HW & TW below invert	
1433.50	.00	Free Outfall	HW & TW below invert	
1433.60	.00	Free Outfall	HW & TW below invert	
1433.70	.00	Free Outfall	HW & TW below invert	
1433.80	.00	Free Outfall	HW & TW below invert	
1433.90	.00	Free Outfall	HW & TW below invert	
1434.00	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El	
1434.10	.03	Free Outfall	CRIT.DEPTH CONTROL Vh=.027ft Dcr=.073ft	CRIT.DEPTH
1434.20	.11	Free Outfall	CRIT.DEPTH CONTROL Vh=.052ft Dcr=.148ft	CRIT.DEPTH
1434.30	.23	Free Outfall	CRIT.DEPTH CONTROL Vh=.081ft Dcr=.219ft	CRIT.DEPTH
1434.40	.39	Free Outfall	CRIT.DEPTH CONTROL Vh=.110ft Dcr=.289ft	CRIT.DEPTH
1434.50	.58	Free Outfall	CRIT.DEPTH CONTROL Vh=.143ft Dcr=.357ft	CRIT.DEPTH
1434.60	.79	Free Outfall	CRIT.DEPTH CONTROL Vh=.180ft Dcr=.421ft	CRIT.DEPTH
1434.70	1.02	Free Outfall	H=.37	
1434.80	1.15	Free Outfall	H=.47	
1434.90	1.27	Free Outfall	H=.57	
1435.00	1.37	Free Outfall	H=.67	
1435.10	1.47	Free Outfall	H=.77	
1435.20	1.57	Free Outfall	H=.87	

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q		Tail Water	Notes
WS Elev.	Q	TW Elev Converge	
ft	cfs	ft +/-ft	Computation Messages
1432.50	.00	Free Outfall	HW & TW below invert
1432.60	.00	Free Outfall	HW & TW below invert
1432.70	.00	Free Outfall	HW & TW below invert
1432.80	.00	Free Outfall	HW & TW below invert
1432.90	.00	Free Outfall	HW & TW below invert
1433.00	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El
1433.10	.02	Free Outfall	CRIT.DEPTH CONTROL Vh=.027ft Dcr=.073ft CRIT.DEPTH
1433.20	.07	Free Outfall	CRIT.DEPTH CONTROL Vh=.054ft Dcr=.146ft CRIT.DEPTH
1433.30	.14	Free Outfall	CRIT.DEPTH CONTROL Vh=.092ft Dcr=.208ft CRIT.DEPTH
1433.40	.20	Free Outfall	H=.23
1433.50	.24	Free Outfall	H=.33
1433.60	.28	Free Outfall	H=.43
1433.70	.31	Free Outfall	H=.53
1433.80	.33	Free Outfall	H=.63
1433.90	.36	Free Outfall	H=.73
1434.00	.38	Free Outfall	H=.83
1434.10	.40	Free Outfall	H=.93
1434.20	.43	Free Outfall	H=1.03
1434.30	.45	Free Outfall	H=1.13
1434.40	.47	Free Outfall	H=1.23
1434.50	.48	Free Outfall	H=1.33
1434.60	.50	Free Outfall	H=1.43
1434.70	.52	Free Outfall	H=1.53
1434.80	.54	Free Outfall	H=1.63
1434.90	.55	Free Outfall	H=1.73
1435.00	.57	Free Outfall	H=1.83
1435.10	.58	Free Outfall	H=1.93
1435.20	.60	Free Outfall	H=2.03

***** COMPOSITE OUTFLOW SUMMARY *****

WS Elev, Total Q			Notes
Elev.	Q	TW Elev	Converge
ft	cfs	ft	+/-ft
1432.50	.00	Free Outfall	None contributing
1432.60	.00	Free Outfall	None contributing
1432.70	.00	Free Outfall	None contributing
1432.80	.00	Free Outfall	None contributing
1432.90	.00	Free Outfall	None contributing
1433.00	.00	Free Outfall	None contributing
1433.10	.02	Free Outfall	1
1433.20	.07	Free Outfall	1
1433.30	.14	Free Outfall	1
1433.40	.20	Free Outfall	1
1433.50	.24	Free Outfall	1
1433.60	.28	Free Outfall	1
1433.70	.31	Free Outfall	1
1433.80	.33	Free Outfall	1
1433.90	.36	Free Outfall	1
1434.00	.38	Free Outfall	1
1434.10	.43	Free Outfall	2 +1
1434.20	.53	Free Outfall	2 +1
1434.30	.67	Free Outfall	2 +1
1434.40	.85	Free Outfall	2 +1
1434.50	1.06	Free Outfall	2 +1
1434.60	1.29	Free Outfall	2 +1
1434.70	1.54	Free Outfall	2 +1
1434.80	1.68	Free Outfall	2 +1
1434.90	1.82	Free Outfall	2 +1
1435.00	1.94	Free Outfall	2 +1
1435.10	2.06	Free Outfall	2 +1
1435.20	2.16	Free Outfall	2 +1

INFILTRATION RATING TABLE CALCULATIONS

Infilt.(cfs) = (3.0000 (in/hr) * Area) * Ku
Where: Ku = units conversion factor

W.S.Elev ft	Total Area acres	Infilt. cfs
1432.50	.1131	.00
1432.60	.1131	.34
1432.70	.1131	.34
1432.80	.1131	.34
1432.90	.1131	.34
1433.00	.1131	.34
1433.10	.1131	.34
1433.20	.1131	.34
1433.30	.1131	.34
1433.40	.1131	.34
1433.50	.1131	.34
1433.60	.1131	.34
1433.70	.1131	.34
1433.80	.1131	.34
1433.90	.1131	.34
1434.00	.1131	.34
1434.10	.1131	.34
1434.20	.1131	.34
1434.30	.1131	.34
1434.40	.1131	.34
1434.50	.1131	.34
1434.60	.1131	.34
1434.70	.1131	.34
1434.80	.1131	.34
1434.90	.1131	.34
1435.00	.1131	.34
1435.10	.1131	.34
1435.20	.1131	.34

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + Q cfs
1432.50	.00	.000	.1131	.00	.00	.00
1432.60	.00	.011	.1131	.34	.34	3.08
1432.70	.00	.023	.1131	.34	.34	5.81
1432.80	.00	.034	.1131	.34	.34	8.55
1432.90	.00	.045	.1131	.34	.34	11.29
1433.00	.00	.057	.1131	.34	.34	14.03
1433.10	.02	.068	.1131	.34	.36	16.78
1433.20	.07	.079	.1131	.34	.41	19.57
1433.30	.14	.090	.1131	.34	.48	22.38
1433.40	.20	.102	.1131	.34	.54	25.18
1433.50	.24	.113	.1131	.34	.58	27.95
1433.60	.28	.124	.1131	.34	.62	30.72
1433.70	.31	.136	.1131	.34	.65	33.49
1433.80	.33	.147	.1131	.34	.68	36.26
1433.90	.36	.158	.1131	.34	.70	39.02
1434.00	.38	.170	.1131	.34	.72	41.78
1434.10	.43	.181	.1131	.34	.77	44.57
1434.20	.53	.192	.1131	.34	.87	47.40
1434.30	.67	.204	.1131	.34	1.02	50.28
1434.40	.85	.215	.1131	.34	1.19	53.20

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + O cfs
1434.50	1.06	.226	.1131	.34	1.40	56.14
1434.60	1.29	.238	.1131	.34	1.63	59.11
1434.70	1.54	.249	.1131	.34	1.88	62.09
1434.80	1.68	.260	.1131	.34	2.03	64.98
1434.90	1.82	.271	.1131	.34	2.16	67.85
1435.00	1.94	.283	.1131	.34	2.28	70.71
1435.10	2.06	.294	.1131	.34	2.40	73.56
1435.20	2.16	.305	.1131	.34	2.51	76.40

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 9.04
Event: 2 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====

Peak Inflow = 1.14 cfs at 12.3000 hrs
Peak Outflow = .00 cfs at 11.5000 hrs
Peak Infiltration = .34 cfs at 12.3000 hrs

Peak Elevation = 1432.82 ft
Peak Storage = .036 ac-ft

=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .142
- Infiltration = .142
- HYG Vol OUT = .000
- Retained Vol = .000

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 9.05
Event: 10 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 10 YR
Outflow HYG file = NONE STORED - POND 1 OUT 10 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 2.77 cfs at 12.3000 hrs
Peak Outflow = .25 cfs at 13.1000 hrs
Peak Infiltration = .34 cfs at 12.0000 hrs

Peak Elevation = 1433.52 ft
Peak Storage = .115 ac-ft
=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .317
- Infiltration = .265
- HYG Vol OUT = .051
- Retained Vol = .000

Unrouted Vol = -.000 ac-ft (.000% of Inflow Volume)

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 9.06
Event: 25 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 25 YR
Outflow HYG file = NONE STORED - POND 1 OUT 25 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====

Peak Inflow = 3.74 cfs at 12.3000 hrs
Peak Outflow = .37 cfs at 13.0000 hrs
Peak Infiltration = .34 cfs at 11.9000 hrs

Peak Elevation = 1433.95 ft
Peak Storage = .164 ac-ft

=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .423
- Infiltration = .310
- HYG Vol OUT = .114
- Retained Vol = .000

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 9.07
Event: 50 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 50 YR
Outflow HYG file = NONE STORED - POND 1 OUT 50 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====

Peak Inflow = 4.63 cfs at 12.3000 hrs
Peak Outflow = .69 cfs at 13.0000 hrs
Peak Infiltration = .34 cfs at 11.8000 hrs

=====

Peak Elevation = 1434.31 ft
Peak Storage = .205 ac-ft

=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .522
- Infiltration = .342
- HYG Vol OUT = .180
- Retained Vol = .000

Unrouted Vol = -.000 ac-ft (.000% of Inflow Volume)

Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 100 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 9.08
Event: 100 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 100 YR
Outflow HYG file = NONE STORED - POND 1 OUT 100 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====

Peak Inflow = 5.67 cfs at 12.3000 hrs
Peak Outflow = 1.37 cfs at 12.8000 hrs
Peak Infiltration = .34 cfs at 11.6000 hrs

Peak Elevation = 1434.63 ft
Peak Storage = .241 ac-ft

=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .639
- Infiltration = .371
- HYG Vol OUT = .268
- Retained Vol = .000

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

Index of Starting Page Numbers for ID Names

----- D -----

DP 4 2 YR... 6.01, 6.03, 6.05, 6.07,
6.09

----- L -----

Litchfield Co... 2.01, 2.02

----- O -----

Outlet 1... 8.01, 8.03, 8.05

----- P -----

POND 1... 7.01, 9.01, 9.02
POND 1 OUT 2 YR... 9.04, 9.05,
9.06, 9.07, 9.08
PRDA 4D... 3.01, 4.01, 5.03, 5.04,
5.05, 5.06, 5.07
PRDA 4ND... 3.04, 4.02, 5.08, 5.09,
5.10, 5.11, 5.12

----- W -----

Watershed... 1.01

Existing Flows – DL5

Table of Contents

*****MASTER SUMMARY*****

Watershed..... Master Network Summary 1.01

*****DESIGN STORMS SUMMARY*****

Litchfield Co... Design Storms 2.01

Litchfield Co... 2 YR
Design Storms 2.02

*****TC CALCULATIONS*****

EXDA 5..... Tc Calcs 3.01

*****CN CALCULATIONS*****

EXDA 5..... Runoff CN-Area 4.01

*****RUNOFF HYDROGRAPHS*****

Unit Hyd. Equations 5.01

EXDA 5..... 2 YR
Unit Hyd. Summary 5.03EXDA 5..... 10 YR
Unit Hyd. Summary 5.04

Table of Contents (continued)

EXDA 5.....	25 YR	
	Unit Hyd. Summary	5.05
EXDA 5.....	50 YR	
	Unit Hyd. Summary	5.06
EXDA 5.....	100 YR	
	Unit Hyd. Summary	5.07

***** HYG ADDITION *****

DP 5.....	2 YR	
	Node: Addition Summary	6.01
DP 5.....	10 YR	
	Node: Addition Summary	6.04
DP 5.....	25 YR	
	Node: Addition Summary	6.07
DP 5.....	50 YR	
	Node: Addition Summary	6.10
DP 5.....	100 YR	
	Node: Addition Summary	6.13

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return Event	Total Depth in	Rainfall Type	RNF ID
2 YR	3.2000	Synthetic Curve	TypeIII 24hr
10 YR	4.7000	Synthetic Curve	TypeIII 24hr
25 YR	5.5000	Synthetic Curve	TypeIII 24hr
50 YR	6.2000	Synthetic Curve	TypeIII 24hr
100 YR	7.0000	Synthetic Curve	TypeIII 24hr

MASTER NETWORK SUMMARY
SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Pond Storage ac-ft
*DP 5	JCT	2	.140	--	12.7000	.45		
*DP 5	JCT	10	.467	--	12.6000	2.51		
*DP 5	JCT	25	.693	--	12.5500	4.11		
*DP 5	JCT	50	.914	--	12.5500	5.67		
*DP 5	JCT	100	1.188	--	12.5000	7.64		
EXDA 5	AREA	2	.140	--	12.7000	.45		
EXDA 5	AREA	10	.467	--	12.6000	2.51		
EXDA 5	AREA	25	.693	--	12.5500	4.11		
EXDA 5	AREA	50	.914	--	12.5500	5.67		
EXDA 5	AREA	100	1.188	--	12.5000	7.64		

Type.... Design Storms
Name.... Litchfield Co.

Page 2,01

File.... C:\Program Files\Haestad\PPKW\PPW\
Title... Project Date: 4/16/2009
Project Engineer: Curtis Jones
Project Title: Watershed
Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Type.... Design Storms
Name.... Litchfield Co.
File.... C:\Program Files\Haestad\PPKW\PPW\
Storm... TypeIII 24hr Tag: 2 YR

Page 2.02
Event: 2 yr

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

:::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::

Segment #1: Tc: TR-55 Sheet

Mannings n .4000
Hydraulic Length 250.00 ft
2yr, 24hr P 3.2000 in
Slope .030000 ft/ft

Avg.Velocity .11 ft/sec

Segment #1 Time: .6334 hrs

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 265.00 ft
Slope .057000 ft/ft
Unpaved

Avg.Velocity 3.85 ft/sec

Segment #2 Time: .0191 hrs

=====

Total Tc: .6525 hrs

=====

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Tc Equations used...

===== SCS TR-55 Sheet Flow =====

$$Tc = (.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))$$

Where: Tc = Time of concentration, hrs
n = Mannings n
Lf = Flow length, ft
P = 2yr, 24hr Rain depth, inches
Sf = Slope, %

===== SCS TR-55 Shallow Concentrated Flow =====

Unpaved surface:
 $V = 16.1345 * (Sf^{0.5})$

Paved surface:
 $V = 20.3282 * (Sf^{0.5})$

$$Tc = (Lf / V) / (3600sec/hr)$$

Where: V = Velocity, ft/sec
Sf = Slope, ft/ft
Tc = Time of concentration, hrs
Lf = Flow length, ft

Type.... Runoff CN-Area
Name.... EXDA 5

Page 4.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious Adjustment %C %UC	Adjusted CN
Soil Type B - Wooded	55	6.710		55.00

COMPOSITE AREA & WEIGHTED CN ---> 6.710 55.00 (55)

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

DEFINITION OF TERMS: -----

At = Total area (acres): At = Ai+Ap
Ai = Impervious area (acres)
Ap = Pervious area (acres)
CNI = Runoff curve number for impervious area
CNP = Runoff curve number for pervious area
fLoss = f loss constant infiltration (depth/time)
gKs = Saturated Hydraulic Conductivity (depth/time)
Md = Volumetric Moisture Deficit
Psi = Capillary Suction (length)
hK = Horton Infiltration Decay Rate (time^-1)
fo = Initial Infiltration Rate (depth/time)
fc = Ultimate(capacity) Infiltration Rate (depth/time)
Ia = Initial Abstraction (length)
dt = Computational increment (duration of unit excess rainfall)
Default dt is smallest value of 0.1333Tc, rtm, and th
(Smallest dt is then adjusted to match up with Tp)
UDdt = User specified override computational main time increment
(only used if UDdt is => .1333Tc)
D(t) = Point on distribution curve (fraction of P) for time step t

K = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67)
Ks = Hydrograph shape factor
= Unit Conversions * K:
= ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * K
Default Ks = 645.333 * 0.75 = 484

Lag = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc
P = Total precipitation depth, inches
Pa(t) = Accumulated rainfall at time step t
Pi(t) = Incremental rainfall at time step t
qp = Peak discharge (cfs) for 1in. runoff, for 1hr, for 1 sq.mi.
= (Ks * A * Q) / Tp (where Q = 1in. runoff, A=sq.mi.)
Qu(t) = Unit hydrograph ordinate (cfs) at time step t
Q(t) = Final hydrograph ordinate (cfs) at time step t
Rai(t) = Accumulated runoff (inches) at time step t for impervious area
Rap(t) = Accumulated runoff (inches) at time step t for pervious area
Rii(t) = Incremental runoff (inches) at time step t for impervious area
Rip(t) = Incremental runoff (inches) at time step t for pervious area
R(t) = Incremental weighted total runoff (inches)
Rtm = Time increment for rainfall table
Si = S for impervious area: Si = (1000/CNI) - 10
Sp = S for pervious area: Sp = (1000/CNP) - 10
t = Time step (row) number
Tc = Time of concentration
Tb = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr
Tp = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag
Tr = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

PRECIPITATION: -----

Column (1): Time for time step t
 Column (2): $D(t)$ = Point on distribution curve for time step t
 Column (3): $Pi(t) = Pa(t) - Pa(t-1)$: Col.(4) - Preceding Col.(4)
 Column (4): $Pa(t) = D(t) \times P$ Col.(2) $\times P$

PERVERIOUS AREA RUNOFF (using SCS Runoff CN Method) -----

Column (5): $Rap(t) =$ Accumulated pervious runoff for time step t
 If $(Pa(t) \leq 0.2Sp)$ then use: $Rap(t) = 0.0$
 If $(Pa(t) > 0.2Sp)$ then use:

$$Rap(t) = (Col.(4) - 0.2Sp)^{**2} / (Col.(4) + 0.8Sp)$$

Column (6): $Rip(t) =$ Incremental pervious runoff for time step t
 $Rip(t) = Rap(t) - Rap(t-1)$
 $Rip(t) = Col.(5)$ for current row - Col.(5) for preceding row.

IMPERVIOUS AREA RUNOFF -----

Column (7 & 8)... Did not specify to use impervious areas.

INCREMENTAL WEIGHTED RUNOFF: -----

Column (9): $R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$
 $R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$

SCS UNIT HYDROGRAPH METHOD: -----

Column (10): $Q(t)$ is computed with the SCS unit hydrograph method
 using $R()$ and $Qu()$.

Type.... Unit Hyd. Summary
Name.... EXDA 5 Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 5.03
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 5 2 YR
Tc = .6525 hrs
Drainage Area = 6.710 acres Runoff CN= 55

=====

Computational Time Increment = .08700 hrs
Computed Peak Time = 12.7891 hrs
Computed Peak Flow = .45 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.7500 hrs
Peak Flow, Interpolated Output = .45 cfs

=====

DRAINAGE AREA

ID:EXDA 5
CN = 55
Area = 6.710 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

.2509 in
.140 ac-ft

HYG Volume... .140 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5)
Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfs
Unit peak time Tp = .43500 hrs
Unit receding limb, Tr = 1.74001 hrs
Total unit time, Tb = 2.17502 hrs

Type.... Unit Hyd. Summary
Name.... EXDA 5 Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 5.04
Event: 10 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm
Duration = 24.0000 hrs Rain Depth = 4.7000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 5 10 YR
Tc = .6525 hrs
Drainage Area = 6.710 acres Runoff CN= 55

=====

Computational Time Increment = .08700 hrs
Computed Peak Time = 12.6151 hrs
Computed Peak Flow = 2.51 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.6000 hrs
Peak Flow, Interpolated Output = 2.51 cfs

=====

DRAINAGE AREA

ID:EXDA 5
CN = 55
Area = 6.710 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

.8346 in
.467 ac-ft

HYG Volume... .467 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5)
Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfs
Unit peak time Tp = .43500 hrs
Unit receding limb, Tr = 1.74001 hrs
Total unit time, Tb = 2.17502 hrs

Type.... Unit Hyd. Summary
Name.... EXDA 5 Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 5.05
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 5 25 YR
Tc = .6525 hrs
Drainage Area = 6.710 acres Runoff CN= 55

=====

Computational Time Increment = .08700 hrs
Computed Peak Time = 12.5281 hrs
Computed Peak Flow = 4.13 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.5500 hrs
Peak Flow, Interpolated Output = 4.11 cfs

=====

DRAINAGE AREA

ID:EXDA 5
CN = 55
Area = 6.710 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

1.2393 in
.693 ac-ft

HYG Volume... .693 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5)
Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfs
Unit peak time Tp = .43500 hrs
Unit receding limb, Tr = 1.74001 hrs
Total unit time, Tb = 2.17502 hrs

Type.... Unit Hyd. Summary
Name.... EXDA 5 Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 5.06
Event: 50 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm
Duration = 24.0000 hrs Rain Depth = 6.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 5 50 YR
Tc = .6525 hrs
Drainage Area = 6.710 acres Runoff CN= 55

=====

Computational Time Increment = .08700 hrs
Computed Peak Time = 12.5281 hrs
Computed Peak Flow = 5.72 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.5500 hrs
Peak Flow, Interpolated Output = 5.67 cfs

=====

DRAINAGE AREA

ID:EXDA 5
CN = 55
Area = 6.710 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

1.6341 in
.914 ac-ft

HYG Volume... .914 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5)
Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfs
Unit peak time Tp = .43500 hrs
Unit receding limb, Tr = 1.74001 hrs
Total unit time, Tb = 2.17502 hrs

Type.... Unit Hyd. Summary

Page 5.07

Name.... EXDA 5

Tag: 100 YR

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 5 100 YR
Tc = .6525 hrs
Drainage Area = 6.710 acres Runoff CN= 55

=====

Computational Time Increment = .08700 hrs
Computed Peak Time = 12.5281 hrs
Computed Peak Flow = 7.69 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.5000 hrs
Peak Flow, Interpolated Output = 7.64 cfs

=====

DRAINAGE AREA

ID:EXDA 5
CN = 55
Area = 6.710 acres
S = 8.1818 in
0.2S = 1.6364 in

Cumulative Runoff

2.1239 in
1.188 ac-ft

HYG Volume... 1.188 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5)
Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfs
Unit peak time Tp = .43500 hrs
Unit receding limb, Tr = 1.74001 hrs
Total unit time, Tb = 2.17502 hrs

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.01
Event: 2 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 5	EXDA 5		EXDA 5	2 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 5		2 YR	.140	12.7000	.45

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		2 YR	.140	12.7000	.45

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.02
Event: 2 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 5
HYG Tag = 2 YR

Peak Discharge = .45 cfs
Time to Peak = 12.7000 hrs
HYG Volume = .140 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
12.0000	.00	.00	.01	.02	.04
12.2500	.07	.11	.16	.22	.27
12.5000	.32	.37	.40	.43	.45
12.7500	.45	.45	.44	.42	.41
13.0000	.39	.38	.37	.35	.34
13.2500	.33	.32	.31	.30	.29
13.5000	.29	.28	.28	.27	.27
13.7500	.26	.26	.25	.25	.25
14.0000	.25	.24	.24	.24	.23
14.2500	.23	.23	.22	.22	.22
14.5000	.22	.21	.21	.21	.21
14.7500	.21	.21	.20	.20	.20
15.0000	.20	.20	.20	.19	.19
15.2500	.19	.19	.19	.18	.18
15.5000	.18	.18	.18	.17	.17
15.7500	.17	.17	.17	.16	.16
16.0000	.16	.16	.15	.15	.15
16.2500	.15	.15	.14	.14	.14
16.5000	.14	.14	.14	.13	.13
16.7500	.13	.13	.13	.13	.13
17.0000	.13	.12	.12	.12	.12
17.2500	.12	.12	.12	.12	.12
17.5000	.11	.11	.11	.11	.11
17.7500	.11	.11	.11	.11	.10
18.0000	.10	.10	.10	.10	.10
18.2500	.10	.10	.10	.09	.09
18.5000	.09	.09	.09	.09	.09
18.7500	.09	.09	.09	.09	.09
19.0000	.09	.09	.09	.09	.09
19.2500	.09	.09	.09	.08	.08
19.5000	.08	.08	.08	.08	.08

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.03
Event: 2 yr

HYDROGRAPH ORDINATES (cfs)

Time hrs	Time on left represents time for first value in each row.				
19.7500	.08	.08	.08	.08	.08
20.0000	.08	.08	.08	.08	.08
20.2500	.08	.08	.08	.08	.08
20.5000	.08	.08	.08	.08	.08
20.7500	.08	.08	.08	.08	.08
21.0000	.07	.07	.07	.07	.07
21.2500	.07	.07	.07	.07	.07
21.5000	.07	.07	.07	.07	.07
21.7500	.07	.07	.07	.07	.07
22.0000	.07	.07	.07	.07	.07
22.2500	.07	.07	.07	.07	.07
22.5000	.07	.07	.07	.07	.07
22.7500	.07	.06	.06	.06	.06
23.0000	.06	.06	.06	.06	.06
23.2500	.06	.06	.06	.06	.06
23.5000	.06	.06	.06	.06	.06
23.7500	.06	.06	.06	.06	.06
24.0000	.06	.06	.06	.05	.05
24.2500	.05	.04	.04	.03	.03
24.5000	.03	.02	.02	.01	.01
24.7500	.01	.01	.01	.01	.00
25.0000	.00	.00	.00	.00	.00
25.2500	.00	.00	.00		

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.04
Event: 10 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 5	EXDA 5		EXDA 5	10 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 5		10 YR	.467	12.6000	2.51

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		10 YR	.467	12.6000	2.51

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.05
Event: 10 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 5
HYG Tag = 10 YR

Peak Discharge = 2.51 cfs
Time to Peak = 12.6000 hrs
HYG Volume = .467 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
11.7500	.00	.00	.01	.03	.07
12.0000	.13	.26	.42	.67	.95
12.2500	1.27	1.58	1.89	2.12	2.32
12.5000	2.44	2.51	2.51	2.45	2.37
12.7500	2.24	2.12	1.98	1.85	1.72
13.0000	1.61	1.50	1.40	1.32	1.24
13.2500	1.17	1.11	1.06	1.01	.97
13.5000	.93	.90	.87	.85	.82
13.7500	.80	.79	.77	.75	.74
14.0000	.72	.71	.69	.68	.67
14.2500	.65	.64	.63	.62	.61
14.5000	.60	.60	.59	.58	.57
14.7500	.57	.56	.56	.55	.54
15.0000	.54	.53	.53	.52	.51
15.2500	.51	.50	.50	.49	.48
15.5000	.48	.47	.47	.46	.45
15.7500	.45	.44	.43	.43	.42
16.0000	.41	.41	.40	.39	.39
16.2500	.38	.38	.37	.36	.36
16.5000	.35	.35	.35	.34	.34
16.7500	.33	.33	.33	.32	.32
17.0000	.32	.31	.31	.31	.31
17.2500	.30	.30	.30	.29	.29
17.5000	.29	.28	.28	.28	.27
17.7500	.27	.27	.27	.26	.26
18.0000	.26	.25	.25	.25	.24
18.2500	.24	.24	.23	.23	.23
18.5000	.23	.23	.22	.22	.22
18.7500	.22	.22	.22	.22	.22
19.0000	.21	.21	.21	.21	.21
19.2500	.21	.21	.21	.21	.21

Type.... Node: Addition Summary

Page 6.06

Name.... DP 5

Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 10 YR

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

Time	.21	.20	.20	.20	.20
19.5000	.20	.20	.20	.20	.20
19.7500	.20	.20	.19	.19	.19
20.0000	.20	.19	.19	.19	.19
20.2500	.19	.19	.19	.19	.19
20.5000	.19	.19	.19	.19	.18
20.7500	.18	.18	.18	.18	.18
21.0000	.18	.18	.18	.18	.18
21.2500	.18	.18	.17	.17	.17
21.5000	.17	.17	.17	.17	.17
21.7500	.17	.17	.17	.17	.17
22.0000	.17	.16	.16	.16	.16
22.2500	.16	.16	.16	.16	.16
22.5000	.16	.16	.16	.16	.16
22.7500	.15	.15	.15	.15	.15
23.0000	.15	.15	.15	.15	.15
23.2500	.15	.15	.15	.14	.14
23.5000	.14	.14	.14	.14	.14
23.7500	.14	.14	.14	.14	.14
24.0000	.14	.13	.13	.13	.12
24.2500	.11	.10	.09	.08	.07
24.5000	.06	.05	.04	.03	.03
24.7500	.02	.02	.02	.01	.01
25.0000	.01	.01	.01	.00	.00
25.2500	.00	.00	.00	.00	.00
25.5000	.00	.00			

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.07
Event: 25 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 5	EXDA 5		EXDA 5	25 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 5		25 YR	.693	12.5500	4.11

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		25 YR	.693	12.5500	4.11

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.08
Event: 25 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 5
HYG Tag = 25 YR

Peak Discharge = 4.11 cfs
Time to Peak = 12.5500 hrs
HYG Volume = .693 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
11.5500	.00	.00	.01	.01	.03
11.8000	.06	.10	.17	.29	.45
12.0500	.72	1.03	1.47	1.94	2.46
12.3000	2.93	3.38	3.69	3.95	4.07
12.5500	4.11	4.05	3.91	3.73	3.50
12.8000	3.27	3.04	2.82	2.61	2.42
13.0500	2.24	2.09	1.95	1.83	1.72
13.3000	1.63	1.54	1.46	1.40	1.34
13.5500	1.29	1.25	1.21	1.17	1.14
13.8000	1.11	1.09	1.06	1.04	1.02
14.0500	.99	.97	.95	.93	.92
14.3000	.90	.88	.87	.85	.84
14.5500	.83	.82	.81	.80	.79
14.8000	.78	.77	.76	.75	.75
15.0500	.74	.73	.72	.71	.70
15.3000	.69	.68	.68	.67	.66
15.5500	.65	.64	.63	.62	.61
15.8000	.61	.60	.59	.58	.57
16.0500	.56	.55	.54	.53	.52
16.3000	.52	.51	.50	.49	.49
16.5500	.48	.47	.47	.46	.46
16.8000	.45	.45	.44	.44	.43
17.0500	.43	.43	.42	.42	.41
17.3000	.41	.40	.40	.39	.39
17.5500	.39	.38	.38	.37	.37
17.8000	.36	.36	.36	.35	.35
18.0500	.34	.34	.33	.33	.33
18.3000	.32	.32	.32	.31	.31
18.5500	.31	.30	.30	.30	.30
18.8000	.30	.30	.29	.29	.29
19.0500	.29	.29	.29	.29	.28

Type.... Node: Addition Summary

Page 6.09

Name.... DP 5

Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 25 YR

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

19.3000	.28	.28	.28	.28	.28
19.5500	.28	.28	.27	.27	.27
19.8000	.27	.27	.27	.27	.26
20.0500	.26	.26	.26	.26	.26
20.3000	.26	.26	.26	.25	.25
20.5500	.25	.25	.25	.25	.25
20.8000	.25	.25	.24	.24	.24
21.0500	.24	.24	.24	.24	.24
21.3000	.24	.24	.23	.23	.23
21.5500	.23	.23	.23	.23	.23
21.8000	.23	.23	.22	.22	.22
22.0500	.22	.22	.22	.22	.22
22.3000	.22	.22	.21	.21	.21
22.5500	.21	.21	.21	.21	.21
22.8000	.21	.21	.20	.20	.20
23.0500	.20	.20	.20	.20	.20
23.3000	.20	.19	.19	.19	.19
23.5500	.19	.19	.19	.19	.19
23.8000	.19	.18	.18	.18	.18
24.0500	.18	.18	.17	.16	.15
24.3000	.14	.12	.11	.09	.08
24.5500	.07	.05	.04	.04	.03
24.8000	.03	.02	.02	.01	.01
25.0500	.01	.01	.01	.01	.00
25.3000	.00	.00	.00	.00	.00
25.5500	.00	.00	.00		

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.10
Event: 50 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 5	EXDA 5		EXDA 5	50 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 5		50 YR	.914	12.5500	5.67

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		50 YR	.914	12.5500	5.67

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.11
Event: 50 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 5
HYG Tag = 50 YR

Peak Discharge = 5.67 cfs
Time to Peak = 12.5500 hrs
HYG Volume = .914 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
11.2500	.00	.00	.00	.01	.01
11.5000	.02	.03	.05	.07	.11
11.7500	.15	.22	.32	.45	.65
12.0000	.90	1.30	1.75	2.36	3.00
12.2500	3.69	4.31	4.89	5.25	5.56
12.5000	5.66	5.67	5.55	5.32	5.04
12.7500	4.71	4.38	4.06	3.75	3.46
13.0000	3.19	2.95	2.74	2.55	2.39
13.2500	2.24	2.11	2.00	1.89	1.81
13.5000	1.73	1.66	1.60	1.55	1.50
13.7500	1.46	1.42	1.38	1.35	1.32
14.0000	1.29	1.26	1.23	1.21	1.18
14.2500	1.16	1.14	1.11	1.10	1.08
14.5000	1.06	1.05	1.03	1.02	1.01
14.7500	.99	.98	.97	.96	.95
15.0000	.94	.92	.91	.90	.89
15.2500	.88	.87	.86	.85	.84
15.5000	.83	.81	.80	.79	.78
15.7500	.77	.76	.75	.73	.72
16.0000	.71	.70	.69	.68	.66
16.2500	.65	.64	.63	.62	.61
16.5000	.61	.60	.59	.58	.58
16.7500	.57	.56	.56	.55	.55
17.0000	.54	.53	.53	.52	.52
17.2500	.51	.51	.50	.50	.49
17.5000	.49	.48	.47	.47	.46
17.7500	.46	.45	.45	.44	.44
18.0000	.43	.43	.42	.42	.41
18.2500	.40	.40	.40	.39	.39
18.5000	.38	.38	.38	.38	.37
18.7500	.37	.37	.37	.36	.36

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.12
Event: 50 yr

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
19.0000	.36	.36	.36	.36	.35
19.2500	.35	.35	.35	.35	.35
19.5000	.34	.34	.34	.34	.34
19.7500	.34	.33	.33	.33	.33
20.0000	.33	.33	.32	.32	.32
20.2500	.32	.32	.32	.32	.31
20.5000	.31	.31	.31	.31	.31
20.7500	.31	.30	.30	.30	.30
21.0000	.30	.30	.30	.30	.29
21.2500	.29	.29	.29	.29	.29
21.5000	.29	.29	.28	.28	.28
21.7500	.28	.28	.28	.28	.28
22.0000	.27	.27	.27	.27	.27
22.2500	.27	.27	.27	.26	.26
22.5000	.26	.26	.26	.26	.26
22.7500	.26	.25	.25	.25	.25
23.0000	.25	.25	.25	.25	.24
23.2500	.24	.24	.24	.24	.24
23.5000	.24	.24	.23	.23	.23
23.7500	.23	.23	.23	.23	.22
24.0000	.22	.22	.22	.21	.20
24.2500	.19	.17	.15	.13	.11
24.5000	.10	.08	.07	.06	.05
24.7500	.04	.03	.03	.02	.02
25.0000	.01	.01	.01	.01	.01
25.2500	.01	.00	.00	.00	.00
25.5000	.00	.00	.00	.00	.00

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.13
Event: 100 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP 5	EXDA 5		EXDA 5	100 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
EXDA 5		100 YR	1.188	12.5000	7.64

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		100 YR	1.188	12.5000	7.64

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.14
Event: 100 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 5
HYG Tag = 100 YR

Peak Discharge = 7.64 cfs
Time to Peak = 12.5000 hrs
HYG Volume = 1.188 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .0500 hrs Time on left represents time for first value in each row.				
10.9000	.00	.00	.00	.01	.01
11.1500	.02	.03	.04	.05	.07
11.4000	.09	.11	.14	.17	.21
11.6500	.26	.33	.40	.52	.67
11.9000	.87	1.17	1.52	2.08	2.70
12.1500	3.51	4.36	5.26	6.04	6.77
12.4000	7.20	7.55	7.64	7.60	7.39
12.6500	7.05	6.64	6.19	5.73	5.29
12.9000	4.88	4.48	4.13	3.80	3.53
13.1500	3.28	3.06	2.86	2.69	2.54
13.4000	2.41	2.29	2.19	2.10	2.02
13.6500	1.95	1.89	1.84	1.79	1.74
13.9000	1.70	1.65	1.61	1.58	1.54
14.1500	1.51	1.48	1.45	1.42	1.39
14.4000	1.37	1.34	1.32	1.30	1.29
14.6500	1.27	1.25	1.24	1.22	1.21
14.9000	1.19	1.18	1.16	1.15	1.13
15.1500	1.12	1.11	1.09	1.08	1.06
15.4000	1.05	1.04	1.02	1.01	.99
15.6500	.98	.97	.95	.94	.92
15.9000	.91	.89	.88	.86	.85
16.1500	.83	.82	.81	.79	.78
16.4000	.77	.76	.75	.74	.73
16.6500	.72	.71	.70	.69	.69
16.9000	.68	.67	.67	.66	.65
17.1500	.64	.64	.63	.62	.62
17.4000	.61	.60	.60	.59	.58
17.6500	.58	.57	.56	.56	.55
17.9000	.54	.54	.53	.52	.52
18.1500	.51	.50	.50	.49	.49
18.4000	.48	.48	.47	.47	.46

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 6.15
Event: 100 yr

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .0500 hrs
hrs | Time on left represents time for first value in each row.

18.6500	.46	.46	.46	.45	.45
18.9000	.45	.44	.44	.44	.44
19.1500	.44	.43	.43	.43	.43
19.4000	.43	.42	.42	.42	.42
19.6500	.42	.41	.41	.41	.41
19.9000	.41	.40	.40	.40	.40
20.1500	.40	.39	.39	.39	.39
20.4000	.39	.38	.38	.38	.38
20.6500	.38	.38	.37	.37	.37
20.9000	.37	.37	.37	.36	.36
21.1500	.36	.36	.36	.36	.36
21.4000	.35	.35	.35	.35	.35
21.6500	.35	.34	.34	.34	.34
21.9000	.34	.34	.34	.33	.33
22.1500	.33	.33	.33	.33	.32
22.4000	.32	.32	.32	.32	.32
22.6500	.32	.31	.31	.31	.31
22.9000	.31	.31	.30	.30	.30
23.1500	.30	.30	.30	.29	.29
23.4000	.29	.29	.29	.29	.29
23.6500	.28	.28	.28	.28	.28
23.9000	.28	.27	.27	.27	.26
24.1500	.25	.24	.23	.21	.18
24.4000	.16	.14	.12	.10	.08
24.6500	.07	.06	.05	.04	.03
24.9000	.03	.02	.02	.01	.01
25.1500	.01	.01	.01	.01	.00
25.4000	.00	.00	.00	.00	.00
25.6500	.00	.00			

Index of Starting Page Numbers for ID Names

----- D -----

DP 5 2 YR... 6.01, 6.04, 6.07, 6.10,
6.13

----- E -----

EXDA 5... 3.01, 4.01, 5.03, 5.04,
5.05, 5.06, 5.07

----- L -----

Litchfield Co.... 2.01, 2.02

----- W -----

Watershed... 1.01

Proposed Flows – DL5

Table of Contents

*****MASTER SUMMARY*****

Watershed..... Master Network Summary 1.01

*****DESIGN STORMS SUMMARY*****

Litchfield Co... Design Storms 2.01

Litchfield Co... 2 YR
Design Storms 2.02

*****RAINFALL DATA*****

TypeIII 24hr.... 100 YR
Synthetic Curve 3.01

*****TC CALCULATIONS*****

PRDA 5D..... Tc Calcs 4.01

PRDA 5ND..... Tc Calcs 4.03

*****CN CALCULATIONS*****

PRDA 5D..... Runoff CN-Area 5.01

PRDA 5ND..... Runoff CN-Area 5.02

*****RUNOFF HYDROGRAPHS*****

Unit Hyd. Equations 6.01

Table of Contents (continued)

PRDA 5D.....	2 YR	
	Unit Hyd. Summary	6.03
PRDA 5D.....	10 YR	
	Unit Hyd. Summary	6.04
PRDA 5D.....	25 YR	
	Unit Hyd. Summary	6.05
PRDA 5D.....	50 YR	
	Unit Hyd. Summary	6.06
PRDA 5D.....	100 YR	
	Unit Hyd. Summary	6.07
PRDA 5ND.....	2 YR	
	Unit Hyd. Summary	6.08
PRDA 5ND.....	10 YR	
	Unit Hyd. Summary	6.09
PRDA 5ND.....	25 YR	
	Unit Hyd. Summary	6.10
PRDA 5ND.....	50 YR	
	Unit Hyd. Summary	6.11
PRDA 5ND.....	100 YR	
	Unit Hyd. Summary	6.12

***** HYG ADDITION *****

DP 5.....	2 YR	
	Node: Addition Summary	7.01
DP 5.....	10 YR	
	Node: Addition Summary	7.03
DP 5.....	25 YR	
	Node: Addition Summary	7.05
DP 5.....	50 YR	
	Node: Addition Summary	7.07
DP 5.....	100 YR	
	Node: Addition Summary	7.09

Table of Contents (continued)

***** POND VOLUMES *****

UNDER DET 5..... Vol: Elev-Area 8.01

***** OUTLET STRUCTURES *****

Outlet 1..... Outlet Input Data 9.01
Individual Outlet Curves 9.03
Composite Rating Curve 9.05

***** POND ROUTING *****

UNDER DET 5..... Pond Infiltration Calcs 10.01
Pond E-V-Q Table 10.02UNDER DET 5 OUT 2 YR
Pond Routing Summary 10.04UNDER DET 5 OUT 10 YR
Pond Routing Summary 10.05UNDER DET 5 OUT 25 YR
Pond Routing Summary 10.06UNDER DET 5 OUT 50 YR
Pond Routing Summary 10.07UNDER DET 5 OUT 100 YR
Pond Routing Summary 10.08

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return Event	Total Depth in	Rainfall Type	RNF ID
2 YR	3.2000	Synthetic Curve	TypeIII 24hr
10 YR	4.7000	Synthetic Curve	TypeIII 24hr
25 YR	5.5000	Synthetic Curve	TypeIII 24hr
50 YR	6.2000	Synthetic Curve	TypeIII 24hr
100 YR	7.0000	Synthetic Curve	TypeIII 24hr

MASTER NETWORK SUMMARY
 SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;
 (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Return Type Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Pond Storage ac-ft
*DP 5	JCT 2	.115	--	12.6000	.46		
*DP 5	JCT 10	.424		12.5000	2.39		
*DP 5	JCT 25	.654		12.4000	3.95		
*DP 5	JCT 50	.880		12.4000	5.44		
*DP 5	JCT 100	1.160		12.4000	7.23		
JUNCTION	JCT 2	.115		12.6000	.46		
JUNCTION	JCT 10	.424		12.5000	2.39		
JUNCTION	JCT 25	.654		12.4000	3.95		
JUNCTION	JCT 50	.880		12.4000	5.44		
JUNCTION	JCT 100	1.160		12.4000	7.23		
PRDA 5D	AREA 2	.101		12.4000	.68		
PRDA 5D	AREA 10	.236		12.4000	1.79		
PRDA 5D	AREA 25	.318		12.4000	2.46		
PRDA 5D	AREA 50	.396		12.4000	3.08		
PRDA 5D	AREA 100	.488		12.4000	3.81		

MASTER NETWORK SUMMARY
SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
PRDA 5ND	AREA	2	.115		12.6000	.46		
PRDA 5ND	AREA	10	.367		12.4000	2.33		
PRDA 5ND	AREA	25	.539		12.4000	3.76		
PRDA 5ND	AREA	50	.706		12.4000	5.15		
PRDA 5ND	AREA	100	.913		12.4000	6.85		
UNDER DET 5	IN POND	2	.101		12.4000	.68		
UNDER DET 5	IN POND	10	.236		12.4000	1.79		
UNDER DET 5	IN POND	25	.318		12.4000	2.46		
UNDER DET 5	IN POND	50	.396		12.4000	3.08		
UNDER DET 5	IN POND	100	.488		12.4000	3.81		
UNDER DET 5	OUT POND	2	.000		11.7000	.00	1434.84	.025
UNDER DET 5	OUT POND	10	.057		13.2000	.28	1435.61	.080
UNDER DET 5	OUT POND	25	.115		13.1000	.43	1436.10	.115
UNDER DET 5	OUT POND	50	.174		12.9000	.89	1436.42	.138
UNDER DET 5	OUT POND	100	.247		12.8000	1.56	1436.72	.159

File.... C:\Program Files\Haestad\PPKW\PPW\
Title... Project Date: 4/16/2009
Project Engineer: Curtis Jones
Project Title: Watershed
Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Type.... Design Storms
Name.... Litchfield Co.
File.... C:\Program Files\Haestad\PPKW\PPW\
Storm... TypeIII 24hr Tag: 2 YR

Page 2.02
Event: 2 yr

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 25 yr
Total Rainfall Depth= 5.5000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr
Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs
Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Type.... Synthetic Curve

Page 3.01

Name.... TypeIII 24hr Tag: 100 YR

File.... C:\Program Files\Haestad\PPKW\PPW\

CUMULATIVE RAINFALL FRACTIONS

Time hrs	Output Time increment = .1000 hrs	Time on left represents time for first value in each row.			
.0000	.000	.001	.002	.003	.004
.5000	.005	.006	.007	.008	.009
1.0000	.010	.011	.012	.013	.014
1.5000	.015	.016	.017	.018	.019
2.0000	.020	.021	.022	.023	.024
2.5000	.025	.026	.027	.028	.030
3.0000	.031	.032	.033	.034	.035
3.5000	.037	.038	.039	.040	.042
4.0000	.043	.044	.046	.047	.048
4.5000	.050	.051	.052	.054	.055
5.0000	.057	.058	.060	.061	.063
5.5000	.064	.066	.067	.069	.070
6.0000	.072	.074	.075	.077	.079
6.5000	.081	.083	.084	.086	.088
7.0000	.091	.093	.095	.097	.099
7.5000	.102	.104	.106	.109	.111
8.0000	.114	.117	.119	.122	.125
8.5000	.128	.132	.135	.138	.142
9.0000	.146	.150	.153	.158	.162
9.5000	.166	.170	.175	.179	.184
10.0000	.189	.194	.199	.205	.211
10.5000	.217	.223	.229	.236	.243
11.0000	.250	.258	.266	.276	.287
11.5000	.298	.314	.339	.373	.416
12.0000	.500	.584	.627	.661	.686
12.5000	.702	.713	.724	.734	.742
13.0000	.750	.757	.764	.771	.777
13.5000	.784	.789	.795	.801	.806
14.0000	.811	.816	.821	.825	.830
14.5000	.834	.838	.842	.847	.850
15.0000	.854	.858	.862	.865	.868
15.5000	.872	.875	.878	.881	.883
16.0000	.886	.889	.891	.894	.896
16.5000	.898	.901	.903	.905	.907
17.0000	.910	.912	.914	.916	.918
17.5000	.919	.921	.923	.925	.926
18.0000	.928	.930	.931	.933	.934
18.5000	.936	.937	.939	.940	.942
19.0000	.943	.945	.946	.948	.949
19.5000	.950	.952	.953	.954	.956
20.0000	.957	.958	.960	.961	.962
20.5000	.963	.965	.966	.967	.968
21.0000	.969	.971	.972	.973	.974
21.5000	.975	.976	.977	.979	.980

Type.... Synthetic Curve
Name.... TypeIII 24hr Tag: 100 YR
File.... C:\Program Files\Haestad\PPKW\PPW\

Page 3,02

CUMULATIVE RAINFALL FRACTIONS

Time hrs	Output Time increment = .1000 hrs	Time on left represents time for first value in each row.				
22.0000	.981	.982	.983	.984	.985	
22.5000	.986	.987	.988	.989	.990	
23.0000	.991	.992	.993	.994	.995	
23.5000	.996	.997	.997	.998	.999	
24.0000	1.000					

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

:::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::

Segment #1: Tc: TR-55 Sheet

Mannings n .3000
Hydraulic Length 200.00 ft
2yr, 24hr P 3.2000 in
Slope .035000 ft/ft

Avg.Velocity .14 ft/sec

Segment #1 Time: .3957 hrs

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 502.00 ft
Slope .010000 ft/ft
Unpaved

Avg.Velocity 1.61 ft/sec

Segment #2 Time: .0864 hrs

=====

Total Tc: .4822 hrs

=====

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Tc Equations used...

===== SCS TR-55 Sheet Flow =====

$$Tc = (.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))$$

Where: Tc = Time of concentration, hrs
n = Mannings n
Lf = Flow length, ft
P = 2yr, 24hr Rain depth, inches
Sf = Slope, %

===== SCS TR-55 Shallow Concentrated Flow =====

Unpaved surface:
 $V = 16.1345 * (Sf^{0.5})$

Paved surface:
 $V = 20.3282 * (Sf^{0.5})$

$$Tc = (Lf / V) / (3600sec/hr)$$

Where: V = Velocity, ft/sec
Sf = Slope, ft/ft
Tc = Time of concentration, hrs
Lf = Flow length, ft

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

:::::::::::::::::::::::::::
TIME OF CONCENTRATION CALCULATOR
:::::::::::::::::::::::::::

Segment #1: Tc: TR-55 Sheet

Mannings n .4000
Hydraulic Length 250.00 ft
2yr, 24hr P 3.2000 in
Slope .060000 ft/ft

Avg.Velocity .14 ft/sec

Segment #1 Time: .4800 hrs

=====

Total Tc: .4800 hrs

=====

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Tc Equations used...

===== SCS TR-55 Sheet Flow =====

$$Tc = (.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))$$

Where: Tc = Time of concentration, hrs
n = Mannings n
Lf = Flow length, ft
P = 2yr, 24hr Rain depth, inches
Sf = Slope, %

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious		Adjusted CN
			Adjustment %C	%UC	
Soil Type B - Grass/Meadow	60	1.220			60.00
Soil Type B - Wooded	55	.200			55.00
Impervious Area	98	.350			98.00

COMPOSITE AREA & WEIGHTED CN ---> 1.770 66.95 (67)

Type.... Runoff CN-Area
Name.... PRDA 5ND

Page 5.02

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious		Adjusted CN
			%C	%UC	
Soil Type B - Wooded	55	4.090			55.00
Soil Type B - Grass/Meadow	60	.800			60.00
Impervious	98	.050			98.00

COMPOSITE AREA & WEIGHTED CN ---> 4.940 56.24 (56)

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

DEFINITION OF TERMS: -----

At = Total area (acres): At = Ai+Ap
Ai = Impervious area (acres)
Ap = Pervious area (acres)
CNI = Runoff curve number for impervious area
CNP = Runoff curve number for pervious area
fLoss = f loss constant infiltration (depth/time)
gKs = Saturated Hydraulic Conductivity (depth/time)
Md = Volumetric Moisture Deficit
Psi = Capillary Suction (length)
hK = Horton Infiltration Decay Rate (time^-1)
fo = Initial Infiltration Rate (depth/time)
fc = Ultimate(capacity)Infiltration Rate (depth/time)
Ia = Initial Abstraction (length)
dt = Computational increment (duration of unit excess rainfall)
Default dt is smallest value of 0.1333Tc, rtm, and th
(Smallest dt is then adjusted to match up with Tp)
UDdt = User specified override computational main time increment
(only used if UDdt is => .1333Tc)
D(t) = Point on distribution curve (fraction of P) for time step t

K = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67)
Ks = Hydrograph shape factor
= Unit Conversions * K:
= ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * K
Default Ks = 645.333 * 0.75 = 484

Lag = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc
P = Total precipitation depth, inches
Pa(t) = Accumulated rainfall at time step t
Pi(t) = Incremental rainfall at time step t
qp = Peak discharge (cfs) for lin. runoff, for 1hr, for 1 sq.mi.
= (Ks * A * Q) / Tp (where Q = lin. runoff, A=sq.mi.)
Qu(t) = Unit hydrograph ordinate (cfs) at time step t
Q(t) = Final hydrograph ordinate (cfs) at time step t
Rai(t) = Accumulated runoff (inches) at time step t for impervious area
Rap(t) = Accumulated runoff (inches) at time step t for pervious area
Rii(t) = Incremental runoff (inches) at time step t for impervious area
Rip(t) = Incremental runoff (inches) at time step t for pervious area
R(t) = Incremental weighted total runoff (inches)
Rtm = Time increment for rainfall table
Si = S for impervious area: Si = (1000/CNI) - 10
Sp = S for pervious area: Sp = (1000/CNP) - 10
t = Time step (row) number
Tc = Time of concentration
Tb = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr
Tp = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag
Tr = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

SCS UNIT HYDROGRAPH METHOD
(Computational Notes)

PRECIPITATION: -----

Column (1): Time for time step t
 Column (2): $D(t)$ = Point on distribution curve for time step t
 Column (3): $P_i(t) = P_a(t) - P_a(t-1)$: Col.(4) - Preceding Col.(4)
 Column (4): $P_a(t) = D(t) \times P$ Col.(2) $\times P$

PERVERIOUS AREA RUNOFF (using SCS Runoff CN Method) -----

Column (5): $R_{ap}(t)$ = Accumulated pervious runoff for time step t
 If $(P_a(t)) \leq 0.2Sp$ then use: $R_{ap}(t) = 0.0$
 If $(P_a(t)) > 0.2Sp$ then use:

$$R_{ap}(t) = (Col.(4) - 0.2Sp)^{**2} / (Col.(4) + 0.8Sp)$$

Column (6): $R_{ip}(t)$ = Incremental pervious runoff for time step t

$$R_{ip}(t) = R_{ap}(t) - R_{ap}(t-1)$$

$$R_{ip}(t) = Col.(5) \text{ for current row} - Col.(5) \text{ for preceding row.}$$

IMPERVIOUS AREA RUNOFF -----

Column (7 & 8)... Did not specify to use impervious areas.

INCREMENTAL WEIGHTED RUNOFF: -----

Column (9): $R(t) = (A_p/A_t) \times R_{ip}(t) + (A_i/A_t) \times R_{ii}(t)$

$$R(t) = (A_p/A_t) \times Col.(6) + (A_i/A_t) \times Col.(8)$$

SCS UNIT HYDROGRAPH METHOD: -----

Column (10): $Q(t)$ is computed with the SCS unit hydrograph method
 using $R()$ and $Qu()$.

Type.... Unit Hyd. Summary
Name.... PRDA 5D Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.03
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5D 2 YR
Tc = .4822 hrs
Drainage Area = 1.770 acres Runoff CN= 67

=====

Computational Time Increment = .06429 hrs
Computed Peak Time = 12.4079 hrs
Computed Peak Flow = .68 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = .68 cfs

=====

DRAINAGE AREA

ID:PRDA 5D
CN = 67
Area = 1.770 acres
S = 4.9254 in
0.2S = .9851 in

Cumulative Runoff

.6871 in
.101 ac-ft

HYG Volume... .101 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D)
Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfs
Unit peak time Tp = .32145 hrs
Unit receding limb, Tr = 1.28579 hrs
Total unit time, Tb = 1.60724 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 5D Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.04
Event: 10 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm
Duration = 24.0000 hrs Rain Depth = 4.7000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5D 10 YR
Tc = .4822 hrs
Drainage Area = 1.770 acres Runoff CN= 67

=====

Computational Time Increment = .06429 hrs
Computed Peak Time = 12.3436 hrs
Computed Peak Flow = 1.79 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 1.79 cfs

=====

DRAINAGE AREA

ID:PRDA 5D
CN = 67
Area = 1.770 acres
S = 4.9254 in
0.2S = .9851 in

Cumulative Runoff

1.5972 in
.236 ac-ft

HYG Volume... .236 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D)
Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfs
Unit peak time Tp = .32145 hrs
Unit receding limb, Tr = 1.28579 hrs
Total unit time, Tb = 1.60724 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 5D Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.05
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5D 25 YR
Tc = .4822 hrs
Drainage Area = 1.770 acres Runoff CN= 67

=====

Computational Time Increment = .06429 hrs
Computed Peak Time = 12.3436 hrs
Computed Peak Flow = 2.48 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 2.46 cfs

=====

DRAINAGE AREA

ID:PRDA 5D
CN = 67
Area = 1.770 acres
S = 4.9254 in
0.2S = .9851 in

Cumulative Runoff

2.1593 in
.318 ac-ft

HYG Volume... .318 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D)
Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfs
Unit peak time Tp = .32145 hrs
Unit receding limb, Tr = 1.28579 hrs
Total unit time, Tb = 1.60724 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 5D Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.06
Event: 50 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm
Duration = 24.0000 hrs Rain Depth = 6.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5D 50 YR
Tc = .4822 hrs
Drainage Area = 1.770 acres Runoff CN= 67

=====

Computational Time Increment = .06429 hrs
Computed Peak Time = 12.3436 hrs
Computed Peak Flow = 3.12 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 3.08 cfs

=====

DRAINAGE AREA

ID:PRDA 5D
CN = 67
Area = 1.770 acres
S = 4.9254 in
0.2S = .9851 in

Cumulative Runoff

2.6819 in
.396 ac-ft

HYG Volume... .396 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D)
Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfs
Unit peak time Tp = .32145 hrs
Unit receding limb, Tr = 1.28579 hrs
Total unit time, Tb = 1.60724 hrs

Type.... Unit Hyd. Summary

Page 6.07

Name.... PRDA 5D

Tag: 100 YR

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm
Duration = 24.0000 hrs Rain Depth = 7.0000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5D 100 YR
Tc = .4822 hrs
Drainage Area = 1.770 acres Runoff CN= 67

=====

Computational Time Increment = .06429 hrs
Computed Peak Time = 12.3436 hrs
Computed Peak Flow = 3.88 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 3.81 cfs
WARNING: The difference between calculated peak flow
and interpolated peak flow is greater than 1.50%

=====

DRAINAGE AREA

ID:PRDA 5D
CN = 67
Area = 1.770 acres
S = 4.9254 in
0.2S = .9851 in

Cumulative Runoff

3.3070 in
.488 ac-ft

HYG Volume... .488 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D)
Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfs
Unit peak time Tp = .32145 hrs
Unit receding limb, Tr = 1.28579 hrs
Total unit time, Tb = 1.60724 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 5ND Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 6.08
Event: 2 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm
Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5ND 2 YR
Tc = .4800 hrs
Drainage Area = 4.940 acres Runoff CN= 56

=====

Computational Time Increment = .06400 hrs
Computed Peak Time = 12.6086 hrs
Computed Peak Flow = .46 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.6000 hrs
Peak Flow, Interpolated Output = .46 cfs

=====

DRAINAGE AREA

ID:PRDA 5ND
CN = 56
Area = 4.940 acres
S = 7.8571 in
0.2S = 1.5714 in

Cumulative Runoff

.2796 in
.115 ac-ft

HYG Volume... .115 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND)
Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfs
Unit peak time Tp = .32002 hrs
Unit receding limb, Tr = 1.28006 hrs
Total unit time, Tb = 1.60008 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 5ND Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 6.09
Event: 10 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm
Duration = 24.0000 hrs Rain Depth = 4.7000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5ND 10 YR
Tc = .4800 hrs
Drainage Area = 4.940 acres Runoff CN= 56

=====

Computational Time Increment = .06400 hrs
Computed Peak Time = 12.4166 hrs
Computed Peak Flow = 2.36 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 2.33 cfs

=====

DRAINAGE AREA

ID:PRDA 5ND
CN = 56
Area = 4.940 acres
S = 7.8571 in
0.2S = 1.5714 in

Cumulative Runoff

.8910 in
.367 ac-ft

HYG Volume... .367 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND)
Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfs
Unit peak time Tp = .32002 hrs
Unit receding limb, Tr = 1.28006 hrs
Total unit time, Tb = 1.60008 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 5ND Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 6.10
Event: 25 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5ND 25 YR
Tc = .4800 hrs
Drainage Area = 4.940 acres Runoff CN= 56

=====
Computational Time Increment = .06400 hrs
Computed Peak Time = 12.4166 hrs
Computed Peak Flow = 3.78 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 3.76 cfs
=====

DRAINAGE AREA

ID:PRDA 5ND
CN = 56
Area = 4.940 acres
S = 7.8571 in
0.2S = 1.5714 in

Cumulative Runoff

1.3095 in
.539 ac-ft

HYG Volume... .539 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND)
Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfs
Unit peak time Tp = .32002 hrs
Unit receding limb, Tr = 1.28006 hrs
Total unit time, Tp = 1.60008 hrs

Type.... Unit Hyd. Summary
Name.... PRDA 5ND Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 6.11
Event: 50 yr

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm
Duration = 24.0000 hrs Rain Depth = 6.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5ND 50 YR
Tc = .4800 hrs
Drainage Area = 4.940 acres Runoff CN= 56

=====
Computational Time Increment = .06400 hrs
Computed Peak Time = 12.4166 hrs
Computed Peak Flow = 5.15 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 5.15 cfs
=====

DRAINAGE AREA

ID:PRDA 5ND
CN = 56
Area = 4.940 acres
S = 7.8571 in
0.2S = 1.5714 in

Cumulative Runoff

1.7159 in
.706 ac-ft

HYG Volume... .706 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND)
Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfs
Unit peak time Tp = .32002 hrs
Unit receding limb, Tr = 1.28006 hrs
Total unit time, Tb = 1.60008 hrs

Type.... Unit Hyd. Summary

Page 6.12

Name.... PRDA 5ND Tag: 100 YR

Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm
Duration = 24.0000 hrs Rain Depth = 7.0000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5ND 100 YR
Tc = .4800 hrs
Drainage Area = 4.940 acres Runoff CN= 56

=====

Computational Time Increment = .06400 hrs
Computed Peak Time = 12.3526 hrs
Computed Peak Flow = 6.88 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 6.85 cfs

=====

DRAINAGE AREA

ID:PRDA 5ND
CN = 56
Area = 4.940 acres
S = 7.8571 in
0.2S = 1.5714 in

Cumulative Runoff

2.2181 in
.913 ac-ft

HYG Volume... .913 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND)
Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfs
Unit peak time Tp = .32002 hrs
Unit receding limb, Tr = 1.28006 hrs
Total unit time, Tb = 1.60008 hrs

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 7.01
Event: 2 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

=====
Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag

TO DP5 JUNCTION JUNCTION 2 YR
=====

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
JUNCTION	2 YR		.115	12.6000	.46

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		2 YR	.115	12.6000	.46

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 7.02
Event: 2 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 5
HYG Tag = 2 YR

Peak Discharge = .46 cfs
Time to Peak = 12.6000 hrs
HYG Volume = .115 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .1000 hrs
hrs	Time on left represents time for first value in each row.
12.0000 | .00 .02 .09 .22 .35
12.5000 | .44 .46 .43 .38 .34
13.0000 | .31 .28 .26 .24 .23
13.5000 | .22 .21 .21 .20 .20
14.0000 | .19 .19 .18 .18 .17
14.5000 | .17 .17 .16 .16 .16
15.0000 | .16 .15 .15 .15 .14
15.5000 | .14 .14 .13 .13 .13
16.0000 | .12 .12 .11 .11 .11
16.5000 | .11 .10 .10 .10 .10
17.0000 | .10 .10 .09 .09 .09
17.5000 | .09 .09 .08 .08 .08
18.0000 | .08 .08 .07 .07 .07
18.5000 | .07 .07 .07 .07 .07
19.0000 | .07 .07 .07 .07 .07
19.5000 | .07 .07 .06 .06 .06
20.0000 | .06 .06 .06 .06 .06
20.5000 | .06 .06 .06 .06 .06
21.0000 | .06 .06 .06 .06 .06
21.5000 | .06 .06 .06 .05 .05
22.0000 | .05 .05 .05 .05 .05
22.5000 | .05 .05 .05 .05 .05
23.0000 | .05 .05 .05 .05 .05
23.5000 | .05 .05 .05 .05 .04
24.0000 | .04 .04 .04 .03 .02
24.5000 | .01 .01 .00 .00 .00
25.0000 | .00 .00 .00 .00 .00

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 7.03
Event: 10 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP5	JUNCTION		JUNCTION	10 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
JUNCTION		10 YR	.424	12.5000	2.39

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		10 YR	.424	12.5000	2.39

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 7.04
Event: 10 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 5
HYG Tag = 10 YR

Peak Discharge = 2.39 cfs
Time to Peak = 12.5000 hrs
HYG Volume = .424 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	Output Time increment = .1000 hrs				
	Time on left represents time for first value in each row.				
11.7000	.00	.01	.05	.24	.70
12.2000	1.42	2.05	2.35	2.39	2.24
12.7000	1.98	1.70	1.47	1.30	1.18
13.2000	1.08	1.00	.95	.90	.87
13.7000	.84	.81	.79	.76	.74
14.2000	.71	.69	.67	.65	.62
14.7000	.60	.58	.56	.54	.52
15.2000	.50	.48	.46	.44	.42
15.7000	.40	.39	.37	.36	.34
16.2000	.32	.31	.29	.28	.27
16.7000	.27	.26	.25	.25	.24
17.2000	.23	.22	.22	.21	.21
17.7000	.20	.20	.19	.19	.18
18.2000	.18	.18	.17	.17	.17
18.7000	.17	.17	.16	.16	.16
19.2000	.16	.16	.16	.16	.15
19.7000	.15	.15	.15	.15	.15
20.2000	.15	.14	.14	.14	.14
20.7000	.14	.14	.14	.14	.14
21.2000	.13	.13	.13	.13	.13
21.7000	.13	.13	.13	.13	.12
22.2000	.12	.12	.12	.12	.12
22.7000	.12	.12	.11	.11	.11
23.2000	.11	.11	.11	.11	.11
23.7000	.11	.10	.10	.10	.10
24.2000	.08	.06	.04	.02	.01
24.7000	.01	.00	.00	.00	.00

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 7.05
Event: 25 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP5	JUNCTION		JUNCTION	25 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
JUNCTION		25 YR	.654	12.4000	3.95

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		25 YR	.654	12.4000	3.95

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR

Page 7.06
Event: 25 yr

TOTAL NODE INFLOW...

HYG file =

HYG ID = DP 5

HYG Tag = 25 YR

Peak Discharge = 3.95 cfs
Time to Peak = 12.4000 hrs
HYG Volume = .654 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .1000 hrs
hrs | Time on left represents time for first value in each row.

Time hrs	.00	.00	.01	.04	.12
11.4000	.00	.30	.71	1.49	2.60
11.9000	3.95	3.85	3.46	2.97	2.51
12.4000	2.17	1.91	1.72	1.57	1.46
12.9000	1.37	1.30	1.25	1.20	1.16
13.4000	1.13	1.09	1.06	1.03	1.00
14.4000	.98	.95	.93	.91	.89
14.9000	.87	.85	.83	.81	.78
15.4000	.76	.74	.72	.69	.67
15.9000	.64	.62	.59	.56	.54
16.4000	.51	.49	.47	.45	.43
16.9000	.41	.39	.38	.36	.35
17.4000	.34	.32	.31	.30	.29
17.9000	.28	.27	.26	.25	.24
18.4000	.24	.23	.23	.22	.22
18.9000	.22	.22	.22	.21	.21
19.4000	.21	.21	.21	.20	.20
19.9000	.20	.20	.20	.19	.19
20.4000	.19	.19	.19	.19	.19
20.9000	.18	.18	.18	.18	.18
21.4000	.18	.17	.17	.17	.17
21.9000	.17	.17	.17	.16	.16
22.4000	.16	.16	.16	.16	.15
22.9000	.15	.15	.15	.15	.15
23.4000	.15	.14	.14	.14	.14
23.9000	.14	.14	.13	.11	.08
24.4000	.05	.03	.02	.01	.01
24.9000	.00	.00	.00	.00	

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 7.07
Event: 50 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP5	JUNCTION		JUNCTION	50 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
JUNCTION		50 YR	.880	12.4000	5.44

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		50 YR	.880	12.4000	5.44

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 7.08
Event: 50 yr

TOTAL NODE INFLOW...

HYG file =
HYG ID = DP 5
HYG Tag = 50 YR

Peak Discharge = 5.44 cfs
Time to Peak = 12.4000 hrs
HYG Volume = .880 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time | Output Time increment = .1000 hrs
hrs | Time on left represents time for first value in each row.

Time hrs	.00	.00	.01	.03	.05
11.1000	.00	.00	.01	.03	.05
11.6000	.10	.18	.34	.63	1.23
12.1000	2.32	3.79	5.04	5.44	5.18
12.6000	4.64	4.11	3.61	3.17	2.80
13.1000	2.51	2.26	2.05	1.89	1.76
13.6000	1.66	1.56	1.49	1.43	1.37
14.1000	1.31	1.27	1.22	1.19	1.16
14.6000	1.13	1.11	1.08	1.06	1.04
15.1000	1.01	.99	.97	.94	.92
15.6000	.89	.87	.84	.81	.79
16.1000	.76	.73	.71	.68	.66
16.6000	.64	.62	.60	.57	.55
17.1000	.53	.51	.49	.47	.45
17.6000	.43	.41	.39	.38	.36
18.1000	.35	.33	.32	.31	.30
18.6000	.30	.29	.29	.28	.28
19.1000	.27	.27	.26	.26	.26
19.6000	.25	.25	.25	.25	.24
20.1000	.24	.24	.24	.24	.23
20.6000	.23	.23	.23	.23	.22
21.1000	.22	.22	.22	.22	.21
21.6000	.21	.21	.21	.21	.21
22.1000	.20	.20	.20	.20	.20
22.6000	.19	.19	.19	.19	.19
23.1000	.18	.18	.18	.18	.18
23.6000	.17	.17	.17	.17	.17
24.1000	.16	.13	.10	.06	.04
24.6000	.02	.01	.01	.00	.00
25.1000	.00	.00			

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 7.09
Event: 100 yr

SUMMARY FOR HYDROGRAPH ADDITION
at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP5	JUNCTION		JUNCTION	100 YR

INFLOWS TO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
JUNCTION		100 YR	1.160	12.4000	7.23

TOTAL FLOW INTO: DP 5

HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
DP 5		100 YR	1.160	12.4000	7.23

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 7.10
Event: 100 yr

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 5
HYG Tag = 100 YR

Peak Discharge = 7.23 cfs
Time to Peak = 12.4000 hrs
HYG Volume = 1.160 ac-ft

HYDROGRAPH ORDINATES (cfs)
Time | Output Time increment = .1000 hrs
hrs	Time on left represents time for first value in each row.
10.7000 | .00 .00 .01 .02 .04
11.2000 | .07 .10 .15 .20 .28
11.7000 | .41 .65 1.07 1.90 3.36
12.2000 | 5.37 6.86 7.23 7.05 6.60
12.7000 | 5.92 5.13 4.45 3.87 3.40
13.2000 | 3.01 2.70 2.45 2.25 2.10
13.7000 | 1.97 1.87 1.78 1.69 1.62
14.2000 | 1.55 1.49 1.43 1.39 1.35
14.7000 | 1.32 1.29 1.25 1.23 1.20
15.2000 | 1.17 1.15 1.12 1.09 1.06
15.7000 | 1.04 1.01 .98 .95 .92
16.2000 | .89 .86 .83 .81 .79
16.7000 | .77 .75 .73 .71 .69
17.2000 | .67 .64 .62 .60 .57
17.7000 | .55 .53 .51 .48 .46
18.2000 | .44 .42 .41 .40 .39
18.7000 | .38 .37 .36 .35 .34
19.2000 | .34 .33 .33 .32 .32
19.7000 | .31 .31 .31 .30 .30
20.2000 | .29 .29 .29 .29 .28
20.7000 | .28 .28 .28 .27 .27
21.2000 | .27 .27 .26 .26 .26
21.7000 | .26 .25 .25 .25 .25
22.2000 | .25 .24 .24 .24 .24
22.7000 | .23 .23 .23 .23 .22
23.2000 | .22 .22 .22 .21 .21
23.7000 | .21 .21 .20 .20 .19
24.2000 | .16 .12 .08 .04 .03
24.7000 | .02 .01 .01 .00 .00
25.2000 | .00 .00 .00 .00 .00

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Elevation (ft)	Planimeter (sq.in)	Area (acres)	A1+A2+sqr(A1*A2) (acres)	Volume (ac-ft)	Volume Sum (ac-ft)
1434.50	-----	.0720	.0000	.000	.000
1437.00	-----	.0720	.2160	.180	.180

POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = $(1/3) * (EL2-EL1) * (Areal + Area2 + \sqrt{Areal*Area2})$

where: EL1, EL2 = Lower and upper elevations of the increment
Areal,Area2 = Areas computed for EL1, EL2, respectively
Volume = Incremental volume between EL1 and EL2

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

REQUESTED POND WS ELEVATIONS:

Min. Elev.= 1434.50 ft
Increment = .10 ft
Max. Elev.= 1437.00 ft

OUTLET CONNECTIVITY

--> Forward Flow Only (UpStream to DnStream)
<-- Reverse Flow Only (DnStream to UpStream)
<--> Forward and Reverse Both Allowed

Structure	No.	Outfall	E1, ft	E2, ft
Orifice-Circular	2	---	1436.000	1437.000
Orifice-Circular	1	---	1435.000	1437.000
TW SETUP, DS Channel				

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID = 2
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1436.00 ft
Diameter = .6670 ft
Orifice Coeff. = .600

Structure ID = 1
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1435.00 ft
Diameter = .3330 ft
Orifice Coeff. = .600

Structure ID = TW
Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...
Maximum Iterations= 30
Min. TW tolerance = .01 ft
Max. TW tolerance = .01 ft
Min. HW tolerance = .01 ft
Max. HW tolerance = .01 ft
Min. Q tolerance = .10 cfs
Max. Q tolerance = .10 cfs

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q	Tail Water			Notes
WS Elev.	Q	TW Elev	Converge	
ft	cfs	ft	+/-ft	Computation Messages
1434.50	.00	Free Outfall		HW & TW below invert
1434.60	.00	Free Outfall		HW & TW below invert
1434.70	.00	Free Outfall		HW & TW below invert
1434.80	.00	Free Outfall		HW & TW below invert
1434.90	.00	Free Outfall		HW & TW below invert
1435.00	.00	Free Outfall		HW & TW below invert
1435.10	.00	Free Outfall		HW & TW below invert
1435.20	.00	Free Outfall		HW & TW below invert
1435.30	.00	Free Outfall		HW & TW below invert
1435.40	.00	Free Outfall		HW & TW below invert
1435.50	.00	Free Outfall		HW & TW below invert
1435.60	.00	Free Outfall		HW & TW below invert
1435.70	.00	Free Outfall		HW & TW below invert
1435.80	.00	Free Outfall		HW & TW below invert
1435.90	.00	Free Outfall		HW & TW below invert
1436.00	.00	Free Outfall		Upstream HW & DNstream TW < Inv.EI
1436.10	.03	Free Outfall		CRIT.DEPTH CONTROL Vh= .027ft Dcr= .073ft CRIT.DEPTH
1436.20	.11	Free Outfall		CRIT.DEPTH CONTROL Vh= .052ft Dcr= .148ft CRIT.DEPTH
1436.30	.23	Free Outfall		CRIT.DEPTH CONTROL Vh= .081ft Dcr= .219ft CRIT.DEPTH
1436.40	.39	Free Outfall		CRIT.DEPTH CONTROL Vh= .110ft Dcr= .289ft CRIT.DEPTH
1436.50	.58	Free Outfall		CRIT.DEPTH CONTROL Vh= .143ft Dcr= .357ft CRIT.DEPTH
1436.60	.79	Free Outfall		CRIT.DEPTH CONTROL Vh= .180ft Dcr= .421ft CRIT.DEPTH
1436.70	1.02	Free Outfall	H =.37	
1436.80	1.15	Free Outfall	H =.47	
1436.90	1.27	Free Outfall	H =.57	
1437.00	1.37	Free Outfall	H =.67	

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q	Tail Water			Notes
WS Elev. ft	Q cfs	TW Elev ft	Converge +/-ft	Computation Messages
1434.50	.00	Free Outfall	HW & TW below invert	
1434.60	.00	Free Outfall	HW & TW below invert	
1434.70	.00	Free Outfall	HW & TW below invert	
1434.80	.00	Free Outfall	HW & TW below invert	
1434.90	.00	Free Outfall	HW & TW below invert	
1435.00	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El	
1435.10	.02	Free Outfall	CRIT.DEPTH CONTROL Vh= .027ft Dcr= .073ft	CRIT.DEPTH
1435.20	.07	Free Outfall	CRIT.DEPTH CONTROL Vh= .054ft Dcr= .146ft	CRIT.DEPTH
1435.30	.14	Free Outfall	CRIT.DEPTH CONTROL Vh= .092ft Dcr= .208ft	CRIT.DEPTH
1435.40	.20	Free Outfall	H = .23	
1435.50	.24	Free Outfall	H = .33	
1435.60	.28	Free Outfall	H = .43	
1435.70	.31	Free Outfall	H = .53	
1435.80	.33	Free Outfall	H = .63	
1435.90	.36	Free Outfall	H = .73	
1436.00	.38	Free Outfall	H = .83	
1436.10	.40	Free Outfall	H = .93	
1436.20	.43	Free Outfall	H = 1.03	
1436.30	.45	Free Outfall	H = 1.13	
1436.40	.47	Free Outfall	H = 1.23	
1436.50	.48	Free Outfall	H = 1.33	
1436.60	.50	Free Outfall	H = 1.43	
1436.70	.52	Free Outfall	H = 1.53	
1436.80	.54	Free Outfall	H = 1.63	
1436.90	.55	Free Outfall	H = 1.73	
1437.00	.57	Free Outfall	H = 1.83	

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

***** COMPOSITE OUTFLOW SUMMARY *****

WS Elev, Total Q	Elev. ft	Q cfs	Converge			Notes
			TW Elev ft	Error +/-ft	Contributing Structures	
1434.50	.00	Free Outfall		None contributing		
1434.60	.00	Free Outfall		None contributing		
1434.70	.00	Free Outfall		None contributing		
1434.80	.00	Free Outfall		None contributing		
1434.90	.00	Free Outfall		None contributing		
1435.00	.00	Free Outfall		None contributing		
1435.10	.02	Free Outfall	1			
1435.20	.07	Free Outfall	1			
1435.30	.14	Free Outfall	1			
1435.40	.20	Free Outfall	1			
1435.50	.24	Free Outfall	1			
1435.60	.28	Free Outfall	1			
1435.70	.31	Free Outfall	1			
1435.80	.33	Free Outfall	1			
1435.90	.36	Free Outfall	1			
1436.00	.38	Free Outfall	1			
1436.10	.43	Free Outfall	2 +1			
1436.20	.53	Free Outfall	2 +1			
1436.30	.67	Free Outfall	2 +1			
1436.40	.85	Free Outfall	2 +1			
1436.50	1.06	Free Outfall	2 +1			
1436.60	1.29	Free Outfall	2 +1			
1436.70	1.54	Free Outfall	2 +1			
1436.80	1.68	Free Outfall	2 +1			
1436.90	1.82	Free Outfall	2 +1			
1437.00	1.94	Free Outfall	2 +1			

INFILTRATION RATING TABLE CALCULATIONS

Infilt.(cfs) = (3.0000 (in/hr) * Area) * Ku
Where: Ku = units conversion factor

W.S.Elev ft	Total Area acres	Infilt. cfs
1434.50	.0720	.00
1434.60	.0720	.22
1434.70	.0720	.22
1434.80	.0720	.22
1434.90	.0720	.22
1435.00	.0720	.22
1435.10	.0720	.22
1435.20	.0720	.22
1435.30	.0720	.22
1435.40	.0720	.22
1435.50	.0720	.22
1435.60	.0720	.22
1435.70	.0720	.22
1435.80	.0720	.22
1435.90	.0720	.22
1436.00	.0720	.22
1436.10	.0720	.22
1436.20	.0720	.22
1436.30	.0720	.22
1436.40	.0720	.22
1436.50	.0720	.22
1436.60	.0720	.22
1436.70	.0720	.22
1436.80	.0720	.22
1436.90	.0720	.22
1437.00	.0720	.22

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 2 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 2 YR

Pond Node Data = UNDER DET 5
Pond Volume Data = UNDER DET 5
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + O cfs
1434.50	.00	.000	.0720	.00	.00	.00
1434.60	.00	.007	.0720	.22	.22	1.96
1434.70	.00	.014	.0720	.22	.22	3.70
1434.80	.00	.022	.0720	.22	.22	5.45
1434.90	.00	.029	.0720	.22	.22	7.19
1435.00	.00	.036	.0720	.22	.22	8.93
1435.10	.02	.043	.0720	.22	.24	10.69
1435.20	.07	.050	.0720	.22	.29	12.48
1435.30	.14	.058	.0720	.22	.36	14.30
1435.40	.20	.065	.0720	.22	.42	16.10
1435.50	.24	.072	.0720	.22	.46	17.88
1435.60	.28	.079	.0720	.22	.49	19.66
1435.70	.31	.086	.0720	.22	.52	21.43
1435.80	.33	.094	.0720	.22	.55	23.20
1435.90	.36	.101	.0720	.22	.58	24.97
1436.00	.38	.108	.0720	.22	.60	26.74
1436.10	.43	.115	.0720	.22	.65	28.53
1436.20	.53	.122	.0720	.22	.75	30.37
1436.30	.67	.130	.0720	.22	.89	32.26
1436.40	.85	.137	.0720	.22	1.07	34.18

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 2 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 2 YR

Pond Node Data = UNDER DET 5
Pond Volume Data = UNDER DET 5
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + O cfs
1436.50	1.06	.144	.0720	.22	1.28	36.13
1436.60	1.29	.151	.0720	.22	1.51	38.10
1436.70	1.54	.158	.0720	.22	1.75	40.09
1436.80	1.68	.166	.0720	.22	1.90	41.98
1436.90	1.82	.173	.0720	.22	2.04	43.85
1437.00	1.94	.180	.0720	.22	2.16	45.72

Type.... Pond Routing Summary
Name.... UNDER DET 5 OUT Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 2 YR

Page 10.04
Event: 2 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 2 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 2 YR

Pond Node Data = UNDER DET 5
Pond Volume Data = UNDER DET 5
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = .68 cfs at 12.4000 hrs
Peak Outflow = .00 cfs at 11.7000 hrs
Peak Infiltration = .22 cfs at 12.4000 hrs
=====
Peak Elevation = 1434.84 ft
Peak Storage = .025 ac-ft
=====

MASS BALANCE (ac-ft)

=====
+ Initial Vol = .000
+ HYG Vol IN = .101
- Infiltration = .101
- HYG Vol OUT = .000
- Retained Vol = .000
=====
Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

Type.... Pond Routing Summary
Name.... UNDER DET 5 OUT Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR

Page 10.05
Event: 10 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 10 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 10 YR

Pond Node Data = UNDER DET 5
Pond Volume Data = UNDER DET 5
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 1.79 cfs at 12.4000 hrs
Peak Outflow = .28 cfs at 13.2000 hrs
Peak Infiltration = .22 cfs at 12.1000 hrs

Peak Elevation = 1435.61 ft
Peak Storage = .080 ac-ft
=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .236
- Infiltration = .178
- HYG Vol OUT = .057
- Retained Vol = .000

Unrouted Vol = -.000 ac-ft (.002% of Inflow Volume)

Type.... Pond Routing Summary
Name.... UNDER DET 5 OUT Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm.... TypeIII 24hr Tag: 25 YR

Page 10.06
Event: 25 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 25 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 25 YR

Pond Node Data = UNDER DET 5
Pond Volume Data = UNDER DET 5
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 2.46 cfs at 12.4000 hrs
Peak Outflow = .43 cfs at 13.1000 hrs
Peak Infiltration = .22 cfs at 12.0000 hrs
=====
Peak Elevation = 1436.10 ft
Peak Storage = .115 ac-ft
=====

MASS BALANCE (ac-ft)

=====
+ Initial Vol = .000
+ HYG Vol IN = .318
- Infiltration = .203
- HYG Vol OUT = .115
- Retained Vol = .000
=====
Unrouted Vol = -.000 ac-ft (.001% of Inflow Volume)

Type.... Pond Routing Summary
Name.... UNDER DET 5 OUT Tag: 50 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR

Page 10.07
Event: 50 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 50 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 50 YR

Pond Node Data = UNDER DET 5
Pond Volume Data = UNDER DET 5
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 3.08 cfs at 12.4000 hrs
Peak Outflow = .89 cfs at 12.9000 hrs
Peak Infiltration = .22 cfs at 11.8000 hrs

Peak Elevation = 1436.42 ft
Peak Storage = .138 ac-ft
=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .396
- Infiltration = .222
- HYG Vol OUT = .174
- Retained Vol = .000

Unrouted Vol = .000 ac-ft (.001% of Inflow Volume)

Type.... Pond Routing Summary
Name.... UNDER DET 5 OUT Tag: 100 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR

Page 10.08
Event: 100 yr

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 100 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 100 YR

Pond Node Data = UNDER DET 5
Pond Volume Data = UNDER DET 5
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

=====
Peak Inflow = 3.81 cfs at 12.4000 hrs
Peak Outflow = 1.56 cfs at 12.8000 hrs
Peak Infiltration = .22 cfs at 11.6000 hrs
=====
Peak Elevation = 1436.72 ft
Peak Storage = .159 ac-ft
=====

MASS BALANCE (ac-ft)

+ Initial Vol = .000
+ HYG Vol IN = .488
- Infiltration = .240
- HYG Vol OUT = .247
- Retained Vol = .000

Unrouted Vol = .000 ac-ft (.001% of Inflow Volume)

Index of Starting Page Numbers for ID Names

----- D -----

DP 5 2 YR... 7.01, 7.03, 7.05, 7.07,
7.09

----- L -----

Litchfield Co...., 2.01, 2.02

----- O -----

Outlet 1... 9.01, 9.03, 9.05

----- P -----

PRDA 5D... 4.01, 5.01, 6.03, 6.04,
6.05, 6.06, 6.07
PRDA 5ND... 4.03, 5.02, 6.08, 6.09,
6.10, 6.11, 6.12, 3.01

----- U -----

UNDER DET 5... 8.01, 10.01, 10.02
UNDER DET 5 OUT 2 YR... 10.04,
10.05, 10.06, 10.07, 10.08

----- W -----

Watershed... 1.01