

KENNETH C. BALDWIN

280 Trumbull Street  
Hartford, CT 06103-3597  
Main (860) 275-8200  
Fax (860) 275-8299  
kbaldwin@rc.com  
Direct (860) 275-8345

Also admitted in Massachusetts  
and New York

July 27, 2023

Melanie A. Bachman, Esq.  
Executive Director/Staff Attorney  
Connecticut Siting Council  
10 Franklin Square  
New Britain, CT 06051

**Re: Request of Cellco Partnership d/b/a Verizon Wireless for an Order to Approve the Shared Use of an Existing Tower at 169 Hampden Road, Stafford, Connecticut**

Dear Attorney Bachman:

Pursuant to Connecticut General Statutes (“C.G.S.”) §16-50aa, as amended, Cellco Partnership d/b/a Verizon Wireless (“Cellco”) hereby requests an order from the Siting Council (“Council”) to approve the shared use of an existing telecommunications tower located on a 43.38-acre parcel at 169 Hampden Road in Stafford (the “Property”). The Property is owned by Karen, Phillip and Michael Vivenzio. The tower is owned by Everest Infrastructure Partners (“Everest”). Cellco identifies this site as its “Stafford 4 Facility”. The existing 180-foot guyed lattice tower was approved by the Town of Stafford. Cellco’s real estate representatives did reach out to the Town Planning and Zoning and Building Departments to obtain a copy of the original tower approval. Town staff could not, however, locate the original tower approval.

Cellco requests that the Council find that the proposed shared use of the existing tower satisfies the criteria of C.G.S § 16-50aa and issue an order approving this request. A copy of this filing is being sent to Stafford’s First Selectman, Sal P. Titus and Jennifer Roy, Zoning Officer.

## Background

Cellco is licensed by the Federal Communications Commission (“FCC”) to provide wireless services throughout the State of Connecticut. Cellco and Everest have agreed to the proposed shared use of the existing telecommunications facility at the Property pursuant to mutually acceptable terms and conditions and Everest has authorized Cellco to apply for all

Melanie A. Bachman, Esq.

July 27, 2023

Page 2

necessary permits and approvals that may be required to share the existing tower. (See Attachment 1).

Cellco proposes to install nine (9) antennas and nine (9) remote radio heads (“RRHs”) on an antenna platform at a height of 152’-8” feet above ground level (“AGL”). Cellco’s radio equipment will be installed within a secure equipment room in the existing shelter near the base of the tower. Cellco will also install a 50-kW diesel-fueled generator on a concrete pad near the equipment shelter. Included in Attachment 2 are Cellco’s project plans showing the location of Cellco’s proposed site improvements. Attachment 3 contains specifications for Cellco’s proposed antennas, RRHs and backup generator.

C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, “if the council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such shared use.” Cellco respectfully submits that the shared use of the tower satisfies these criteria.

**A. Technical Feasibility.** The existing tower is structurally capable of supporting Cellco’s antennas, RRHs, antenna platform and related equipment. The proposed shared use of this tower is, therefore, technically feasible. A Structural Analysis (“SA”) dated February 22, 2023, prepared by Christina Hodges, P.E. confirms that the tower can support Cellco’s proposed antennas and related equipment. Likewise, an Antenna Mount Analysis (“MA”), dated February 6, 2023, confirms that the proposed antenna and RRH mounting system can support Cellco’s proposed shared use. Copies of the SA and MA are included in Attachment 4.

**B. Legal Feasibility.** Under C.G.S. § 16-50aa, the Council has been authorized to issue orders approving the shared use of an existing tower, such as the existing Hampden Road tower. This authority complements the Council’s prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council’s jurisdiction. In addition, § 16-50x(a) directs the Council to “give such consideration to other state laws and municipal regulations as it shall deem appropriate” in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.

**C. Environmental Feasibility.** The proposed shared use of the existing tower would have minimal environmental effects, for the following reasons:

1. The proposed installation of nine (9) antennas and nine (9) RRHs on an

Melanie A. Bachman, Esq.

July 27, 2023

Page 3

antenna platform at a height of 152'-8" feet AGL on the existing 180-foot tower would have an insignificant incremental visual impact on the area around the Property. As mentioned above, all of Cellco's equipment will be located inside the existing shelter near the base of the tower. Cellco's shared use of the existing tower would, therefore, not cause any significant change or alteration in the physical or environmental characteristics of the existing facility or the Property.

2. Noise associated with Cellco's proposed facility will comply with State and local noise standards. Noise associated with the backup generator is exempt from state and local noise standards.
3. Operation of Cellco's antennas at this site would not exceed the RF emissions standards adopted by the Federal Communications Commission ("FCC"). Included in Attachment 5 of this filing is a Calculated Radio Frequency Emissions Report that demonstrates that the facility following Cellco's shared use will operate well within the FCC's safety standards.
4. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the facility other than periodic maintenance visits to the cell site.

The proposed shared use of the existing tower would, therefore, have a minimal environmental effect, and is environmentally feasible.

**D. Economic Feasibility.** As previously mentioned, Cellco has entered into an agreement with Everest for the shared use of the existing tower subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.

**E. Public Safety Concerns.** As discussed above, the tower and antenna mounts are structurally capable of supporting Cellco's antennas, antenna mounting frame, RRHs and all related equipment. Cellco is not aware of any public safety concerns relative to the proposed sharing of the existing Hampden Road tower. In fact, the provision of new and improved wireless service through Cellco's shared use of the existing tower would enhance the safety and welfare of area residents and members of the general public traveling through the Town of Stafford.

Melanie A. Bachman, Esq.

July 27, 2023

Page 4

A Certificate of Mailing verifying that a copy of this filing was sent to the municipal officials, the Property owner, and Everest, the tower owner is included in Attachment 6.

## **Conclusion**

For the reasons discussed above, the proposed shared use of the existing tower at the Property satisfies the criteria stated in C.G.S. § 16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use.

Thank you for your consideration of this matter.

Very truly yours,



Kenneth C. Baldwin

Enclosures

Copy to:

Sal P. Titus, First Selectman  
Jennifer Roy, Zoning Official  
Karen, Phillip and Michael Vivenzio, Property Owner  
Everest Infrastructure Partners, Tower Owner  
Tim Parks, Verizon Wireless

# **ATTACHMENT 1**



Everest Infrastructure Partners  
Two Allegheny Center  
Nova Tower 2, Suite 1002  
Pittsburgh, PA 15212

**LETTER OF AUTHORIZATION**

I, Michael Ashley Culbert, on behalf of EIP Communications I, LLC, owner representative of the telecommunications tower located at 169 Hamden Road, Stafford Springs, Tolland County, Connecticut, as evidenced by the Recorded Easement Agreement, bk. 704, pg. 164-175, dated October 29, 2021; hereby authorize Cellco Partnership d/b/a Verizon Wireless (“VZW”), through its designated agents, to apply for all necessary municipal, state, federal and other permits necessary to accommodate the installation of VZW’s antennas and ancillary equipment on the subject tower and base station equipment on the ground on our leasehold property.

EIP Communications I, LLC

*Michael Ashley Culbert*  
By: \_\_\_\_\_  
Michael Ashley Culbert  
Vice President of Leasing & Collocation

Date: July 10, 2023

## **ATTACHMENT 2**



**SITE NAME: STAFFORD 4 CT**  
**SITE ID: 617359998**  
**169 HAMPDEN ROAD**  
**STAFFORD, CT 06076**

| GENERAL NOTES                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2021 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2022 CONNECTICUT CODE SUPPLEMENT, INCLUDING THE TIA-IEC-222 REVISION "H" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES," 2022 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.                                                                   | 14. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD, THE CONTRACTOR, LAWS, CODES, RULES OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.                                                                                                                                           |
| 2. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY Affected WORK.                                                                                                                                                                                                                           | 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENTS. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.                      | 16. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.                                                                                                                                                                                                                                                     |
| 4. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.                                                                                                                                                                | 17. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VERIZON WIRELESS CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.                                                                                                                                                                                                                 |
| 5. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK. | 18. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.                                                                                                                                                                                                                                                                                                                                                   |
| 6. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.                                                                                                                                          | 19. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.                                                                                                                                                                                                                                                                                                            |
| 7. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.                                                                                                                                                                                | 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.                                                                                                                                                                                                                                                                                                            |
| 8. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.                                                                                                                                                        | 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICES SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT OF ANY WORK.                                                                                                                                                                                    |
| 9. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.                                                                                                                                                         | 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.                                                                                                                                                                                                                                                                  |
| 10. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON-SITE. ALL DRAWINGS AND INCORPORATION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.      | 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4428. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.                                                                                                                                                                                                                                    |
| 11. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.                                                                                                                          | 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.                                                                                                                                                                                                                                                                                   |
| 12. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.                                                                                                      | 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.                                                                                                                                                                                                                                                                                                                                                    |
| 13. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.                                                                                                                                               | 26. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/DEALM OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN. |
| 27. PRIOR TO THE SUBMISSION OF BIDS, THE CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.                                                                 | 28. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.                                                                                                                                                                                                                                                                                                                                                                                                 |



| PROJECT SUMMARY                                                                                                                     |                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: |                                                     |
| 1. INSTALL (3) PROPOSED COMMSCOPE NHH-858-R2B ANTENNAS                                                                              | CONSTRUCTION DRAWINGS - REVISED PER CLIENT COMMENTS |
| 2. INSTALL (3) PROPOSED COMMSCOPE NHHSS-859-R2BT4 ANTENNAS                                                                          | CONSTRUCTION DRAWINGS - REVISED PER CLIENT COMMENTS |
| 3. INSTALL (3) PROPOSED SAMSUNG MT8407-77A ANTENNAS WITH INTEGRATED RADIO                                                           | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 4. INSTALL (3) PROPOSED SAMSUNG B2/B08A RRH ORAN (RF4430d-25A) RADIOS                                                               | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 5. INSTALL (3) PROPOSED SAMSUNG B5/B13 RRH ORAN (RF4440d-13A)                                                                       | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 6. INSTALL (3) PROPOSED SAMSUNG CBRS RRH (RT4401-48A)                                                                               | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 7. INSTALL (1) PROPOSED RAYCAP RVZDC-6827-PF-48 OVP BOX                                                                             | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 8. INSTALL (3) SECTOR FRAME ANTENNA MOUNTS, TYP. (1) PER SECTOR                                                                     | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 9. INSTALL (1) NEW EQUIPMENT CABINET WITHIN EXISTING EQUIPMENT ROOM                                                                 | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 10. INSTALL NEW 50KW DIESEL FUELED BACK-UP GENERATOR ON A PROPOSED CONCRETE PAD AS SHOWN HEREIN.                                    | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 11. REMOVE AND REPLACE EXISTING AIR CONDITIONING UNIT WITHIN THE EXISTING EQUIPMENT ROOM. SEE SHEET M-1 FOR ADDITIONAL DETAILS.     | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 12. INSTALL NEW UTILITY METER                                                                                                       | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 13. INSTALL ILC CABINET                                                                                                             | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 14. INSTALL TELCO CABINET                                                                                                           | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| 15. INSTALL UNISTRUT FRAME TO ACCOMMODATE EQUIPMENT INSTALLATION                                                                    | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |

|                             |                      |
|-----------------------------|----------------------|
| PROFESSIONAL ENGINEER SEAL: |                      |
| DATE:                       | 07/17/23             |
| REG. NO.:                   | 100-1000             |
| EXPIRATION DATE:            | 07/17/24             |
| STATE:                      | CONNECTICUT          |
| NAME:                       | Michael J. Humphreys |

|                    |                                 |
|--------------------|---------------------------------|
| CENTEK Engineering | Engineering in the 21st Century |
| (203) 488-0550 Fax | 452 North Branford Road         |
|                    | Branford, CT 06405              |
|                    | www.CentekEng.com               |

| PROJECT INFORMATION |                                                                                                                                                                   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SITE NAME:          | STAFFORD 4 CT                                                                                                                                                     |
| SITE ID:            | 617359998                                                                                                                                                         |
| SITE ADDRESS:       | 169 HAMPDEN ROAD<br>STAFFORD, CT 06076                                                                                                                            |
| APPLICANT:          | CELLCO PARTNERSHIP<br>d/b/a: VERIZON WIRELESS<br>20 ALEXANDER DRIVE<br>WALLINGFORD, CT 06492                                                                      |
| CONTACT PERSON:     | MICHAEL HUMPHREYS (CONSTRUCTION MANAGER)<br>VERIZON WIRELESS<br>(860) 580-8410                                                                                    |
| ENGINEER OF RECORD: | CENTEK ENGINEERING, INC.<br>63-2 NORTH BRANFORD ROAD<br>BRANFORD, CT 06405<br>CARL F. CENTORE, PE<br>(203) 488-0580 EXT. 122                                      |
| SITE COORDINATES:   | LATITUDE: 41° 59' 58.49" N<br>LONGITUDE: 72° 21' 20.29" W<br>GROUND ELEVATION: ±1074' AMSL<br>SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH. |

| SHEET INDEX |                                              |
|-------------|----------------------------------------------|
| SHEET NO.   | DESCRIPTION                                  |
| T-1         | TITLE SHEET                                  |
| N-1         | SPECIFICATIONS, NOTES, AND ANT. SCHEDULE     |
| C-1         | COMPOUND, EQUIPMENT PLAN & ELEVATION         |
| C-2         | ANTENNA CONFIGURATION PLAN AND ELEVATION     |
| C-3         | TYPICAL EQUIPMENT DETAILS                    |
| C-4         | TYPICAL EQUIPMENT DETAILS                    |
| C-5         | CONDUIT PENETRATION DETAILS                  |
| M-1         | MECHANICAL PLAN AND NOTES                    |
| E-1         | ELECTRICAL CONDUIT ROUTING AND RISER DIAGRAM |
| E-2         | ELECTRICAL SCHEMATIC DIAGRAM                 |
| E-3         | ELECTRICAL GROUNDING PLANS                   |
| E-4         | TYPICAL ELECTRICAL DETAILS                   |
| E-5         | TYPICAL ELECTRICAL DETAILS                   |
| E-6         | ELECTRICAL SPECIFICATIONS                    |

|                          |
|--------------------------|
| SITE NAME: STAFFORD 4 CT |
| SITE ID: 617359998       |
| 169 HAMPDEN ROAD         |
| STAFFORD CT, 06076       |
| DATE: 05/18/23           |
| SCALE: AS NOTED          |
| JOB NO. 23010.09         |
| TITLE SHEET              |
| T-1                      |

Sheet No. 1 of 14

## NOTES AND SPECIFICATIONS:

### DESIGN BASIS:

GOVERNING CODE: 2021 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2022 CONNECTICUT STATE BUILDING CODE.

#### 1. DESIGN CRITERIA:

- RISK CATEGORY II (BASED ON IBC TABLE 1604.8)
- NOMINAL DESIGN SPEED: 108 MPH (Wind)  
(EXPOSURE B / IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-16).

### SITE NOTES:

- THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRELUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- IF ANY FIELD CONDITIONS EXIST WHICH PRELUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

### GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2021 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2022 CONNECTICUT SUPPLEMENT, INCLUDING THE TM/EA-222 REVISION "H" "STRUCTURAL STANDARDS FOR STEEL, ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2022 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- SHOULD ANY FIELD CONDITIONS PRELUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTOGUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL, COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN "AS-BUILT" SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VERIZON WIRELESS CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO "EXTRA" WILL BE ALLOWED FOR MISSED ITEMS.
- CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT OF ANY WORK.
- ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.
- THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.
- PRIOR TO THE SUBMISSION OF BIDS, THE CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.

### STRUCTURAL STEEL

- ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- STRUCTURAL STEEL (W SHAPES) — ASTM A992 (FY = 50 KSI)
- STRUCTURAL STEEL (OTHER SHAPES) — ASTM A36 (FY = 36 KSI)
- STRUCTURAL HSS (RECTANGULAR SHAPES) — ASTM A500 GRADE B, (FY = 46 KSI)
- STRUCTURAL HSS (ROUND SHAPES) — ASTM A500 GRADE B, (FY = 42 KSI)
- PIPE — ASTM A53 (FY = 33 KSI)
- CONNECTION BOLTS — ASTM A325-N
- U-BOLTS — ASTM A38
- ANCHOR RODS — ASTM F 1554
- WELDING ELECTRODE — ASTM E 70XX
- CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- PROVIDE ALL PLATES, CUP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 65% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- FABRICATE BEAMS WITH MILL CAMBER UP.
- LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

|                            |                                                                                         |
|----------------------------|-----------------------------------------------------------------------------------------|
| PROFESSIONAL ENGINEER SEAL |                                                                                         |
| SITE NAME: STAFFORD 4 CT   | verizon                                                                                 |
| SITE ID: 16999206          |                                                                                         |
| 109 HAMPTON ROAD           |                                                                                         |
| STAFFORD CT, 06476         |                                                                                         |
| CENTEK Engineering         | 1213-488-0580 Fax<br>452 North Barnford Road<br>Branford, CT 06405<br>www.CentekEng.com |

|                                                                                       |                                         |
|---------------------------------------------------------------------------------------|-----------------------------------------|
| DATE: 06/10/23                                                                        | SCALE: AS NOTED                         |
| JOB NO. 23010.08                                                                      | SPECIFICATIONS, NOTES AND ANT. SCHEDULE |
| NOTE:<br>ALL HYBRID/COAX LENGTHS TO BE MEASURED AND VERIFIED IN FIELD BEFORE ORDERING |                                         |
| N-1                                                                                   |                                         |

| ANTENNA/APPURTEANCE SCHEDULE |                   |                            |                              |                     |         |                                                                                               |                            |
|------------------------------|-------------------|----------------------------|------------------------------|---------------------|---------|-----------------------------------------------------------------------------------------------|----------------------------|
| SECTOR                       | EXISTING/PROPOSED | ANTENNA (QTY)              | SIZE (INCHES)<br>(L x W x D) | ANTENNA %<br>HEIGHT | AZIMUTH | (E/P) RRU & OVP (QTY)                                                                         | (QTY) PROPOSED HYBRID/COAX |
| A1                           | PROPOSED          | COMMSCOPE: NHHSS-858-R2BT4 | 72 x 11.9 x 7.1              | 152.8'              | 30°     | (P) SAMSUNG B5/B13 RRH ORAN (RF4440d-13A) (1), (P) SAMSUNG B2/B98A RRH ORAN (RF4439d-25A) (1) |                            |
| A2                           | PROPOSED          | SAMSUNG: MT6407-77A (1)    | 35.1 x 16.1 x 5.5            | 152.8'              | 30°     | (P) SAMSUNG CBRS RT4401-48A (1)                                                               |                            |
| A3                           |                   |                            |                              |                     |         |                                                                                               |                            |
| A4                           | PROPOSED          | COMMSCOPE: NHH-858-R2B     | 72 x 11.9 x 7.0              | 152.8'              | 30°     | (P) RAYCAP OVP 12 (1)                                                                         |                            |
| B1                           | PROPOSED          | COMMSCOPE: NHHSS-858-R2BT4 | 72 x 11.9 x 7.1              | 152.8'              | 150°    | (P) SAMSUNG B5/B13 RRH ORAN (RF4440d-13A) (1), (P) SAMSUNG B2/B98A RRH ORAN (RF4439d-25A) (1) |                            |
| B2                           | PROPOSED          | SAMSUNG: MT6407-77A (1)    | 35.1 x 16.1 x 5.5            | 152.8'              | 150°    | (P) SAMSUNG CBRS RT4401-48A (1)                                                               |                            |
| B3                           |                   |                            |                              |                     |         |                                                                                               |                            |
| B4                           | PROPOSED          | COMMSCOPE: NHH-858-R2B     | 72 x 11.9 x 7.0              | 152.8'              | 150°    |                                                                                               |                            |
| C1                           | PROPOSED          | COMMSCOPE: NHHSS-858-R2BT4 | 72 x 11.9 x 7.1              | 152.8'              | 270°    | (P) SAMSUNG B5/B13 RRH ORAN (RF4440d-13A) (1), (P) SAMSUNG B2/B98A RRH ORAN (RF4439d-25A) (1) |                            |
| C2                           | PROPOSED          | SAMSUNG: MT6407-77A (1)    | 35.1 x 16.1 x 5.5            | 152.8'              | 270°    | (P) SAMSUNG CBRS RT4401-48A (1)                                                               |                            |
| C3                           |                   |                            |                              |                     |         |                                                                                               |                            |
| C4                           | PROPOSED          | COMMSCOPE: NHH-858-R2B     | 72 x 11.9 x 7.0              | 152.8'              | 270°    |                                                                                               |                            |

(2) 6x12 HYBRID CABLE

NOTE:  
ALL HYBRID/COAX LENGTHS TO BE MEASURED AND VERIFIED IN FIELD BEFORE ORDERING

Sheet No. 2 of 14



1 C-1 EQUIPMENT PLAN - PROPOSED CONDITIONS  
SCALE: 1/2" = 1'-0"  
TRUE NORTH



2 C-1 COMPOUND PLAN - PROPOSED CONDITIONS  
SCALE: 1/8" = 1'-0"  
TRUE NORTH



3 C-1 TOWER ELEVATION - PROPOSED CONDITIONS  
SCALE: 1" = 10"  
TRUE NORTH

|                                                                                                                                                                                                                                                                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| STRUCTURAL COMPLIANCE                                                                                                                                                                                                                                                                                                                                                        |  |
| ANTENNA MOUNTS                                                                                                                                                                                                                                                                                                                                                               |  |
| A STRUCTURAL ANALYSIS OF THE ANTENNA MOUNTS WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING.. REFER TO THE STRUCTURAL ANALYSIS & DESIGN REPORT PREPARED BY NEXUS, DATED 02/06/23 FOR ADDITIONAL INFORMATION AND REQUIREMENTS.                                                    |  |
| TOWER AND TOWER FOUNDATION                                                                                                                                                                                                                                                                                                                                                   |  |
| A STRUCTURAL ANALYSIS OF THE TOWER AND TOWER FOUNDATION WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING. REFER TO THE STRUCTURAL ANALYSIS REPORT PREPARED BY PAUL J. FORD & COMPANY (PROJECT # A13323-0004.001.8700) DATED 02/22/23 FOR ADDITIONAL INFORMATION AND REQUIREMENTS. |  |
| NOTE: NO EQUIPMENT SHALL BE INSTALLED ON THE HOSTING STRUCTURE WITHOUT A PASSING STRUCTURAL ANALYSIS REPORT AND CONTRACTOR PRIOR CONFIRMATION THAT ANY AND ALL REQUISITE MODIFICATIONS HAVE BEEN COMPLETED.                                                                                                                                                                  |  |
| <p>PROFESSIONAL ENGINEER SEAL</p> <p>verizon</p>                                                                                                                                                                                                                                                                                                                             |  |
| <p>CELESTEK Engineering</p> <p>Cellco Partnership d/b/a Verizon Wireless</p> <p>SITE NAME: STAFFORD 4 CT</p> <p>SITE ID: 109992026</p> <p>109 HAMPTON ROAD</p> <p>STAFFORD CT, 06076</p> <p>(203) 488-0530 Fax<br/>(203) 488-0527 Tel<br/>632 North Branford Road<br/>Branford, CT 06405<br/>www.CenterEng.com</p>                                                           |  |
| <p>DATE: 06/16/23</p> <p>SCALE: AS NOTED</p> <p>JOB NO. 23010.08</p> <p>COMPOUND,<br/>EQUIPMENT PLAN<br/>&amp; ELEVATION</p>                                                                                                                                                                                                                                                 |  |
| <p>C-1</p> <p>Sheet No. 3 of 14</p>                                                                                                                                                                                                                                                                                                                                          |  |



1 ANTENNA MOUNTING CONFIGURATION PLAN - PROPOSED  
C-2 SCALE: 1/2" = 1'-0"

The logo for True North, featuring a circular icon with a white outline of the state of North Carolina and the words "TRUE NORTH" in a bold, sans-serif font below it.



**2** ANTENNA ELEVATION - PROPOSED  
C-2 SCALE:  $3/8'' = 1'-0''$

|                                                                                                                    |          |                                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ceilco Partnership d/b/a Verizon Wireless                                                                          |          | CENTEK engineering                                                                                                                                                                             |  |
| <b>SITE NAME:</b> STAFFORD 4 CT<br><b>SITE ID:</b> 16889206<br><b>18 HAMPDEN ROAD</b><br><b>STAFFORD CT, 06076</b> |          | <p>(203) 488-0550<br/>           (203) 488-5587 Fax<br/>           65-2 North Fronton Road<br/>           Branford, CT 06405<br/> <a href="http://www.CentekEng.com">www.CentekEng.com</a></p> |  |
| DATE:                                                                                                              | 05/19/23 |                                                                                                                                                                                                |  |
| SCALE:                                                                                                             | AS NOTED |                                                                                                                                                                                                |  |
| JOB NO.:                                                                                                           | 23010.08 |                                                                                                                                                                                                |  |
| ANTENNA<br>CONFIGURATION<br>PLAN & ELEVATION                                                                       |          |                                                                                                                                                                                                |  |
| C-2                                                                                                                |          |                                                                                                                                                                                                |  |
| Sheet No. 1 of 14                                                                                                  |          |                                                                                                                                                                                                |  |



|                                                     |   |          |          |        |
|-----------------------------------------------------|---|----------|----------|--------|
| CONSTRUCTION DRAWINGS - REVISED PER CLIENT COMMENTS | 1 | 05/12/23 | TKR      | TAR    |
|                                                     | 2 | 05/12/23 | BSP      | TAR    |
|                                                     | 3 | 05/12/23 | CBR      | TAR    |
|                                                     | 4 | 05/19/23 | CBR      | TAR    |
|                                                     |   |          | DRAWN BY | CHAD B |
|                                                     |   |          | REV.     |        |

**PROFESSIONAL ENGINEER SEAL**



**verizon**

**CENTEK**  
Engineering Solutions<sup>®</sup>  
(203) 485-0580  
(203) 485-8387 Fax  
43-2 North Branford Road  
Branford, CT 06405  
www.CentekEng.com

**Celco Partnership d/b/a Verizon Wireless**  
**SITE NAME: STAFFORD 4 CT**  
**SITE ID: 10099206**  
**100 HAMPTON ROAD**  
**STAFFORD CT, 06076**

DATE: 05/19/23  
SCALE: AS NOTED  
JOB NO. 23010.08  
  
TYPICAL  
EQUIPMENT  
DETAILS  
  
**C-3**  
Sheet No. 5 of 14



|                                                                                                              |          |          |      |                                                     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|------|-----------------------------------------------------|
| CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH VERIZON CONSTRUCTION MANAGER PRIOR TO ORDERING |          |          |      |                                                     |
| 2                                                                                                            | 07/23/23 | TOK      | TUR  | CONSTRUCTION DRAWINGS - REVISED FOR CLIENT COMMENTS |
| 1                                                                                                            | 07/11/23 | BSP      | TUR  | CONSTRUCTION DRAWINGS - REVISED GENERATOR MODEL     |
| 3                                                                                                            | 06/12/23 | BSP      | TUR  | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| A                                                                                                            | 05/19/23 | DRA      | TUR  | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION     |
| REV.                                                                                                         | DATE     | REVISION | DATE | DESIGNER                                            |

**1** **2** **3** **4** **5** **6** **7** **8** **9** **10** **11** **12** **13** **14** **15** **16** **17** **18** **19** **20** **21** **22** **23** **24** **25** **26** **27** **28** **29** **30** **31** **32** **33** **34** **35** **36** **37** **38** **39** **40** **41** **42** **43** **44** **45** **46** **47** **48** **49** **50** **51** **52** **53** **54** **55** **56** **57** **58** **59** **60** **61** **62** **63** **64** **65** **66** **67** **68** **69** **70** **71** **72** **73** **74** **75** **76** **77** **78** **79** **80** **81** **82** **83** **84** **85** **86** **87** **88** **89** **90** **91** **92** **93** **94** **95** **96** **97** **98** **99** **100** **101** **102** **103** **104** **105** **106** **107** **108** **109** **110** **111** **112** **113** **114** **115** **116** **117** **118** **119** **120** **121** **122** **123** **124** **125** **126** **127** **128** **129** **130** **131** **132** **133** **134** **135** **136** **137** **138** **139** **140** **141** **142** **143** **144** **145** **146** **147** **148** **149** **150** **151** **152** **153** **154** **155** **156** **157** **158** **159** **160** **161** **162** **163** **164** **165** **166** **167** **168** **169** **170** **171** **172** **173** **174** **175** **176** **177** **178** **179** **180** **181** **182** **183** **184** **185** **186** **187** **188** **189** **190** **191** **192** **193** **194** **195** **196** **197** **198** **199** **200** **201** **202** **203** **204** **205** **206** **207** **208** **209** **210** **211** **212** **213** **214** **215** **216** **217** **218** **219** **220** **221** **222** **223** **224** **225** **226** **227** **228** **229** **230** **231** **232** **233** **234** **235** **236** **237** **238** **239** **240** **241** **242** **243** **244** **245** **246** **247** **248** **249** **250** **251** **252** **253** **254** **255** **256** **257** **258** **259** **260** **261** **262** **263** **264** **265** **266** **267** **268** **269** **270** **271** **272** **273** **274** **275** **276** **277** **278** **279** **280** **281** **282** **283** **284** **285** **286** **287** **288** **289** **290** **291** **292** **293** **294** **295** **296** **297** **298** **299** **300** **301** **302** **303** **304** **305** **306** **307** **308** **309** **310** **311** **312** **313** **314** **315** **316** **317** **318** **319** **320** **321** **322** **323** **324** **325** **326** **327** **328** **329** **330** **331** **332** **333** **334** **335** **336** **337** **338** **339** **340** **341** **342** **343** **344** **345** **346** **347** **348** **349** **350** **351** **352** **353** **354** **355** **356** **357** **358** **359** **360** **361** **362** **363** **364** **365** **366** **367** **368** **369** **370** **371** **372** **373** **374** **375** **376** **377** **378** **379** **380** **381** **382** **383** **384** **385** **386** **387** **388** **389** **390** **391** **392** **393** **394** **395** **396** **397** **398** **399** **400** **401** **402** **403** **404** **405** **406** **407** **408** **409** **410** **411** **412** **413** **414** **415** **416** **417** **418** **419** **420** **421** **422** **423** **424** **425** **426** **427** **428** **429** **430** **431** **432** **433** **434** **435** **436** **437** **438** **439** **440** **441** **442** **443** **444** **445** **446** **447** **448** **449** **450** **451** **452** **453** **454** **455** **456** **457** **458** **459** **460** **461** **462** **463** **464** **465** **466** **467** **468** **469** **470** **471** **472** **473** **474** **475** **476** **477** **478** **479** **480** **481** **482** **483** **484** **485** **486** **487** **488** **489** **490** **491** **492** **493** **494** **495** **496** **497** **498** **499** **500** **501** **502** **503** **504** **505** **506** **507** **508** **509** **510** **511** **512** **513** **514** **515** **516** **517** **518** **519** **520** **521** **522** **523** **524** **525** **526** **527** **528** **529** **530** **531** **532** **533** **534** **535** **536** **537** **538** **539** **540** **541** **542** **543** **544** **545** **546** **547** **548** **549** **550** **551** **552** **553** **554** **555** **556** **557** **558** **559** **560** **561** **562** **563** **564** **565** **566** **567** **568** **569** **570** **571** **572** **573** **574** **575** **576** **577** **578** **579** **580** **581** **582** **583** **584** **585** **586** **587** **588** **589** **590** **591** **592** **593** **594** **595** **596** **597** **598** **599** **600** **601** **602** **603** **604** **605** **606** **607** **608** **609** **610** **611** **612** **613** **614** **615** **616** **617** **618** **619** **620** **621** **622** **623** **624** **625** **626** **627** **628** **629** **630** **631** **632** **633** **634** **635** **636** **637** **638** **639** **640** **641** **642** **643** **644** **645** **646** **647** **648** **649** **650** **651** **652** **653** **654** **655** **656** **657** **658** **659** **660** **661** **662** **663** **664** **665** **666** **667** **668** **669** **670** **671** **672** **673** **674** **675** **676** **677** **678** **679** **680** **681** **682** **683** **684** **685** **686** **687** **688** **689** **690** **691** **692** **693** **694** **695** **696** **697** **698** **699** **700** **701** **702** **703** **704** **705** **706** **707** **708** **709** **710** **711** **712** **713** **714** **715** **716** **717** **718** **719** **720** **721** **722** **723** **724** **725**

| PIPE OR CONDUIT | ANNUAL SPACE IN. | MIN. FILL THICKNESS | F RATING |
|-----------------|------------------|---------------------|----------|
| PIPE            | 3/4"             | 1 1/4"              | 2        |
| CONDUIT         | 3/4"             | 3/4"                | 1        |



UL SYSTEM NUMBER: WL1051  
F RATING - 1 & 2 HR.

### PIPE AND CONDUIT PENETRATION DETAIL IN GYPSUM WALLBOARD

1  
C-5

SCALE: NOT TO SCALE

#### NOTES:

1. FLOOR OR WALL ASSEMBLY - MIN 2-1/2 IN. THICK REINFORCED LIGHTWEIGHT OR NORMAL WEIGHT (100-150 PCF) CONCRETE. WALL MAY ALSO BE CONSTRUCTED OF ANY UL CLASSIFIED CONCRETE BLOCKS\*. MAX DIAM OF OPENING IS 30-7/8 IN. SEE CONCRETE BLOCKS (CAZ1) CATEGORY IN THE FIRE RESISTANCE DIRECTORY FOR NAMES OF MANUFACTURERS.
2. A. STEEL FLOOR UNIT/FLOOR ASSEMBLY (NOT SHOWN) - AS AN ALTERNATE TO ITEM 1, THE FLOOR ASSEMBLY MAY CONSIST OF A FLUTED STEEL FLOOR UNIT/ CONCRETE FLOOR ASSEMBLY. THE FLOOR ASSEMBLY SHALL BE CONSTRUCTED OF THE MATERIALS AND IN THE MANNER DESCRIBED IN THE INDIVIDUAL FLOOR CEILING DESIGN IN THE FIRE RESISTANCE DIRECTORY AND SHALL INCLUDE THE FOLLOWING CONSTRUCTION FEATURES:
  - B. CONCRETE - MIN 2-1/2 IN. THICK REINFORCED LIGHTWEIGHT OR NORMAL WEIGHT (100-150 PCF) CONCRETE, AS MEASURED FROM THE TOP PLANE OF THE FLOOR UNITS.
  - C. STEEL FLOOR AND FORM UNITS\* - COMPOSITE OR NON-COMPOSITE 1-1/2 TO 3 IN. DEEP FLUTED GALV STEEL FLOOR UNIT/ CONCRETE DESIGN. MAX DIAM OF OPENING IS 30-7/8 IN.
3. THROUGH-PENETRANT - ONE METALLIC PIPE OR CONDUIT TO BE INSTALLED EITHER CONCENTRICALLY OR ECCENTRICALLY WITHIN THE FIRESTOP SYSTEM. THE ANNUAL SPACE BETWEEN PIPE OR CONDUIT AND PERIPHERY OF OPENING SHALL BE MIN 0 IN. TO MAX 7/8 IN. PIPE OR CONDUIT TO BE RIGIDLY SUPPORTED ON BOTH SIDES OF FLOOR OR WALL ASSEMBLY. THE FOLLOWING TYPES AND SIZES OF METALLIC PIPES OR CONDUITS MAY BE USED:
  - A. STEEL PIPE NOM 30 IN. DIAM (OR SMALLER) SCHEDULE 10 (OR HEAVIER) STEEL PIPE.
  - B. IRON PIPE NOM 30 IN. DIAM (OR SMALLER) CAST OR DUCTILE IRON PIPE.
  - C. COPPER PIPE NOM 6 IN. DIAM (OR SMALLER) REGULAR (OR HEAVIER) COPPER PIPE.
  - D. COPPER TUBING NOM 6 IN. DIAM (OR SMALLER) TYPE L (OR HEAVIER) COPPER TUBING.
  - E. CONDUIT NOM 6 IN. DIAM (OR SMALLER) STEEL CONDUIT.
  - F. CONDUIT NOM 6 IN. DIAM (OR SMALLER) STEEL ELECTRICAL METALLIC TUBING (EMT).
4. FILL VOID OR CAVITY MATERIAL\* - SEALANT - MIN 1/2 IN. THICKNESS OF FILL MATERIAL APPLIED WITHIN THE ANNULUS. FLUSH WITH TOP SURFACE OF FLOOR OR WITH BOTH SURFACES OF WALL AT THE POINT CONTACT LOCATION BETWEEN PIPE AND CONCRETE. A MIN 1/4 IN. DIAM BEAD OF FILL MATERIAL SHALL BE APPLIED AT THE CONCRETE/PIPE INTERFACE ON THE TOP SURFACE OF FLOOR AND ON BOTH SURFACES OF WALL.

| MAX. DIA. OF THROUGH PENETRANT | NOMINAL ANNUAL SPACE IN. | FILL MATERIAL TYPE |
|--------------------------------|--------------------------|--------------------|
| 1"                             | 1/2"                     | FSP 1100 PUTTY     |
| 2"                             | 1"                       | FS 1900 SEALANT    |



UL SYSTEM NUMBER:  
WL2038  
F RATING - 1 & 2 HR.

### PVC CONDUIT PENETRATION DETAIL IN GYPSUM WALLBOARD

2  
C-5

SCALE: NOT TO SCALE

UL SYSTEM NUMBER: C-AJ-1291  
F RATING - 2-HR

### METAL PIPE THROUGH CONCRETE FLOOR/ WALL OR BLOCK WALL

3  
C-5

SCALE: NOT TO SCALE

#### NOTES:

1. FLOOR OR WALL ASSEMBLY - MIN 2-1/2 IN. THICK REINFORCED LIGHTWEIGHT OR NORMAL WEIGHT (100-150 PCF) CONCRETE. WALL MAY ALSO BE CONSTRUCTED OF ANY UL CLASSIFIED CONCRETE BLOCKS\*. MAX DIAM OF OPENING IS 30-7/8 IN. SEE CONCRETE BLOCKS (CAZ1) CATEGORY IN THE FIRE RESISTANCE DIRECTORY FOR NAMES OF MANUFACTURERS.
2. A. STEEL FLOOR UNIT/FLOOR ASSEMBLY (NOT SHOWN) - AS AN ALTERNATE TO ITEM 1, THE FLOOR ASSEMBLY MAY CONSIST OF A FLUTED STEEL FLOOR UNIT/ CONCRETE FLOOR ASSEMBLY. THE FLOOR ASSEMBLY SHALL BE CONSTRUCTED OF THE MATERIALS AND IN THE MANNER DESCRIBED IN THE INDIVIDUAL FLOOR CEILING DESIGN IN THE FIRE RESISTANCE DIRECTORY AND SHALL INCLUDE THE FOLLOWING CONSTRUCTION FEATURES:
  - B. CONCRETE - MIN 2-1/2 IN. THICK REINFORCED LIGHTWEIGHT OR NORMAL WEIGHT (100-150 PCF) CONCRETE, AS MEASURED FROM THE TOP PLANE OF THE FLOOR UNITS.
  - C. STEEL FLOOR AND FORM UNITS\* - COMPOSITE OR NON-COMPOSITE 1-1/2 TO 3 IN. DEEP FLUTED GALV STEEL FLOOR UNIT/ CONCRETE DESIGN. MAX DIAM OF OPENING IS 30-7/8 IN.
3. THROUGH-PENETRANT - ONE METALLIC PIPE OR CONDUIT TO BE INSTALLED EITHER CONCENTRICALLY OR ECCENTRICALLY WITHIN THE FIRESTOP SYSTEM. THE ANNUAL SPACE BETWEEN PIPE OR CONDUIT AND PERIPHERY OF OPENING SHALL BE MIN 0 IN. TO MAX 7/8 IN. PIPE OR CONDUIT TO BE RIGIDLY SUPPORTED ON BOTH SIDES OF FLOOR OR WALL ASSEMBLY. THE FOLLOWING TYPES AND SIZES OF METALLIC PIPES OR CONDUITS MAY BE USED:
  - A. STEEL PIPE NOM 30 IN. DIAM (OR SMALLER) SCHEDULE 10 (OR HEAVIER) STEEL PIPE.
  - B. IRON PIPE NOM 30 IN. DIAM (OR SMALLER) CAST OR DUCTILE IRON PIPE.
  - C. COPPER PIPE NOM 6 IN. DIAM (OR SMALLER) REGULAR (OR HEAVIER) COPPER PIPE.
  - D. COPPER TUBING NOM 6 IN. DIAM (OR SMALLER) TYPE L (OR HEAVIER) COPPER TUBING.
  - E. CONDUIT NOM 6 IN. DIAM (OR SMALLER) STEEL CONDUIT.
  - F. CONDUIT NOM 6 IN. DIAM (OR SMALLER) STEEL ELECTRICAL METALLIC TUBING (EMT).
4. FILL VOID OR CAVITY MATERIAL\* - SEALANT - MIN 1/2 IN. THICKNESS OF FILL MATERIAL APPLIED WITHIN THE ANNULUS. FLUSH WITH TOP SURFACE OF FLOOR OR WITH BOTH SURFACES OF WALL AT THE POINT CONTACT LOCATION BETWEEN PIPE AND CONCRETE. A MIN 1/4 IN. DIAM BEAD OF FILL MATERIAL SHALL BE APPLIED AT THE CONCRETE/PIPE INTERFACE ON THE TOP SURFACE OF FLOOR AND ON BOTH SURFACES OF WALL.



### PIPE AND CONDUIT PENETRATION DETAIL IN NON-RATED PARTITION

4  
C-5

SCALE: NOT TO SCALE



### PIPE AND CONDUIT PENETRATION DETAIL IN CONCRETE OR MASONRY

5  
C-5

SCALE: NOT TO SCALE



**CENTEK** engineering  
Engineering of Solutions<sup>TM</sup>  
(203) 484-0580  
(203) 484-8582 Fax  
43-2 North Branford Road  
Branford, CT 06405  
www.CentekEng.com

**Cellco Partnership d/b/a Verizon Wireless**  
SITE ID: 16999206  
100 HAMPTON ROAD  
STAFFORD CT, 06076

DATE: 05/19/23  
SCALE: AS NOTED  
JOB NO. 23010.08

CONDUIT  
PENETRATION  
DETAILS

**C-5**  
Sheet No. 7 of 14

| PROFESSIONAL ENGINEER SIGNATURE |          | CONSTRUCTION DRAWINGS - REVISED PER CLIENT COMMENTS |                                                 |
|---------------------------------|----------|-----------------------------------------------------|-------------------------------------------------|
|                                 |          |                                                     |                                                 |
| 2                               | 07/21/23 | TKR                                                 | TUR                                             |
| 1                               | 07/11/23 | ESP                                                 | TUR                                             |
| 3                               | 08/12/23 | ESP                                                 | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION |
| A                               | 09/19/23 | DRA                                                 | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION |
| REX                             | DATE     | DRAWN BY C-5                                        | DESIRED                                         |

#### MECHANICAL DEMOLITION NOTES

- ◆ REMOVE EXISTING AIR CONDITIONING UNIT, ALL ASSOCIATED WIRING AND CONTROLS.
- ◆ EXISTING WALL-MOUNTED EXHAUST FAN TO REMAIN. CONTRACTOR SHALL CLEAN, INSPECT, TEST OPERATION AND REPORT ANY SYSTEM DEFICIENCIES TO OWNER AND ENGINEER.

#### GENERAL NOTES:

1. COORDINATE DEMOLITION WORK WITH ALL OTHER TRADES. REFER TO OTHER TRADE'S DRAWINGS FOR ADDITIONAL INFORMATION.

#### MECHANICAL WORK NOTES

- ① LOCATION OF NEW AIR CONDITIONING UNIT AC-1 INSTALLED IN PLACE OF PREVIOUSLY DEMOLISHED AIR CONDITIONING UNIT. REPAIR AND PATCH WALL AS REQUIRED.
- ② PROVIDE NEW ELECTRONIC THERMOSTAT AND INTERLOCK WITH AC-1 AS INDICATED.

#### GENERAL NOTES:

1. COORDINATE NEW WORK WITH ALL OTHER TRADES. REFER TO OTHER TRADE'S DRAWINGS FOR ADDITIONAL INFORMATION.



1 MECHANICAL PLAN - EXISTING CONDITIONS  
M-1 SCALE: 1/2" = 1'-0"

TRUE  
NORTH



2 MECHANICAL PLAN - PROPOSED CONDITIONS  
M-1 SCALE: 1/2" = 1'-0"

TRUE  
NORTH

| AIR CONDITIONING UNIT SCHEDULE |           |           |      |        |                 |      |       |                  |                  |                 |                 |       |
|--------------------------------|-----------|-----------|------|--------|-----------------|------|-------|------------------|------------------|-----------------|-----------------|-------|
| UNIT NO.                       | LOCATION  | TYPE      | FAN  |        | ELECTRICAL DATA |      |       | COOLING CAPACITY | HEATING CAPACITY | SIMILAR TO      | EMERGENCY POWER | NOTES |
|                                |           |           | CFM  | EXT SP | VOLTS           | AMPS | PHASE |                  |                  |                 |                 |       |
| AC-1                           | SEE PLANS | WALL-PACK | 1700 | 0.4    | 208/230         | 42   | 1     | 55.0             | 5.0              | BARD W80 SERIES | YES             | ALL   |

#### NOTES:

1. PROVIDE WITH ECONOMIZER.
2. PROVIDE WITH MOTORIZED FRESH AIR DAMPER.
3. PROVIDE WITH ELECTRONIC THERMOSTAT.

|                                           |          |
|-------------------------------------------|----------|
| Cellco Partnership d/b/a Verizon Wireless |          |
| SITE NAME: STAFFORD 4 CT                  |          |
| SITE ID: 16999206                         |          |
| 109 HAMPTON ROAD                          |          |
| STAFFORD CT, 06076                        |          |
| DATE:                                     | 05/19/23 |
| SCALE:                                    | AS NOTED |
| JOB NO.:                                  | 23010.09 |

MECHANICAL PLAN  
AND NOTES

M-1

Sheet No. 8 of 14

|                                                   |          |
|---------------------------------------------------|----------|
| PROFESSIONAL ENGINEER SIGNATURE                   | verizon  |
| CONSTRUCTION DRAWINGS - ISSUED FOR CLIENT COMMENT | ✓        |
| CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION   | ✓        |
| CONSTRUCTION DRAWINGS - ISSUED FOR REVIEW         | ✓        |
| DATE:                                             | 05/19/23 |
| REMARKS:                                          | ✓        |





1 ELECTRICAL SCHEMATIC DIAGRAM  
E-2 SCALE: NOT TO SCALE

| GROUNDING SCHEMATIC NOTES |                                                                                                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| ①                         | #2 AWG GREEN INSULATED                                                                                                                                  |
| ②                         | GROUND RING, #2 AWG BCW                                                                                                                                 |
| ③                         | #2/0 GREEN INSULATED                                                                                                                                    |
| GENERAL NOTES:            |                                                                                                                                                         |
| 1.                        | ALL SURGE SUPPRESSION EQUIPMENT SHALL BE BONDED TO GROUND PER MANUFACTURER'S SPECIFICATIONS                                                             |
| 2.                        | UNLESS OTHERWISE NOTED OR REQUIRED BY CODE, GROUND CONDUCTORS SHOWN SHALL BE #2 AWG (SOLID TINNED BCW - EXTERIOR; STRANDED GREEN INSULATED - INTERIOR). |
| 3.                        | BOND CABLE TRAY AND ICE BRIDGE SECTIONS TOGETHER WITH #6 AWG STRANDED GREEN INSULATED JUMPERS.                                                          |
| 4.                        | ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG SOLID TINNED BCW.                                                                           |
| 5.                        | BOND ALL EQUIPMENT CABINETS AND BATTERY CABINETS TO GROUND PER MANUFACTURER'S SPECIFICATIONS.                                                           |
| 6.                        | ALL BONDS TO TOWER SHALL BE MADE IN STRICT ACCORDANCE WITH SPECIFICATIONS OF TOWER MANUFACTURER OR STRUCTURAL ENGINEER.                                 |
| 7.                        | REFER TO GROUNDING PLAN FOR LOCATION OF GROUNDING DEVICES.                                                                                              |
| 8.                        | REFER TO ALL ELECTRICAL AND GROUNDING DETAILS.                                                                                                          |
| 9.                        | COORDINATE ALL TOWER MOUNTED EQUIPMENT WITH OWNER.                                                                                                      |
| 10.                       | ALL TOWER MOUNTED AMPLIFIERS AND ASSOCIATED EQUIPMENT SHALL BE BONDED TO THE SECTOR GROUND BAR PER MANUFACTURER'S SPECIFICATIONS.                       |
| 11.                       | ALL GROUNDING SHALL BE IN ACCORDANCE WITH NEC AND OWNER'S REQUIREMENTS.                                                                                 |
| 12.                       | ALL EXPOSED METAL OBJECTS IN SHELTER SHALL BE BONDED TO THE HALO GROUND WITHIN THAT ROOM.                                                               |
| 13.                       | BOND GENERATOR TO GROUND PER NEC AND MANUFACTURERS SPECIFICATIONS                                                                                       |
| 14.                       | COORDINATE WITH TOWER OWNER BEFORE INSTALLING ANY GROUNDING ELEMENTS ON TOWER OR BONDING TO EXISTING TOWER GROUND RING.                                 |

|                              |          |
|------------------------------|----------|
| PROFESSIONAL ENGINEER SIGN:  |          |
| DATE:                        | 05/10/23 |
| SCALE:                       | AS NOTED |
| JOB NO.                      | 23010.08 |
| ELECTRICAL SCHEMATIC DIAGRAM |          |
| E-2                          |          |
| Sheet No. 10 of 14           |          |

**verizon**

**CENTEK Engineering**  
Engineering & Design Services  
(203) 486-0550  
(203) 486-5582 Fax  
43-2 North Branford Road  
Branford, CT 06405  
www.CentekEng.com

**Cellco Partnership d/b/a Verizon Wireless**  
SITE NAME: STAFFORD 4 CT  
SITE ID: 10999206  
109 HAMPTON ROAD  
STAFFORD CT, 06076



1 EQUIPMENT GROUNDING PLAN  
E-3 SCALE: NOT TO SCALE



2 TOWER GROUNDING PLAN  
E-3 SCALE: NOT TO SCALE



3 ANTENNA GROUNDING PLAN  
E-3 SCALE: NOT TO SCALE

| GROUNDING PLAN NOTES: |                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------|
| ①                     | MAIN GROUND BAR TYP.                                                                |
| ②                     | BOND EQUIPMENT CABINET TO MAIN GROUND BAR NEC AND MANUFACTURER REQUIREMENTS.        |
| ③                     | BOND ILC CABINET TO MAIN GROUND BAR PER NEC AND MANUFACTURER REQUIREMENTS.          |
| ④                     | CONNECT HVAC UNIT TO EXISTING SHELTER GROUND RING TYP.                              |
| ⑤                     | BOND TO EXISTING HALO GROUND RING TYP.                                              |
| ⑥                     | BOND GENERATOR TO EXISTING SHELTER GROUND RING TYP.                                 |
| ⑦                     | LOWER TOWER MOUNTED GROUND BAR.                                                     |
| ⑧                     | BOND LOWER TOWER MOUNTED GROUND BAR TO EXISTING ICE-BRIDGE POST.                    |
| ⑨                     | BOND LOWER TOWER MOUNTED GROUND BAR TO TOWER GROUND RING TYP. 2 LEADS.              |
| ⑩                     | BOND LOWER TOWER MOUNTED GROUND BAR TO TOWER STEEL.                                 |
| ⑪                     | UPPER TOWER MOUNTED GROUND BAR.                                                     |
| ⑫                     | BOND UPPER TOWER MOUNTED GROUND BAR TO LOWER TOWER MOUNTED GROUND BAR TYP. 2 PLACES |
| ⑬                     | CONNECT UPPER TOWER MOUNTED GROUND BAR TO SECTOR GROUND BAR TYP.                    |
| ⑭                     | SECTOR GROUND BAR TYP.                                                              |
| ⑮                     | BOND ANTENNA AND RRU MOUNTING PIPES TO SECTOR GROUND BAR.                           |
| ⑯                     | BOND SECTOR GROUND BAR TO ANTENNA FRAME STEEL TYP.                                  |
| ⑰                     | BOND SECTOR GROUND BAR TO TOWER STEEL.                                              |
| ⑱                     | ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG SOLID TINNED BOW.       |

|                                                                                                                                                                                                                                                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PROFESSIONAL ENGINEER SIGN:                                                                                                                                                                                                                         |  |
| CONTRACTOR SIGN:                                                                                                                                                                                                                                    |  |
| verizon                                                                                                                                                                                                                                             |  |
| <b>CENTER</b><br><small>Engineering</small><br><small>CE-3-10-2023</small><br><small>(203) 484-1580 Fax: (203) 484-1580</small><br><small>43-2 North Branford Road</small><br><small>Branford, CT 06405</small><br><small>www.CenterEng.com</small> |  |
| <b>Celco Partnership d/b/a Verizon Wireless</b><br><b>SITE NAME: STAFFORD 4 CT</b><br><b>SITE ID: 100998206</b><br><b>100 HAMPTON ROAD</b><br><b>STAFFORD CT, 06076</b>                                                                             |  |
| DATE: 06/19/23<br>SCALE: AS NOTED<br>JOB NO. 23010.00<br><br>ELECTRICAL<br>GROUNDING<br>PLANS                                                                                                                                                       |  |
| <b>E-3</b><br><small>Sheet No. 11 of 14</small>                                                                                                                                                                                                     |  |

EACH RRH CABINET SHALL BE GROUNDED IN THE FOLLOWING MANNER:  
 1. AT TOP OF THE CABINET  
 2. AT RIGHT SIDE OF THE CABINET.



1 RRH POLE MOUNT GROUNDING  
E-4 SCALE: NOT TO SCALE



2 ANTENNA CABLE GROUNDING - LATTICE TOWER  
E-4 SCALE: NOT TO SCALE



3 TYPICAL ELECTRICAL TRENCH DETAIL  
E-4 SCALE: NOT TO SCALE



4 CONNECTION OF GROUND WIRES TO GROUND BAR  
E-4 SCALE: NOT TO SCALE



5 ANTENNA CABLE GROUNDING DETAIL  
E-4 SCALE: NOT TO SCALE



6 TYPICAL ANTENNA GROUNDING DETAIL  
E-4 SCALE: NOT TO SCALE

|                                                        |  |                                                                                                                                                                 |
|--------------------------------------------------------|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cellco Partnership d/b/a Verizon Wireless              |  | <b>CENTEK</b><br>Engineering<br>Centek, Inc. 2007<br>(203) 484-1580<br>(203) 484-5887 Fax<br>432 North Branford Road<br>Branford, CT 06405<br>www.CentekEng.com |
| SITE NAME: STAFFORD 4 CT                               |  | SITE ID: 19999206<br>169 HAMPTON ROAD<br>STAFFORD CT, 06076                                                                                                     |
| DATE: 08/19/23<br>SCALE: AS NOTED<br>JOB NO.: 23070.08 |  |                                                                                                                                                                 |
| TYPICAL<br>ELECTRICAL<br>DETAILS                       |  |                                                                                                                                                                 |

| PROFESSIONAL ENGINEER SEAL | DATE     | REVISION |
|----------------------------|----------|----------|
|                            | 07/17/23 | 1        |
|                            | 07/17/23 | 2        |
|                            | 07/17/23 | 3        |
|                            | 07/17/23 | 4        |



## ELECTRICAL SPECIFICATIONS

### SECTION 16010

#### 1.01. SCOPE OF WORK

- A. WORK SHALL INCLUDE ALL LABOR, EQUIPMENT AND SERVICES REQUIRED TO COMPLETE (MAKE READY FOR OPERATION) ALL THE ELECTRICAL WORK INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING:
  - 1. INSTALL 200A, 240/120V, 1P, 3 WIRE ELECTRIC SERVICE WITH REVENUE METER AND 200A MAIN CIRCUIT BREAKER FOR OWNER AND ASSOCIATED DISTRIBUTION EQUIPMENT. (AS REQUIRED BY UTILITY CO.)
  - 2. NEW SITE TELEPHONE SERVICE AS SPECIFIED BY TELEPHONE COMPANY.
  - 3. GENERATOR
  - 4. FEEDERS AND BRANCH CIRCUIT WIRING TO PANELS, RECEPTACLES, EQUIPMENT, ETC. AS INDICATED OR NOTED ON PLANS.
  - 5. CELLULAR GROUNDING SYSTEMS, CONSISTING OF ANTENNA GROUNDING, GROUND BARS, ETC.
  - 6. FIELD MEASURE EXISTING ELECTRICAL SERVICES TO CONFIRM AVAILABLE EXISTING POWER.
  - 7. COORDINATE ALL WORK SHOWN, ON THESE PLANS WITH LOCAL UTILITY COMPANIES.
- B. LOCAL UTILITY COMPANIES SHALL PROVIDE THE FOLLOWING:
  - 1. TELEPHONE CABLES.
  - C. CONTRACTOR SHALL CONFER WITH LOCAL UTILITY COMPANIES TO ASCERTAIN THE LIMITS OF THEIR WORK AND SHALL INCLUDE IN BID ANY CHARGES OR FEES MADE BY THE UTILITY COMPANIES FOR THEIR PORTION OF THE WORK AND SHALL PROVIDE AND INSTALL ALL ITEMS REQUIRED, BUT NOT PROVIDED BY UTILITY COMPANY.
  - D. CONTRACTOR SHALL COORDINATE WITH TELEPHONE UTILITY COMPANY FOR LOCATION OF TELEPHONE SERVICE AND TO DETERMINE ANY REQUIRED EQUIPMENT TO BE INSTALLED BY CONTRACTOR.

#### 1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH LOCAL TELEPHONE COMPANY THAT MAY BE REQUIRED FOR THE INSTALLATION OF TELEPHONE SERVICE TO THE PROPOSED CELLULAR SITE.
- F. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- G. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- H. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- I. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- J. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- K. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- L. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILT), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- M. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- N. SHOP DRAWINGS:
  - 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
  - 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.

- O. ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

### SECTION 16111

#### 1.01. CONDUIT

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS / ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION. INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RGC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

| CONDUIT SCHEDULE SECTION 16111 |                            |                                                                                                                                    |                                                   |
|--------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| CONDUIT TYPE                   | NEC REFERENCE              | APPLICATION                                                                                                                        | MIN. BURAL DEPTH PER NEC TABLE 300.5 <sup>1</sup> |
| EMT                            | ARTICLE 358                | INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS                                                                                     | N/A                                               |
| RMC, RIGID GALV. STEEL         | ARTICLE 344, 300.5, 300.50 | ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.                                                                  | 6 INCHES                                          |
| PVC, SCHEDULE 40               | ARTICLE 352, 300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. <sup>2</sup> | 18 INCHES                                         |
| PVC, SCHEDULE 80               | ARTICLE 352, 300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. <sup>2</sup>     | 18 INCHES                                         |
| LIQUID TIGHT FLEX. METAL       | ARTICLE 350                | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.                                                          | N/A                                               |
| FLX. METAL                     | ARTICLE 348                | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.                                                          | N/A                                               |

<sup>1</sup> PHYSICAL DAMAGE IS SUBJECT TO THE AUTHORITY HAVING JURISDICTION

<sup>2</sup> UNDERRUNG CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, BRIDGES, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24".

<sup>3</sup> WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERFORATED RACEWAY FOR DIRECT BURIAL, THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2" OF CONCRETE EXTENDING DOWN TO ROCK.

### SECTION 16123

#### 1.01. CONDUCTORS

- A. ALL CONDUCTORS SHALL BE TYPE THHN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:

| 120/208/240V | 277/480V         |
|--------------|------------------|
| LINE         | COLOR            |
| A            | BLACK            |
| B            | RED              |
| C            | BLUE             |
| N            | CONTINUOUS WHITE |
| G            | CONTINUOUS GREEN |

B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

### SECTION 16130

#### 1.01. BOXES

- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

### SECTION 16140

#### 1.01. WIRING DEVICES

- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
  - 1. 15 MINUTE TIMER SWITCH - INTERMATIC #FF15M (INTERIOR LIGHTS)
  - 2. DUPLEX RECEPTACLE - P&S #2095 (GFCI) SPECIFICATION GRADE
  - 3. SINGLE POLE SWITCH - P&S #CS920AC2 (20A-120V HARD USE) SPECIFICATION GRADE
  - 4. DUPLEX RECEPTACLE - P&S #5302 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES - ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

### SECTION 16170

#### 1.01. DISCONNECT SWITCHES

- A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA JR CONSTRUCTION WITH PADLOCK FEATURE.

### SECTION 16190

#### 1.01. SEISMIC RESTRAINT

- A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

### SECTION 16195

#### 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT

- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT.
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.
- D. PROVIDE NAMEPLATE FOR PORTABLE ENGINE/GENERATOR CONNECTION SHOWING VOLTAGE KVA/KW RATING, # PHASE, AND # OF WIRES. PLATE TO BE PLASTIC ENGRAVED, RED WITH WHITE LETTERS.
- E. ALL RECEPTACLES, SWITCHES, DISCONNECT SWITCHES, ETC. SHALL BE LABELED WITH THE CORRECT BRANCH CIRCUIT NUMBER SERVED BY MEANS OF PERMANENT PRESSED TYPE BLACK 1/4" TRANSFER LETTERING. (FOR EXAMPLE: "DOP-5", ETC.).

### SECTION 16450

#### 1.01. GROUNDING

- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.

#### C. GROUNDING OF PANELBOARDS:

- 1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT CORROSION.
- 2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).
- D. EQUIPMENT GROUNDING CONDUCTOR:
  - 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
  - 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
  - 3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S).

#### E. CELLULAR GROUNDING SYSTEM:

- CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

1. GROUND BARS
2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED).
3. ANTENNA GROUND CONNECTIONS AND PLATES.

F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.

G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

### SECTION 16470

#### 1.01. DISTRIBUTION EQUIPMENT

- A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

### SECTION 16477

#### 1.01. FUSES

- A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

### SECTION 16620

#### (SUPPLIED BY OWNER, INSTALLED BY CONTRACTOR)

#### 1.01. GENERATOR SET

- A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

### SECTION 16960

#### 1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:
  - TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.
  - TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.
- THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:
  1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
  2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
  3. GRAPHICAL DESCRIPTION OF TESTING METHODS ACTUALLY IMPLEMENTED.
- B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIATED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.

### SECTION 16961

#### 1.01. TESTS BY CONTRACTOR

# **ATTACHMENT 3**

# NHH-65B-R2B



6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 65° HPBW, 2x RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Separate RS-485 RET input/output for low and high band
- One RET for low band and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO

## General Specifications

|                                         |                                                                                                                      |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <b>Antenna Type</b>                     | Sector                                                                                                               |
| <b>Band</b>                             | Multiband                                                                                                            |
| <b>Color</b>                            | Light gray                                                                                                           |
| <b>Grounding Type</b>                   | RF connector body grounded to reflector and mounting bracket                                                         |
| <b>Performance Note</b>                 | Outdoor usage   Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN |
| <b>Radome Material</b>                  | Fiberglass, UV resistant                                                                                             |
| <b>Radiator Material</b>                | Low loss circuit board                                                                                               |
| <b>Reflector Material</b>               | Aluminum                                                                                                             |
| <b>RF Connector Interface</b>           | 4.3-10 Female                                                                                                        |
| <b>RF Connector Location</b>            | Bottom                                                                                                               |
| <b>RF Connector Quantity, high band</b> | 4                                                                                                                    |
| <b>RF Connector Quantity, low band</b>  | 2                                                                                                                    |
| <b>RF Connector Quantity, total</b>     | 6                                                                                                                    |

## Remote Electrical Tilt (RET) Information

|                                                      |                                   |
|------------------------------------------------------|-----------------------------------|
| <b>RET Interface</b>                                 | 8-pin DIN Female   8-pin DIN Male |
| <b>RET Interface, quantity</b>                       | 2 female   2 male                 |
| <b>Input Voltage</b>                                 | 10–30 Vdc                         |
| <b>Internal Bias Tee</b>                             | Port 1   Port 3                   |
| <b>Internal RET</b>                                  | High band (1)   Low band (1)      |
| <b>Power Consumption, idle state, maximum</b>        | 2 W                               |
| <b>Power Consumption, normal conditions, maximum</b> | 13 W                              |

Page 1 of 4

# NHH-65B-R2B

## Protocol

3GPP/AISG 2.0 (Single RET)

## Dimensions

### Width

301 mm | 11.85 in

### Depth

180 mm | 7.087 in

### Length

1828 mm | 71.969 in

### Net Weight, without mounting kit

19.8 kg | 43.651 lb

## Array Layout



| Array | Freq (MHz) | Count | RET (in RET) | AISG RET UID     |
|-------|------------|-------|--------------|------------------|
| R1    | 698-896    | 1-2   |              | Axxxxxxxxxxxxxx1 |
| Y1    | 1695-2360  | 3-4   | 2            | Axxxxxxxxxxxxxx2 |
| Y2    | 1695-2360  | 5-6   |              |                  |

## Electrical Specifications

### Impedance

50 ohm

### Operating Frequency Band

1695 – 2360 MHz | 698 – 896 MHz

# NHH-65B-R2B

|                                   |                |  |  |  |  |  |
|-----------------------------------|----------------|--|--|--|--|--|
| <b>Polarization</b>               | $\pm 45^\circ$ |  |  |  |  |  |
| <b>Total Input Power, maximum</b> | 900 W @ 50 °C  |  |  |  |  |  |

## Electrical Specifications

| <b>Frequency Band, MHz</b>                          | <b>698–806</b> | <b>806–896</b> | <b>1695–1880</b> | <b>1850–1990</b> | <b>1920–2200</b> | <b>2300–2360</b> |
|-----------------------------------------------------|----------------|----------------|------------------|------------------|------------------|------------------|
| <b>Gain, dBi</b>                                    | 14.9           | 15             | 17.7             | 17.9             | 18.4             | 18.7             |
| <b>Beamwidth, Horizontal, degrees</b>               | 65             | 60             | 71               | 69               | 64               | 57               |
| <b>Beamwidth, Vertical, degrees</b>                 | 12.4           | 11.2           | 5.7              | 5.2              | 4.9              | 4.6              |
| <b>Beam Tilt, degrees</b>                           | 0–14           | 0–14           | 0–7              | 0–7              | 0–7              | 0–7              |
| <b>USLS (First Lobe), dB</b>                        | 13             | 14             | 18               | 18               | 19               | 18               |
| <b>Front-to-Back Ratio at 180°, dB</b>              | 30             | 29             | 31               | 30               | 29               | 31               |
| <b>Isolation, Cross Polarization, dB</b>            | 25             | 25             | 25               | 25               | 25               | 25               |
| <b>Isolation, Inter-band, dB</b>                    | 30             | 30             | 30               | 30               | 30               | 30               |
| <b>VSWR   Return loss, dB</b>                       | 1.5   14.0     | 1.5   14.0     | 1.5   14.0       | 1.5   14.0       | 1.5   14.0       | 1.5   14.0       |
| <b>PIM, 3rd Order, 2 x 20 W, dBc</b>                | -153           | -153           | -153             | -153             | -153             | -153             |
| <b>Input Power per Port at 50°C, maximum, watts</b> | 300            | 300            | 300              | 300              | 300              | 300              |

## Electrical Specifications, BASTA

| <b>Frequency Band, MHz</b>                                             | <b>698–806</b>                       | <b>806–896</b>                       | <b>1695–1880</b>                    | <b>1850–1990</b>                    | <b>1920–2200</b>                    | <b>2300–2360</b>                    |
|------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| <b>Gain by all Beam Tilts, average, dBi</b>                            | 14.5                                 | 14.5                                 | 17.3                                | 17.7                                | 18.1                                | 18.5                                |
| <b>Gain by all Beam Tilts Tolerance, dB</b>                            | $\pm 0.6$                            | $\pm 1.1$                            | $\pm 0.4$                           | $\pm 0.4$                           | $\pm 0.5$                           | $\pm 0.3$                           |
| <b>Gain by Beam Tilt, average, dBi</b>                                 | 0°   14.4<br>7°   14.6<br>14°   14.3 | 0°   14.7<br>7°   14.7<br>14°   14.1 | 0°   17.2<br>4°   17.3<br>7°   17.3 | 0°   17.6<br>4°   17.7<br>7°   17.7 | 0°   18.0<br>4°   18.2<br>7°   18.1 | 0°   18.3<br>4°   18.5<br>7°   18.6 |
| <b>Beamwidth, Horizontal Tolerance, degrees</b>                        | $\pm 2$                              | $\pm 2.1$                            | $\pm 3$                             | $\pm 4.1$                           | $\pm 6.5$                           | $\pm 2.9$                           |
| <b>Beamwidth, Vertical Tolerance, degrees</b>                          | $\pm 0.7$                            | $\pm 0.7$                            | $\pm 0.3$                           | $\pm 0.2$                           | $\pm 0.3$                           | $\pm 0.2$                           |
| <b>USLS, beampeak to 20° above beampeak, dB</b>                        | 13                                   | 14                                   | 16                                  | 16                                  | 17                                  | 15                                  |
| <b>Front-to-Back Total Power at 180° <math>\pm 30^\circ</math>, dB</b> | 23                                   | 22                                   | 27                                  | 27                                  | 25                                  | 25                                  |
| <b>CPR at Boresight, dB</b>                                            | 22                                   | 21                                   | 23                                  | 23                                  | 22                                  | 19                                  |

# NHH-65B-R2B

|                          |    |   |    |    |    |   |
|--------------------------|----|---|----|----|----|---|
| <b>CPR at Sector, dB</b> | 10 | 7 | 16 | 13 | 11 | 4 |
|--------------------------|----|---|----|----|----|---|

## Mechanical Specifications

|                                                 |                                             |
|-------------------------------------------------|---------------------------------------------|
| <b>Effective Projective Area (EPA), frontal</b> | 0.26 m <sup>2</sup>   2.799 ft <sup>2</sup> |
| <b>Effective Projective Area (EPA), lateral</b> | 0.22 m <sup>2</sup>   2.368 ft <sup>2</sup> |
| <b>Wind Loading @ Velocity, frontal</b>         | 278.0 N @ 150 km/h (62.5 lbf @ 150 km/h)    |
| <b>Wind Loading @ Velocity, lateral</b>         | 230.0 N @ 150 km/h (51.7 lbf @ 150 km/h)    |
| <b>Wind Loading @ Velocity, maximum</b>         | 537.0 N @ 150 km/h (120.7 lbf @ 150 km/h)   |
| <b>Wind Loading @ Velocity, rear</b>            | 282.0 N @ 150 km/h (63.4 lbf @ 150 km/h)    |
| <b>Wind Speed, maximum</b>                      | 241 km/h   149.75 mph                       |

## Packaging and Weights

|                       |                     |
|-----------------------|---------------------|
| <b>Width, packed</b>  | 409 mm   16.102 in  |
| <b>Depth, packed</b>  | 299 mm   11.772 in  |
| <b>Length, packed</b> | 1952 mm   76.85 in  |
| <b>Weight, gross</b>  | 32.3 kg   71.209 lb |

## Regulatory Compliance/Certifications

| <b>Agency</b> | <b>Classification</b>                                                          |
|---------------|--------------------------------------------------------------------------------|
| CHINA-ROHS    | Below maximum concentration value                                              |
| ISO 9001:2015 | Designed, manufactured and/or distributed under this quality management system |
| ROHS          | Compliant                                                                      |



## Included Products

BSAMNT-3 - Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members.  
Kit contains one scissor top bracket set and one bottom bracket set.

## \* Footnotes

**Performance Note** Severe environmental conditions may degrade optimum performance

# NHHSS-65B-R2BT4



10-port sector antenna, 2x 698–896, 4x 1695–2200 and 4x 3100–4200 MHz, 65° HPBW, 2x RETs and 2x SBTs. Both high bands share the same electrical tilt.

- Perfect antenna to add 3.5GHz CBRS to macro sites
- Low band and mid band performance mirrors the performance of existing NHH hex port antennas
- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One LB RET and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4x MIMO

## General Specifications

|                                         |                                                                                  |
|-----------------------------------------|----------------------------------------------------------------------------------|
| <b>Antenna Type</b>                     | Sector                                                                           |
| <b>Band</b>                             | Multiband                                                                        |
| <b>Color</b>                            | Light gray                                                                       |
| <b>Grounding Type</b>                   | RF connector inner conductor and body grounded to reflector and mounting bracket |
| <b>Performance Note</b>                 | Outdoor usage                                                                    |
| <b>Radome Material</b>                  | Fiberglass, UV resistant                                                         |
| <b>Radiator Material</b>                | Low loss circuit board                                                           |
| <b>Reflector Material</b>               | Aluminum                                                                         |
| <b>RF Connector Interface</b>           | 4.3-10 Female                                                                    |
| <b>RF Connector Location</b>            | Bottom                                                                           |
| <b>RF Connector Quantity, high band</b> | 4                                                                                |
| <b>RF Connector Quantity, mid band</b>  | 4                                                                                |
| <b>RF Connector Quantity, low band</b>  | 2                                                                                |
| <b>RF Connector Quantity, total</b>     | 10                                                                               |

## Remote Electrical Tilt (RET) Information

|                      |                                                                                                                                                                    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>RET Hardware</b>  | CommRET v2                                                                                                                                                         |
| <b>RET Interface</b> | 4x 8 pin connector as per IEC 60130-9 Daisy chain in: Male / Daisy chain out: Female Pin3: RS485A(AISG_B), Pin5: RS485B(AISG_A), Pin6: DC 10~30V, Pin7: DC_ Return |

# NHHSS-65B-R2BT4

---

|                                                 |                              |
|-------------------------------------------------|------------------------------|
| <b>RET Interface, quantity</b>                  | 2 female   2 male            |
| <b>Input Voltage</b>                            | 10–30 Vdc                    |
| <b>Internal RET</b>                             | High band (1)   Low band (1) |
| <b>Power Consumption, active state, maximum</b> | 10 W                         |
| <b>Power Consumption, idle state, maximum</b>   | 2 W                          |
| <b>Protocol</b>                                 | 3GPP/AISG 2.0 (Single RET)   |

## Dimensions

|                                         |                     |
|-----------------------------------------|---------------------|
| <b>Width</b>                            | 301 mm   11.85 in   |
| <b>Depth</b>                            | 181 mm   7.126 in   |
| <b>Length</b>                           | 1828 mm   71.969 in |
| <b>Net Weight, without mounting kit</b> | 23.1 kg   50.927 lb |

## Array Layout



| Array ID | Frequency (MHz) | RF Connector | RET<br>(SRET) | AISG No. | AISG RET UID       |
|----------|-----------------|--------------|---------------|----------|--------------------|
| R1       | 698-896         | 1 - 2        | 1             | AISG1    | CPxxxxxxxxxxxxxxR1 |
| R2       | 1695-2200       | 3 - 4        |               |          |                    |
| R3       | 1695-2200       | 5 - 6        | 2             | AISG2    | CPxxxxxxxxxxxxxxB1 |
| R4       | 3100-4200       | 7 - 8        |               |          |                    |
| R5       | 3100-4200       | 9 - 10       | N/A           | NA       | N/A                |

## Port Configuration

# NHHSS-65B-R2BT4



## Electrical Specifications

|                                   |                                                   |
|-----------------------------------|---------------------------------------------------|
| <b>Impedance</b>                  | 50 ohm                                            |
| <b>Operating Frequency Band</b>   | 1695 – 2200 MHz   3100 – 4200 MHz   698 – 896 MHz |
| <b>Polarization</b>               | ±45°                                              |
| <b>Total Input Power, maximum</b> | 1,000 W @ 50 °C                                   |

## Electrical Specifications

| Frequency Band, MHz                      | 698–806    | 806–896    | 1695–1880  | 1850–1990  | 1920–2200  | 3100–3550  | 3550–3700  | 3700–4200  |
|------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| <b>Gain, dBi</b>                         | 14.8       | 15.2       | 17.4       | 17.8       | 18         | 17.7       | 17.3       | 17.9       |
| <b>Beamwidth, Horizontal, degrees</b>    | 65         | 62         | 66         | 61         | 64         | 54         | 64         | 60         |
| <b>Beamwidth, Vertical, degrees</b>      | 13         | 11.6       | 5.5        | 5.2        | 4.9        | 5.7        | 5.3        | 4.9        |
| <b>Beam Tilt, degrees</b>                | 0–14       | 0–14       | 0–7        | 0–7        | 0–7        | 4          | 4          | 4          |
| <b>USLS (First Lobe), dB</b>             | 15         | 15         | 16         | 18         | 18         | 16         | 17         | 18         |
| <b>Front-to-Back Ratio at 180°, dB</b>   | 26         | 29         | 31         | 28         | 27         | 30         | 33         | 29         |
| <b>Isolation, Cross Polarization, dB</b> | 25         | 25         | 25         | 25         | 25         | 25         | 25         | 25         |
| <b>Isolation, Inter-band, dB</b>         | 25         | 25         | 25         | 25         | 25         | 28         | 28         | 28         |
| <b>VSWR   Return loss, dB</b>            | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 |
| <b>PIM, 3rd Order, 2 x 20 W, dBc</b>     | -153       | -153       | -153       | -153       | -153       | -140       | -140       | -140       |

Page 3 of 5

# NHHSS-65B-R2BT4

|                                                     |     |     |     |     |     |     |     |     |
|-----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| <b>Input Power per Port at 50°C, maximum, watts</b> | 300 | 300 | 300 | 300 | 300 | 100 | 100 | 100 |
|-----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|

## Electrical Specifications, BASTA

| <b>Frequency Band, MHz</b>                         | <b>698–806</b>                 | <b>806–896</b>                 | <b>1695–1880</b>              | <b>1850–1990</b>              | <b>1920–2200</b>              | <b>3100–3550</b> | <b>3550–3700</b> | <b>3700–4200</b> |
|----------------------------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------|------------------|------------------|
| <b>Gain by all Beam Tilts, average, dBi</b>        | 14.6                           | 14.8                           | 17                            | 17.5                          | 17.7                          | 17.3             | 17               | 17.2             |
| <b>Gain by all Beam Tilts Tolerance, dB</b>        | ±0.4                           | ±0.4                           | ±0.6                          | ±0.3                          | ±0.4                          | ±0.6             | ±0.7             | ±0.8             |
| <b>Gain by Beam Tilt, average, dBi</b>             | 0° 14.6<br>7° 14.6<br>14° 14.4 | 0° 15.0<br>7° 14.9<br>14° 14.5 | 0° 16.9<br>3° 17.0<br>7° 16.8 | 0° 17.4<br>3° 17.5<br>7° 17.4 | 0° 17.5<br>3° 17.8<br>7° 17.6 |                  |                  |                  |
| <b>Beamwidth, Horizontal Tolerance, degrees</b>    | ±1.7                           | ±1.3                           | ±7.2                          | ±3.1                          | ±6.2                          | ±10              | ±6.7             | ±10.5            |
| <b>Beamwidth, Vertical Tolerance, degrees</b>      | ±0.8                           | ±0.8                           | ±0.2                          | ±0.2                          | ±0.4                          | ±0.4             | ±0.3             | ±0.4             |
| <b>USLS, beampeak to 20° above beampeak, dB</b>    | 18                             | 16                             | 14                            | 15                            | 17                            | 14               |                  |                  |
| <b>Front-to-Back Total Power at 180° ± 30°, dB</b> | 22                             | 25                             | 25                            | 25                            | 24                            | 26               | 25               | 24               |
| <b>CPR at Boresight, dB</b>                        | 24                             | 17                             | 16                            | 21                            | 19                            | 15               | 17               | 14               |
| <b>CPR at Sector, dB</b>                           | 12                             | 6                              | 11                            | 10                            | 8                             | 8                | 9                | 7                |

## Mechanical Specifications

|                                         |                                           |
|-----------------------------------------|-------------------------------------------|
| <b>Wind Loading @ Velocity, frontal</b> | 278.0 N @ 150 km/h (62.5 lbf @ 150 km/h)  |
| <b>Wind Loading @ Velocity, lateral</b> | 230.0 N @ 150 km/h (51.7 lbf @ 150 km/h)  |
| <b>Wind Loading @ Velocity, maximum</b> | 537.0 N @ 150 km/h (120.7 lbf @ 150 km/h) |
| <b>Wind Loading @ Velocity, rear</b>    | 287.0 N @ 150 km/h (64.5 lbf @ 150 km/h)  |
| <b>Wind Speed, maximum</b>              | 241 km/h   149.75 mph                     |

## Packaging and Weights

|                       |                     |
|-----------------------|---------------------|
| <b>Width, packed</b>  | 1973 mm   77.677 in |
| <b>Depth, packed</b>  | 441 mm   17.362 in  |
| <b>Length, packed</b> | 337 mm   13.268 in  |
| <b>Weight, gross</b>  | 35.1 kg   77.382 lb |

## Regulatory Compliance/Certifications

| <b>Agency</b> | <b>Classification</b>             |
|---------------|-----------------------------------|
| CHINA-ROHS    | Above maximum concentration value |

Page 4 of 5

# NHHSS-65B-R2BT4

---

ROHS

Compliant/Exempted



## Included Products

BSAMNT-3

- Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members.  
Kit contains one scissor top bracket set and one bottom bracket set.

## \* Footnotes

**Performance Note**

Severe environmental conditions may degrade optimum performance

**SAMSUNG**

## **SAMSUNG** C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

**Model Code:** MT6407-77A



# Points of Differentiation

## Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks



## Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



## Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.



## Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.



# Technical Specifications

| Item           | Specification                                   |
|----------------|-------------------------------------------------|
| Tech           | NR                                              |
| Band           | n77                                             |
| Frequency Band | 3700 - 3980 MHz                                 |
| ERP            | 78.5dBm (53.0 dBm+25.5 dBi)                     |
| IBW/OBW        | 280 MHz / 200 MHz                               |
| Installation   | Pole/Wall                                       |
| Size/Weight    | 16.06 x 35.06 x 5.51 inch (50.86L)/<br>79.4 lbs |



### **About Samsung Electronics Co., Ltd.**

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

**© 2021 Samsung Electronics Co., Ltd.**

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.



# AWS/PCS MACRO RADIO

## DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A



Homepage  
[samsungnetworks.com](http://samsungnetworks.com)



Youtube  
[www.youtube.com/samsung5g](http://www.youtube.com/samsung5g)

## Points of Differentiation

### Continuous Migration

Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.



### O-RAN Compliant

A standardized O-RAN radio can help in implementing cost-effective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.



### Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.



### Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.



Same as an  
Incumbent radio volume

## Technical Specifications

| Item           | Specification                                                                    |
|----------------|----------------------------------------------------------------------------------|
| Tech           | LTE / NR                                                                         |
| Brand          | B25(PCS), B66(AWS)                                                               |
| Frequency Band | DL: 1930 – 1995MHz, UL: 1850 – 1915MHz<br>DL: 2110 – 2200MHz, UL: 1710 – 1780MHz |
| RF Power       | (B25) 4 x 40W or 2 x 60W<br>(B66) 4 x 60W or 2 x 80W                             |
| IBW/OBW        | (B25) 65MHz / 30MHz<br>(B66) DL 90MHz, UL 70MHz / 60MHz                          |
| Installation   | Pole, Wall                                                                       |
| Size/Weight    | 14.96 x 14.96 x 10.04inch (36.8L) /<br>74.7lb                                    |

**SAMSUNG**

# 700/850MHZ MACRO RADIO

## DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

**Model Code**

RF4440d-13A



**Homepage**  
[samsungnetworks.com](http://samsungnetworks.com)



**Youtube**  
[www.youtube.com/samsung5g](http://www.youtube.com/samsung5g)

## Points of Differentiation

### Continuous Migration

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.



### O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments. Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.



### Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.



### Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).



## Technical Specifications

| Item           | Specification                                                    |
|----------------|------------------------------------------------------------------|
| Tech           | LTE / NR                                                         |
| Brand          | B13(700MHz), B5(850MHz)                                          |
| Frequency Band | DL: 746–756MHz, UL: 777–787MHz<br>DL: 869–894MHz, UL: 824–849MHz |
| RF Power       | (B13) 4 × 40W or 2 × 60W<br>(B5) 4 × 40W or 2 × 60W              |
| IBW/OBW        | (B13) 10MHz / 10MHz<br>(B5) 25MHz / 25MHz                        |
| Installation   | Pole, Wall                                                       |
| Size/Weight    | 14.96 x 14.96 x 9.05inch (33.2L) /<br>70.33 lb                   |

## Specifications

The table below outlines the main specifications of the RRH.

**Table 1. Specifications**

| Item                       | RT4401-48A                                                                                                                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Technology             | LTE                                                                                                                                                                           |
| Band                       | Band 48 (3.5 GHz)                                                                                                                                                             |
| Operating Frequency (MHz)  | 3550 to 3700                                                                                                                                                                  |
| RF Chain                   | 4TX/4RX                                                                                                                                                                       |
| Input Power                | -48 V DC (-38 to -57 V DC, 1 SKU), with clip-on AC-DC converter (Option)                                                                                                      |
| Dimension (W × D × H) (mm) | 8.55 in. (217.4) × 4.15 in. (105.5) × 13.91 in. (353.5)<br>* RRH only<br>11.39 in. (289.4) × 5.45 in. (138.5) × 16.16 in. (410.5)<br>* with Clip-on antenna, AC-DC power unit |
| Cooling                    | Natural convection                                                                                                                                                            |
| Unwanted Emission          | 3GPP 36.104 Category A<br>[B48]: FCC 47 CFR 96.41 e)                                                                                                                          |
| Spectrum Analyzer          | TX/RX Support                                                                                                                                                                 |
| Antenna Type               | Integrated (Clip-on) antenna (Option),<br>External antenna (Option)                                                                                                           |
| Operating Humidity         | 5 to 100 [%] (RH), condensing, not to exceed 30 g/m <sup>3</sup><br>absolute humidity                                                                                         |
| Altitude                   | -60 to 1,800 m                                                                                                                                                                |
| Earthquake                 | Telcordia Earthquake Risk Zone4 (Telcordia GR-63-CORE)                                                                                                                        |
| Vibration in Use           | Office Vibration                                                                                                                                                              |
| Transportation Vibration   | Transportation Vibration                                                                                                                                                      |
| Noise                      | Fanless (natural convection cooling)                                                                                                                                          |
| Wind Resistance            | Telcordia GR-487-CORE, Section 3.34                                                                                                                                           |
| EMC                        | FCC Title 47, CFR Part 96                                                                                                                                                     |
| Safety                     | UL 60950-1 2nd ED                                                                                                                                                             |

|      |                           |
|------|---------------------------|
| Item | RT4401-48A                |
|      | UL 62368-1<br>UL 60950-22 |
| RF   | FCC Title 47, CFR Part 96 |

The table below outlines the AC/DC power unit specifications of the RRH system.

**SD050 | 4.5L | 50 kW**  
INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

**GENERAC** | INDUSTRIAL  
POWER

## STANDARD FEATURES

### ENGINE SYSTEM

- Oil Drain Extension
- Air Cleaner
- Fan Guard
- Stainless Steel Flexible Exhaust Connection
- Radiator Duct Adapter (Open Set Only)

### Fuel System

- Fuel Lockoff Solenoid
- Secondary Fuel Filter

### Cooling System

- Closed Coolant Recovery System
- UV/Ozone Resistant Hoses
- Factory-Installed Radiator
- Radiator Drain Extension

### Electrical System

- Battery Charging Alternator
- Battery Cables
- Battery Tray
- Rubber-Booted Engine Electrical Connections
- Solenoid Activated Starter Motor

### ALTERNATOR SYSTEM

- UL2200 GENprotect™
- Class H Insulation Material
- 2/3 Pitch
- Skewed Stator
- Brushless Excitation
- Sealed Bearing
- Full Load Capacity Alternator
- Protective Thermal Switch

### GENERATOR SET

- Genset Vibration Isolation
- Separation of Circuits - High/Low Voltage
- Separation of Circuits - Dual Breakers
- Standard Factory Testing
- 2 Year Limited Warranty (Standby Rated Units)
- 1 Year Limited Warranty (Prime Rated Units)

### ENCLOSURE (If Selected)

- Rust-Proof Fasteners with Nylon Washers to Protect Finish
- High Performance Sound-Absorbing Material (Sound Attenuated Enclosures)
- Gasketed Doors
- Stamped Air-Intake Louvers
- Upward Facing Discharge Hoods (Radiator and Exhaust)
- Stainless Steel Lift Off Door Hinges
- Stainless Steel Lockable Handles
- RhinoCoat™ - Textured Polyester Powder Coat Paint

### TANKS (If Selected)

- UL 142
- Double Wall
- Vents
- Sloped Top
- Sloped Bottom
- Factory Pressure Tested - 2 psi
- Rupture Basin Alarm
- Fuel Level
- Check Valve In Supply and Return Lines
- RhinoCoat™ - Textured Polyester Powder Coat Paint
- Stainless Steel Hardware

### CONTROL SYSTEM



#### Digital H Control Panel- Dual 4x20 Display

##### Program Functions

- Programmable Crank Limiter
- 7-Day Programmable Exerciser
- Special Applications Programmable Logic Controller
- RS-232/485 Communications
- All Phase Sensing Digital Voltage Regulator
- 2-Wire Start Capability
- Date/Time Fault History (Event Log)
- Isochronous Governor Control

- Waterproof/Sealed Connectors
- Audible Alarms and Shutdowns
- Not in Auto (Flashing Light)
- Auto/Off/Manual Switch
- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)
- Customizable Alarms, Warnings, and Events
- Modbus® Protocol
- Predictive Maintenance Algorithm
- Sealed Boards
- Password Parameter Adjustment Protection
- Single Point Ground
- 16 Channel Remote Trending
- 0.2 msec High Speed Remote Trending
- Alarm Information Automatically Annunciated on the Display

##### Full System Status Display

- Power Output (kW)
- Power Factor
- kW Hours, Total, and Last Run
- Real/Reactive/Apparent Power
- All Phase AC Voltage
- All Phase Currents

- Oil Pressure
- Coolant Temperature
- Coolant Level
- Engine Speed
- Battery Voltage
- Frequency

##### Alarms and Warnings

- Oil Pressure
- Coolant Temperature
- Coolant Level
- Engine Overspeed
- Battery Voltage
- Alarms and Warnings Time and Date Stamped
- Snap Shots of Key Operation Parameters During Alarms and Warnings
- Alarms and Warnings Spelled Out (No Alarm Codes)

**SD050 | 4.5L | 50 kW**  
INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

**GENERAC** | INDUSTRIAL  
POWER SYSTEMS

## CONFIGURABLE OPTIONS

### ENGINE SYSTEM

- Oil Make-Up System
- Oil Heater
- Industrial Silencer
- Critical Silencer

### FUEL SYSTEM

- Flexible Fuel Lines
- Primary Fuel Filter

### COOLING SYSTEM

- 120 VAC Coolant Heater
- 208 VAC Coolant Heater
- 240 VAC Coolant Heater

### ELECTRICAL SYSTEM

- Battery Box
- Battery Heater
- 10A UL Listed Float/Equalize Battery Charger

### ALTERNATOR SYSTEM

- Main Line Circuit Breaker
- 2nd Circuit Breaker
- 3rd Circuit Breaker
- Alternator Upsizing
- Anti-Condensation Heater
- Tropical Coating
- Permanent Magnet Excitation

### GENERATOR SET

- Weather Protected Enclosure
- Level 1 Sound Attenuated Enclosure
- Level 2 Sound Attenuated Enclosure
- IBC Seismic Certified/Seismic Rated Vibration Isolators
- Steel Enclosure
- Aluminum Enclosure
- Enclosure Light Kits

### CONTROL SYSTEM

- NFPA 110 Level 1 Compliant 21-Light Remote Annunciator
- Remote Relay Assembly (8 or 16)
- Spare Inputs (x4) Outputs (x4)
- Oil Temperature Indication and Alarm
- Remote E-Stop (Break Glass-Type, Surface Mount)
- Remote E-Stop (Red Mushroom-Type, Surface Mount)
- Remote E-Stop (Red Mushroom-Type, Flush Mount)
- Remote Communication - Modem
- 10A Engine Run Relay
- Ground Fault Annunciator
- 100 dB Alarm Horn

### WARRANTY (Standby Gensets Only)

- 2 Year Extended Limited Warranty
- 5 Year Limited Warranty
- 5 Year Extended Limited Warranty
- 7 Year Extended Limited Warranty
- 10 Year Extended Limited Warranty

## ENGINEERED OPTIONS

### ENGINE SYSTEM

- Coolant Heater Ball Valves
- Fluid Containment Pan

### CONTROL SYSTEM

- Battery Disconnect Switch

### GENERATOR SET

- Special Testing
- Battery Box

### ENCLOSURE

- Door Open Alarm
- Enclosure Heater
- Motorized Dampers

### TANKS

- Overfill Protection Valve
- ULC S-601
- UL 2085 Tank
- Special Fuel Tanks
- External Vent Extensions
- Tank Risers
- 5 Gallon Spill Box
- Lockable Fuel Fill
- Pipe Flanges
- 90% High Fuel Alarm

**SD050 | 4.5L | 50 kW**  
**INDUSTRIAL DIESEL GENERATOR SET**

EPA Certified Stationary Emergency



**APPLICATION AND ENGINEERING DATA**

**ENGINE SPECIFICATIONS**

General

|                                    |                         |
|------------------------------------|-------------------------|
| Make                               | Iveco/FPT               |
| EPA Emissions Compliance           | Stationary Emergency    |
| EPA Emissions Reference            | See Emission Data Sheet |
| Cylinder #                         | 4                       |
| Type                               | In-Line                 |
| Displacement - in <sup>3</sup> (L) | 274 (4.5)               |
| Bore - in (mm)                     | 4.1 (105)               |
| Stroke - in (mm)                   | 5.2 (132)               |
| Compression Ratio                  | 17.5:1                  |
| Intake Air Method                  | Turbocharged            |
| Cylinder Head Type                 | 2-Valve                 |
| Piston Type                        | Aluminum                |
| Crankshaft Type                    | Forged Steel            |

Engine Governing

|                                     |                        |
|-------------------------------------|------------------------|
| Governor                            | Electronic Isochronous |
| Frequency Regulation (Steady State) | ±0.25%                 |

Lubrication System

|                             |                     |
|-----------------------------|---------------------|
| Oil Pump Type               | Gear                |
| Oil Filter Type             | Full-Flow Cartridge |
| Crankcase Capacity - qt (L) | 14.4 (13.6)         |

Cooling System

|                        |                         |
|------------------------|-------------------------|
| Cooling System Type    | Closed                  |
| Water Pump Type        | Belt Driven Centrifugal |
| Fan Type               | Pusher                  |
| Fan Speed - RPM        | 2,538                   |
| Fan Diameter - in (mm) | 26 (660)                |

Fuel System

|                            |                              |
|----------------------------|------------------------------|
| Fuel Type                  | Ultra Low Sulfur Diesel Fuel |
| Fuel Specifications        | ASTM                         |
| Fuel Filtering (Microns)   | 5                            |
| Fuel Pump Type             | Engine Driven Gear           |
| Injector Type              | Mechanical                   |
| Fuel Supply Line - in (mm) | 0.25 (6.35) NPT              |
| Fuel Return Line - in (mm) | 0.25 (6.35) NPT              |

Engine Electrical System

|                            |                              |
|----------------------------|------------------------------|
| System Voltage             | 12 VDC                       |
| Battery Charger Alternator | Standard                     |
| Battery Size               | See Battery Index 0161970SBY |
| Battery Voltage            | 12 VDC                       |
| Ground Polarity            | Negative                     |

**ALTERNATOR SPECIFICATIONS**

|                                     |             |
|-------------------------------------|-------------|
| Standard Model                      | K0050124Y21 |
| Poles                               | 4           |
| Field Type                          | Revolving   |
| Insulation Class - Rotor            | H           |
| Insulation Class - Stator           | H           |
| Total Harmonic Distortion           | <5%         |
| Telephone Interference Factor (TIF) | <50         |

|                                    |                           |
|------------------------------------|---------------------------|
| Standard Excitation                | Synchronous Brushless     |
| Bearings                           | One, Pre-Lubed and Sealed |
| Coupling                           | Direct via Flexible Disc  |
| Prototype Short Circuit Test       | Yes                       |
| Voltage Regulator Type             | Digital                   |
| Number of Sensed Phases            | 3                         |
| Regulation Accuracy (Steady State) | ±0.25%                    |

**SD050 | 4.5L | 50 kW**  
**INDUSTRIAL DIESEL GENERATOR SET**

EPA Certified Stationary Emergency



**OPERATING DATA**

**POWER RATINGS**

|                                 | Standby |           |
|---------------------------------|---------|-----------|
| Single-Phase 120/240 VAC @1.0pf | 50 kW   | Amps: 208 |
| Three-Phase 120/208 VAC @0.8pf  | 50 kW   | Amps: 174 |
| Three-Phase 120/240 VAC @0.8pf  | 50 kW   | Amps: 151 |
| Three-Phase 277/480 VAC @0.8pf  | 50 kW   | Amps: 75  |
| Three-Phase 346/600 VAC @0.8pf  | 50 kW   | Amps: 60  |

**MOTOR STARTING CAPABILITIES (skVA)**

| skVA vs. Voltage Dip |     |             |     |
|----------------------|-----|-------------|-----|
| 277/480 VAC          | 30% | 208/240 VAC | 30% |
| K0050124Y21          | 98  | K0050124Y21 | 75  |

**FUEL CONSUMPTION RATES\***

| Fuel Pump Lift- ft (m) | Diesel - gph (Lph) |              |
|------------------------|--------------------|--------------|
|                        | Percent Load       | Standby      |
| 3 (1)                  | 25%                | 1.15 (4.35)  |
|                        | 50%                | 2.25 (8.52)  |
|                        | 75%                | 3.21 (12.15) |
|                        | 100%               | 4.15 (15.75) |

\* Fuel supply installation must accommodate fuel consumption rates at 100% load.

**COOLING**

|                                             | Standby                     |                |
|---------------------------------------------|-----------------------------|----------------|
| Coolant Flow                                | gpm (Lpm)                   | 32.7 (123.8)   |
| Coolant System Capacity                     | gal (L)                     | 4.5 (17.44)    |
| Heat Rejection to Coolant                   | BTU/hr (kW)                 | 121,000 (35.5) |
| Inlet Air                                   | scfm (m <sup>3</sup> /min)  | 6,360 (180)    |
| Maximum Operating Radiator Air Temperature  | °F (°C)                     | 122 (50)       |
| Maximum Ambient Temperature (Before Derate) | See Bulletin No. 0199270SSD |                |
| Maximum Radiator Backpressure               | in H <sub>2</sub> O (kPa)   | 0.5 (0.12)     |

**COMBUSTION AIR REQUIREMENTS**

|                                                | Standby    | Prime      |
|------------------------------------------------|------------|------------|
| Flow at Rated Power scfm (m <sup>3</sup> /min) | 205 (5.80) | 189 (5.35) |

**ENGINE**

|                          | Standby        |
|--------------------------|----------------|
| Rated Engine Speed       | RPM            |
| Horsepower at Rated kW** | hp             |
| Piston Speed             | ft/min (m/min) |
| BMEP                     | psi (kPa)      |

\*\* Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.

Derate – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions.

Please contact a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528, and DIN6271 standards.

Standby - See Bulletin 10000018933

Prime - See Bulletin 10000018926

**EXHAUST**

|                             | Standby                    |
|-----------------------------|----------------------------|
| Exhaust Flow (Rated Output) | scfm (m <sup>3</sup> /min) |
| Max. Allowable Backpressure | inHg (kPa)                 |
| Exhaust Temp (Rated Output) | °F (°C)                    |

**SD050 | 4.5L | 50 kW**  
**INDUSTRIAL DIESEL GENERATOR SET**

EPA Certified Stationary Emergency

**GENERAC** | INDUSTRIAL  
 POWER

**DIMENSIONS AND WEIGHTS\***



**OPEN SET (Includes Exhaust Flex)**

| Run Time<br>- Hours | Usable<br>Capacity<br>- Gal (L) | L x W x H - in (mm)                         | Weight - lbs (kg) |
|---------------------|---------------------------------|---------------------------------------------|-------------------|
| No Tank             | -                               | 76.0 (1,930) x 37.0 (940) x 53.0 (1,346)    | 1,996 (905)       |
| 13                  | 54 (204)                        | 76.0 (1,930) x 37.0 (940) x 66.0 (1,676)    | 2,476 (1,123)     |
| 32                  | 132 (500)                       | 76.0 (1,930) x 37.0 (940) x 78.0 (1,981)    | 2,706 (1,227)     |
| 51                  | 211 (799)                       | 76.0 (1,930) x 37.0 (940) x 90.0 (2,286)    | 2,915 (1,322)     |
| 72                  | 300 (1,136)                     | 93.0 (2,362) x 37.0 (940) x 94.0 (2,388)    | 2,978 (1,351)     |
| 122                 | 510 (1,931)                     | 117.0 (2,972) x 47.0 (1,194) x 96.0 (2,438) | 3,361 (1,525)     |

**WEATHER PROTECTED ENCLOSURE**

| Run Time<br>- Hours | Usable<br>Capacity<br>- Gal (L) | L x W x H - in (mm)                         | Weight - lbs (kg) |
|---------------------|---------------------------------|---------------------------------------------|-------------------|
| No Tank             | -                               | 95.0 (2,413) x 38.0 (965) x 50.0 (1,270)    | 2,298 (1,042)     |
| 13                  | 54 (204)                        | 95.0 (2,413) x 38.0 (965) x 63.0 (1,600)    | 2,778 (1,260)     |
| 32                  | 132 (500)                       | 95.0 (2,413) x 38.0 (965) x 75.0 (1,905)    | 3,008 (1,364)     |
| 51                  | 211 (799)                       | 95.0 (2,413) x 38.0 (965) x 87.0 (2,210)    | 3,217 (1,459)     |
| 72                  | 300 (1,136)                     | 95.0 (2,413) x 38.0 (965) x 91.0 (2,311)    | 3,280 (1,488)     |
| 122                 | 510 (1,931)                     | 117.0 (2,972) x 47.0 (1,194) x 93.0 (2,362) | 3,663 (1,662)     |

**LEVEL 1 SOUND ENCLOSURE**

| Run Time<br>- Hours | Usable<br>Capacity<br>- Gal (L) | L x W x H - in (mm)                         | Weight - lbs (kg) |
|---------------------|---------------------------------|---------------------------------------------|-------------------|
| No Tank             | -                               | 112.0 (2,845) x 38.0 (965) x 50.0 (1,270)   | 2,451 (1,112)     |
| 13                  | 54 (204)                        | 112.0 (2,845) x 38.0 (965) x 63.0 (1,600)   | 2,931 (1,329)     |
| 32                  | 132 (500)                       | 112.0 (2,845) x 38.0 (965) x 75.0 (1,905)   | 3,161 (1,434)     |
| 51                  | 211 (799)                       | 112.0 (2,845) x 38.0 (965) x 87.0 (2,210)   | 3,370 (1,529)     |
| 72                  | 300 (1,136)                     | 112.0 (2,845) x 38.0 (965) x 91.0 (2,311)   | 3,433 (1,557)     |
| 122                 | 510 (1,931)                     | 135.0 (3,429) x 47.0 (1,194) x 93.0 (2,362) | 3,816 (1,731)     |

**LEVEL 2 SOUND ENCLOSURE**

| Run Time<br>- Hours | Usable<br>Capacity<br>- Gal (L) | L x W x H - in (mm)                          | Weight - lbs (kg) |
|---------------------|---------------------------------|----------------------------------------------|-------------------|
| No Tank             | -                               | 95.0 (2,413) x 38.0 (965) x 62.0 (1,575)     | 2,456 (1,114)     |
| 13                  | 54 (204)                        | 95.0 (2,413) x 38.0 (965) x 75.0 (1,905)     | 2,936 (1,332)     |
| 32                  | 132 (500)                       | 95.0 (2,413) x 38.0 (965) x 87.0 (2,210)     | 3,166 (1,436)     |
| 51                  | 211 (799)                       | 95.0 (2,413) x 38.0 (965) x 99.0 (2,515)     | 3,375 (1,531)     |
| 72                  | 300 (1,136)                     | 95.0 (2,413) x 38.0 (965) x 103.0 (2,616)    | 3,438 (1,559)     |
| 122                 | 510 (1,931)                     | 117.0 (2,972) x 47.0 (1,194) x 105.0 (2,667) | 3,821 (1,733)     |

\* All measurements are approximate and for estimation purposes only. Specification characteristics may change without notice. Please contact a Generac Power Systems Industrial Dealer for detailed installation drawings.

# **ATTACHMENT 4**



**Report Date:** February 22, 2023

**Client:** Everest Infrastructure Partners  
Two Allegheny Center  
Pittsburgh, PA 15212  
Attn: Andy Dykstra  
(412) 489-0348  
andrew.dykstra@everestinfrastructure.com

**Structure:** Existing 180-ft Guyed Tower  
**FCC ASR #:** 1267993  
**Site Name:** Stafford 1 CDT  
**Site Reference #:** 596025  
**Site Address:** 169 Hampden Rd  
**City, County, State:** Stafford Springs, Tolland County, CT  
**Latitude, Longitude:** 41.999581°, -72.355646°

**PJF Project:** A13323-0004.001.8700

Paul J. Ford and Company is pleased to submit this **"Structural Analysis Report"** to determine the tower stress level.

**Analysis Criteria:**

This analysis utilizes an ultimate 3-second gust wind speed of 117 mph as required by the 2022 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

**Proposed Appurtenance Loads:**

The structure was analyzed with the loading configuration shown in Table 1 of this report.

**Summary of Analysis Results:**

Existing Structure: Pass – 59.0%  
Existing Foundation: Pass – 91.8%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Everest Infrastructure Partners. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by:  
Paul J. Ford and Company

  
Christina Hedges, PE  
Production Manager  
chedges@pauljford.com  
CRS



250 E Broad St, Suite 600  
Columbus, OH 43215  
Phone 614.221.6679

[www.PaulJFord.com](http://www.PaulJFord.com)

100% Employee Owned

## TABLE OF CONTENTS

### 1) INTRODUCTION

### 2) ANALYSIS CRITERIA

Table 1 - Equipment Configuration

### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

### 4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Table 4 – Tower Component Stresses vs. Capacity

4.1) Recommendations

### 5) APPENDIX A

tnxTower Output

### 6) APPENDIX B

Base Level Drawing

### 7) APPENDIX C

Additional Calculations

## 1) INTRODUCTION

This tower is a 180 ft Guyed tower designed by Rohn in April 1995. Per site photos an additional guy cable was added at the 120' level. Cable size taken from previous analysis by Nudd.

## 2) ANALYSIS CRITERIA

|                             |           |
|-----------------------------|-----------|
| <b>TIA-222 Revision:</b>    | TIA-222-H |
| <b>Risk Category:</b>       | II        |
| <b>Wind Speed:</b>          | 117 mph   |
| <b>Exposure Category:</b>   | B         |
| <b>Topographic Factor:</b>  | 1         |
| <b>Ice Thickness:</b>       | 1.5 in    |
| <b>Wind Speed with Ice:</b> | 50 mph    |
| <b>Service Wind Speed:</b>  | 60 mph    |

**Table 1 - Equipment Configuration**

| Status        | Mounting Level (ft) | Center Line Elevation (ft) | Number of Antennas | Antenna Model                      | Mount                     | Number of Feed Lines | Feed Line Size (in) | Coax Location | Owner/Tenant |
|---------------|---------------------|----------------------------|--------------------|------------------------------------|---------------------------|----------------------|---------------------|---------------|--------------|
| Existing      | 179.0               | 187.0                      | 1                  | 16 ft x 2.5" omni whip             | -                         | 2                    | 7/8                 | C             | Unk          |
| To be Removed | 174.0               | 174.0                      | 1                  | -                                  | Generic 3.5' x 6' sidearm | -                    | -                   | -             | Unk          |
|               |                     |                            | 1                  | DB809DK-Y                          | Sector Mount [SM 803-3]   | 4                    | 1 1/4"              | B             | Unk          |
|               |                     |                            | 3                  | 1900 MHz 4x45W RRH                 |                           |                      |                     |               | Sprint       |
|               |                     |                            | 3                  | APXV9ERR18-C w/ Mount Pipe         |                           |                      |                     |               |              |
|               |                     |                            | 3                  | TD-RRH8x20                         |                           |                      |                     |               |              |
| Future        | 171.0               | 171.0                      | 3                  | DT465B-2XR w/ Mount Pipe           | Site Pro 1 VFA12-HD       | 3<br>1               | 1 5/8<br>1 1/4      | B             | T-Mobile     |
|               |                     |                            | 6                  | RRH 2x50-800 w/Notch Filter        |                           |                      |                     |               |              |
|               |                     |                            | 3                  | AIR6449 B41 w/ Mount Pipe          |                           |                      |                     |               |              |
|               |                     |                            | 3                  | RADIO 4460 B2/B25 B66_TMO          |                           |                      |                     |               |              |
|               |                     |                            | 3                  | RADIO 4480 B71_TMO                 |                           |                      |                     |               |              |
|               |                     |                            | 3                  | APXVAALL24_43-U-NA20 w/ Mount Pipe |                           |                      |                     |               |              |
| Existing      | 163.0               | 167.0                      | 1                  | PD201                              | 5" x 2.375" Pipe Mount    | 1                    | 7/8                 | C             | Unk          |

| Status        | Mounting Level (ft) | Center Line Elevation (ft) | Number of Antennas | Antenna Model                 | Mount                   | Number of Feed Lines | Feed Line Size (in) | Coax Location | Owner/Tenant |
|---------------|---------------------|----------------------------|--------------------|-------------------------------|-------------------------|----------------------|---------------------|---------------|--------------|
| Proposed      | 153.0               | 153.0                      | 1                  | 12 OVP                        | Site Pro 1 VFA12-HD     | 2                    | 1 1/4               | B             | Verizon      |
|               |                     |                            | 3                  | NHH-65B-R2B w/ Mount Pipe     |                         |                      |                     |               |              |
|               |                     |                            | 3                  | NHHSS-65B-R2BT4 w/ Mount Pipe |                         |                      |                     |               |              |
|               |                     |                            | 3                  | B2/B66a RF4439D-25A           |                         |                      |                     |               |              |
|               |                     |                            | 3                  | B5/B13 RF4440D-13A            |                         |                      |                     |               |              |
|               |                     |                            | 3                  | CBRS RRHRT4401-48A            |                         |                      |                     |               |              |
|               |                     |                            | 3                  | MT6407-77A w/ Mount Pipe      |                         |                      |                     |               |              |
| To be removed | 150.0               | 150.0                      | -                  | -                             | Sector Mount [SM 803-3] | -                    | -                   | -             | Unk          |
| Existing      | 121.0               | 129.0                      | 1                  | DB420                         | Generic 2' x 3' sidearm | 1                    | 7/8                 | C             | Unk          |
| Existing      | 77.0                | 81.0                       | 1                  | PD201                         | 5" x 2.375" Pipe Mount  | 1                    | 1/2                 | C             | Unk          |

### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

| Document                    | Remarks            | Reference       |
|-----------------------------|--------------------|-----------------|
| Tower Manufacturer Drawings | Rohn, 4/13/1995    | B951658/D950801 |
| Tower Inventory             | Everest, 2/11/2023 |                 |
| Previous Analysis           | Nudd, 9/6/2021     | 121-23082       |

#### 3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

#### 3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

#### 4) ANALYSIS RESULTS

**Table 3 - Section Capacity (Summary)**

| Section No. | Elevation (ft) | Component Type | Size                           | Critical Element | P (K)  | SF*P_allow (K) | % Capacity       | Pass / Fail |
|-------------|----------------|----------------|--------------------------------|------------------|--------|----------------|------------------|-------------|
| T1          | 180 - 160      | Leg            | Pipe 2.375" x 0.218" (2 XS)    | 2                | -12.19 | 62.91          | 19.4             | Pass        |
| T2          | 160 - 140      | Leg            | Pipe 2.375" x 0.218" (2 XS)    | 60               | -17.31 | 62.91          | 27.5             | Pass        |
| T3          | 140 - 120      | Leg            | Pipe 2.375" x 0.218" (2 XS)    | 116              | -19.16 | 62.91          | 30.5             | Pass        |
| T4          | 120 - 100      | Leg            | Pipe 2.375" x 0.218" (2 XS)    | 173              | -23.94 | 62.91          | 38.0             | Pass        |
| T5          | 100 - 80       | Leg            | Pipe 2.875" x 0.276" (2.5 XS)  | 229              | -32.53 | 101.36         | 32.1             | Pass        |
| T6          | 80 - 60        | Leg            | Pipe 2.875" x 0.276" (2.5 XS)  | 287              | -32.54 | 79.98          | 40.7             | Pass        |
| T7          | 60 - 40        | Leg            | Pipe 2.875" x 0.203" (2.5 STD) | 319              | -35.57 | 61.33          | 58.0             | Pass        |
| T8          | 40 - 20        | Leg            | Pipe 2.875" x 0.203" (2.5 STD) | 352              | -36.24 | 61.33          | 59.0             | Pass        |
| T9          | 20 - 4.81771   | Leg            | Pipe 2.875" x 0.276" (2.5 XS)  | 385              | -35.71 | 79.98          | 44.7             | Pass        |
| T10         | 4.81771 - 0    | Leg            | Pipe 2.875" x 0.276" (2.5 XS)  | 413              | -36.45 | 77.52          | 47.0             | Pass        |
| T1          | 180 - 160      | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 15               | -1.68  | 6.52           | 25.7             | Pass        |
| T2          | 160 - 140      | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 114              | -1.36  | 6.52           | 20.9             | Pass        |
| T3          | 140 - 120      | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 127              | -1.21  | 6.52           | 18.6             | Pass        |
| T4          | 120 - 100      | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 181              | -0.74  | 6.52           | 11.4             | Pass        |
| T5          | 100 - 80       | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 238              | -1.95  | 6.52           | 29.9             | Pass        |
| T6          | 80 - 60        | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 316              | -1.58  | 6.52           | 24.2             | Pass        |
| T7          | 60 - 40        | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 351              | -0.97  | 6.52           | 14.9             | Pass        |
| T8          | 40 - 20        | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 361              | -0.59  | 6.52           | 9.0              | Pass        |
| T9          | 20 - 4.81771   | Diagonal       | Pipe 1.5" x 0.058" (16 ga)     | 397              | -0.83  | 6.52           | 12.7<br>13.2 (b) | Pass        |
| T10         | 4.81771 - 0    | Horizontal     | L 4 x 4 x 1/4                  | 421              | 0.67   | 62.86          | 1.1              | Pass        |
| T1          | 180 - 160      | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 4                | 0.04   | 9.93           | 0.4<br>0.7 (b)   | Pass        |
| T2          | 160 - 140      | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 62               | 0.45   | 10.43          | 4.3<br>7.2 (b)   | Pass        |
| T3          | 140 - 120      | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 118              | -0.35  | 7.33           | 4.8<br>5.7 (b)   | Pass        |
| T4          | 120 - 100      | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 176              | 2.40   | 10.43          | 23.0<br>38.6 (b) | Pass        |
| T5          | 100 - 80       | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 234              | -0.56  | 7.40           | 7.6<br>9.1 (b)   | Pass        |
| T6          | 80 - 60        | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 291              | -0.57  | 7.40           | 7.7<br>12.1 (b)  | Pass        |
| T7          | 60 - 40        | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 324              | -0.62  | 7.40           | 8.4<br>10.0 (b)  | Pass        |
| T8          | 40 - 20        | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 357              | -0.63  | 7.40           | 8.5<br>10.1 (b)  | Pass        |
| T9          | 20 - 4.81771   | Top Girt       | Pipe 1.5" x 0.058" (16 ga)     | 390              | -0.62  | 7.40           | 8.4<br>10.0 (b)  | Pass        |
| T10         | 4.81771 - 0    | Top Girt       | L 4 x 4 x 1/4                  | 415              | 6.78   | 62.86          | 10.8             | Pass        |
| T1          | 180 - 160      | Bottom Girt    | Pipe 1.5" x 0.058" (16 ga)     | 9                | 0.39   | 10.43          | 3.8<br>6.3 (b)   | Pass        |
| T2          | 160 - 140      | Bottom Girt    | Pipe 1.5" x 0.058" (16 ga)     | 65               | -0.30  | 7.33           | 4.1<br>4.8 (b)   | Pass        |
| T3          | 140 - 120      | Bottom Girt    | Pipe 1.5" x 0.058" (16 ga)     | 121              | -0.35  | 7.33           | 4.8<br>7.4 (b)   | Pass        |
| T4          | 120 - 100      | Bottom Girt    | Pipe 1.5" x 0.058" (16 ga)     | 178              | -0.42  | 7.33           | 5.7<br>6.7 (b)   | Pass        |

| Section No. | Elevation (ft) | Component Type           | Size                       | Critical Element | P (K) | SF*P <sub>allow</sub> (K) | % Capacity            | Pass / Fail |             |
|-------------|----------------|--------------------------|----------------------------|------------------|-------|---------------------------|-----------------------|-------------|-------------|
| T5          | 100 - 80       | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 237              | -0.56 | 7.40                      | 7.6<br>10.0 (b)       | Pass        |             |
| T6          | 80 - 60        | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 294              | -0.57 | 7.40                      | 7.7<br>9.2 (b)        | Pass        |             |
| T7          | 60 - 40        | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 327              | -0.62 | 7.40                      | 8.4<br>10.0 (b)       | Pass        |             |
| T8          | 40 - 20        | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 360              | -0.63 | 7.40                      | 8.5<br>10.1 (b)       | Pass        |             |
| T9          | 20 - 4.81771   | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 391              | 1.01  | 9.93                      | 10.1<br>16.2 (b)      | Pass        |             |
| T10         | 4.81771 - 0    | Bottom Girt              | L 4 x 4 x 1/4              | 419              | -0.25 | 67.37                     | 2.8                   | Pass        |             |
| T1          | 180 - 160      | Guy A@162.523            | 3/4                        | 432              | 14.39 | 36.73                     | 39.2                  | Pass        |             |
| T4          | 120 - 100      | Guy A@119.385            | 1/2                        | 435              | 6.29  | 16.95                     | 37.1                  | Pass        |             |
| T5          | 100 - 80       | Guy A@82.5234            | 1/2                        | 447              | 6.07  | 16.95                     | 35.8                  | Pass        |             |
| T1          | 180 - 160      | Guy B@162.523            | 3/4                        | 431              | 14.33 | 36.73                     | 39.0                  | Pass        |             |
| T4          | 120 - 100      | Guy B@119.385            | 1/2                        | 434              | 6.26  | 16.95                     | 36.9                  | Pass        |             |
| T5          | 100 - 80       | Guy B@82.5234            | 1/2                        | 443              | 6.02  | 16.95                     | 35.5                  | Pass        |             |
| T1          | 180 - 160      | Guy C@162.523            | 3/4                        | 427              | 14.50 | 36.73                     | 39.5                  | Pass        |             |
| T4          | 120 - 100      | Guy C@119.385            | 1/2                        | 433              | 6.29  | 16.95                     | 37.1                  | Pass        |             |
| T5          | 100 - 80       | Guy C@82.5234            | 1/2                        | 437              | 6.09  | 16.95                     | 35.9                  | Pass        |             |
| T1          | 180 - 160      | Top Guy Pull-Off@162.523 | 2L 2 x 2 x 1/4 (3/8)       | 430              | 4.29  | 63.96                     | 6.7<br>12.4 (b)       | Pass        |             |
| T5          | 100 - 80       | Top Guy Pull-Off@82.5234 | 2L 2 x 2 x 1/4 (3/8)       | 441              | 2.89  | 51.56                     | 5.6<br>8.4 (b)        | Pass        |             |
| T5          | 100 - 80       | Torque Arm Top@82.5234   | C10x15.3                   | 449              | 2.08  | 152.75                    | 26.8                  | Pass        |             |
|             |                |                          |                            |                  |       |                           | Summary               |             |             |
|             |                |                          |                            |                  |       |                           | Leg (T8)              | 59.0        | Pass        |
|             |                |                          |                            |                  |       |                           | Diagonal (T5)         | 29.9        | Pass        |
|             |                |                          |                            |                  |       |                           | Horizontal (T10)      | 1.1         | Pass        |
|             |                |                          |                            |                  |       |                           | Top Girt (T4)         | 38.6        | Pass        |
|             |                |                          |                            |                  |       |                           | Bottom Girt (T9)      | 16.2        | Pass        |
|             |                |                          |                            |                  |       |                           | Guy A (T1)            | 39.2        | Pass        |
|             |                |                          |                            |                  |       |                           | Guy B (T1)            | 39.0        | Pass        |
|             |                |                          |                            |                  |       |                           | Guy C (T1)            | 39.5        | Pass        |
|             |                |                          |                            |                  |       |                           | Top Guy Pull-Off (T1) | 12.4        | Pass        |
|             |                |                          |                            |                  |       |                           | Torque Arm Top (T5)   | 26.8        | Pass        |
|             |                |                          |                            |                  |       |                           | Bolt Checks           | 38.6        | Pass        |
|             |                |                          |                            |                  |       |                           | <b>RATING =</b>       | <b>59.0</b> | <b>Pass</b> |

**Table 4 - Tower Component Stresses vs. Capacity**

| Notes | Component                                  | Elevation (ft) | % Capacity | Pass / Fail |
|-------|--------------------------------------------|----------------|------------|-------------|
| 1,2   | Base Foundation (Compared w/ Design Loads) | 0              | 91.8       | Pass        |
| 1,2   | Guy Anchor Foundation Soil Interaction     | 0              | 50.0       | Pass        |

|                                                     |              |
|-----------------------------------------------------|--------------|
| <b>Structure Rating (max from all components) =</b> | <b>91.8%</b> |
|-----------------------------------------------------|--------------|

Notes:

- All structural ratings are per TIA-222-H Section 15.5
- 1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.
- 2) Foundation capacity determined by comparing analysis reactions to original design reactions.

#### **4.1) Recommendations**

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

**APPENDIX A**  
**TNXTOWER OUTPUT**



## Tower Input Data

The main tower is a 3x guyed tower with an overall height of 180.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.42 ft at the top and tapered at the base.  
This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Tolland County, Connecticut.
- Tower base elevation above sea level: 1074.00 ft.
- Basic wind speed of 117.0 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.50 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50.0 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60.0 mph.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.05.
- Safety factor used in guy design is 0.9524.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## Options

|                                     |                                      |                                     |
|-------------------------------------|--------------------------------------|-------------------------------------|
| Consider Moments - Legs             | Distribute Leg Loads As Uniform      | Use ASCE 10 X-Brace Ly Rules        |
| Consider Moments - Horizontals      | Assume Legs Pinned                   | Calculate Redundant Bracing Forces  |
| Consider Moments - Diagonals        | Assume Rigid Index Plate             | Ignore Redundant Members in FEA     |
| Use Moment Magnification            | ✓ Use Clear Spans For Wind Area      | SR Leg Bolts Resist Compression     |
| Use Code Stress Ratios              | ✓ Use Clear Spans For KL/r           | All Leg Panels Have Same Allowable  |
| Use Code Safety Factors - Guys      | ✓ Retension Guys To Initial Tension  | Offset Girt At Foundation           |
| Escalate Ice                        | ✓ Bypass Mast Stability Checks       | ✓ Consider Feed Line Torque         |
| Always Use Max Kz                   | ✓ Use Azimuth Dish Coefficients      | ✓ Include Angle Block Shear Check   |
| Use Special Wind Profile            | ✓ Project Wind Area of Appurt.       | Use TIA-222-H Bracing Resist.       |
| ✓ Include Bolts In Member Capacity  | ✓ Autocalc Torque Arm Areas          | Exemption                           |
| ✓ Leg Bolts Are At Top Of Section   | Add IBC .6D+W Combination            | Use TIA-222-H Tension Splice        |
| ✓ Secondary Horizontal Braces Leg   | ✓ Sort Capacity Reports By Component | Exemption                           |
| Use Diamond Inner Bracing (4 Sided) | ✓ Triangulate Diamond Inner Bracing  | <b>Poles</b>                        |
| SR Members Have Cut Ends            | Treat Feed Line Bundles As Cylinder  | Include Shear-Torsion Interaction   |
| SR Members Are Concentric           | Ignore KL/ry For 60 Deg. Angle Legs  | Always Use Sub-Critical Flow        |
|                                     |                                      | Use Top Mounted Sockets             |
|                                     |                                      | Pole Without Linear Attachments     |
|                                     |                                      | Pole With Shroud Or No              |
|                                     |                                      | Appurtenances                       |
|                                     |                                      | Outside and Inside Corner Radii Are |
|                                     |                                      | Known                               |



Corner & Starmount Guyed Tower

**Tower Section Geometry**

| Tower Section | Tower Elevation | Assembly Database | Description | Section Width | Number of Sections | Section Length |
|---------------|-----------------|-------------------|-------------|---------------|--------------------|----------------|
|               | ft              |                   |             | ft            |                    | ft             |
| T1            | 180.00-160.00   | rohn #80          | 83PHX       | 3.42          | 1                  | 20.00          |
| T2-T4         | 160.00-100.00   | rohn #80          | 83PHX       | 3.42          | 3                  | 20.00          |
| T5            | 100.00-80.00    | rohn #80          | 84HX        | 3.42          | 1                  | 20.00          |
| T6            | 80.00-60.00     | rohn #80          | 84H         | 3.42          | 1                  | 20.00          |
| T7-T8         | 60.00-20.00     | rohn #80          | 84          | 3.42          | 2                  | 20.00          |
| T9            | 20.00-4.82      | rohn #80          | 84HC        | 3.42          | 1                  | 15.18          |
| T10           | 4.82-0.00       | rohn #80          | 84HTB       | 3.42          | 1                  | 4.82           |

**Tower Section Geometry (cont'd)**

| Tower Section | Tower Elevation | Diagonal Spacing | Bracing Type | Has K Brace End Panels | Has Horizontals | Top Girt Offset | Bottom Girt Offset |
|---------------|-----------------|------------------|--------------|------------------------|-----------------|-----------------|--------------------|
|               | ft              | ft               |              |                        |                 | in              | in                 |
| T1            | 180.00-160.00   | 2.41             | CX Brace     | No                     | No              | 7.38            | 1.38               |
| T2-T4         | 160.00-100.00   | 2.41             | CX Brace     | No                     | No              | 7.38            | 1.38               |
| T5            | 100.00-80.00    | 2.41             | CX Brace     | No                     | No              | 7.38            | 1.38               |
| T6            | 80.00-60.00     | 2.41             | K Brace Left | No                     | No              | 7.38            | 1.38               |
| T7-T8         | 60.00-20.00     | 2.41             | K Brace Left | No                     | No              | 7.38            | 1.38               |
| T9            | 20.00-4.82      | 2.41             | K Brace Left | No                     | No              | 7.38            | 1.38               |
| T10           | 4.82-0.00       | 1.27             | Diag Up      | No                     | Yes             | 0.00            | 12.00              |

**Tower Section Geometry (cont'd)**

| Tower Elevation ft  | Leg Type | Leg Size                       | Leg Grade        | Diagonal Type | Diagonal Size              | Diagonal Grade    |
|---------------------|----------|--------------------------------|------------------|---------------|----------------------------|-------------------|
| T1 180.00-160.00    | Pipe     | Pipe 2.375" x 0.218" (2 XS)    | A618-50 (50 ksi) | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T2-T4 160.00-100.00 | Pipe     | Pipe 2.375" x 0.218" (2 XS)    | A618-50 (50 ksi) | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T5 100.00-80.00     | Pipe     | Pipe 2.875" x 0.276" (2.5 XS)  | A618-50 (50 ksi) | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T6 80.00-60.00      | Pipe     | Pipe 2.875" x 0.276" (2.5 XS)  | A618-50 (50 ksi) | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T7-T8 60.00-20.00   | Pipe     | Pipe 2.875" x 0.203" (2.5 STD) | A618-50 (50 ksi) | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T9 20.00-4.82       | Pipe     | Pipe 2.875" x 0.276" (2.5 XS)  | A618-50 (50 ksi) | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T10 4.82-0.00       | Pipe     | Pipe 2.875" x 0.276" (2.5 XS)  | A618-50 (50 ksi) | Single Angle  |                            | A36 (36 ksi)      |

### Tower Section Geometry (cont'd)

| Tower Elevation ft  | Top Girt Type | Top Girt Size              | Top Girt Grade    | Bottom Girt Type | Bottom Girt Size           | Bottom Girt Grade |
|---------------------|---------------|----------------------------|-------------------|------------------|----------------------------|-------------------|
| T1 180.00-160.00    | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) | Pipe             | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T2-T4 160.00-100.00 | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) | Pipe             | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T5 100.00-80.00     | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) | Pipe             | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T6 80.00-60.00      | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) | Pipe             | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T7-T8 60.00-20.00   | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) | Pipe             | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T9 20.00-4.82       | Pipe          | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) | Pipe             | Pipe 1.5" x 0.058" (16 ga) | A53-B-42 (42 ksi) |
| T10 4.82-0.00       | Single Angle  | L 4 x 4 x 1/4              | A36 (36 ksi)      | Single Angle     | L 4 x 4 x 1/4              | A36 (36 ksi)      |

### Tower Section Geometry (cont'd)

| Tower Elevation ft | No. of Mid Girts | Mid Girt Type | Mid Girt Size | Mid Girt Grade | Horizontal Type | Horizontal Size | Horizontal Grade |
|--------------------|------------------|---------------|---------------|----------------|-----------------|-----------------|------------------|
| T10 4.82-0.00      | None             | Single Angle  |               | A36 (36 ksi)   | Single Angle    | L 4 x 4 x 1/4   | A36 (36 ksi)     |

### Tower Section Geometry (cont'd)

| Tower Elevation ft | Gusset Area (per face) | Gusset Thickness | Gusset Grade | Adjust. Factor $A_r$ | Adjust. Factor $A_r$ | Weight Mult. | Double Angle Stitch Bolt Spacing Diagonals in | Double Angle Stitch Bolt Spacing Horizontals in | Double Angle Stitch Bolt Spacing Redundants in |
|--------------------|------------------------|------------------|--------------|----------------------|----------------------|--------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------|
| T1 180.00-160.00   | 1.20                   | 0.38             | A36 (36 ksi) | 1                    | 1                    | 1.05         | 41.00                                         | 41.00                                           | 36.00                                          |
| T2-T4 160.00-      | 1.20                   | 0.38             | A36 (36 ksi) | 1                    | 1                    | 1.05         | 41.00                                         | 41.00                                           | 36.00                                          |

| Tower Elevation   | Gusset Area (per face) | Gusset Thickness | Gusset Grade | Adjust. Factor $A_f$ |                 | Adjust. Factor $A_r$ | Weight Mult. | Double Angle                  | Double Angle                    | Double Angle                   |
|-------------------|------------------------|------------------|--------------|----------------------|-----------------|----------------------|--------------|-------------------------------|---------------------------------|--------------------------------|
|                   |                        |                  |              | ft                   | ft <sup>2</sup> |                      |              | Stitch Bolt Spacing Diagonals | Stitch Bolt Spacing Horizontals | Stitch Bolt Spacing Redundants |
| 100.00            |                        |                  |              |                      |                 |                      |              |                               |                                 |                                |
| T5 100.00-80.00   | 1.20                   | 0.38             | A36 (36 ksi) | 1                    | 1               | 1                    | 1.05         | 41.00                         | 41.00                           | 36.00                          |
| T6 80.00-60.00    | 0.73                   | 0.38             | A36 (36 ksi) | 1                    | 1               | 1                    | 1.05         | 41.00                         | 41.00                           | 36.00                          |
| T7-T8 60.00-20.00 | 0.73                   | 0.38             | A36 (36 ksi) | 1                    | 1               | 1                    | 1.05         | 41.00                         | 41.00                           | 36.00                          |
| T9 20.00-4.82     | 0.73                   | 0.38             | A36 (36 ksi) | 1                    | 1               | 1                    | 1.05         | 41.00                         | 41.00                           | 36.00                          |
| T10 4.82-0.00     | 0.00                   | 0.00             | A36 (36 ksi) | 1                    | 1               | 1                    | 1.05         | 41.00                         | 41.00                           | 36.00                          |

### Tower Section Geometry (cont'd)

| Tower Elevation     | Calc K Single Angles | Calc K Solid Rounds | K Factors <sup>1</sup> |   |               |   |               |   |              |   |       |   |        |             |             |
|---------------------|----------------------|---------------------|------------------------|---|---------------|---|---------------|---|--------------|---|-------|---|--------|-------------|-------------|
|                     |                      |                     | Legs                   |   | X Brace Diags |   | K Brace Diags |   | Single Diags |   | Girts |   | Horiz. | Sec. Horiz. | Inner Brace |
|                     |                      |                     | X                      | Y | X             | Y | X             | Y | X            | Y | X     | Y | X      | Y           |             |
| T1 180.00-160.00    | No                   | No                  | 1                      | 1 | 1             | 1 | 1             | 1 | 1            | 1 | 1     | 1 | 1      | 1           |             |
| T2-T4 160.00-100.00 | No                   | No                  | 1                      | 1 | 1             | 1 | 1             | 1 | 1            | 1 | 1     | 1 | 1      | 1           |             |
| T5 100.00-80.00     | No                   | No                  | 1                      | 1 | 1             | 1 | 1             | 1 | 1            | 1 | 1     | 1 | 1      | 1           |             |
| T6 80.00-60.00      | No                   | No                  | 1                      | 1 | 1             | 1 | 1             | 1 | 1            | 1 | 1     | 1 | 1      | 1           |             |
| T7-T8 60.00-20.00   | No                   | No                  | 1                      | 1 | 1             | 1 | 1             | 1 | 1            | 1 | 1     | 1 | 1      | 1           |             |
| T9 20.00-4.82       | No                   | No                  | 1                      | 1 | 1             | 1 | 1             | 1 | 1            | 1 | 1     | 1 | 1      | 1           |             |
| T10 4.82-0.00       | No                   | No                  | 1                      | 1 | 1             | 1 | 1             | 1 | 1            | 1 | 1     | 1 | 1      | 1           |             |

<sup>1</sup>Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

### Tower Section Geometry (cont'd)

| Tower Elevation     | Leg                 |   | Diagonal            |   | Top Girt            |   | Bottom Girt         |   | Mid Girt            |   | Long Horizontal     |   | Short Horizontal    |   |
|---------------------|---------------------|---|---------------------|---|---------------------|---|---------------------|---|---------------------|---|---------------------|---|---------------------|---|
|                     | Net Width Deduct in | U |
| T1 180.00-160.00    | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 |
| T2-T4 160.00-100.00 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 |
| T5 100.00-80.00     | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 |
| T6 80.00-60.00      | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 |
| T7-T8 60.00-20.00   | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 |
| T9 20.00-4.82       | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 | 0.00                | 1 |

| Tower<br>Elevation<br>ft | Leg                       |   | Diagonal                     |      | Top Girt                  |      | Bottom Girt               |      | Mid Girt                  |      | Long Horizontal           |      | Short Horizontal          |      |
|--------------------------|---------------------------|---|------------------------------|------|---------------------------|------|---------------------------|------|---------------------------|------|---------------------------|------|---------------------------|------|
|                          | Net Width<br>Deduct<br>in | U | Net<br>Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    |
| T10 4.82-0.00            | 0.00                      | 1 | 0.00                         | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 |

| Tower<br>Elevation<br>ft   | Redundant<br>Horizontal   |      | Redundant<br>Diagonal        |      | Redundant Sub-<br>Diagonal |      | Redundant Sub-<br>Horizontal |      | Redundant<br>Vertical     |      | Redundant Hip             |      | Redundant Hip<br>Diagonal |      |
|----------------------------|---------------------------|------|------------------------------|------|----------------------------|------|------------------------------|------|---------------------------|------|---------------------------|------|---------------------------|------|
|                            | Net Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in  | U    | Net Width<br>Deduct<br>in    | U    | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    |
| T1 180.00-<br>160.00       | 0.00                      | 0.75 | 0.00                         | 0.75 | 0.00                       | 0.75 | 0.00                         | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 |
| T2-T4<br>160.00-<br>100.00 | 0.00                      | 0.75 | 0.00                         | 0.75 | 0.00                       | 0.75 | 0.00                         | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 |
| T5 100.00-<br>80.00        | 0.00                      | 0.75 | 0.00                         | 0.75 | 0.00                       | 0.75 | 0.00                         | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 |
| T6 80.00-<br>60.00         | 0.00                      | 0.75 | 0.00                         | 0.75 | 0.00                       | 0.75 | 0.00                         | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 |
| T7-T8<br>60.00-20.00       | 0.00                      | 0.75 | 0.00                         | 0.75 | 0.00                       | 0.75 | 0.00                         | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 |
| T9 20.00-4.82              | 0.00                      | 0.75 | 0.00                         | 0.75 | 0.00                       | 0.75 | 0.00                         | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 |
| T10 4.82-0.00              | 0.00                      | 0.75 | 0.00                         | 0.75 | 0.00                       | 0.75 | 0.00                         | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 | 0.00                      | 0.75 |

### Tower Section Geometry (cont'd)

| Tower<br>Elevation<br>ft   | Connection Offsets |               |               |                |              |               |               |                |
|----------------------------|--------------------|---------------|---------------|----------------|--------------|---------------|---------------|----------------|
|                            | Diagonal           |               |               |                | K-Bracing    |               |               |                |
|                            | Vert.<br>Top       | Horiz.<br>Top | Vert.<br>Bot. | Horiz.<br>Bot. | Vert.<br>Top | Horiz.<br>Top | Vert.<br>Bot. | Horiz.<br>Bot. |
| in                         | in                 | in            | in            | in             | in           | in            | in            | in             |
| T1 180.00-<br>160.00       | 0.00               | 3.50          | 0.00          | 3.50           | 0.00         | 0.00          | 0.00          | 0.00           |
| T2-T4<br>160.00-<br>100.00 | 0.00               | 3.50          | 0.00          | 3.50           | 0.00         | 0.00          | 0.00          | 0.00           |
| T5 100.00-<br>80.00        | 0.00               | 3.50          | 0.00          | 3.50           | 0.00         | 0.00          | 0.00          | 0.00           |
| T6 80.00-<br>60.00         | 0.00               | 3.50          | 0.00          | 3.50           | 0.00         | 0.00          | 0.00          | 0.00           |
| T7-T8<br>60.00-20.00       | 0.00               | 3.50          | 0.00          | 3.50           | 0.00         | 0.00          | 0.00          | 0.00           |
| T9 20.00-4.82              | 0.00               | 3.50          | 0.00          | 3.50           | 0.00         | 0.00          | 0.00          | 0.00           |
| T10 4.82-0.00              | 0.00               | 0.00          | 0.00          | 0.00           | 0.00         | 0.00          | 0.00          | 0.00           |

### Tower Section Geometry (cont'd)

| Tower Elevation ft  | Leg Connection Type | Leg          |     | Diagonal     |     | Top Girt     |     | Bottom Girt  |     | Mid Girt     |     | Long Horizontal |     | Short Horizontal |     |
|---------------------|---------------------|--------------|-----|--------------|-----|--------------|-----|--------------|-----|--------------|-----|-----------------|-----|------------------|-----|
|                     |                     | Bolt Size in | No. | Bolt Size in    | No. | Bolt Size in     | No. |
| T1 180.00-160.00    | Flange              | 0.75         | 4   | 0.50         | 1   | 0.50         | 1   | 0.50         | 1   | 0.00         | 0   | 0.00            | 0   | 0.00             | 0   |
|                     |                     |              |     | A325X           |     | A325X            |     |
| T2-T4 160.00-100.00 | Flange              | 0.75         | 4   | 0.50         | 1   | 0.50         | 1   | 0.50         | 1   | 0.00         | 0   | 0.00            | 0   | 0.00             | 0   |
|                     |                     |              |     | A325X           |     | A325X            |     |
| T5 100.00-80.00     | Flange              | 0.75         | 4   | 0.50         | 1   | 0.50         | 1   | 0.50         | 1   | 0.00         | 0   | 0.00            | 0   | 0.00             | 0   |
|                     |                     |              |     | A325X           |     | A325X            |     |
| T6 80.00-60.00      | Flange              | 0.75         | 4   | 0.50         | 1   | 0.50         | 1   | 0.50         | 1   | 0.00         | 0   | 0.00            | 0   | 0.00             | 0   |
|                     |                     |              |     | A325X           |     | A325X            |     |
| T7-T8 60.00-20.00   | Flange              | 0.75         | 4   | 0.50         | 1   | 0.50         | 1   | 0.50         | 1   | 0.00         | 0   | 0.00            | 0   | 0.00             | 0   |
|                     |                     |              |     | A325X           |     | A325X            |     |
| T9 20.00-4.82       | Flange              | 0.75         | 4   | 0.50         | 1   | 0.50         | 1   | 0.50         | 1   | 0.00         | 0   | 0.00            | 0   | 0.00             | 0   |
|                     |                     |              |     | A325X           |     | A325X            |     |
| T10 4.82-0.00       | Flange              | 0.00         | 0   | 0.00         | 0   | 0.00         | 0   | 0.00         | 0   | 0.00         | 0   | 0.00            | 0   | 0.00             | 0   |
|                     |                     |              |     | A325X           |     | A325X            |     |

### Guy Data

| Guy Elevation ft | Guy Grade | Guy Size | Initial Tension | %    | Guy Modulus | Guy Weight | $L_u$ | Anchor Radius | Anchor Azimuth | Anchor Elevation | End Fitting Adj. | End Fitting Efficiency % |
|------------------|-----------|----------|-----------------|------|-------------|------------|-------|---------------|----------------|------------------|------------------|--------------------------|
|                  |           |          | K               | ksi  | plf         | ft         | ft    | ft            | °              | ft               |                  |                          |
| 162.523          | EHS       | A        | 3/4             | 5.83 | 10%         | 24000      | 1.16  | 213.08        | 140.00         | 0.000            | 0.00             | 100%                     |
|                  |           | B        | 3/4             | 5.83 | 10%         | 24000      | 1.16  | 213.08        | 140.00         | 0.000            | 0.00             | 100%                     |
|                  |           | C        | 3/4             | 5.83 | 10%         | 24000      | 1.16  | 213.08        | 140.00         | 0.000            | 0.00             | 100%                     |
| 119.385          | EHS       | A        | 1/2             | 2.69 | 10%         | 23000      | 0.52  | 182.36        | 140.00         | 0.000            | 0.00             | 100%                     |
|                  |           | B        | 1/2             | 2.69 | 10%         | 23000      | 0.52  | 182.36        | 140.00         | 0.000            | 0.00             | 100%                     |
|                  |           | C        | 1/2             | 2.69 | 10%         | 23000      | 0.52  | 182.36        | 140.00         | 0.000            | 0.00             | 100%                     |
| 82.5234          | EHS       | A        | 1/2             | 2.69 | 10%         | 23000      | 0.52  | 160.73        | 140.00         | 0.000            | 0.00             | 100%                     |
|                  |           | B        | 1/2             | 2.69 | 10%         | 23000      | 0.52  | 160.73        | 140.00         | 0.000            | 0.00             | 100%                     |
|                  |           | C        | 1/2             | 2.69 | 10%         | 23000      | 0.52  | 160.73        | 140.00         | 0.000            | 0.00             | 100%                     |

### Guy Data (cont'd)

| Guy Elevation ft | Mount Type | Torque-Arm Spread ft | Torque-Arm Leg Angle ° | Torque-Arm Style | Torque-Arm Grade | Torque-Arm Type | Torque-Arm Size |
|------------------|------------|----------------------|------------------------|------------------|------------------|-----------------|-----------------|
| 162.523          | Corner     |                      |                        |                  |                  |                 |                 |
| 119.385          | Corner     |                      |                        |                  |                  |                 |                 |
| 82.5234          | Torque Arm | 6.83                 | 0.000                  | Channel          | A36 (36 ksi)     | Channel         | C10x15.3        |

### Guy Data (cont'd)

| Guy Elevation ft | Diagonal Grade | Diagonal Type | Upper Diagonal Size | Lower Diagonal Size | Is Strap. | Pull-Off Grade | Pull-Off Type      | Pull-Off Size        |
|------------------|----------------|---------------|---------------------|---------------------|-----------|----------------|--------------------|----------------------|
| 162.52           | A36 (36 ksi)   | Solid Round   |                     |                     | No        | A36 (36 ksi)   | Double Equal Angle | 2L 2 x 2 x 1/4 (3/8) |
| 119.39           | A36 (36 ksi)   | Solid Round   |                     |                     |           | A36 (36 ksi)   | Pipe               |                      |

| Guy Elevation ft | Diagonal Grade | Diagonal Type | Upper Diagonal Size | Lower Diagonal Size | Is Strap. | Pull-Off Grade | Pull-Off Type      | Pull-Off Size        |
|------------------|----------------|---------------|---------------------|---------------------|-----------|----------------|--------------------|----------------------|
| 82.52            | A36 (36 ksi)   | Solid Round   |                     |                     | No        | A36 (36 ksi)   | Double Equal Angle | 2L 2 x 2 x 1/4 (3/8) |

### Guy Data (cont'd)

| Guy Elevation ft | Cable Weight A K | Cable Weight B K | Cable Weight C K | Cable Weight D K | Tower Intercept A ft     | Tower Intercept B ft     | Tower Intercept C ft  | Tower Intercept D ft |
|------------------|------------------|------------------|------------------|------------------|--------------------------|--------------------------|-----------------------|----------------------|
| 162.523          | 0.25             | 0.25             | 0.25             |                  | 4.43<br>3.6<br>sec/pulse | 4.43<br>3.6<br>sec/pulse | 4.43<br>3.6 sec/pulse |                      |
| 119.385          | 0.09             | 0.09             | 0.09             |                  | 3.16<br>3.1<br>sec/pulse | 3.16<br>3.1<br>sec/pulse | 3.16<br>3.1 sec/pulse |                      |
| 82.5234          | 0.08             | 0.08             | 0.08             |                  | 2.47<br>2.7<br>sec/pulse | 2.47<br>2.7<br>sec/pulse | 2.47<br>2.7 sec/pulse |                      |

### Guy Data (cont'd)

| Guy Elevation ft | Calc K<br>Single Angles | Calc K<br>Solid Rounds | Torque Arm     |                | Pull Off       |                | Diagonal       |                |
|------------------|-------------------------|------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                  |                         |                        | K <sub>x</sub> | K <sub>y</sub> | K <sub>x</sub> | K <sub>y</sub> | K <sub>x</sub> | K <sub>y</sub> |
| 162.523          | No                      | No                     |                |                | 1              | 1              | 1              | 1              |
| 119.385          | No                      | No                     |                |                | 1              | 1              | 1              | 1              |
| 82.5234          | No                      | No                     | 1              | 1              | 1              | 1              | 1              | 1              |

### Guy Data (cont'd)

| Guy Elevation ft | Torque-Arm    |        |                     |   | Pull Off      |        |                     |      | Diagonal      |        |                     |   |
|------------------|---------------|--------|---------------------|---|---------------|--------|---------------------|------|---------------|--------|---------------------|---|
|                  | Bolt Size in  | Number | Net Width Deduct in | U | Bolt Size in  | Number | Net Width Deduct in | U    | Bolt Size in  | Number | Net Width Deduct in | U |
| 162.523          | 0.00<br>A325N | 0      | 0.00                | 1 | 0.63<br>A325N | 2      | 0.00                | 0.75 | 0.63<br>A325N | 0      | 0.00                | 1 |
| 119.385          | 0.00<br>A325N | 0      | 0.00                | 1 | 0.50<br>A325N | 0      | 0.00                | 1    | 0.63<br>A325N | 0      | 0.00                | 1 |
| 82.5234          | 0.00<br>A325N | 0      | 0.00                | 1 | 0.63<br>A325N | 2      | 0.00                | 0.75 | 0.63<br>A325N | 0      | 0.00                | 1 |

### Guy Pressures

| Guy Elevation ft | Guy Location | z ft  | q <sub>z</sub> psf | q <sub>z</sub> ice psf | Ice Thickness in |
|------------------|--------------|-------|--------------------|------------------------|------------------|
| 162.523          | A            | 81.26 | 27                 | 5                      | 1.64             |
|                  | B            | 81.26 | 27                 | 5                      | 1.64             |
|                  | C            | 81.26 | 27                 | 5                      | 1.64             |
| 119.385          | A            | 59.69 | 24                 | 4                      | 1.59             |
|                  | B            | 59.69 | 24                 | 4                      | 1.59             |

| Guy Elevation ft | Guy Location | z ft  | q <sub>z</sub> psf | q <sub>z</sub> /ice psf | Ice Thickness in |
|------------------|--------------|-------|--------------------|-------------------------|------------------|
| 82.5234          | C            | 59.69 | 24                 | 4                       | 1.59             |
|                  | A            | 41.26 | 22                 | 4                       | 1.53             |
|                  | B            | 41.26 | 22                 | 4                       | 1.53             |
|                  | C            | 41.26 | 22                 | 4                       | 1.53             |

### Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description                    | Face or Leg | Allow Shield | Exclude From Torque Calculation | Component Type | Placement ft    | Face Offset in | Lateral Offset (Frac FW) | # Per Row | # Per Column | Clear Spacing in | Width or Diameter in | Perimeter in | Weight plf |
|--------------------------------|-------------|--------------|---------------------------------|----------------|-----------------|----------------|--------------------------|-----------|--------------|------------------|----------------------|--------------|------------|
| LDF6-50A(1-1/4)<br>(VZN)       | B           | No           | No                              | Ar (CaAa)      | 153.00 - 5.00   | 0.00           | -0.25                    | 2         | 2            | 1.00<br>0.50     | 1.55                 |              | 0.60       |
| LDF7-50A(1-5/8")<br>(new TMO)  | B           | No           | No                              | Ar (CaAa)      | 171.00 - 5.00   | 0.00           | 0.25                     | 3         | 3            | 1.00             | 1.98                 |              | 0.82       |
| LDF4P-50A(1/2)<br>(UNK)        | C           | No           | No                              | Ar (CaAa)      | 77.00 - 5.00    | 0.00           | 0.1                      | 1         | 1            | 0.63             | 0.63                 |              | 0.15       |
| LDF5-50A(7/8)<br>(UNK)         | C           | No           | No                              | Ar (CaAa)      | 163.00 - 5.00   | 0.00           | 0.05                     | 2         | 2            | 1.03             | 1.03                 |              | 0.33       |
| LDF5-50A(7/8)<br>(UNK)         | C           | No           | No                              | Ar (CaAa)      | 180.00 - 163.00 | 0.00           | 0.05                     | 1         | 1            | 1.03             | 1.03                 |              | 0.33       |
| LDF6-50A(1-1/4)<br>(1 TBR TMO) | C           | No           | No                              | Ar (CaAa)      | 171.00 - 5.00   | 0.00           | 0                        | 1         | 1            | 1.00             | 1.55                 |              | 0.60       |
| LDF5-50A(7/8)<br>(UNK)         | C           | No           | No                              | Ar (CaAa)      | 121.00 - 5.00   | 0.00           | -0.03                    | 2         | 2            | 1.03             | 1.03                 |              | 0.33       |
| LDF5-50A(7/8)<br>(UNK)         | C           | No           | No                              | Ar (CaAa)      | 180.00 - 121.00 | 0.00           | -0.03                    | 1         | 1            | 1.03             | 1.03                 |              | 0.33       |

### Discrete Tower Loads

| Description                                  | Face or Leg | Offset Type | Offsets: Horz ft     | Offsets: Lateral ft | Offsets: Vert ft | Azimuth Adjustment ° | Placement ft                      | CaAa Front                       | CaAa Side                        | Weight                       |
|----------------------------------------------|-------------|-------------|----------------------|---------------------|------------------|----------------------|-----------------------------------|----------------------------------|----------------------------------|------------------------------|
|                                              |             |             |                      |                     |                  |                      |                                   | ft <sup>2</sup>                  | ft <sup>2</sup>                  | K                            |
| 16 ft x 2.5" omni whip                       | B           | From Leg    | 0.50<br>0.00<br>8.00 | 0.000               |                  | 179.00               | No Ice<br>1/2"<br>Ice<br>1"<br>2" | 4.00<br>5.63<br>7.28<br>10.62    | 4.00<br>5.63<br>7.28<br>10.62    | 0.03<br>0.06<br>0.10<br>0.21 |
| **<br>APXVAALL24_43-U-NA20_TIA w/ Mount Pipe | A           | From Leg    | 4.00<br>0.00<br>0.00 | 0.000               |                  | 171.00               | No Ice<br>1/2"<br>Ice<br>1"<br>2" | 20.48<br>21.23<br>21.99<br>23.44 | 10.87<br>12.39<br>13.94<br>16.29 | 0.18<br>0.32<br>0.46<br>0.79 |
| APXVAALL24_43-U-NA20_TIA w/ Mount Pipe       | B           | From Leg    | 4.00<br>0.00<br>0.00 | 0.000               |                  | 171.00               | No Ice<br>1/2"<br>Ice<br>1"<br>2" | 20.48<br>21.23<br>21.99<br>23.44 | 10.87<br>12.39<br>13.94<br>16.29 | 0.18<br>0.32<br>0.46<br>0.79 |
| APXVAALL24_43-U-NA20_TIA w/ Mount Pipe       | C           | From Leg    | 4.00<br>0.00         | 0.000               |                  | 171.00               | No Ice<br>1/2"                    | 20.48<br>21.23                   | 10.87<br>12.39                   | 0.18<br>0.32                 |

| Description                        | Face or Leg | Offset Type | Offsets: Horz<br>ft | Azimuth<br>Adjustment<br>° | Placement<br>ft | CAA Front<br>ft <sup>2</sup> | CAA Side<br>ft <sup>2</sup> | Weight<br>K          |
|------------------------------------|-------------|-------------|---------------------|----------------------------|-----------------|------------------------------|-----------------------------|----------------------|
|                                    |             |             |                     |                            |                 |                              |                             |                      |
|                                    |             |             | 0.00                |                            |                 | Ice<br>1" Ice<br>2" Ice      | 21.99<br>23.44<br>13.94     | 0.46<br>0.79         |
| AIR6449 B41_TIA w/<br>Mount Pipe   | A           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 5.89<br>6.26<br>6.63        | 0.12<br>0.17<br>0.22 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 7.41                        | 5.21                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.35                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| AIR6449 B41_TIA w/<br>Mount Pipe   | B           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 5.89<br>6.26<br>6.63        | 0.12<br>0.17<br>0.22 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 7.41                        | 5.21                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.35                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| AIR6449 B41_TIA w/<br>Mount Pipe   | C           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 5.89<br>6.26<br>6.63        | 0.12<br>0.17<br>0.22 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 7.41                        | 5.21                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.35                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| RADIO 4460 B2/B25<br>B66_TMO       | A           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 2.14<br>2.32<br>2.51        | 0.11<br>0.13<br>0.16 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 2.91                        | 2.39                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.22                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| RADIO 4460 B2/B25<br>B66_TMO       | B           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 2.14<br>2.32<br>2.51        | 0.11<br>0.13<br>0.16 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 2.91                        | 2.39                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.22                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| RADIO 4460 B2/B25<br>B66_TMO       | C           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 2.14<br>2.32<br>2.51        | 0.11<br>0.13<br>0.16 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 2.91                        | 2.39                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.22                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| RADIO 4480 B71_TMO                 | A           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 2.85<br>3.06<br>3.28        | 0.09<br>0.11<br>0.14 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 3.74                        | 2.07                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.20                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| RADIO 4480 B71_TMO                 | B           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 2.85<br>3.06<br>3.28        | 0.09<br>0.11<br>0.14 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 3.74                        | 2.07                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.20                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| RADIO 4480 B71_TMO                 | C           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 2.85<br>3.06<br>3.28        | 0.09<br>0.11<br>0.14 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 3.74                        | 2.07                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.20                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| (2) RRH 2x50-800 w/Notch<br>Filter | A           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 1.73<br>1.90<br>2.07        | 0.07<br>0.09<br>0.11 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 2.44                        | 1.97                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.16                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| (2) RRH 2x50-800 w/Notch<br>Filter | B           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 1.73<br>1.90<br>2.07        | 0.07<br>0.09<br>0.11 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 2.44                        | 1.97                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.16                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| (2) RRH 2x50-800 w/Notch<br>Filter | C           | From Leg    | 4.00                | 0.000                      | 171.00          | No Ice<br>1/2"<br>Ice        | 1.73<br>1.90<br>2.07        | 0.07<br>0.09<br>0.11 |
|                                    |             |             | 0.00                |                            |                 | 1" Ice                       | 2.44                        | 1.97                 |
|                                    |             |             | 0.00                |                            |                 | 2" Ice                       |                             | 0.16                 |
|                                    |             |             |                     |                            |                 |                              |                             |                      |
| Site Pro 1 VFA12-HD                | A           | From Leg    | 2.00                | 0.000                      | 171.00          | No Ice<br>1/2"               | 13.20<br>19.50              | 0.66<br>0.80         |
|                                    |             |             | 0.00                |                            |                 | Ice                          | 2.07<br>2.44                | 1.64<br>1.97         |

| Description                          |   | Face or Leg | Offset Type | Offsets: Horz<br>Vert<br>ft<br>ft<br>ft | Azimuth Adjustment | Placement | CAA Front               | CAA Side                | Weight                 |
|--------------------------------------|---|-------------|-------------|-----------------------------------------|--------------------|-----------|-------------------------|-------------------------|------------------------|
|                                      |   |             |             |                                         |                    | ft        | ft <sup>2</sup>         | ft <sup>2</sup>         | K                      |
|                                      |   |             |             | 0.00                                    |                    |           | Ice<br>1" Ice<br>2" Ice | 25.80<br>38.40          | 19.50<br>30.80         |
|                                      |   |             |             | 0.00                                    |                    | 171.00    | No Ice<br>1/2"<br>Ice   | 13.20<br>19.50<br>25.80 | 9.20<br>14.60<br>19.50 |
| Site Pro 1 VFA12-HD                  | B | From Leg    |             | 2.00<br>0.00<br>0.00                    | 0.000              |           | 1" Ice<br>2" Ice        | 38.40                   | 1.01<br>1.24           |
|                                      |   |             |             | 0.00                                    |                    |           | No Ice<br>1/2"<br>Ice   | 13.20<br>19.50<br>25.80 | 0.66<br>0.80<br>1.01   |
| Site Pro 1 VFA12-HD                  | C | From Leg    |             | 2.00<br>0.00<br>0.00                    | 0.000              | 171.00    | 1" Ice<br>2" Ice        | 38.40                   | 1.01<br>1.24           |
|                                      |   |             |             | 0.00                                    |                    |           | No Ice<br>1/2"<br>Ice   | 13.20<br>19.50<br>25.80 | 0.66<br>0.80<br>1.01   |
| ***                                  |   |             |             |                                         |                    |           | 1" Ice<br>2" Ice        | 38.40                   |                        |
| PD201                                | B | From Leg    |             | 4.00<br>0.00<br>4.00                    | 0.000              | 163.00    | No Ice<br>1/2"<br>Ice   | 0.68<br>1.80<br>2.92    | 0.00<br>0.01<br>0.02   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 5.16                    | 0.03                   |
| 5" x 2.375" Pipe Mount               | B | From Leg    |             | 2.00<br>0.00<br>0.00                    | 0.000              | 163.00    | No Ice<br>1/2"<br>Ice   | 1.19<br>1.50<br>1.81    | 0.02<br>0.03<br>0.04   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 2.46                    | 0.08                   |
| **                                   |   |             |             |                                         |                    |           |                         |                         |                        |
| NHH-65B-R2B_TIA w/<br>Mount Pipe     | A | From Leg    |             | 4.00<br>0.00<br>0.00                    | 0.000              | 153.00    | No Ice<br>1/2"<br>Ice   | 8.32<br>8.88<br>9.40    | 7.00<br>8.19<br>9.08   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 10.47                   | 0.21<br>0.39           |
| NHH-65B-R2B_TIA w/<br>Mount Pipe     | B | From Leg    |             | 4.00<br>0.00<br>0.00                    | 0.000              | 153.00    | No Ice<br>1/2"<br>Ice   | 8.32<br>8.88<br>9.40    | 0.07<br>0.14<br>0.21   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 10.47                   | 0.39                   |
| NHH-65B-R2B_TIA w/<br>Mount Pipe     | C | From Leg    |             | 4.00<br>0.00<br>0.00                    | 0.000              | 153.00    | No Ice<br>1/2"<br>Ice   | 8.32<br>8.88<br>9.40    | 0.07<br>0.14<br>0.21   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 10.47                   | 0.39                   |
| NHHSS-65B-R2BT4_TIA<br>w/ Mount Pipe | A | From Leg    |             | 4.00<br>0.00<br>0.00                    | 0.000              | 153.00    | No Ice<br>1/2"<br>Ice   | 8.29<br>8.84<br>9.37    | 7.02<br>8.20<br>9.09   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 10.44                   | 0.22<br>0.40           |
| NHHSS-65B-R2BT4_TIA<br>w/ Mount Pipe | B | From Leg    |             | 4.00<br>0.00<br>0.00                    | 0.000              | 153.00    | No Ice<br>1/2"<br>Ice   | 8.29<br>8.84<br>9.37    | 7.02<br>8.20<br>9.09   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 10.44                   | 0.22<br>0.40           |
| NHHSS-65B-R2BT4_TIA<br>w/ Mount Pipe | C | From Leg    |             | 4.00<br>0.00<br>0.00                    | 0.000              | 153.00    | No Ice<br>1/2"<br>Ice   | 8.29<br>8.84<br>9.37    | 7.02<br>8.20<br>9.09   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 10.44                   | 0.22<br>0.40           |
| MT6407-77A_TIA w/<br>Mount Pipe      | A | From Leg    |             | 4.00<br>0.00<br>0.00                    | 0.000              | 153.00    | No Ice<br>1/2"<br>Ice   | 4.91<br>5.26<br>5.61    | 2.68<br>3.14<br>3.62   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 6.36                    | 0.18<br>0.29           |
| MT6407-77A_TIA w/<br>Mount Pipe      | B | From Leg    |             | 4.00<br>0.00<br>0.00                    | 0.000              | 153.00    | No Ice<br>1/2"<br>Ice   | 4.91<br>5.26<br>5.61    | 2.68<br>3.14<br>3.62   |
|                                      |   |             |             | 0.00                                    |                    |           | 1" Ice<br>2" Ice        | 6.36                    | 0.18<br>0.29           |

| Description                  | Face or Leg | Offset Type | Offsets: Horz Lateral<br>ft<br>ft<br>ft | Azimuth Adjustment<br>° | Placement<br>ft | CAAA Front<br>ft <sup>2</sup>             | CAAA Side<br>ft <sup>2</sup>              | Weight<br>K                             |
|------------------------------|-------------|-------------|-----------------------------------------|-------------------------|-----------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|
| MT6407-77A TIA w/ Mount Pipe | C           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 4.91<br>5.26<br>5.61<br>6.36<br>4.63      | 2.68<br>3.14<br>3.62<br>0.18<br>0.29    |
| B2/B66a RF4439D-25A          | A           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 2.33<br>2.52<br>2.71<br>3.13<br>2.26      | 1.56<br>1.72<br>1.89<br>0.12<br>0.18    |
| B2/B66a RF4439D-25A          | B           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 2.33<br>2.52<br>2.71<br>3.13<br>2.26      | 1.56<br>1.72<br>1.89<br>0.12<br>0.18    |
| B2/B66a RF4439D-25A          | C           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 2.33<br>2.52<br>2.71<br>3.13<br>2.26      | 1.56<br>1.72<br>1.89<br>0.12<br>0.18    |
| B5/B13 RF4440D-13A           | A           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 2.33<br>2.52<br>2.71<br>3.13<br>2.08      | 1.41<br>1.57<br>1.73<br>0.12<br>0.17    |
| B5/B13 RF4440D-13A           | B           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 2.33<br>2.52<br>2.71<br>3.13<br>2.08      | 1.41<br>1.57<br>1.73<br>0.12<br>0.17    |
| B5/B13 RF4440D-13A           | C           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 2.33<br>2.52<br>2.71<br>3.13<br>2.08      | 1.41<br>1.57<br>1.73<br>0.12<br>0.17    |
| CBRS RRHRT4401- 48A          | A           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 0.99<br>1.12<br>1.26<br>1.55<br>0.94      | 0.50<br>0.60<br>0.70<br>0.94<br>0.06    |
| CBRS RRHRT4401- 48A          | B           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 0.99<br>1.12<br>1.26<br>1.55<br>0.94      | 0.50<br>0.60<br>0.70<br>0.94<br>0.06    |
| CBRS RRHRT4401- 48A          | C           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 0.99<br>1.12<br>1.26<br>1.55<br>0.94      | 0.50<br>0.60<br>0.70<br>0.94<br>0.06    |
| 12 OVP (RCMDC-3315-PF-48)    | A           | From Leg    | 4.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 3.36<br>3.60<br>3.84<br>4.34<br>3.05      | 2.19<br>2.39<br>2.61<br>3.05<br>0.17    |
| Site Pro 1 VFA12-HD          | A           | From Leg    | 2.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 13.20<br>19.50<br>25.80<br>38.40<br>30.80 | 9.20<br>14.60<br>19.50<br>30.80<br>1.24 |
| Site Pro 1 VFA12-HD          | B           | From Leg    | 2.00<br>0.00<br>0.00                    | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 13.20<br>19.50<br>25.80<br>38.40<br>30.80 | 9.20<br>14.60<br>19.50<br>30.80<br>1.24 |

| Description             | Face or Leg | Offset Type | Offsets: Horz<br>Lateral<br>Vert<br>ft<br>ft<br>ft | Azimuth Adjustment<br>° | Placement<br>ft | CAA                                       |                                           | Weight<br>K                                                  |
|-------------------------|-------------|-------------|----------------------------------------------------|-------------------------|-----------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
|                         |             |             |                                                    |                         |                 | Front                                     | Side                                      |                                                              |
| Site Pro 1 VFA12-HD     | C           | From Leg    | 2.00<br>0.00<br>0.00                               | 0.000                   | 153.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 13.20<br>19.50<br>25.80<br>38.40<br>30.80 | 9.20<br>14.60<br>19.50<br>30.80<br>1.01<br>1.24              |
| 3' x 2.375" Pipe Mount  | B           | From Leg    | 1.50<br>0.00<br>0.00                               | 0.000                   | 138.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 0.58<br>0.77<br>0.97<br>1.39<br>1.39      | 0.58<br>0.77<br>0.97<br>1.39<br>0.03                         |
| DB420                   | B           | From Leg    | 3.00<br>0.00<br>8.00                               | 0.000                   | 121.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 3.33<br>5.99<br>8.66<br>13.99<br>13.99    | 3.33<br>5.99<br>8.66<br>13.99<br>0.04                        |
| Generic 2' x 3' sidearm | B           | From Leg    | 1.50<br>0.00<br>0.00                               | 0.000                   | 121.00          | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 1.50<br>2.50<br>3.50<br>5.50<br>7.00      | 3.00<br>4.00<br>5.00<br>7.00<br>0.19<br>0.28<br>0.36<br>0.54 |
| PD201                   | B           | From Leg    | 4.00<br>0.00<br>4.00                               | 0.000                   | 77.00           | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 0.68<br>1.80<br>2.92<br>5.16<br>5.16      | 0.68<br>1.80<br>2.92<br>5.16<br>0.00<br>0.01<br>0.02<br>0.03 |
| 5" x 2.375" Pipe Mount  | B           | From Leg    | 2.00<br>0.00<br>0.00                               | 0.000                   | 77.00           | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 1.19<br>1.50<br>1.81<br>2.46<br>2.46      | 1.19<br>1.50<br>1.81<br>2.46<br>0.02<br>0.03<br>0.04<br>0.08 |
| ***                     |             |             |                                                    |                         |                 |                                           |                                           |                                                              |

### Load Combinations

| Comb. No. | Description                                    |
|-----------|------------------------------------------------|
| 1         | Dead Only                                      |
| 2         | 1.2 Dead+1.0 Wind 0 deg - No Ice+1.0 Guy       |
| 3         | 1.2D+1.0W (pattern 1) 0 deg - No Ice+1.0 Guy   |
| 4         | 1.2D+1.0W (pattern 2) 0 deg - No Ice+1.0 Guy   |
| 5         | 1.2D+1.0W (pattern 3) 0 deg - No Ice+1.0 Guy   |
| 6         | 1.2D+1.0W (pattern 4) 0 deg - No Ice+1.0 Guy   |
| 7         | 1.2 Dead+1.0 Wind 30 deg - No Ice+1.0 Guy      |
| 8         | 1.2D+1.0W (pattern 1) 30 deg - No Ice+1.0 Guy  |
| 9         | 1.2D+1.0W (pattern 2) 30 deg - No Ice+1.0 Guy  |
| 10        | 1.2D+1.0W (pattern 3) 30 deg - No Ice+1.0 Guy  |
| 11        | 1.2D+1.0W (pattern 4) 30 deg - No Ice+1.0 Guy  |
| 12        | 1.2 Dead+1.0 Wind 60 deg - No Ice+1.0 Guy      |
| 13        | 1.2D+1.0W (pattern 1) 60 deg - No Ice+1.0 Guy  |
| 14        | 1.2D+1.0W (pattern 2) 60 deg - No Ice+1.0 Guy  |
| 15        | 1.2D+1.0W (pattern 3) 60 deg - No Ice+1.0 Guy  |
| 16        | 1.2D+1.0W (pattern 4) 60 deg - No Ice+1.0 Guy  |
| 17        | 1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy      |
| 18        | 1.2D+1.0W (pattern 1) 90 deg - No Ice+1.0 Guy  |
| 19        | 1.2D+1.0W (pattern 2) 90 deg - No Ice+1.0 Guy  |
| 20        | 1.2D+1.0W (pattern 3) 90 deg - No Ice+1.0 Guy  |
| 21        | 1.2D+1.0W (pattern 4) 90 deg - No Ice+1.0 Guy  |
| 22        | 1.2 Dead+1.0 Wind 120 deg - No Ice+1.0 Guy     |
| 23        | 1.2D+1.0W (pattern 1) 120 deg - No Ice+1.0 Guy |
| 24        | 1.2D+1.0W (pattern 2) 120 deg - No Ice+1.0 Guy |

| Comb.<br>No. | Description                                        |
|--------------|----------------------------------------------------|
| 25           | 1.2D+1.0W (pattern 3) 120 deg - No Ice+1.0 Guy     |
| 26           | 1.2D+1.0W (pattern 4) 120 deg - No Ice+1.0 Guy     |
| 27           | 1.2 Dead+1.0 Wind 150 deg - No Ice+1.0 Guy         |
| 28           | 1.2D+1.0W (pattern 1) 150 deg - No Ice+1.0 Guy     |
| 29           | 1.2D+1.0W (pattern 2) 150 deg - No Ice+1.0 Guy     |
| 30           | 1.2D+1.0W (pattern 3) 150 deg - No Ice+1.0 Guy     |
| 31           | 1.2D+1.0W (pattern 4) 150 deg - No Ice+1.0 Guy     |
| 32           | 1.2 Dead+1.0 Wind 180 deg - No Ice+1.0 Guy         |
| 33           | 1.2D+1.0W (pattern 1) 180 deg - No Ice+1.0 Guy     |
| 34           | 1.2D+1.0W (pattern 2) 180 deg - No Ice+1.0 Guy     |
| 35           | 1.2D+1.0W (pattern 3) 180 deg - No Ice+1.0 Guy     |
| 36           | 1.2D+1.0W (pattern 4) 180 deg - No Ice+1.0 Guy     |
| 37           | 1.2 Dead+1.0 Wind 210 deg - No Ice+1.0 Guy         |
| 38           | 1.2D+1.0W (pattern 1) 210 deg - No Ice+1.0 Guy     |
| 39           | 1.2D+1.0W (pattern 2) 210 deg - No Ice+1.0 Guy     |
| 40           | 1.2D+1.0W (pattern 3) 210 deg - No Ice+1.0 Guy     |
| 41           | 1.2D+1.0W (pattern 4) 210 deg - No Ice+1.0 Guy     |
| 42           | 1.2 Dead+1.0 Wind 240 deg - No Ice+1.0 Guy         |
| 43           | 1.2D+1.0W (pattern 1) 240 deg - No Ice+1.0 Guy     |
| 44           | 1.2D+1.0W (pattern 2) 240 deg - No Ice+1.0 Guy     |
| 45           | 1.2D+1.0W (pattern 3) 240 deg - No Ice+1.0 Guy     |
| 46           | 1.2D+1.0W (pattern 4) 240 deg - No Ice+1.0 Guy     |
| 47           | 1.2 Dead+1.0 Wind 270 deg - No Ice+1.0 Guy         |
| 48           | 1.2D+1.0W (pattern 1) 270 deg - No Ice+1.0 Guy     |
| 49           | 1.2D+1.0W (pattern 2) 270 deg - No Ice+1.0 Guy     |
| 50           | 1.2D+1.0W (pattern 3) 270 deg - No Ice+1.0 Guy     |
| 51           | 1.2D+1.0W (pattern 4) 270 deg - No Ice+1.0 Guy     |
| 52           | 1.2 Dead+1.0 Wind 300 deg - No Ice+1.0 Guy         |
| 53           | 1.2D+1.0W (pattern 1) 300 deg - No Ice+1.0 Guy     |
| 54           | 1.2D+1.0W (pattern 2) 300 deg - No Ice+1.0 Guy     |
| 55           | 1.2D+1.0W (pattern 3) 300 deg - No Ice+1.0 Guy     |
| 56           | 1.2D+1.0W (pattern 4) 300 deg - No Ice+1.0 Guy     |
| 57           | 1.2 Dead+1.0 Wind 330 deg - No Ice+1.0 Guy         |
| 58           | 1.2D+1.0W (pattern 1) 330 deg - No Ice+1.0 Guy     |
| 59           | 1.2D+1.0W (pattern 2) 330 deg - No Ice+1.0 Guy     |
| 60           | 1.2D+1.0W (pattern 3) 330 deg - No Ice+1.0 Guy     |
| 61           | 1.2D+1.0W (pattern 4) 330 deg - No Ice+1.0 Guy     |
| 62           | 1.2 Dead+1.0 Ice+1.0 Temp+Guy                      |
| 63           | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy   |
| 64           | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy  |
| 65           | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy  |
| 66           | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy  |
| 67           | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy |
| 68           | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy |
| 69           | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy |
| 70           | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy |
| 71           | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy |
| 72           | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy |
| 73           | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy |
| 74           | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy |
| 75           | Dead+Wind 0 deg - Service+Guy                      |
| 76           | Dead+Wind 30 deg - Service+Guy                     |
| 77           | Dead+Wind 60 deg - Service+Guy                     |
| 78           | Dead+Wind 90 deg - Service+Guy                     |
| 79           | Dead+Wind 120 deg - Service+Guy                    |
| 80           | Dead+Wind 150 deg - Service+Guy                    |
| 81           | Dead+Wind 180 deg - Service+Guy                    |
| 82           | Dead+Wind 210 deg - Service+Guy                    |
| 83           | Dead+Wind 240 deg - Service+Guy                    |
| 84           | Dead+Wind 270 deg - Service+Guy                    |
| 85           | Dead+Wind 300 deg - Service+Guy                    |
| 86           | Dead+Wind 330 deg - Service+Guy                    |

### Maximum Tower Deflections - Service Wind

| Section No. | Elevation    | Horz. Deflection | Gov. Load Comb. | Tilt  | Twist |
|-------------|--------------|------------------|-----------------|-------|-------|
|             | ft           | in               |                 | °     | °     |
| T1          | 180 - 160    | 1.13             | 77              | 0.048 | 0.131 |
| T2          | 160 - 140    | 0.90             | 77              | 0.037 | 0.126 |
| T3          | 140 - 120    | 0.72             | 77              | 0.043 | 0.115 |
| T4          | 120 - 100    | 0.49             | 77              | 0.038 | 0.099 |
| T5          | 100 - 80     | 0.34             | 77              | 0.020 | 0.069 |
| T6          | 80 - 60      | 0.28             | 77              | 0.002 | 0.041 |
| T7          | 60 - 40      | 0.32             | 77              | 0.005 | 0.047 |
| T8          | 40 - 20      | 0.31             | 82              | 0.012 | 0.044 |
| T9          | 20 - 4.81771 | 0.20             | 83              | 0.034 | 0.034 |
| T10         | 4.81771 - 0  | 0.04             | 83              | 0.041 | 0.022 |

### Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                              | Gov. Load Comb. | Deflection | Tilt  | Twist | Radius of Curvature |
|-----------|-------------------------------------------|-----------------|------------|-------|-------|---------------------|
| ft        |                                           |                 | in         | °     | °     | ft                  |
| 179.00    | 16 ft x 2.5" omni whip                    | 77              | 1.12       | 0.047 | 0.131 | 196628              |
| 171.00    | APXVAALL24_43-U-NA20_TIA<br>w/ Mount Pipe | 77              | 1.02       | 0.041 | 0.129 | 109238              |
| 163.00    | PD201                                     | 77              | 0.93       | 0.037 | 0.127 | 58412               |
| 162.52    | Guy                                       | 77              | 0.93       | 0.037 | 0.127 | 57306               |
| 153.00    | NHH-65B-R2B_TIA w/ Mount Pipe             | 77              | 0.84       | 0.038 | 0.123 | 191863              |
| 138.00    | 3' x 2.375" Pipe Mount                    | 77              | 0.70       | 0.043 | 0.114 | 53993               |
| 121.00    | DB420                                     | 77              | 0.50       | 0.039 | 0.101 | 43114               |
| 119.39    | Guy                                       | 77              | 0.49       | 0.038 | 0.099 | 40205               |
| 82.52     | Guy                                       | 77              | 0.28       | 0.003 | 0.043 | 34087               |
| 77.00     | PD201                                     | 77              | 0.28       | 0.001 | 0.040 | 40228               |

### Maximum Tower Deflections - Design Wind

| Section No. | Elevation    | Horz. Deflection | Gov. Load Comb. | Tilt  | Twist |
|-------------|--------------|------------------|-----------------|-------|-------|
|             | ft           | in               |                 | °     | °     |
| T1          | 180 - 160    | 6.13             | 43              | 0.318 | 0.501 |
| T2          | 160 - 140    | 4.68             | 43              | 0.273 | 0.480 |
| T3          | 140 - 120    | 3.48             | 8               | 0.281 | 0.445 |
| T4          | 120 - 100    | 2.26             | 38              | 0.223 | 0.388 |
| T5          | 100 - 80     | 1.57             | 16              | 0.144 | 0.275 |
| T6          | 80 - 60      | 1.28             | 16              | 0.073 | 0.172 |
| T7          | 60 - 40      | 1.39             | 15              | 0.036 | 0.193 |
| T8          | 40 - 20      | 1.36             | 15              | 0.056 | 0.178 |
| T9          | 20 - 4.81771 | 0.84             | 15              | 0.146 | 0.134 |
| T10         | 4.81771 - 0  | 0.18             | 15              | 0.176 | 0.083 |

### Critical Deflections and Radius of Curvature - Design Wind

| Elevation | Appurtenance                              | Gov. Load Comb. | Deflection | Tilt  | Twist | Radius of Curvature |
|-----------|-------------------------------------------|-----------------|------------|-------|-------|---------------------|
| ft        |                                           |                 | in         | °     | °     | ft                  |
| 179.00    | 16 ft x 2.5" omni whip                    | 43              | 6.06       | 0.315 | 0.501 | 40618               |
| 171.00    | APXVAALL24_43-U-NA20_TIA<br>w/ Mount Pipe | 43              | 5.46       | 0.292 | 0.493 | 22566               |
| 163.00    | PD201                                     | 43              | 4.88       | 0.276 | 0.484 | 12020               |

| Elevation<br>ft | Appurtenance                     | Gov.<br>Load<br>Comb. | Deflection |       | Tilt  |       | Radius of<br>Curvature<br>ft |
|-----------------|----------------------------------|-----------------------|------------|-------|-------|-------|------------------------------|
|                 |                                  |                       | in         | °     | °     |       |                              |
| 162.52          | Guy                              | 43                    | 4.85       | 0.275 | 0.484 | 11754 |                              |
| 153.00          | NHH-65B-R2B_TIA w/ Mount<br>Pipe | 43                    | 4.23       | 0.275 | 0.470 | 15181 |                              |
| 138.00          | 3' x 2.375" Pipe Mount           | 8                     | 3.36       | 0.279 | 0.440 | 9267  |                              |
| 121.00          | DB420                            | 38                    | 2.32       | 0.227 | 0.392 | 6742  |                              |
| 119.39          | Guy                              | 38                    | 2.23       | 0.221 | 0.385 | 6438  |                              |
| 82.52           | Guy                              | 16                    | 1.29       | 0.081 | 0.178 | 8085  |                              |
| 77.00           | PD201                            | 16                    | 1.28       | 0.063 | 0.169 | 9471  |                              |

### Bolt Design Data

| Section<br>No. | Elevation<br>ft | Component<br>Type            | Bolt<br>Grade | Bolt Size<br>in | Number<br>Of<br>Bolts | Maximum<br>Load<br>per Bolt<br>K | Allowable<br>Load<br>per Bolt<br>K | Ratio<br>Load<br>Allowable |                            | Criteria              |
|----------------|-----------------|------------------------------|---------------|-----------------|-----------------------|----------------------------------|------------------------------------|----------------------------|----------------------------|-----------------------|
|                |                 |                              |               |                 |                       |                                  |                                    | Allowable<br>Ratio         | Ratio<br>Load<br>Allowable |                       |
| T1             | 180             | Leg                          | A325X         | 0.75            | 4                     | 1.00                             | 30.10                              | 0.033 ✓                    | 1                          | Bolt Tension          |
|                |                 | Diagonal                     | A325X         | 0.50            | 1                     | 1.47                             | 5.92                               | 0.249 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Top Girt                     | A325X         | 0.50            | 1                     | 0.04                             | 5.92                               | 0.007 ✓                    | 1                          | Member<br>Bearing     |
|                |                 | Bottom Girt                  | A325X         | 0.50            | 1                     | 0.39                             | 5.92                               | 0.066 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Top Guy Pull-<br>Off@162.523 | A325N         | 0.63            | 2                     | 2.15                             | 16.45                              | 0.130 ✓                    | 1.05                       | Member Block<br>Shear |
| T2             | 160             | Leg                          | A325X         | 0.75            | 4                     | 1.43                             | 30.10                              | 0.048 ✓                    | 1.05                       | Bolt Tension          |
|                |                 | Diagonal                     | A325X         | 0.50            | 1                     | 1.18                             | 5.92                               | 0.199 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Top Girt                     | A325X         | 0.50            | 1                     | 0.45                             | 5.92                               | 0.076 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Bottom Girt                  | A325X         | 0.50            | 1                     | 0.30                             | 5.92                               | 0.051 ✓                    | 1.05                       | Member<br>Bearing     |
| T3             | 140             | Leg                          | A325X         | 0.75            | 4                     | 1.70                             | 30.10                              | 0.056 ✓                    | 1.05                       | Bolt Tension          |
|                |                 | Diagonal                     | A325X         | 0.50            | 1                     | 1.21                             | 7.02                               | 0.173 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Top Girt                     | A325X         | 0.50            | 1                     | 0.35                             | 5.92                               | 0.060 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Bottom Girt                  | A325X         | 0.50            | 1                     | 0.46                             | 5.92                               | 0.078 ✓                    | 1.05                       | Member<br>Bearing     |
| T4             | 120             | Leg                          | A325X         | 0.75            | 4                     | 2.00                             | 30.10                              | 0.067 ✓                    | 1.05                       | Bolt Tension          |
|                |                 | Diagonal                     | A325X         | 0.50            | 1                     | 0.74                             | 7.02                               | 0.106 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Top Girt                     | A325X         | 0.50            | 1                     | 2.40                             | 5.92                               | 0.405 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Bottom Girt                  | A325X         | 0.50            | 1                     | 0.42                             | 5.92                               | 0.070 ✓                    | 1.05                       | Member<br>Bearing     |
| T5             | 100             | Leg                          | A325X         | 0.75            | 4                     | 2.71                             | 30.10                              | 0.090 ✓                    | 1.05                       | Bolt Tension          |
|                |                 | Diagonal                     | A325X         | 0.50            | 1                     | 1.95                             | 7.02                               | 0.278 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Top Girt                     | A325X         | 0.50            | 1                     | 0.56                             | 5.92                               | 0.095 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Bottom Girt                  | A325X         | 0.50            | 1                     | 0.62                             | 5.92                               | 0.106 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Top Guy Pull-<br>Off@82.5234 | A325N         | 0.63            | 2                     | 1.45                             | 16.45                              | 0.088 ✓                    | 1.05                       | Member Block<br>Shear |
| T6             | 80              | Leg                          | A325X         | 0.75            | 4                     | 2.74                             | 30.10                              | 0.091 ✓                    | 1.05                       | Bolt Tension          |
|                |                 | Diagonal                     | A325X         | 0.50            | 1                     | 1.49                             | 5.92                               | 0.251 ✓                    | 1.05                       | Member<br>Bearing     |
|                |                 | Top Girt                     | A325X         | 0.50            | 1                     | 0.75                             | 5.92                               | 0.128 ✓                    | 1.05                       | Member<br>Bearing     |

| Section No. | Elevation ft | Component Type | Bolt Grade | Bolt Size in | Number Of Bolts | Maximum Load per Bolt K | Allowable Load per Bolt K | Ratio Load Allowable | Allowable Ratio | Criteria       |
|-------------|--------------|----------------|------------|--------------|-----------------|-------------------------|---------------------------|----------------------|-----------------|----------------|
| T7          | 60           | Bottom Girt    | A325X      | 0.50         | 1               | 0.57                    | 5.92                      | 0.096 ✓              | 1.05            | Member Bearing |
|             |              | Leg            | A325X      | 0.75         | 4               | 2.98                    | 30.10                     | 0.099 ✓              | 1.05            | Bolt Tension   |
|             |              | Diagonal       | A325X      | 0.50         | 1               | 0.82                    | 5.92                      | 0.138 ✓              | 1.05            | Member Bearing |
|             |              | Top Girt       | A325X      | 0.50         | 1               | 0.62                    | 5.92                      | 0.105 ✓              | 1.05            | Member Bearing |
| T8          | 40           | Bottom Girt    | A325X      | 0.50         | 1               | 0.62                    | 5.92                      | 0.105 ✓              | 1.05            | Member Bearing |
|             |              | Leg            | A325X      | 0.75         | 4               | 2.99                    | 30.10                     | 0.099 ✓              | 1.05            | Bolt Tension   |
|             |              | Diagonal       | A325X      | 0.50         | 1               | 0.59                    | 7.02                      | 0.084 ✓              | 1.05            | Member Bearing |
|             |              | Top Girt       | A325X      | 0.50         | 1               | 0.63                    | 5.92                      | 0.106 ✓              | 1.05            | Member Bearing |
| T9          | 20           | Bottom Girt    | A325X      | 0.50         | 1               | 0.63                    | 5.92                      | 0.106 ✓              | 1.05            | Member Bearing |
|             |              | Leg            | A325X      | 0.75         | 4               | 2.80                    | 30.10                     | 0.093 ✓              | 1               | Bolt Tension   |
|             |              | Diagonal       | A325X      | 0.50         | 1               | 0.82                    | 5.92                      | 0.139 ✓              | 1.05            | Member Bearing |
|             |              | Top Girt       | A325X      | 0.50         | 1               | 0.62                    | 5.92                      | 0.105 ✓              | 1.05            | Member Bearing |
|             |              | Bottom Girt    | A325X      | 0.50         | 1               | 1.01                    | 5.92                      | 0.170 ✓              | 1               | Member Bearing |

### Guy Design Data

| Section No. | Elevation ft        | Size    | Initial Tension K | Breaking Load K | Actual $T_u$ K | Allowable $\phi T_n$ K | Required S.F. | Actual S.F. |
|-------------|---------------------|---------|-------------------|-----------------|----------------|------------------------|---------------|-------------|
| T1          | 162.52 (A)<br>(432) | 3/4 EHS | 5.83              | 58.30           | 14.39          | 36.73                  | 0.952         | 2.431 ✓     |
|             | 162.52 (B)<br>(431) | 3/4 EHS | 5.83              | 58.30           | 14.33          | 36.73                  | 0.952         | 2.442 ✓     |
|             | 162.52 (C)<br>(427) | 3/4 EHS | 5.83              | 58.30           | 14.50          | 36.73                  | 0.952         | 2.412 ✓     |
| T4          | 119.39 (A)<br>(435) | 1/2 EHS | 2.69              | 26.90           | 6.29           | 16.95                  | 0.952         | 2.568 ✓     |
|             | 119.39 (B)<br>(434) | 1/2 EHS | 2.69              | 26.90           | 6.26           | 16.95                  | 0.952         | 2.578 ✓     |
|             | 119.39 (C)<br>(433) | 1/2 EHS | 2.69              | 26.90           | 6.29           | 16.95                  | 0.952         | 2.564 ✓     |
| T5          | 82.52 (A)<br>(447)  | 1/2 EHS | 2.69              | 26.90           | 6.07           | 16.95                  | 0.952         | 2.661 ✓     |
|             | 82.52 (A)<br>(448)  | 1/2 EHS | 2.69              | 26.90           | 5.98           | 16.95                  | 0.952         | 2.701 ✓     |
|             | 82.52 (B)<br>(443)  | 1/2 EHS | 2.69              | 26.90           | 6.02           | 16.95                  | 0.952         | 2.680 ✓     |
|             | 82.52 (B)<br>(444)  | 1/2 EHS | 2.69              | 26.90           | 6.02           | 16.95                  | 0.952         | 2.681 ✓     |
|             | 82.52 (C)<br>(436)  | 1/2 EHS | 2.69              | 26.90           | 5.99           | 16.95                  | 0.952         | 2.695 ✓     |
|             | 82.52 (C)<br>(437)  | 1/2 EHS | 2.69              | 26.90           | 6.09           | 16.95                  | 0.952         | 2.651 ✓     |

### Compression Checks

#### Leg Design Data (Compression)

| Section No. | Elevation ft | Size                           | L ft  | L <sub>u</sub> ft | Kl/r           | A in <sup>2</sup> | Max Stability Index | P <sub>u</sub> K | φP <sub>n</sub> K | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|--------------|--------------------------------|-------|-------------------|----------------|-------------------|---------------------|------------------|-------------------|----------------------------------------|
| T1          | 180 - 160    | Pipe 2.375" x 0.218" (2 XS)    | 20.00 | 2.41              | 37.7<br>K=1.00 | 1.48              | 1.00                | -12.18           | 59.91             | 0.203 <sup>1</sup> ✓                   |
| T2          | 160 - 140    | Pipe 2.375" x 0.218" (2 XS)    | 20.00 | 2.41              | 37.7<br>K=1.00 | 1.48              | 1.00                | -17.29           | 59.91             | 0.289 <sup>1</sup> ✓                   |
| T3          | 140 - 120    | Pipe 2.375" x 0.218" (2 XS)    | 20.00 | 2.41              | 37.7<br>K=1.00 | 1.48              | 1.00                | -19.12           | 59.91             | 0.319 <sup>1</sup> ✓                   |
| T4          | 120 - 100    | Pipe 2.375" x 0.218" (2 XS)    | 20.00 | 2.41              | 37.7<br>K=1.00 | 1.48              | 1.00                | -23.89           | 59.91             | 0.399 <sup>1</sup> ✓                   |
| T5          | 100 - 80     | Pipe 2.875" x 0.276" (2.5 XS)  | 20.00 | 0.11              | 1.5<br>K=1.00  | 2.25              | 0.95                | -32.47           | 96.54             | 0.336 <sup>1</sup> ✓                   |
| T6          | 80 - 60      | Pipe 2.875" x 0.276" (2.5 XS)  | 20.00 | 2.41              | 62.6<br>K=2.00 | 2.25              | 1.00                | -32.48           | 76.17             | 0.426 <sup>1</sup> ✓                   |
| T7          | 60 - 40      | Pipe 2.875" x 0.203" (2.5 STD) | 20.00 | 2.41              | 61.0<br>K=2.00 | 1.70              | 1.00                | -35.50           | 58.41             | 0.608 <sup>1</sup> ✓                   |
| T8          | 40 - 20      | Pipe 2.875" x 0.203" (2.5 STD) | 20.00 | 2.41              | 61.0<br>K=2.00 | 1.70              | 1.00                | -36.16           | 58.41             | 0.619 <sup>1</sup> ✓                   |
| T9          | 20 - 4.81771 | Pipe 2.875" x 0.276" (2.5 XS)  | 15.18 | 2.41              | 62.6<br>K=2.00 | 2.25              | 1.00                | -35.63           | 76.17             | 0.468 <sup>1</sup> ✓                   |
| T10         | 4.81771 - 0  | Pipe 2.875" x 0.276" (2.5 XS)  | 5.21  | 1.38              | 17.9<br>K=1.00 | 2.25              | 0.78                | -36.35           | 77.52             | 0.469 <sup>1</sup> ✓                   |

\* DL controls

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

#### Diagonal Design Data (Compression)

| Section No. | Elevation ft | Size                       | L ft | L <sub>u</sub> ft | Kl/r           | A in <sup>2</sup> | P <sub>u</sub> K | φP <sub>n</sub> K | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|--------------|----------------------------|------|-------------------|----------------|-------------------|------------------|-------------------|----------------------------------------|
| T1          | 180 - 160    | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -1.67            | 6.21              | 0.270 <sup>1</sup> ✓                   |
| T2          | 160 - 140    | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -1.36            | 6.21              | 0.219 <sup>1</sup> ✓                   |
| T3          | 140 - 120    | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -1.21            | 6.21              | 0.195 <sup>1</sup> ✓                   |
| T4          | 120 - 100    | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -0.74            | 6.21              | 0.120 <sup>1</sup> ✓                   |
| T5          | 100 - 80     | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -1.95            | 6.21              | 0.313 <sup>1</sup> ✓                   |
| T6          | 80 - 60      | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -1.58            | 6.21              | 0.254 <sup>1</sup> ✓                   |
| T7          | 60 - 40      | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -0.97            | 6.21              | 0.156 <sup>1</sup> ✓                   |
| T8          | 40 - 20      | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -0.59            | 6.21              | 0.095 <sup>1</sup> ✓                   |
| T9          | 20 - 4.81771 | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72              | 87.5<br>K=1.00 | 0.26              | -0.83            | 6.21              | 0.134 <sup>1</sup> ✓                   |

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

### Horizontal Design Data (Compression)

| Section No. | Elevation ft | Size          | L ft | L <sub>u</sub> ft | Kl/r        | A in <sup>2</sup> | P <sub>u</sub> K | ϕP <sub>n</sub> K | Ratio P <sub>u</sub> / ϕP <sub>n</sub> |
|-------------|--------------|---------------|------|-------------------|-------------|-------------------|------------------|-------------------|----------------------------------------|
| T10         | 4.81771 - 0  | L 4 x 4 x 1/4 | 2.51 | 2.27              | 34.3 K=1.00 | 1.94              | -0.67            | 65.06             | 0.010 <sup>1</sup> ✓                   |

\* DL controls

<sup>1</sup> P<sub>u</sub> / ϕP<sub>n</sub> controls

### Top Girt Design Data (Compression)

| Section No. | Elevation ft | Size                       | L ft | L <sub>u</sub> ft | Kl/r        | A in <sup>2</sup> | P <sub>u</sub> K | ϕP <sub>n</sub> K | Ratio P <sub>u</sub> / ϕP <sub>n</sub> |
|-------------|--------------|----------------------------|------|-------------------|-------------|-------------------|------------------|-------------------|----------------------------------------|
| T1          | 180 - 160    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22              | 75.7 K=1.00 | 0.26              | -0.03            | 6.99              | 0.004 <sup>1</sup> ✓                   |
| T2          | 160 - 140    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22              | 75.7 K=1.00 | 0.26              | -0.30            | 6.99              | 0.043 <sup>1</sup> ✓                   |
| T3          | 140 - 120    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22              | 75.7 K=1.00 | 0.26              | -0.35            | 6.99              | 0.050 <sup>1</sup> ✓                   |
| T4          | 120 - 100    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22              | 75.7 K=1.00 | 0.26              | -0.42            | 6.99              | 0.059 <sup>1</sup> ✓                   |
| T5          | 100 - 80     | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18              | 74.7 K=1.00 | 0.26              | -0.56            | 7.05              | 0.080 <sup>1</sup> ✓                   |
| T6          | 80 - 60      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18              | 74.7 K=1.00 | 0.26              | -0.57            | 7.05              | 0.081 <sup>1</sup> ✓                   |
| T7          | 60 - 40      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18              | 74.7 K=1.00 | 0.26              | -0.62            | 7.05              | 0.088 <sup>1</sup> ✓                   |
| T8          | 40 - 20      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18              | 74.7 K=1.00 | 0.26              | -0.63            | 7.05              | 0.089 <sup>1</sup> ✓                   |
| T9          | 20 - 4.81771 | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18              | 74.7 K=1.00 | 0.26              | -0.62            | 7.05              | 0.088 <sup>1</sup> ✓                   |
| T10         | 4.81771 - 0  | L 4 x 4 x 1/4              | 3.42 | 3.18              | 48.0 K=1.00 | 1.94              | -0.67            | 62.76             | 0.011 <sup>1</sup> ✓                   |

\* DL controls

<sup>1</sup> P<sub>u</sub> / ϕP<sub>n</sub> controls

### Bottom Girt Design Data (Compression)

| Section No. | Elevation ft | Size                       | L ft | L <sub>u</sub> ft | Kl/r        | A in <sup>2</sup> | P <sub>u</sub> K | ϕP <sub>n</sub> K | Ratio P <sub>u</sub> / ϕP <sub>n</sub> |
|-------------|--------------|----------------------------|------|-------------------|-------------|-------------------|------------------|-------------------|----------------------------------------|
| T1          | 180 - 160    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22              | 75.7 K=1.00 | 0.26              | -0.21            | 6.99              | 0.030 <sup>1</sup> ✓                   |
| T2          | 160 - 140    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22              | 75.7 K=1.00 | 0.26              | -0.30            | 6.99              | 0.043 <sup>1</sup> ✓                   |
| T3          | 140 - 120    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22              | 75.7 K=1.00 | 0.26              | -0.35            | 6.99              | 0.050 <sup>1</sup> ✓                   |
| T4          | 120 - 100    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22              | 75.7 K=1.00 | 0.26              | -0.42            | 6.99              | 0.059 <sup>1</sup> ✓                   |
| T5          | 100 - 80     | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18              | 74.7        | 0.26              | -0.56            | 7.05              | 0.080 <sup>1</sup>                     |

| Section No. | Elevation    | Size                       | L    | L <sub>u</sub> | Kl/r                     | A               | P <sub>u</sub> | ϕP <sub>n</sub> | Ratio P <sub>u</sub> / ϕP <sub>n</sub> |
|-------------|--------------|----------------------------|------|----------------|--------------------------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft           |                            | ft   | ft             |                          | in <sup>2</sup> | K              | K               |                                        |
| T6          | 80 - 60      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | K=1.00<br>74.7<br>K=1.00 | 0.26            | -0.57          | 7.05            | 0.081 <sup>1</sup>                     |
| T7          | 60 - 40      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | K=1.00<br>74.7<br>K=1.00 | 0.26            | -0.62          | 7.05            | 0.088 <sup>1</sup>                     |
| T8          | 40 - 20      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | K=1.00<br>74.7<br>K=1.00 | 0.26            | -0.63          | 7.05            | 0.089 <sup>1</sup>                     |
| T9          | 20 - 4.81771 | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | K=1.00<br>74.7<br>K=1.00 | 0.26            | -0.62          | 7.05            | 0.088 <sup>1</sup>                     |
| T10         | 4.81771 - 0  | L 4 x 4 x 1/4              | 0.71 | 0.47           | 7.1<br>K=1.00            | 1.94            | -0.24          | 67.37           | 0.004 <sup>1</sup>                     |

\* DL controls

<sup>1</sup> P<sub>u</sub> / ϕP<sub>n</sub> controls

### Top Guy Pull-Off Design Data (Compression)

| Section No. | Elevation | Size                 | L    | L <sub>u</sub> | Kl/r            | A               | P <sub>u</sub> | ϕP <sub>n</sub> | Ratio P <sub>u</sub> / ϕP <sub>n</sub> |
|-------------|-----------|----------------------|------|----------------|-----------------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft        |                      | ft   | ft             |                 | in <sup>2</sup> | K              | K               |                                        |
| T5          | 100 - 80  | 2L 2 x 2 x 1/4 (3/8) | 3.42 | 3.18           | 104.9<br>K=1.00 | 1.88            | -1.79          | 43.61           | 0.041 <sup>1</sup>                     |

2L 'a' > 18.36 in - 441

<sup>1</sup> P<sub>u</sub> / ϕP<sub>n</sub> controls

### Top Guy Pull-Off Bending Design Data

| Section No. | Elevation | Size                 | M <sub>ux</sub> | ϕM <sub>nx</sub> | Ratio M <sub>ux</sub> / ϕM <sub>nx</sub> | M <sub>uy</sub> | ϕM <sub>ny</sub> | Ratio M <sub>uy</sub> / ϕM <sub>ny</sub> |
|-------------|-----------|----------------------|-----------------|------------------|------------------------------------------|-----------------|------------------|------------------------------------------|
|             | ft        |                      | kip-ft          | kip-ft           |                                          | kip-ft          | kip-ft           |                                          |
| T5          | 100 - 80  | 2L 2 x 2 x 1/4 (3/8) | 0               | 2                | 0.000                                    | 0               | 3                | 0.000                                    |

### Top Guy Pull-Off Interaction Design Data

| Section No. | Elevation | Size                 | Ratio P <sub>u</sub> / ϕP <sub>n</sub> | Ratio M <sub>ux</sub> / ϕM <sub>nx</sub> | Ratio M <sub>uy</sub> / ϕM <sub>ny</sub> | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------|-----------|----------------------|----------------------------------------|------------------------------------------|------------------------------------------|--------------------|---------------------|----------|
|             | ft        |                      |                                        |                                          |                                          |                    |                     |          |
| T5          | 100 - 80  | 2L 2 x 2 x 1/4 (3/8) | 0.041                                  | 0.000                                    | 0.000                                    | 0.041 <sup>1</sup> | 1.050               | 4.8.1 ✓  |

<sup>1</sup> P<sub>u</sub> / ϕP<sub>n</sub> controls

### Torque-Arm Top Design Data

| Section No. | Elevation | Size | L  | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | ϕP <sub>n</sub> | Ratio P <sub>u</sub> / ϕP <sub>n</sub> |
|-------------|-----------|------|----|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft        |      | ft | ft             |      | in <sup>2</sup> | K              | K               |                                        |

| Section No. | Elevation      | Size     | L    | L <sub>u</sub> | Kl/r           | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|----------------|----------|------|----------------|----------------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft             |          | ft   | ft             |                | in <sup>2</sup> | K              | K               |                                        |
| T5          | 100 - 80 (438) | C10x15.3 | 3.42 | 3.30           | 55.5<br>K=1.00 | 4.49            | -0.19          | 123.71          | 0.002                                  |
| T5          | 100 - 80 (439) | C10x15.3 | 3.42 | 3.30           | 55.5<br>K=1.00 | 4.49            | -0.11          | 123.71          | 0.001                                  |
| T5          | 100 - 80 (445) | C10x15.3 | 3.42 | 3.30           | 55.5<br>K=1.00 | 4.49            | -0.24          | 123.71          | 0.002                                  |
| T5          | 100 - 80 (446) | C10x15.3 | 3.42 | 3.30           | 55.5<br>K=1.00 | 4.49            | -0.49          | 123.71          | 0.004                                  |
| T5          | 100 - 80 (449) | C10x15.3 | 3.42 | 3.30           | 55.5<br>K=1.00 | 4.49            | -0.30          | 123.71          | 0.002                                  |
| T5          | 100 - 80 (450) | C10x15.3 | 3.42 | 3.30           | 55.5<br>K=1.00 | 4.49            | -0.44          | 123.71          | 0.004                                  |

### Torque-Arm Top Bending Design Data

| Section No. | Elevation      | Size     | M <sub>ux</sub> | φM <sub>nx</sub> | Ratio M <sub>ux</sub> / φM <sub>nx</sub> | M <sub>uy</sub> | φM <sub>ny</sub> | Ratio M <sub>uy</sub> / φM <sub>ny</sub> |
|-------------|----------------|----------|-----------------|------------------|------------------------------------------|-----------------|------------------|------------------------------------------|
|             | ft             |          | kip-ft          | kip-ft           |                                          | kip-ft          | kip-ft           |                                          |
| T5          | 100 - 80 (438) | C10x15.3 | -8              | 42               | 0.188                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (439) | C10x15.3 | -8              | 42               | 0.185                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (445) | C10x15.3 | -8              | 42               | 0.185                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (446) | C10x15.3 | -8              | 42               | 0.187                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (449) | C10x15.3 | -8              | 42               | 0.185                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (450) | C10x15.3 | -8              | 42               | 0.185                                    | 0               | 5                | 0.000                                    |

### Torque-Arm Top Interaction Design Data

| Section No. | Elevation      | Size     | Ratio P <sub>u</sub> / φP <sub>n</sub> | Ratio M <sub>ux</sub> / φM <sub>nx</sub> | Ratio M <sub>uy</sub> / φM <sub>ny</sub> | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------|----------------|----------|----------------------------------------|------------------------------------------|------------------------------------------|--------------------|---------------------|----------|
|             | ft             |          |                                        |                                          |                                          |                    |                     |          |
| T5          | 100 - 80 (438) | C10x15.3 | 0.002                                  | 0.188                                    | 0.000                                    | 0.189              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (439) | C10x15.3 | 0.001                                  | 0.185                                    | 0.000                                    | 0.186              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (445) | C10x15.3 | 0.002                                  | 0.185                                    | 0.000                                    | 0.186              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (446) | C10x15.3 | 0.004                                  | 0.187                                    | 0.000                                    | 0.189              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (449) | C10x15.3 | 0.002                                  | 0.185                                    | 0.000                                    | 0.186              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (450) | C10x15.3 | 0.004                                  | 0.185                                    | 0.000                                    | 0.186              | 1.050               | 4.8.1 ✓  |

### Tension Checks

### Leg Design Data (Tension)

| Section No. | Elevation | Size                        | L     | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|-----------|-----------------------------|-------|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft        |                             | ft    | ft             |      | in <sup>2</sup> | K              | K               |                                        |
| T1          | 180 - 160 | Pipe 2.375" x 0.218" (2 XS) | 20.00 | 2.41           | 37.7 | 1.48            | 7.58           | 66.48           | 0.114 <sup>1</sup> ✓                   |

| Section No. | Elevation | Size | L  | L <sub>u</sub> | KI/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|-----------|------|----|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft        |      | ft | ft             |      | in <sup>2</sup> | K              | K               |                                        |

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

### Diagonal Design Data (Tension)

| Section No. | Elevation    | Size                       | L    | L <sub>u</sub> | KI/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|--------------|----------------------------|------|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft           |                            | ft   | ft             |      | in <sup>2</sup> | K              | K               |                                        |
| T1          | 180 - 160    | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 1.47           | 9.93            | 0.148 <sup>1</sup> ✓                   |
| T2          | 160 - 140    | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 1.18           | 9.93            | 0.119 <sup>1</sup> ✓                   |
| T3          | 140 - 120    | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 0.83           | 9.93            | 0.084 <sup>1</sup> ✓                   |
| T4          | 120 - 100    | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 0.59           | 9.93            | 0.060 <sup>1</sup> ✓                   |
| T5          | 100 - 80     | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 0.84           | 9.93            | 0.084 <sup>1</sup> ✓                   |
| T6          | 80 - 60      | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 1.49           | 9.93            | 0.150 <sup>1</sup> ✓                   |
| T7          | 60 - 40      | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 0.82           | 9.93            | 0.082 <sup>1</sup> ✓                   |
| T8          | 40 - 20      | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 0.44           | 9.93            | 0.044 <sup>1</sup> ✓                   |
| T9          | 20 - 4.81771 | Pipe 1.5" x 0.058" (16 ga) | 3.72 | 3.72           | 87.5 | 0.26            | 0.82           | 9.93            | 0.083 <sup>1</sup> ✓                   |

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

### Horizontal Design Data (Tension)

| Section No. | Elevation   | Size          | L    | L <sub>u</sub> | KI/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|-------------|---------------|------|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft          |               | ft   | ft             |      | in <sup>2</sup> | K              | K               |                                        |
| T10         | 4.81771 - 0 | L 4 x 4 x 1/4 | 2.51 | 2.27           | 21.8 | 1.94            | 0.67           | 62.86           | 0.011 <sup>1</sup> ✓                   |

<sup>1</sup> DL controls

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

### Top Girt Design Data (Tension)

| Section No. | Elevation | Size                       | L    | L <sub>u</sub> | KI/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|-----------|----------------------------|------|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft        |                            | ft   | ft             |      | in <sup>2</sup> | K              | K               |                                        |
| T1          | 180 - 160 | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22           | 75.7 | 0.26            | 0.04           | 9.93            | 0.004 <sup>1</sup> ✓                   |
| T2          | 160 - 140 | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22           | 75.7 | 0.26            | 0.45           | 9.93            | 0.045 <sup>1</sup> ✓                   |
| T3          | 140 - 120 | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22           | 75.7 | 0.26            | 0.35           | 9.93            | 0.035 <sup>1</sup> ✓                   |

| Section No. | Elevation    | Size                       | L    | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|--------------|----------------------------|------|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft           |                            | ft   | ft             |      | in <sup>2</sup> | K              | K               |                                        |
| T4          | 120 - 100    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22           | 75.7 | 0.26            | 2.40           | 9.93            | 0.241 <sup>1</sup> ✓                   |
| T5          | 100 - 80     | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.56           | 9.93            | 0.057 <sup>1</sup> ✓                   |
| T6          | 80 - 60      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.75           | 9.93            | 0.076 <sup>1</sup> ✓                   |
| T7          | 60 - 40      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.62           | 9.93            | 0.062 <sup>1</sup> ✓                   |
| T8          | 40 - 20      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.63           | 9.93            | 0.063 <sup>1</sup> ✓                   |
| T9          | 20 - 4.81771 | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.62           | 9.93            | 0.063 <sup>1</sup> ✓                   |
| T10         | 4.81771 - 0  | L 4 x 4 x 1/4              | 3.42 | 3.18           | 30.5 | 1.94            | 6.76           | 62.86           | 0.108 <sup>1</sup> ✓                   |

\* DL controls

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls**Bottom Girt Design Data (Tension)**

| Section No. | Elevation    | Size                       | L    | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|--------------|----------------------------|------|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft           |                            | ft   | ft             |      | in <sup>2</sup> | K              | K               |                                        |
| T1          | 180 - 160    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22           | 75.7 | 0.26            | 0.39           | 9.93            | 0.040 <sup>1</sup> ✓                   |
| T2          | 160 - 140    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22           | 75.7 | 0.26            | 0.30           | 9.93            | 0.030 <sup>1</sup> ✓                   |
| T3          | 140 - 120    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22           | 75.7 | 0.26            | 0.46           | 9.93            | 0.046 <sup>1</sup> ✓                   |
| T4          | 120 - 100    | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.22           | 75.7 | 0.26            | 0.42           | 9.93            | 0.042 <sup>1</sup> ✓                   |
| T5          | 100 - 80     | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.62           | 9.93            | 0.063 <sup>1</sup> ✓                   |
| T6          | 80 - 60      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.57           | 9.93            | 0.057 <sup>1</sup> ✓                   |
| T7          | 60 - 40      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.62           | 9.93            | 0.062 <sup>1</sup> ✓                   |
| T8          | 40 - 20      | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 0.63           | 9.93            | 0.063 <sup>1</sup> ✓                   |
| T9          | 20 - 4.81771 | Pipe 1.5" x 0.058" (16 ga) | 3.42 | 3.18           | 74.7 | 0.26            | 1.00           | 9.93            | 0.101 <sup>1</sup> ✓                   |

\* DL controls

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls**Top Guy Pull-Off Design Data (Tension)**

| Section No. | Elevation | Size                                            | L    | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio P <sub>u</sub> / φP <sub>n</sub> |
|-------------|-----------|-------------------------------------------------|------|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft        |                                                 | ft   | ft             |      | in <sup>2</sup> | K              | K               |                                        |
| T1          | 180 - 160 | 2L 2 x 2 x 1/4 (3/8)<br>2L 'a' > 18.60 in - 430 | 3.42 | 3.22           | 63.4 | 1.88            | 4.29           | 60.91           | 0.070 <sup>1</sup>                     |
| T5          | 100 - 80  | 2L 2 x 2 x 1/4 (3/8)<br>2L 'a' > 18.36 in - 441 | 3.42 | 3.18           | 62.6 | 1.13            | 2.89           | 49.10           | 0.059 <sup>1</sup>                     |

| Section No. | Elevation | Size | L  | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | ϕP <sub>n</sub> | Ratio P <sub>u</sub> / ϕP <sub>n</sub> |
|-------------|-----------|------|----|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft        |      | ft | ft             |      | in <sup>2</sup> | K              | K               |                                        |

<sup>1</sup> P<sub>u</sub> / ϕP<sub>n</sub> controls

### Top Guy Pull-Off Bending Design Data

| Section No. | Elevation | Size                 | M <sub>ux</sub> | ϕM <sub>nx</sub> | Ratio M <sub>ux</sub> / ϕM <sub>nx</sub> | M <sub>uy</sub> | ϕM <sub>ny</sub> | Ratio M <sub>uy</sub> / ϕM <sub>ny</sub> |
|-------------|-----------|----------------------|-----------------|------------------|------------------------------------------|-----------------|------------------|------------------------------------------|
|             | ft        |                      | kip-ft          | kip-ft           |                                          | kip-ft          | kip-ft           |                                          |
| T1          | 180 - 160 | 2L 2 x 2 x 1/4 (3/8) | 0               | 2                | 0.000                                    | 0               | 3                | 0.000                                    |
| T5          | 100 - 80  | 2L 2 x 2 x 1/4 (3/8) | 0               | 2                | 0.000                                    | 0               | 3                | 0.000                                    |

### Top Guy Pull-Off Interaction Design Data

| Section No. | Elevation | Size                 | Ratio P <sub>u</sub> / ϕP <sub>n</sub> | Ratio M <sub>ux</sub> / ϕM <sub>nx</sub> | Ratio M <sub>uy</sub> / ϕM <sub>ny</sub> | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------|-----------|----------------------|----------------------------------------|------------------------------------------|------------------------------------------|--------------------|---------------------|----------|
|             | ft        |                      |                                        |                                          |                                          |                    |                     |          |
| T1          | 180 - 160 | 2L 2 x 2 x 1/4 (3/8) | 0.070                                  | 0.000                                    | 0.000                                    | 0.070 <sup>1</sup> | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80  | 2L 2 x 2 x 1/4 (3/8) | 0.059                                  | 0.000                                    | 0.000                                    | 0.059 <sup>1</sup> | 1.050               | 4.8.1 ✓  |

<sup>1</sup> P<sub>u</sub> / ϕP<sub>n</sub> controls

### Torque-Arm Top Design Data

| Section No. | Elevation      | Size     | L    | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | ϕP <sub>n</sub> | Ratio P <sub>u</sub> / ϕP <sub>n</sub> |
|-------------|----------------|----------|------|----------------|------|-----------------|----------------|-----------------|----------------------------------------|
|             | ft             |          | ft   | ft             |      | in <sup>2</sup> | K              | K               |                                        |
| T5          | 100 - 80 (438) | C10x15.3 | 3.42 | 3.30           | 55.5 | 4.49            | 1.74           | 145.48          | 0.012                                  |
| T5          | 100 - 80 (439) | C10x15.3 | 3.42 | 3.30           | 55.5 | 4.49            | 1.75           | 145.48          | 0.012                                  |
| T5          | 100 - 80 (445) | C10x15.3 | 3.42 | 3.30           | 55.5 | 4.49            | 2.07           | 145.48          | 0.014                                  |
| T5          | 100 - 80 (446) | C10x15.3 | 3.42 | 3.30           | 55.5 | 4.49            | 1.98           | 145.48          | 0.014                                  |
| T5          | 100 - 80 (449) | C10x15.3 | 3.42 | 3.30           | 55.5 | 4.49            | 2.08           | 145.48          | 0.014                                  |
| T5          | 100 - 80 (450) | C10x15.3 | 3.42 | 3.30           | 55.5 | 4.49            | 1.97           | 145.48          | 0.014                                  |

### Torque-Arm Top Bending Design Data

| Section No. | Elevation      | Size     | M <sub>ux</sub> | ϕM <sub>nx</sub> | Ratio M <sub>ux</sub> / ϕM <sub>nx</sub> | M <sub>uy</sub> | ϕM <sub>ny</sub> | Ratio M <sub>uy</sub> / ϕM <sub>ny</sub> |
|-------------|----------------|----------|-----------------|------------------|------------------------------------------|-----------------|------------------|------------------------------------------|
|             | ft             |          | kip-ft          | kip-ft           |                                          | kip-ft          | kip-ft           |                                          |
| T5          | 100 - 80 (438) | C10x15.3 | -12             | 42               | 0.275                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (439) | C10x15.3 | -12             | 42               | 0.274                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (445) | C10x15.3 | -12             | 42               | 0.274                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (446) | C10x15.3 | -11             | 42               | 0.273                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (449) | C10x15.3 | -12             | 42               | 0.274                                    | 0               | 5                | 0.000                                    |
| T5          | 100 - 80 (450) | C10x15.3 | -12             | 42               | 0.274                                    | 0               | 5                | 0.000                                    |

### Torque-Arm Top Interaction Design Data

| Section No. | Elevation ft   | Size     | Ratio                       | Ratio                             | Ratio                             | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------|----------------|----------|-----------------------------|-----------------------------------|-----------------------------------|--------------------|---------------------|----------|
|             |                |          | $\frac{\phi P_u}{\phi P_n}$ | $\frac{\phi M_{ux}}{\phi M_{nx}}$ | $\frac{\phi M_{uy}}{\phi M_{ny}}$ |                    |                     |          |
| T5          | 100 - 80 (438) | C10x15.3 | 0.012                       | 0.275                             | 0.000                             | 0.281              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (439) | C10x15.3 | 0.012                       | 0.274                             | 0.000                             | 0.280              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (445) | C10x15.3 | 0.014                       | 0.274                             | 0.000                             | 0.281              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (446) | C10x15.3 | 0.014                       | 0.273                             | 0.000                             | 0.280              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (449) | C10x15.3 | 0.014                       | 0.274                             | 0.000                             | 0.282              | 1.050               | 4.8.1 ✓  |
| T5          | 100 - 80 (450) | C10x15.3 | 0.014                       | 0.274                             | 0.000                             | 0.281              | 1.050               | 4.8.1 ✓  |

### Section Capacity Table

| Section No. | Elevation ft | Component Type      | Size                           | Critical Element | P K    | $\phi P_{allow}$ K | % Capacity | Pass Fail |
|-------------|--------------|---------------------|--------------------------------|------------------|--------|--------------------|------------|-----------|
| T1          | 180 - 160    | Leg                 | Pipe 2.375" x 0.218" (2 XS)    | 2                | -12.19 | 62.91              | 19.4       | Pass      |
| T2          | 160 - 140    | Leg                 | Pipe 2.375" x 0.218" (2 XS)    | 60               | -17.31 | 62.91              | 27.5       | Pass      |
| T3          | 140 - 120    | Leg                 | Pipe 2.375" x 0.218" (2 XS)    | 116              | -19.16 | 62.91              | 30.5       | Pass      |
| T4          | 120 - 100    | Leg                 | Pipe 2.375" x 0.218" (2 XS)    | 173              | -23.94 | 62.91              | 38.0       | Pass      |
| T5          | 100 - 80     | Leg                 | Pipe 2.875" x 0.276" (2.5 XS)  | 229              | -32.53 | 101.36             | 32.1       | Pass      |
| T6          | 80 - 60      | Leg                 | Pipe 2.875" x 0.276" (2.5 XS)  | 287              | -32.54 | 79.98              | 40.7       | Pass      |
| T7          | 60 - 40      | Leg                 | Pipe 2.875" x 0.203" (2.5 STD) | 319              | -35.57 | 61.33              | 58.0       | Pass      |
| T8          | 40 - 20      | Leg                 | Pipe 2.875" x 0.203" (2.5 STD) | 352              | -36.24 | 61.33              | 59.0       | Pass      |
| T9          | 20 - 4.81771 | Leg                 | Pipe 2.875" x 0.276" (2.5 XS)  | 385              | -35.71 | 79.98              | 44.7       | Pass      |
| T10         | 4.81771 - 0  | Leg                 | Pipe 2.875" x 0.276" (2.5 XS)  | 413              | -36.45 | 77.52              | 47.0       | Pass      |
| T1          | 180 - 160    | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 15               | -1.68  | 6.52               | 25.7       | Pass      |
| T2          | 160 - 140    | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 114              | -1.36  | 6.52               | 20.9       | Pass      |
| T3          | 140 - 120    | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 127              | -1.21  | 6.52               | 18.6       | Pass      |
| T4          | 120 - 100    | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 181              | -0.74  | 6.52               | 11.4       | Pass      |
| T5          | 100 - 80     | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 238              | -1.95  | 6.52               | 29.9       | Pass      |
| T6          | 80 - 60      | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 316              | -1.58  | 6.52               | 24.2       | Pass      |
| T7          | 60 - 40      | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 351              | -0.97  | 6.52               | 14.9       | Pass      |
| T8          | 40 - 20      | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 361              | -0.59  | 6.52               | 9.0        | Pass      |
| T9          | 20 - 4.81771 | Diagonal            | Pipe 1.5" x 0.058" (16 ga)     | 397              | -0.83  | 6.52               | 12.7       | Pass      |
|             |              |                     |                                |                  |        |                    | 13.2 (b)   |           |
| T10         | 4.81771 - 0  | Horizontal Top Girt | L 4 x 4 x 1/4                  | 421              | 0.67   | 62.86              | 1.1        | Pass      |
| T1          | 180 - 160    | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 4                | 0.04   | 9.93               | 0.4        | Pass      |
|             |              |                     |                                |                  |        |                    | 0.7 (b)    |           |
| T2          | 160 - 140    | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 62               | 0.45   | 10.43              | 4.3        | Pass      |
|             |              |                     |                                |                  |        |                    | 7.2 (b)    |           |
| T3          | 140 - 120    | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 118              | -0.35  | 7.33               | 4.8        | Pass      |
|             |              |                     |                                |                  |        |                    | 5.7 (b)    |           |
| T4          | 120 - 100    | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 176              | 2.40   | 10.43              | 23.0       | Pass      |
|             |              |                     |                                |                  |        |                    | 38.6 (b)   |           |
| T5          | 100 - 80     | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 234              | -0.56  | 7.40               | 7.6        | Pass      |
|             |              |                     |                                |                  |        |                    | 9.1 (b)    |           |
| T6          | 80 - 60      | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 291              | -0.57  | 7.40               | 7.7        | Pass      |
|             |              |                     |                                |                  |        |                    | 12.1 (b)   |           |
| T7          | 60 - 40      | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 324              | -0.62  | 7.40               | 8.4        | Pass      |
|             |              |                     |                                |                  |        |                    | 10.0 (b)   |           |
| T8          | 40 - 20      | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 357              | -0.63  | 7.40               | 8.5        | Pass      |
|             |              |                     |                                |                  |        |                    | 10.1 (b)   |           |
| T9          | 20 - 4.81771 | Top Girt            | Pipe 1.5" x 0.058" (16 ga)     | 390              | -0.62  | 7.40               | 8.4        | Pass      |
|             |              |                     |                                |                  |        |                    | 10.0 (b)   |           |
| T10         | 4.81771 - 0  | Top Girt            | L 4 x 4 x 1/4                  | 415              | 6.78   | 62.86              | 10.8       | Pass      |

| Section No. | Elevation ft | Component Type           | Size                       | Critical Element | P K   | $\phi P_{allow}$ K | % Capacity            | Pass Fail |      |
|-------------|--------------|--------------------------|----------------------------|------------------|-------|--------------------|-----------------------|-----------|------|
| T1          | 180 - 160    | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 9                | 0.39  | 10.43              | 3.8<br>6.3 (b)        | Pass      |      |
| T2          | 160 - 140    | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 65               | -0.30 | 7.33               | 4.1<br>4.8 (b)        | Pass      |      |
| T3          | 140 - 120    | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 121              | -0.35 | 7.33               | 4.8<br>7.4 (b)        | Pass      |      |
| T4          | 120 - 100    | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 178              | -0.42 | 7.33               | 5.7<br>6.7 (b)        | Pass      |      |
| T5          | 100 - 80     | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 237              | -0.56 | 7.40               | 7.6<br>10.0 (b)       | Pass      |      |
| T6          | 80 - 60      | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 294              | -0.57 | 7.40               | 7.7<br>9.2 (b)        | Pass      |      |
| T7          | 60 - 40      | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 327              | -0.62 | 7.40               | 8.4<br>10.0 (b)       | Pass      |      |
| T8          | 40 - 20      | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 360              | -0.63 | 7.40               | 8.5<br>10.1 (b)       | Pass      |      |
| T9          | 20 - 4.81771 | Bottom Girt              | Pipe 1.5" x 0.058" (16 ga) | 391              | 1.01  | 9.93               | 10.1<br>16.2 (b)      | Pass      |      |
| T10         | 4.81771 - 0  | Bottom Girt              | L 4 x 4 x 1/4              | 419              | -0.25 | 67.37              | 2.8                   | Pass      |      |
| T1          | 180 - 160    | Guy A@162.523            | 3/4                        | 432              | 14.39 | 36.73              | 39.2                  | Pass      |      |
| T4          | 120 - 100    | Guy A@119.385            | 1/2                        | 435              | 6.29  | 16.95              | 37.1                  | Pass      |      |
| T5          | 100 - 80     | Guy A@82.5234            | 1/2                        | 447              | 6.07  | 16.95              | 35.8                  | Pass      |      |
| T1          | 180 - 160    | Guy B@162.523            | 3/4                        | 431              | 14.33 | 36.73              | 39.0                  | Pass      |      |
| T4          | 120 - 100    | Guy B@119.385            | 1/2                        | 434              | 6.26  | 16.95              | 36.9                  | Pass      |      |
| T5          | 100 - 80     | Guy B@82.5234            | 1/2                        | 443              | 6.02  | 16.95              | 35.5                  | Pass      |      |
| T1          | 180 - 160    | Guy C@162.523            | 3/4                        | 427              | 14.50 | 36.73              | 39.5                  | Pass      |      |
| T4          | 120 - 100    | Guy C@119.385            | 1/2                        | 433              | 6.29  | 16.95              | 37.1                  | Pass      |      |
| T5          | 100 - 80     | Guy C@82.5234            | 1/2                        | 437              | 6.09  | 16.95              | 35.9                  | Pass      |      |
| T1          | 180 - 160    | Top Guy Pull-Off@162.523 | 2L 2 x 2 x 1/4 (3/8)       | 430              | 4.29  | 63.96              | 6.7<br>12.4 (b)       | Pass      |      |
| T5          | 100 - 80     | Top Guy Pull-Off@82.5234 | 2L 2 x 2 x 1/4 (3/8)       | 441              | 2.89  | 51.56              | 5.6<br>8.4 (b)        | Pass      |      |
| T5          | 100 - 80     | Torque Arm Top@82.5234   | C10x15.3                   | 449              | 2.08  | 152.75             | 26.8                  | Pass      |      |
|             |              |                          |                            |                  |       |                    | Summary               |           |      |
|             |              |                          |                            |                  |       |                    | Leg (T8)              | 59.0      | Pass |
|             |              |                          |                            |                  |       |                    | Diagonal (T5)         | 29.9      | Pass |
|             |              |                          |                            |                  |       |                    | Horizontal (T10)      | 1.1       | Pass |
|             |              |                          |                            |                  |       |                    | Top Girt (T4)         | 38.6      | Pass |
|             |              |                          |                            |                  |       |                    | Bottom Girt (T9)      | 16.2      | Pass |
|             |              |                          |                            |                  |       |                    | Guy A (T1)            | 39.2      | Pass |
|             |              |                          |                            |                  |       |                    | Guy B (T1)            | 39.0      | Pass |
|             |              |                          |                            |                  |       |                    | Guy C (T1)            | 39.5      | Pass |
|             |              |                          |                            |                  |       |                    | Top Guy Pull-Off (T1) | 12.4      | Pass |
|             |              |                          |                            |                  |       |                    | Torque Arm Top (T5)   | 26.8      | Pass |
|             |              |                          |                            |                  |       |                    | Bolt Checks           | 38.6      | Pass |
|             |              |                          |                            |                  |       |                    | RATING =              | 59.0      | Pass |

**APPENDIX B**  
**BASE LEVEL DRAWING**



**APPENDIX C**  
**ADDITIONAL CALCULATIONS**

|                   |                      |
|-------------------|----------------------|
| Job Number        | A13323-0004.001.4750 |
| Engineer          | JMN                  |
| Date              | 2/12/2023            |
| Site Name         | Marine City          |
| Site Number       | 59602                |
| Client Project    | 14991204             |
| Client Project ID |                      |

### Monopole and Tower Foundation Comparison Tool

(Version v1.5 - Effective Date 04/17/2023)

|                        |                      |
|------------------------|----------------------|
| Structure Type:        | Guy Tower (1 Anchor) |
| Current Analysis Code: | TIA-222-H            |
| Original Design Code:  | TIA-222-F            |
| Manufacturer:          | Rohn                 |
| Design Drawing Number: | 895165B/D950B01      |
| Design Drawing Date:   | 4/13/1995            |

Apply Capacity Normalization per Section 15.5  
 Compare Base Shear  
 Compare Base Axial Compression

| Foundation Component | Base Reaction     | Original Design (kip, kip-ft) | Adjusted Original Design | Current Analysis (kip, kip-ft) | Reactions Ratio | Result     |
|----------------------|-------------------|-------------------------------|--------------------------|--------------------------------|-----------------|------------|
| Base                 | Axial Compression | 78.40                         | 105.84                   | 102.00                         | 91.78%          | Sufficient |
|                      | Moment            |                               |                          |                                |                 |            |
| Guy Anchor           | Uplift            | 26.80                         | 36.18                    | 19.00                          | 50.03%          | Sufficient |
|                      | Shear             | 32.40                         | 43.74                    | 21.00                          | 45.72%          | Sufficient |

Notes: 1. Reaction Ratio is normalized per TIA-222 H Section 15.5.  
 2. The original tower design was computed in accordance with the TIA-222 F standard. Per section 15.6.3 of the TIA-222 H standard, the reactions from the original design should be multiplied by 1.25 for comparison to the reactions from this analysis.

**STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON  
EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY**

- 1) Paul J. Ford and Company has not made a field inspection to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these drawings, we should be contacted immediately to evaluate the significance of the deviation.
- 2) No allowance was made for any damaged, missing, or rusted members. The analysis of this tower assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the tower members have the same load carrying capacity as the day the tower was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural sub-component of an existing tower. The structural analysis by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.
- 4) The structural integrity of the existing tower foundation can only be verified if exact foundation sizes and soil conditions are known. Paul J. Ford and Company will not accept any responsibility for the adequacy of the existing foundations unless the foundation sizes and a soils report are provided.
- 5) This tower has been analyzed according to the minimum design wind loads recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-H. If the owner or local or state agencies require a higher design wind load, Paul J. Ford and Company should be made aware of this requirement.
- 6) The enclosed sketches are a schematic representation of the tower that we have analyzed. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions and for the proper fit and clearance in the field.
- 7) Miscellaneous items such as antenna mounts etc. have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

# ASCE 7 Hazards Report

**Address:**  
No Address at This Location

**Standard:** ASCE/SEI 7-16    **Latitude:** 41.999581  
**Risk Category:** II    **Longitude:** -72.355646  
**Soil Class:** D - Default (see  
Section 11.4.3)    **Elevation:** 1074.84 ft (NAVD 88)



## Wind

### Results:

|              |          |
|--------------|----------|
| Wind Speed   | 117 Vmph |
| 10-year MRI  | 75 Vmph  |
| 25-year MRI  | 83 Vmph  |
| 50-year MRI  | 90 Vmph  |
| 100-year MRI | 97 Vmph  |

**Data Source:** ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

**Date Accessed:** Tue Feb 14 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

**Site Soil Class:**

**Results:**

|            |       |             |       |
|------------|-------|-------------|-------|
| $S_s$ :    | 0.174 | $S_{D1}$ :  | 0.088 |
| $S_1$ :    | 0.055 | $T_L$ :     | 6     |
| $F_a$ :    | 1.6   | $PGA$ :     | 0.092 |
| $F_v$ :    | 2.4   | $PGA_M$ :   | 0.147 |
| $S_{MS}$ : | 0.279 | $F_{PGA}$ : | 1.6   |
| $S_{M1}$ : | 0.132 | $I_e$ :     | 1     |
| $S_{DS}$ : | 0.186 | $C_v$ :     | 0.7   |

**Seismic Design Category: B**

MCE<sub>R</sub> Response Spectrum



Design Response Spectrum



MCE<sub>R</sub> Vertical Response Spectrum



Design Vertical Response Spectrum



**Data Accessed:**

Tue Feb 14 2023

**Date Source:**

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.



## Ice

---

### Results:

Ice Thickness: 1.50 in.

Concurrent Temperature: 5 F

Gust Speed 50 mph

**Data Source:** Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

**Date Accessed:** Tue Feb 14 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

---

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.



# Structural Analysis & Design Report

|                        |                                    |
|------------------------|------------------------------------|
| <b>Property Owner</b>  | N/A                                |
| <b>Structural Type</b> | 180 ft Guyed Tower                 |
| <b>Site Address</b>    | 169 Hampden Rd, Stafford, CT 06076 |
| <b>Site ID</b>         | 16999206                           |
| <b>Site Name</b>       | STAFFORD 4 CT                      |
| <b>Latitude</b>        | 41.999581                          |
| <b>Longitude</b>       | -72.355636                         |

|                        |                                                                                                  |
|------------------------|--------------------------------------------------------------------------------------------------|
| <b>Client</b>          | <b>Verizon Wireless</b><br><i>900 Chelmsford Street<br/>Tower 2 Floor 5<br/>Lowell, MA 01851</i> |
| <b>Site Type</b>       | MACRO                                                                                            |
| <b>Site ID</b>         | 61735998                                                                                         |
| <b>Site Name</b>       | STAFFORD 4 CT                                                                                    |
| <b>Location Code</b>   | 780563                                                                                           |
| <b>Structural Type</b> | <b>Proposed Site Pro 1, P/N: VFA12-HD</b>                                                        |

|                        |                                                                                           |
|------------------------|-------------------------------------------------------------------------------------------|
| <b>Prepared by</b>     | Nexius Solutions, Inc.<br><i>2595 North Dallas Parkway Suite 300<br/>Frisco, TX 75034</i> |
| <b>Job/Task Number</b> | STAFFORD 4 CT/16999206                                                                    |
| <b>Email</b>           | <a href="mailto:structurals@nexius.com">structurals@nexius.com</a>                        |
| <b>Phone</b>           | 972-581-9888                                                                              |
| <b>Rev</b>             | 0                                                                                         |
| <b>Date</b>            | 02/06/2023                                                                                |
| <b>Result</b>          | Pass (53%)                                                                                |

**Dear Sir / Madam:**

Nexius Solutions is pleased to submit this **Report** to determine the structural integrity of the equipment platform.

Referenced documents used for this analysis are listed in the section DOCUMENTS & REFERENCES. This analysis has been performed in compliance with the:

- *2022 Connecticut Building Code, (2022 IBC w/ State Amendments)*
- *ANSI/TIA-222-H w/ Addendums, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures*

Detailed design parameters are listed in Table 1. Analysis loading is detailed in Table 2.

Based on our analysis we have determined the following result:

**Proposed Sector Mounts Site Pro 1**

**Adequate (53%)**

**P/N: VFA12-HD**

Nexius Solutions appreciates the opportunity of providing continued engineering services. Should you have any questions, comments or require additional information, please do not hesitate to contact us.

Sincerely,

Analysis Prepared by:  
Salman Al Jurdi, E.I.T

Analysis Reviewed by:  
Jiazhu Hu, P.E.  
Engineering Manager  
License #: 31530



Digitally signed by Jiazhu Hu, Ph.D., P.E.  
DN: cn=Jiazhu Hu, Ph.D., P.E., o=Nexius,  
ou=Engineering,  
email=Jiazhu.Hu@Nexius.com, c=US  
Date: 2023.02.06 11:56:32 -05'00'

## DOCUMENTS &amp; REFERENCES

- LE Drawings, Location Code: 780563, Verizon Site Name: STAFFORD 4 CT, by Nexius, dated 02/6/2023.
- Site Visit Photos and Notes, Location Code: 780563, Verizon Site Name: STAFFORD 4 CT, by Nexius, dated 12/12/2022.
- RFDS, Location Code: 780563, Verizon Site Name: STAFFORD 4 CT, by Verizon, dated 12/5/2022.

## DESIGN STANDARDS &amp; PARAMETERS

TABLE 1 STANDARDS &amp; DESIGN PARAMETERS

| Codes and Standards         |                                                                   |
|-----------------------------|-------------------------------------------------------------------|
| Building Code               | Connecticut State Building Code (2022 IBC<br>w/ State Amendments) |
| TIA Standard                | ANSI/TIA-222-H w/ Addendums                                       |
| Wind Parameters             |                                                                   |
| Ultimate Wind Speed         | 117 mph                                                           |
| Nominal Wind Speed with Ice | 50 mph                                                            |
| Radial Icc Thickness        | 1.5 in                                                            |
| Exposure Category           | C                                                                 |
| Structure Class             | II                                                                |
| Topographic Category        | 1                                                                 |
| Seismic Design Parameters*  |                                                                   |
| $S_s$                       | 0.174                                                             |
| $S_1$                       | 0.055                                                             |

## RESULTS &amp; RECOMMENDATIONS

Based on our analysis, it is determined that the proposed mounts (Site Pro 1, P/N: VFA12-HD) to be ADEQUATE to support the proposed loading.

\*See construction drawings for proposed mounts.

If the site conditions are different or do not meet requirements, the analysis result would not be valid and Nexius should be notified for re-evaluation.

## LOADING

TABLE 2 – PROPOSED ANTENNA INFORMATION

| Sector         | Mount<br>Elev. | Ant. Ctr.<br>Elev. | Qty | Description                    | Mount Type                               | Status   |
|----------------|----------------|--------------------|-----|--------------------------------|------------------------------------------|----------|
|                | ft             | ft                 |     |                                |                                          |          |
| All<br>Sectors | 152.8          | 152.8              | 3   | NHH-65B-R2B                    | Proposed Site<br>Pro 1, P/N:<br>VFA12-HD | Proposed |
|                |                |                    | 3   | NHHSS-65B-R2BT4                |                                          |          |
|                |                |                    | 3   | MT6407-77A                     |                                          |          |
|                |                |                    | 3   | B2/B66A RRH ORAN (RF4439d-25A) |                                          |          |
|                |                |                    | 3   | B5/B13 RRH ORAN (RF4440d-13A)  |                                          |          |
|                |                |                    | 1   | 12 OVP                         |                                          |          |
|                |                |                    | 3   | CBRS RRH - RT4401-48A          |                                          |          |

## ANALYSIS

Risa 3D (Version 17), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for required loading cases. Selected output from the analysis is included in APPENDICES.

## ASSUMPTIONS

- 1) The existing building structure matches the drawings provided by the building owner and has no damage which may reduce the structural capacity of the building.

This analysis may be affected if any assumptions are not valid or have been made in error. Nexus should be notified to determine the effect on the structural integrity of the existing building.

## Standard Conditions for Providing Structural Consulting Services on Existing Structures

1. Mounting hardware is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorized by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
2. The structural analysis has been performed assuming that the hardware is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
3. The structural analysis provided is an assessment of the primary load carrying capacity of the hardware. We provided a limited scope of service. In some cases, we cannot verify the capacity of every weld, plate, connection detail, etc. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
4. We cannot be held responsible for mounting hardware that is installed improperly or hardware that is loose or has a tendency of working loose over the lifetime of the mounting hardware. Our analysis has been performed assuming fully tightened connections, and proper installation and symmetry of the mounting hardware per manufacturer's instructions.
5. The structural analysis has been performed using information currently provided by the client and potentially field verified. We have been provided with a mounting arrangement for all telecommunications equipment, including antennas RRH's, TMA's, RRU's, dplexers, surge protection devices, etc. Our analysis has been based upon a particular mounting arrangement. We are not responsible for deviations in the mounting arrangements that may occur over time. If deviations in equipment type or mounting arrangements are proposed, then we should be contacted to revise the recommendations of this structural report.
6. We cannot be held responsible for temporary and unbalanced loads on mounting hardware. Our analysis is based on a particular mounting arrangement or as-build field condition. We are not responsible for the methods and means of how the mounting arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.
7. Steel grade and strength is unknown and cannot be field tested. We cannot be held responsible for equipment manufactured from inferior steel or bolts. Our analysis assumes that standard structural grade steel has been used by the equipment manufacturer for all assembled parts of the mounting apparatus. Acceptable steels and connection components are specified by the American Institute of Steel Construction. It is assumed all welded connections are performed in the shop under the latest American
8. Welding Society Code. No field welds are permitted or assumed for the existing pre-manufactured equipment. In case no accurate info available, following material assumptions were used:

|                                    |                    |
|------------------------------------|--------------------|
| Channel, Solid Round, Angle, Plate | ASTM A36 (GR 36)   |
| HSS (Rectangular)                  | ASTM 500 (GR B-46) |
| HSS (Round)                        | ASTM 500 (GR B-42) |
| Pipe                               | ASTM A53 (GR 35)   |
| Connection Bolts                   | ASTM A325          |
| U-Bolts                            | SAE 429 Gr.2       |

n e x i u s

## **Appendix #1: Loading Parameters and Calculations**

# ASCE 7 Hazards Report

**Address:**  
No Address at This Location

**Standard:** ASCE/SEI 7-16  
**Risk Category:** II  
**Soil Class:** D - Default (see Section 11.4.3)

**Latitude:** 41.999581  
**Longitude:** -72.355636  
**Elevation:** 1074.84 ft (NAVD 88)



## Wind

### Results:

|              |          |
|--------------|----------|
| Wind Speed   | 117 Vmph |
| 10-year MRI  | 75 Vmph  |
| 25-year MRI  | 83 Vmph  |
| 50-year MRI  | 90 Vmph  |
| 100-year MRI | 97 Vmph  |

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Fri Feb 03 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

**Site Soil Class:**

**Results:**

|            |       |             |       |
|------------|-------|-------------|-------|
| $S_s$ :    | 0.174 | $S_{D1}$ :  | 0.088 |
| $S_1$ :    | 0.055 | $T_L$ :     | 6     |
| $F_a$ :    | 1.6   | $PGA$ :     | 0.092 |
| $F_v$ :    | 2.4   | $PGA_M$ :   | 0.147 |
| $S_{MS}$ : | 0.279 | $F_{PGA}$ : | 1.6   |
| $S_{M1}$ : | 0.132 | $I_e$ :     | 1     |
| $S_{DS}$ : | 0.186 | $C_v$ :     | 0.7   |

**Seismic Design Category: B**



**Data Accessed:**

Fri Feb 03 2023

**Date Source:**

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.



## Ice

---

### Results:

Ice Thickness: 1.50 in.

Concurrent Temperature: 5 F

Gust Speed 50 mph

**Data Source:** Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

**Date Accessed:** Fri Feb 03 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

---

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

שְׁבָעָה

Mount Adams Board of Education

| Link                                |               | Link               |                                                                                                                                                                                  |
|-------------------------------------|---------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Link                                |               | Link               |                                                                                                                                                                                  |
| Site Name                           | STAFFORD 4 CT | Mount Existing?    | Proposed                                                                                                                                                                         |
| Site ID                             | 61735998      | Job Number         | 1699206                                                                                                                                                                          |
| TIA 222 Code Rev.                   | H             | risk Category      | II                                                                                                                                                                               |
| Basic Parameters                    |               |                    |                                                                                                                                                                                  |
| Mount Height                        | 152.8         | $h$<br>(B,C, or D) | 1.000                                                                                                                                                                            |
| Exposure Category                   | C             | $K_e$              | 2.6.9                                                                                                                                                                            |
| Ultimate Wind Speed                 | 117           | $K_{lt}$           | 2.6.5.2                                                                                                                                                                          |
| Ice Wind Speed                      | 50            | $K_d$              | 2.6.6                                                                                                                                                                            |
| Design Ice Thickness, $t_i$         | 1.5           | $K_u$              | 0.950                                                                                                                                                                            |
| Maintenance Wind Speed              | 30            |                    |                                                                                                                                                                                  |
| Run Earthquake Analysis?            | Yes           |                    |                                                                                                                                                                                  |
| Ground Elevation                    | 1074.84       |                    |                                                                                                                                                                                  |
| $S_1$                               | 0.055         |                    |                                                                                                                                                                                  |
| $S_{te}$                            |               |                    |                                                                                                                                                                                  |
| Vertical Seismic Loads, $E_v$       | 0.186         |                    |                                                                                                                                                                                  |
| Seismic Response Coefficient, $C_s$ | 0.093         |                    |                                                                                                                                                                                  |
| $C_{Min}$                           | 0.030         |                    |                                                                                                                                                                                  |
| Wind Parameters                     |               |                    |                                                                                                                                                                                  |
| Gust Effect Factor, $G_h$           |               | 1.000              | 1.000                                                                                                                                                                            |
| $K_g$                               |               | 1.384              |                                                                                                                                                                                  |
| $K_{lt}$                            |               | 1.000              |                                                                                                                                                                                  |
| $K_d$                               |               | 0.950              |                                                                                                                                                                                  |
|                                     |               |                    | *Note on Rooftop Structures greater than 50' high: A multiplier of 1.15 is used for 100' and 110' high buildings. 50' buildings are not subject to building height restrictions. |
|                                     |               |                    |                                                                                                                                                                                  |
| $q_s$                               |               | 40.004             | psf, 2.5.1.6                                                                                                                                                                     |
| $C/D$                               |               | 137.632            | Table 2-9                                                                                                                                                                        |
| $t_g$                               |               | 1.748              | in, 2.6.10                                                                                                                                                                       |
| $q_b$                               |               | 7.306              | psf, 2.6.5.6                                                                                                                                                                     |
| $C/D_s$                             |               | 58.817             | Table 2-9                                                                                                                                                                        |
| Qdeterminance                       |               |                    | psf, 2.6.5.6                                                                                                                                                                     |
| $C/D_{determinance}$                |               | 2.726              | Table 2-9                                                                                                                                                                        |
| Ice Dead Grating                    |               | 0.016317828        | Table 2-9                                                                                                                                                                        |
|                                     |               |                    | kg                                                                                                                                                                               |

# NEUTUS

| Pipe Mount | Antenna                           | Quantity | Orientation (deg) | Front Exposed (%) | Side Exposed (%) | Type           | Height (in) | Width (in) | Depth (in) | Weight (lbs) | Front Ctr Ax (in) | Side Ctr Ax (in) | Front Ctr Az (in) | Side Ctr Az (in) | Front F. (in) | Side F. (in) | Top % | Bottom % |
|------------|-----------------------------------|----------|-------------------|-------------------|------------------|----------------|-------------|------------|------------|--------------|-------------------|------------------|-------------------|------------------|---------------|--------------|-------|----------|
| M44        | SAMSUNG MT6407-77A ANTENNA w/ RRH | 1        | 0                 | 100.0%            | 100.0%           | Antenna        | 35.120      | 16.060     | 5.510      | 67.100       | 4.700             | 1.644            | 0.193             | 0.076            | 25.0%         | 55.0%        |       |          |
| M44        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M44        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M44        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M44        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M50        | NHH55-65B-R2BT4                   | 1        | 0                 | 100.0%            | 100.0%           | Antenna        | 72.000      | 11.000     | 7.000      | 50.000       | 7.589             | 5.283            | 0.311             | 0.216            | 10.0%         | 71.0%        |       |          |
| M50        | SAMSUNG RF4400B-13A               | 1        | 90                | 100.0%            | 100.0%           | RRU, TMA, Etc. | 14.960      | 14.960     | 9.050      | 70.330       | 1.865             | 1.128            | 0.046             | 0.076            | 25.0%         | 25.0%        |       |          |
| M50        | CBRS RRH - RT4401-48A             | 1        | 90                | 100.0%            | 100.0%           | RRU, TMA, Etc. | 14.000      | 9.000      | 4.000      | 23.000       | 1.050             | 0.484            | 0.020             | 0.043            | 50.0%         | 50.0%        |       |          |
| M50        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M50        | COMMISCOPE NHH-55B-R2B            | 1        | 0                 | 100.0%            | 100.0%           | Antenna        | 72.000      | 11.000     | 7.000      | 50.000       | 7.589             | 5.283            | 0.311             | 0.216            | 10.0%         | 71.0%        |       |          |
| M47        | SAMSUNG RF4439B-25A               | 1        | 90                | 100.0%            | 100.0%           | RRU, TMA, Etc. | 14.960      | 14.960     | 10.040     | 74.700       | 1.865             | 1.252            | 0.051             | 0.076            | 25.0%         | 25.0%        |       |          |
| M47        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M47        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M47        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| MS         |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| MS         |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| MS         |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| MS         |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| MS         |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M70        | 12 Out Box                        | 1        | 0                 | 100.0%            | 100.0%           | RRU, TMA, Etc. | 28.300      | 15.000     | 10.000     | 32.000       | 3.538             | 2.387            | 0.145             | 0.098            | 50.0%         | 50.0%        |       |          |
| M70        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M70        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M70        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |
| M70        |                                   |          |                   |                   |                  |                |             |            |            |              |                   |                  |                   |                  |               |              |       |          |



Envelope Only Solution

|          |                        |                        |
|----------|------------------------|------------------------|
| Nexus    | STAFFORD 4 CT - MKT 68 | RENDERING              |
| SJ       |                        | Feb 6, 2023 at 2:38 PM |
| 16999206 |                        | STAFFORD 4 CT.r3d      |
|          |                        |                        |



Envelope Only Solution

| Nexus    | STAFFORD 4 CT - MKT 68 | NODES                  |
|----------|------------------------|------------------------|
| SJ       |                        | Feb 6, 2023 at 2:37 PM |
| 16999206 |                        | STAFFORD 4 CT.r3d      |



## Envelope Only Solution

| Nexius   |                        | LABELS                 |
|----------|------------------------|------------------------|
| SJ       | STAFFORD 4 CT - MKT 68 | Feb 6, 2023 at 2:38 PM |
| 16999206 |                        | STAFFORD 4 CT.r3d      |



## Envelope Only Solution

|          |                        |                        |
|----------|------------------------|------------------------|
| Nexus    |                        | SHAPES                 |
| SJ       | STAFFORD 4 CT - MKT 68 | Feb 6, 2023 at 2:38 PM |
| 16999206 |                        | STAFFORD 4 CT.r3d      |





Envelope Only Solution

| Nexus    | STAFFORD 4 CT - MKT 68 | MATERIAL SETS          |
|----------|------------------------|------------------------|
| SJ       |                        | Feb 6, 2023 at 2:38 PM |
| 16999206 |                        | STAFFORD 4 CT.r3d      |



Member Code Checks Displayed (Enveloped)  
Envelope Only Solution

|          |                        |                        |
|----------|------------------------|------------------------|
| Nexus    | STAFFORD 4 CT - MKT 68 | BENDING CHECK          |
| SJ       |                        | Feb 6, 2023 at 2:39 PM |
| 16999206 |                        | STAFFORD 4 CT.r3d      |



Member Shear Checks Displayed (Enveloped)  
Envelope Only Solution

| Nexus    | STAFFORD 4 CT - MKT 68 | SHEAR CHECK            |
|----------|------------------------|------------------------|
| SJ       |                        | Feb 6, 2023 at 2:39 PM |
| 16999206 |                        | STAFFORD 4 CT.r3d      |



Loads: BLC 3, Full Wind Antenna (0 Deg)  
Envelope Only Solution

|          |                        |                        |
|----------|------------------------|------------------------|
| Nexus    | STAFFORD 4 CT - MKT 68 | FRONT WIND             |
| SJ       |                        | Feb 6, 2023 at 2:39 PM |
| 16999206 |                        | STAFFORD 4 CT.r3d      |



Company : Nexus  
 Designer : SJ  
 Job Number : 16999206  
 Model Name : STAFFORD 4 CT - MKT 68

Feb 6, 2023  
 2:39 PM  
 Checked By: JH

### Hot Rolled Steel Properties

| Label            | E [ksi] | G [ksi] | Nu | Therm (/1...) | Density[k/ft^3] | Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|------------------|---------|---------|----|---------------|-----------------|------------|-----|---------|-----|
| 1 A992           | 29000   | 11154   | .3 | .65           | .49             | 50         | 1.1 | 65      | 1.1 |
| 2 A36 Gr.36      | 29000   | 11154   | .3 | .65           | .49             | 36         | 1.5 | 58      | 1.2 |
| 3 A572 Gr.50     | 29000   | 11154   | .3 | .65           | .49             | 50         | 1.1 | 65      | 1.1 |
| 4 A500 Gr.B RND  | 29000   | 11154   | .3 | .65           | .527            | 42         | 1.4 | 58      | 1.3 |
| 5 A500 Gr.B Rect | 29000   | 11154   | .3 | .65           | .527            | 46         | 1.4 | 58      | 1.3 |
| 6 A53 Gr.B       | 29000   | 11154   | .3 | .65           | .49             | 35         | 1.6 | 60      | 1.2 |
| 7 A1085          | 29000   | 11154   | .3 | .65           | .49             | 50         | 1.4 | 65      | 1.3 |
| 8 HR8            | 29000   | 11154   | .3 | .65           | .49             | 36         | 1.5 | 58      | 1.2 |

### Hot Rolled Steel Section Sets

| Label              | Shape      | Type   | Design List | Material  | Design ... | A [in2] | Iyy [in4] | Izz [in4] | J [in4] |
|--------------------|------------|--------|-------------|-----------|------------|---------|-----------|-----------|---------|
| 1 pipe mount       | PIPE 2.5   | Column | Pipe        | A53 Gr.B  | Typical    | 1.61    | 1.45      | 1.45      | 2.89    |
| 2 top rail         | PIPE 2.5   | Beam   | Pipe        | A53 Gr.B  | Typical    | 1.61    | 1.45      | 1.45      | 2.89    |
| 3 diagonal bracing | SR 3/4     | Column | BAR         | A36 Gr.36 | Typical    | .442    | .016      | .016      | .031    |
| 4 gusset plate     | PL5/8X3.5  | Beam   | RECT        | A36 Gr.36 | Typical    | 2.188   | .071      | 2.233     | .253    |
| 5 vertical bracing | SR 5/8 HRA | Column | BAR         | A36 Gr.36 | Typical    | .307    | .007      | .007      | .015    |
| 6 bottom rail      | PIPE 2.5   | Beam   | Pipe        | A53 Gr.B  | Typical    | 1.61    | 1.45      | 1.45      | 2.89    |
| 7 tie-back         | PIPE 2.0   | Beam   | Pipe        | A53 Gr.B  | Typical    | 1.02    | .627      | .627      | 1.25    |
| 8 v-arm            | PIPE 2.0   | Beam   | Pipe        | A53 Gr.B  | Typical    | 1.02    | .627      | .627      | 1.25    |
| 9 connection plate | PL5/8X8    | Beam   | RECT        | A36 Gr.36 | Typical    | 5       | .163      | 26.667    | .619    |
| 10 RRU-Pipe        | PIPE 2.0   | Column | Pipe        | A53 Gr.B  | Typical    | 1.02    | .627      | .627      | 1.25    |

### Joint Boundary Conditions

| Joint Label | X [k/in] | Y [k/in] | Z [k/in] | X Rot.[k-ft/rad] | Y Rot.[k-ft/rad] | Z Rot.[k-ft/rad] |
|-------------|----------|----------|----------|------------------|------------------|------------------|
| 1 N12A      |          |          |          |                  |                  |                  |
| 2 N28       |          |          |          |                  |                  |                  |
| 3 N78       | Reaction | Reaction | Reaction | Reaction         |                  | Reaction         |
| 4 N79B      | Reaction | Reaction | Reaction | Reaction         |                  | Reaction         |
| 5 N85B      | Reaction | Reaction | Reaction | Reaction         |                  | Reaction         |
| 6 N86B      | Reaction | Reaction | Reaction | Reaction         |                  | Reaction         |

### Hot Rolled Steel Design Parameters

| Label   | Shape           | Length[ft] | Lbvy[ft] | Lbzz[ft] | Lcomp top[ft] | Lcomp bot[ft] | L-torqu... | Kyy | Kzz | Cb | Function |
|---------|-----------------|------------|----------|----------|---------------|---------------|------------|-----|-----|----|----------|
| 1 M54   | bottom rail     | 12.5       | 5.083    | 5.083    | 5.083         | 5.083         | 5.083      |     |     |    | Lateral  |
| 2 M6    | top rail        | 12.5       | 5.083    | 5.083    | 5.083         | 5.083         | 5.083      |     |     |    | Lateral  |
| 3 M5    | pipe mount      | 10         | 3.33     | 3.33     | 3.33          | 3.33          | 3.33       |     |     |    | Lateral  |
| 4 M11   | v-arm           | 2.5        |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 5 M12   | v-arm           | 2.5        |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 6 M17   | connection ...  | .417       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 7 M12A  | gusset plate    | .243       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 8 M13   | gusset plate    | .417       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 9 M14   | gusset plate    | .417       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 10 M15A | gusset plate    | .243       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 11 M17A | v-arm           | 2.5        |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 12 M18  | v-arm           | 2.5        |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 13 M21  | connection ...  | .417       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 14 M22  | gusset plate    | .243       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 15 M23  | gusset plate    | .417       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 16 M24  | gusset plate    | .417       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 17 M25  | gusset plate    | .243       |          |          | Lbvy          |               |            |     |     |    | Lateral  |
| 18 M34  | diagonal bra... | 3.667      | 3.33     | 3.33     | 3.33          | 3.33          | 3.33       | .7  | .7  |    | Lateral  |

### Hot Rolled Steel Design Parameters (Continued)

| Label | Shape | Length[ft]       | Lbyy[ft] | Lbzz[ft] | Lcomp top[ft] | Lcomp bot[ft] | L-torqu... | Kyy  | Kzz | Cb | Function |
|-------|-------|------------------|----------|----------|---------------|---------------|------------|------|-----|----|----------|
| 19    | M35   | diagonal bra...  | 3.667    | 3.33     | 3.33          | 3.33          | 3.33       | .7   | .7  |    | Lateral  |
| 20    | M36   | diagonal bra...  | 3.667    | 3.33     | 3.33          | 3.33          | 3.33       | .7   | .7  |    | Lateral  |
| 21    | M37   | diagonal bra...  | 3.667    | 3.33     | 3.33          | 3.33          | 3.33       | .7   | .7  |    | Lateral  |
| 22    | M44   | pipe mount       | 10       | 3.33     | 3.33          | 3.33          | 3.33       | 3.33 |     |    | Lateral  |
| 23    | M47   | pipe mount       | 10       | 3.33     | 3.33          | 3.33          | 3.33       | 3.33 |     |    | Lateral  |
| 24    | M50   | pipe mount       | 10       | 3.33     | 3.33          | 3.33          | 3.33       | 3.33 |     |    | Lateral  |
| 25    | M59   | vertical brac... | 2.771    |          | Lbyy          |               |            | .7   | .7  |    | Lateral  |
| 26    | M60   | vertical brac... | 2.771    |          | Lbyy          |               |            | .7   | .7  |    | Lateral  |
| 27    | M61   | vertical brac... | 2.771    |          | Lbyy          |               |            | .7   | .7  |    | Lateral  |
| 28    | M62   | vertical brac... | 2.771    |          | Lbyy          |               |            | .7   | .7  |    | Lateral  |
| 29    | M65A  | gusset plate     | .5       |          | Lbyy          |               |            |      |     |    | Lateral  |
| 30    | M66A  | gusset plate     | .5       |          | Lbyy          |               |            |      |     |    | Lateral  |
| 31    | M63A  | gusset plate     | .5       |          | Lbyy          |               |            |      |     |    | Lateral  |
| 32    | M64A  | gusset plate     | .5       |          | Lbyy          |               |            |      |     |    | Lateral  |
| 33    | M66C  | tie-back         | 6.582    |          | Lbyy          |               |            |      |     |    | Lateral  |
| 34    | M67A  | tie-back         | 6.582    |          | Lbyy          |               |            |      |     |    | Lateral  |
| 35    | M70   | RRU-Pipe         | 5        |          |               |               |            |      |     |    | Lateral  |

### Joint Loads and Enforced Displacements (BLC 42 : Man 1 (500 lbs))

| Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in.rad), (k*s^2/ft...] |
|-------------|-------|-----------|---------------------------------------------|
| 1 N51A      | L     | Y         | 0                                           |
| 2 N51A      | L     | Y         | -.5                                         |

### Joint Loads and Enforced Displacements (BLC 43 : Man 2 (500 lbs))

| Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in.rad), (k*s^2/ft...] |
|-------------|-------|-----------|---------------------------------------------|
| 1 N51A      | L     | Y         | 0                                           |
| 2 N63       | L     | Y         | -.5                                         |

### Joint Loads and Enforced Displacements (BLC 44 : Man 3 (500 lbs))

| Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in.rad), (k*s^2/ft...] |
|-------------|-------|-----------|---------------------------------------------|
| 1 N63       | L     | Y         | 0                                           |
| 2 N57       | L     | Y         | -.5                                         |

### Joint Loads and Enforced Displacements (BLC 45 : Man 4 (250 lbs))

| Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in.rad), (k*s^2/ft...] |
|-------------|-------|-----------|---------------------------------------------|
| 1 N63       | L     | Y         | 0                                           |
| 2 N59       | L     | Y         | -.25                                        |

### Joint Loads and Enforced Displacements (BLC 46 : Man 5 (250 lbs))

| Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in.rad), (k*s^2/ft...] |
|-------------|-------|-----------|---------------------------------------------|
| 1 N57       | L     | Y         | 0                                           |
| 2 N58       | L     | Y         | -.25                                        |

### Joint Loads and Enforced Displacements (BLC 47 : Man 6 (250 lbs))

| Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in.rad), (k*s^2/ft...] |
|-------------|-------|-----------|---------------------------------------------|
| 1 N59       | L     | Y         | 0                                           |

### Member Point Loads (BLC 1 : Dead)

| Member Label | Direction | Magnitude[k,k-ft] | Location[ft.%] |
|--------------|-----------|-------------------|----------------|
| 1 M44        | Y         | -.044             | %25            |
| 2 M50        | Y         | -.025             | %10            |

### Member Point Loads (BLC 1 : Dead) (Continued)

| Member Label | Direction | Magnitude[k.k-ft] | Location[ft.%] |
|--------------|-----------|-------------------|----------------|
| 3 M50        | Y         | -.07              | %25            |
| 4 M50        | Y         | -.023             | %50            |
| 5 M47        | Y         | -.022             | %10            |
| 6 M47        | Y         | -.075             | %25            |
| 7 M70        | Y         | -.032             | %50            |
| 8 M44        | Y         | -.044             | %55            |
| 9 M50        | Y         | -.025             | %71            |
| 10 M47       | Y         | -.022             | %71            |

### Member Point Loads (BLC 2 : Ice Dead)

| Member Label | Direction | Magnitude[k.k-ft] | Location[ft.%] |
|--------------|-----------|-------------------|----------------|
| 1 M44        | Y         | -.059             | %25            |
| 2 M50        | Y         | -.096             | %10            |
| 3 M50        | Y         | -.052             | %25            |
| 4 M50        | Y         | -.029             | %50            |
| 5 M47        | Y         | -.101             | %10            |
| 6 M47        | Y         | -.053             | %25            |
| 7 M70        | Y         | -.101             | %50            |
| 8 M44        | Y         | -.059             | %55            |
| 9 M50        | Y         | -.096             | %71            |
| 10 M47       | Y         | -.101             | %71            |

### Member Point Loads (BLC 3 : Full Wind Antenna (0 Deg))

| Member Label | Direction | Magnitude[k.k-ft] | Location[ft.%] |
|--------------|-----------|-------------------|----------------|
| 1 M44        | Z         | -.096             | %25            |
| 2 M50        | Z         | -.155             | %10            |
| 3 M50        | Z         | -.046             | %25            |
| 4 M50        | Z         | -.02              | %50            |
| 5 M47        | Z         | -.165             | %10            |
| 6 M47        | Z         | -.051             | %25            |
| 7 M70        | Z         | -.145             | %50            |
| 8 M44        | Z         | -.096             | %55            |
| 9 M50        | Z         | -.155             | %71            |
| 10 M47       | Z         | -.165             | %71            |

### Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg))

| Member Label | Direction | Magnitude[k.k-ft] | Location[ft.%] |
|--------------|-----------|-------------------|----------------|
| 1 M44        | Z         | -.071             | %25            |
| 2 M50        | Z         | -.124             | %10            |
| 3 M50        | Z         | -.047             | %25            |
| 4 M50        | Z         | -.022             | %50            |
| 5 M47        | Z         | -.131             | %10            |
| 6 M47        | Z         | -.05              | %25            |
| 7 M70        | Z         | -.115             | %50            |
| 8 M44        | Z         | -.071             | %55            |
| 9 M50        | Z         | -.124             | %71            |
| 10 M47       | Z         | -.131             | %71            |
| 11 M44       | X         | .041              | %25            |
| 12 M50       | X         | .072              | %10            |
| 13 M50       | X         | .027              | %25            |
| 14 M50       | X         | .013              | %50            |
| 15 M47       | X         | .076              | %10            |
| 16 M47       | X         | .029              | %25            |
| 17 M70       | X         | .067              | %50            |
| 18 M44       | X         | .041              | %55            |

**Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg)) (Continued)**

|    | Member Label | Direction | Magnitude[k.k-ft] | Location[ft.%] |
|----|--------------|-----------|-------------------|----------------|
| 19 | M50          | X         | .072              | %71            |
| 20 | M47          | X         | .076              | %71            |

**Member Point Loads (BLC 5 : Full Wind Antenna (60 Deg))**

|    | Member Label | Direction | Magnitude[k.k-ft] | Location[ft.%] |
|----|--------------|-----------|-------------------|----------------|
| 1  | M44          | Z         | -.026             | %25            |
| 2  | M50          | Z         | -.06              | %10            |
| 3  | M50          | Z         | -.034             | %25            |
| 4  | M50          | Z         | -.019             | %50            |
| 5  | M47          | Z         | -.062             | %10            |
| 6  | M47          | Z         | -.035             | %25            |
| 7  | M70          | Z         | -.055             | %50            |
| 8  | M44          | Z         | -.026             | %55            |
| 9  | M50          | Z         | -.06              | %71            |
| 10 | M47          | Z         | -.062             | %71            |
| 11 | M44          | X         | .045              | %25            |
| 12 | M50          | X         | .104              | %10            |
| 13 | M50          | X         | .06               | %25            |
| 14 | M50          | X         | .032              | %50            |
| 15 | M47          | X         | .107              | %10            |
| 16 | M47          | X         | .061              | %25            |
| 17 | M70          | X         | .095              | %50            |
| 18 | M44          | X         | .045              | %55            |
| 19 | M50          | X         | .104              | %71            |
| 20 | M47          | X         | .107              | %71            |

**Member Point Loads (BLC 6 : Full Wind Antenna (90 Deg))**

|    | Member Label | Direction | Magnitude[k.k-ft] | Location[ft.%] |
|----|--------------|-----------|-------------------|----------------|
| 1  | M44          | Z         | 0                 | %25            |
| 2  | M50          | Z         | 0                 | %10            |
| 3  | M50          | Z         | 0                 | %25            |
| 4  | M50          | Z         | 0                 | %50            |
| 5  | M47          | Z         | 0                 | %10            |
| 6  | M47          | Z         | 0                 | %25            |
| 7  | M70          | Z         | 0                 | %50            |
| 8  | M44          | Z         | 0                 | %55            |
| 9  | M50          | Z         | 0                 | %71            |
| 10 | M47          | Z         | 0                 | %71            |
| 11 | M44          | X         | .038              | %25            |
| 12 | M50          | X         | .108              | %10            |
| 13 | M50          | X         | .076              | %25            |
| 14 | M50          | X         | .043              | %50            |
| 15 | M47          | X         | .109              | %10            |
| 16 | M47          | X         | .076              | %25            |
| 17 | M70          | X         | .098              | %50            |
| 18 | M44          | X         | .038              | %55            |
| 19 | M50          | X         | .108              | %71            |
| 20 | M47          | X         | .109              | %71            |

**Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg))**

|   | Member Label | Direction | Magnitude[k.k-ft] | Location[ft.%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M44          | Z         | .026              | %25            |
| 2 | M50          | Z         | .06               | %10            |
| 3 | M50          | Z         | .034              | %25            |
| 4 | M50          | Z         | .019              | %50            |

**Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg)) (Continued)**

| Member Label | Direction | Magnitude[k,k-ft] | Location[ft, %] |
|--------------|-----------|-------------------|-----------------|
| 5            | M47       | Z                 | .062            |
| 6            | M47       | Z                 | .035            |
| 7            | M70       | Z                 | .055            |
| 8            | M44       | Z                 | .026            |
| 9            | M50       | Z                 | .06             |
| 10           | M47       | Z                 | .062            |
| 11           | M44       | X                 | .045            |
| 12           | M50       | X                 | .104            |
| 13           | M50       | X                 | .06             |
| 14           | M50       | X                 | .032            |
| 15           | M47       | X                 | .107            |
| 16           | M47       | X                 | .061            |
| 17           | M70       | X                 | .095            |
| 18           | M44       | X                 | .045            |
| 19           | M50       | X                 | .104            |
| 20           | M47       | X                 | .107            |

**Member Point Loads (BLC 8 : Full Wind Antenna (150 Deg))**

| Member Label | Direction | Magnitude[k,k-ft] | Location[ft, %] |
|--------------|-----------|-------------------|-----------------|
| 1            | M44       | Z                 | .071            |
| 2            | M50       | Z                 | .124            |
| 3            | M50       | Z                 | .047            |
| 4            | M50       | Z                 | .022            |
| 5            | M47       | Z                 | .131            |
| 6            | M47       | Z                 | .05             |
| 7            | M70       | Z                 | .115            |
| 8            | M44       | Z                 | .071            |
| 9            | M50       | Z                 | .124            |
| 10           | M47       | Z                 | .131            |
| 11           | M44       | X                 | .041            |
| 12           | M50       | X                 | .072            |
| 13           | M50       | X                 | .027            |
| 14           | M50       | X                 | .013            |
| 15           | M47       | X                 | .076            |
| 16           | M47       | X                 | .029            |
| 17           | M70       | X                 | .067            |
| 18           | M44       | X                 | .041            |
| 19           | M50       | X                 | .072            |
| 20           | M47       | X                 | .076            |

**Member Point Loads (BLC 15 : Ice Wind Antenna (0 Deg))**

| Member Label | Direction | Magnitude[k,k-ft] | Location[ft, %] |
|--------------|-----------|-------------------|-----------------|
| 1            | M44       | Z                 | -.024           |
| 2            | M50       | Z                 | -.038           |
| 3            | M50       | Z                 | -.015           |
| 4            | M50       | Z                 | -.008           |
| 5            | M47       | Z                 | -.04            |
| 6            | M47       | Z                 | -.016           |
| 7            | M70       | Z                 | -.037           |
| 8            | M44       | Z                 | -.024           |
| 9            | M50       | Z                 | -.038           |
| 10           | M47       | Z                 | -.04            |

**Member Point Loads (BLC 16 : Ice Wind Antenna (30 Deg))**

| Member Label           | Direction                                                        | Magnitude[k,k-ft] | Location[ft, %] |
|------------------------|------------------------------------------------------------------|-------------------|-----------------|
| RISA-3D Version 17.0.4 | [C:\...\...\...\NX064\16999206\Rev.0\Analysis\STAFFORD 4 CT.r3d] |                   | Page 5          |

### Member Point Loads (BLC 16 : Ice Wind Antenna (30 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[k,k-ft] | Location[ft.%] |
|----|--------------|-----------|-------------------|----------------|
| 1  | M44          | Z         | -.018             | %25            |
| 2  | M50          | Z         | -.031             | %10            |
| 3  | M50          | Z         | -.014             | %25            |
| 4  | M50          | Z         | -.008             | %50            |
| 5  | M47          | Z         | -.032             | %10            |
| 6  | M47          | Z         | -.015             | %25            |
| 7  | M70          | Z         | -.03              | %50            |
| 8  | M44          | Z         | -.018             | %55            |
| 9  | M50          | Z         | -.031             | %71            |
| 10 | M47          | Z         | -.032             | %71            |
| 11 | M44          | X         | .01               | %25            |
| 12 | M50          | X         | .018              | %10            |
| 13 | M50          | X         | .008              | %25            |
| 14 | M50          | X         | .005              | %50            |
| 15 | M47          | X         | .018              | %10            |
| 16 | M47          | X         | .009              | %25            |
| 17 | M70          | X         | .017              | %50            |
| 18 | M44          | X         | .01               | %55            |
| 19 | M50          | X         | .018              | %71            |
| 20 | M47          | X         | .018              | %71            |

### Member Point Loads (BLC 17 : Ice Wind Antenna (60 Deg))

|    | Member Label | Direction | Magnitude[k,k-ft] | Location[ft.%] |
|----|--------------|-----------|-------------------|----------------|
| 1  | M44          | Z         | -.007             | %25            |
| 2  | M50          | Z         | -.016             | %10            |
| 3  | M50          | Z         | -.01              | %25            |
| 4  | M50          | Z         | -.006             | %50            |
| 5  | M47          | Z         | -.016             | %10            |
| 6  | M47          | Z         | -.01              | %25            |
| 7  | M70          | Z         | -.015             | %50            |
| 8  | M44          | Z         | -.007             | %55            |
| 9  | M50          | Z         | -.016             | %71            |
| 10 | M47          | Z         | -.016             | %71            |
| 11 | M44          | X         | .013              | %25            |
| 12 | M50          | X         | .027              | %10            |
| 13 | M50          | X         | .017              | %25            |
| 14 | M50          | X         | .011              | %50            |
| 15 | M47          | X         | .028              | %10            |
| 16 | M47          | X         | .017              | %25            |
| 17 | M70          | X         | .025              | %50            |
| 18 | M44          | X         | .013              | %55            |
| 19 | M50          | X         | .027              | %71            |
| 20 | M47          | X         | .028              | %71            |

### Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg))

|    | Member Label | Direction | Magnitude[k,k-ft] | Location[ft.%] |
|----|--------------|-----------|-------------------|----------------|
| 1  | M44          | Z         | 0                 | %25            |
| 2  | M50          | Z         | 0                 | %10            |
| 3  | M50          | Z         | 0                 | %25            |
| 4  | M50          | Z         | 0                 | %50            |
| 5  | M47          | Z         | 0                 | %10            |
| 6  | M47          | Z         | 0                 | %25            |
| 7  | M70          | Z         | 0                 | %50            |
| 8  | M44          | Z         | 0                 | %55            |
| 9  | M50          | Z         | 0                 | %71            |
| 10 | M47          | Z         | 0                 | %71            |

**Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg)) (Continued)**

|    | Member Label | Direction | Magnitude[k.k-ft] | Location[ft, %] |
|----|--------------|-----------|-------------------|-----------------|
| 11 | M44          | X         | .012              | %25             |
| 12 | M50          | X         | .029              | %10             |
| 13 | M50          | X         | .021              | %25             |
| 14 | M50          | X         | .014              | %50             |
| 15 | M47          | X         | .029              | %10             |
| 16 | M47          | X         | .021              | %25             |
| 17 | M70          | X         | .027              | %50             |
| 18 | M44          | X         | .012              | %55             |
| 19 | M50          | X         | .029              | %71             |
| 20 | M47          | X         | .029              | %71             |

**Member Point Loads (BLC 19 : Ice Wind Antenna (120 Deg))**

|    | Member Label | Direction | Magnitude[k.k-ft] | Location[ft, %] |
|----|--------------|-----------|-------------------|-----------------|
| 1  | M44          | Z         | .007              | %25             |
| 2  | M50          | Z         | .016              | %10             |
| 3  | M50          | Z         | .01               | %25             |
| 4  | M50          | Z         | .006              | %50             |
| 5  | M47          | Z         | .016              | %10             |
| 6  | M47          | Z         | .01               | %25             |
| 7  | M70          | Z         | .015              | %50             |
| 8  | M44          | Z         | .007              | %55             |
| 9  | M50          | Z         | .016              | %71             |
| 10 | M47          | Z         | .016              | %71             |
| 11 | M44          | X         | .013              | %25             |
| 12 | M50          | X         | .027              | %10             |
| 13 | M50          | X         | .017              | %25             |
| 14 | M50          | X         | .011              | %50             |
| 15 | M47          | X         | .028              | %10             |
| 16 | M47          | X         | .017              | %25             |
| 17 | M70          | X         | .025              | %50             |
| 18 | M44          | X         | .013              | %55             |
| 19 | M50          | X         | .027              | %71             |
| 20 | M47          | X         | .028              | %71             |

**Member Point Loads (BLC 20 : Ice Wind Antenna (150 Deg))**

|    | Member Label | Direction | Magnitude[k.k-ft] | Location[ft, %] |
|----|--------------|-----------|-------------------|-----------------|
| 1  | M44          | Z         | .018              | %25             |
| 2  | M50          | Z         | .016              | %10             |
| 3  | M50          | Z         | .01               | %25             |
| 4  | M50          | Z         | .006              | %50             |
| 5  | M47          | Z         | .016              | %10             |
| 6  | M47          | Z         | .01               | %25             |
| 7  | M70          | Z         | .015              | %50             |
| 8  | M44          | Z         | .018              | %55             |
| 9  | M50          | Z         | .016              | %71             |
| 10 | M47          | Z         | .016              | %71             |
| 11 | M44          | X         | .01               | %25             |
| 12 | M50          | X         | .027              | %10             |
| 13 | M50          | X         | .017              | %25             |
| 14 | M50          | X         | .011              | %50             |
| 15 | M47          | X         | .028              | %10             |
| 16 | M47          | X         | .017              | %25             |
| 17 | M70          | X         | .025              | %50             |
| 18 | M44          | X         | .01               | %55             |
| 19 | M50          | X         | .027              | %71             |
| 20 | M47          | X         | .028              | %71             |

### Member Point Loads (BLC 27 : Seismic Antenna (0 Deg))

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft.%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M44          | Z         | -.008             | %40            |
| 2 | M50          | Z         | -.005             | %40.5          |
| 3 | M50          | Z         | -.007             | %25            |
| 4 | M50          | Z         | -.002             | %50            |
| 5 | M47          | Z         | -.004             | %40.5          |
| 6 | M47          | Z         | -.007             | %25            |
| 7 | M70          | Z         | -.003             | %50            |

### Member Point Loads (BLC 28 : Seismic Antenna (90 Deg))

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft.%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M44          | X         | .008              | %40            |
| 2 | M50          | X         | .005              | %40.5          |
| 3 | M50          | X         | .007              | %25            |
| 4 | M50          | X         | .002              | %50            |
| 5 | M47          | X         | .004              | %40.5          |
| 6 | M47          | X         | .007              | %25            |
| 7 | M70          | X         | .003              | %50            |

### Member Point Loads (BLC 41 : Seismic Vertical Antennas)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft.%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M44          | Y         | -.017             | %40            |
| 2 | M50          | Y         | -.01              | %40.5          |
| 3 | M50          | Y         | -.014             | %25            |
| 4 | M50          | Y         | -.005             | %50            |
| 5 | M47          | Y         | -.009             | %40.5          |
| 6 | M47          | Y         | -.015             | %25            |
| 7 | M70          | Y         | -.006             | %50            |

### Member Point Loads (BLC 47 : Man 6 (250 lbs))

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft.%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M54          | Y         | -.25              | %50            |

### Member Area Loads

| Joint A              | Joint B | Joint C | Joint D | Direction | Distribution | Magnitude[ksf] |
|----------------------|---------|---------|---------|-----------|--------------|----------------|
| No Data to Print ... |         |         |         |           |              |                |

### Basic Load Cases

|    | BLC Description             | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut... | Area(Me... | Surface(... |
|----|-----------------------------|----------|-----------|-----------|-----------|-------|-------|--------------|------------|-------------|
| 1  | Dead                        | None     |           | -1        |           |       | 10    |              |            |             |
| 2  | Ice Dead                    | None     |           |           |           |       | 10    | 67           |            |             |
| 3  | Full Wind Antenna (0 Deg)   | None     |           |           |           |       | 10    |              |            |             |
| 4  | Full Wind Antenna (30 Deg)  | None     |           |           |           |       | 20    |              |            |             |
| 5  | Full Wind Antenna (60 Deg)  | None     |           |           |           |       | 20    |              |            |             |
| 6  | Full Wind Antenna (90 Deg)  | None     |           |           |           |       | 20    |              |            |             |
| 7  | Full Wind Antenna (120 Deg) | None     |           |           |           |       | 20    |              |            |             |
| 8  | Full Wind Antenna (150 Deg) | None     |           |           |           |       | 20    |              |            |             |
| 9  | Full Wind Members (0 Deg)   | None     |           |           |           |       |       | 74           |            |             |
| 10 | Full Wind Members (30 Deg)  | None     |           |           |           |       |       | 74           |            |             |
| 11 | Full Wind Members (60 Deg)  | None     |           |           |           |       |       | 74           |            |             |
| 12 | Full Wind Members (90 Deg)  | None     |           |           |           |       |       | 74           |            |             |
| 13 | Full Wind Members (120 Deg) | None     |           |           |           |       |       | 74           |            |             |
| 14 | Full Wind Members (150 Deg) | None     |           |           |           |       |       | 74           |            |             |

### Basic Load Cases (Continued)

|    | BLC Description            | Category | X Gravity | Y Gravity | Z Gravity  | Joint | Point | Distribut... | Area(Me... | Surface(... |
|----|----------------------------|----------|-----------|-----------|------------|-------|-------|--------------|------------|-------------|
| 15 | Ice Wind Antenna (0 Deg)   | None     |           |           |            |       | 10    |              |            |             |
| 16 | Ice Wind Antenna (30 Deg)  | None     |           |           |            |       | 20    |              |            |             |
| 17 | Ice Wind Antenna (60 Deg)  | None     |           |           |            |       | 20    |              |            |             |
| 18 | Ice Wind Antenna (90 Deg)  | None     |           |           |            |       | 20    |              |            |             |
| 19 | Ice Wind Antenna (120 Deg) | None     |           |           |            |       | 20    |              |            |             |
| 20 | Ice Wind Antenna (150 Deg) | None     |           |           |            |       | 20    |              |            |             |
| 21 | Ice Wind Members (0 Deg)   | None     |           |           |            |       |       | 138          |            |             |
| 22 | Ice Wind Members (30 Deg)  | None     |           |           |            |       |       | 138          |            |             |
| 23 | Ice Wind Members (60 Deg)  | None     |           |           |            |       |       | 138          |            |             |
| 24 | Ice Wind Members (90 Deg)  | None     |           |           |            |       |       | 138          |            |             |
| 25 | Ice Wind Members (120 Deg) | None     |           |           |            |       |       | 138          |            |             |
| 26 | Ice Wind Members (150 Deg) | None     |           |           |            |       |       | 138          |            |             |
| 27 | Seismic Antenna (0 Deg)    | None     |           |           |            |       | 7     |              |            |             |
| 28 | Seismic Antenna (90 Deg)   | None     |           |           |            |       | 7     |              |            |             |
| 29 | Seismic Members (0 Deg)    | None     |           |           |            | -.037 | -.093 |              |            |             |
| 30 | Seismic Members (30 Deg)   | None     | .046      | -.037     | -.081      |       |       |              |            |             |
| 31 | Seismic Members (60 Deg)   | None     | .081      | -.037     | -.046      |       |       |              |            |             |
| 32 | Seismic Members (90 Deg)   | None     | .093      | -.037     | -5.697e-.. |       |       |              |            |             |
| 33 | Seismic Members (120 Deg)  | None     | .081      | -.037     | .046       |       |       |              |            |             |
| 34 | Seismic Members (150 Deg)  | None     | .046      | -.037     | .081       |       |       |              |            |             |
| 35 | Seismic Members (180 Deg)  | None     | 1.139e-17 | -.037     | .093       |       |       |              |            |             |
| 36 | Seismic Members (210 Deg)  | None     | -.046     | -.037     | .081       |       |       |              |            |             |
| 37 | Seismic Members (240 Deg)  | None     | -.081     | -.037     | .046       |       |       |              |            |             |
| 38 | Seismic Members (270 Deg)  | None     | -.093     | -.037     | 1.709e-17  |       |       |              |            |             |
| 39 | Seismic Members (300 Deg)  | None     | -.081     | -.037     | -.046      |       |       |              |            |             |
| 40 | Seismic Members (330 Deg)  | None     | -.046     | -.037     | -.081      |       |       |              |            |             |
| 41 | Seismic Vertical Antennas  | None     |           |           |            |       | 7     |              |            |             |
| 42 | Man 1 (500 lbs)            | None     |           |           |            |       | 2     |              |            |             |
| 43 | Man 2 (500 lbs)            | None     |           |           |            |       | 2     |              |            |             |
| 44 | Man 3 (500 lbs)            | None     |           |           |            |       | 2     |              |            |             |
| 45 | Man 4 (250 lbs)            | None     |           |           |            |       | 2     |              |            |             |
| 46 | Man 5 (250 lbs)            | None     |           |           |            |       | 2     |              |            |             |
| 47 | Man 6 (250 lbs)            | None     |           |           |            |       | 1     | 1            |            |             |

### Load Combinations

|    | Description              | So. | P... | S... | BLCFac... |
|----|--------------------------|-----|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1  | 1.4D                     | Yes | Y    |      | 1         | 1.4       |           |           |           |           |           |           |
| 2  | 1.2D + 1.0W 0°           | Yes | Y    |      | 1         | 1.2       | 3         | 1         | 9         | 1         |           |           |
| 3  | 1.2D + 1.0W 30°          | Yes | Y    |      | 1         | 1.2       | 4         | 1         | 10        | 1         |           |           |
| 4  | 1.2D + 1.0W 60°          | Yes | Y    |      | 1         | 1.2       | 5         | 1         | 11        | 1         |           |           |
| 5  | 1.2D + 1.0W 90°          | Yes | Y    |      | 1         | 1.2       | 6         | 1         | 12        | 1         |           |           |
| 6  | 1.2D + 1.0W 120°         | Yes | Y    |      | 1         | 1.2       | 7         | 1         | 13        | 1         |           |           |
| 7  | 1.2D + 1.0W 150°         | Yes | Y    |      | 1         | 1.2       | 8         | 1         | 14        | 1         |           |           |
| 8  | 1.2D + 1.0W 180°         | Yes | Y    |      | 1         | 1.2       | 3         | -1        | 9         | -1        |           |           |
| 9  | 1.2D + 1.0W 210°         | Yes | Y    |      | 1         | 1.2       | 4         | -1        | 10        | -1        |           |           |
| 10 | 1.2D + 1.0W 240°         | Yes | Y    |      | 1         | 1.2       | 5         | -1        | 11        | -1        |           |           |
| 11 | 1.2D + 1.0W 270°         | Yes | Y    |      | 1         | 1.2       | 6         | -1        | 12        | -1        |           |           |
| 12 | 1.2D + 1.0W 300°         | Yes | Y    |      | 1         | 1.2       | 7         | -1        | 13        | -1        |           |           |
| 13 | 1.2D + 1.0W 330°         | Yes | Y    |      | 1         | 1.2       | 8         | -1        | 14        | -1        |           |           |
| 14 | 1.2D + 1.0Di + 1.0Wi 0°  | Yes | Y    |      | 1         | 1.2       | 2         | 1         | 15        | 1         | 21        | 1         |
| 15 | 1.2D + 1.0Di + 1.0Wi 3.. | Yes | Y    |      | 1         | 1.2       | 2         | 1         | 16        | 1         | 22        | 1         |
| 16 | 1.2D + 1.0Di + 1.0Wi 6.. | Yes | Y    |      | 1         | 1.2       | 2         | 1         | 17        | 1         | 23        | 1         |
| 17 | 1.2D + 1.0Di + 1.0Wi 9.. | Yes | Y    |      | 1         | 1.2       | 2         | 1         | 18        | 1         | 24        | 1         |
| 18 | 1.2D + 1.0Di + 1.0Wi 1.. | Yes | Y    |      | 1         | 1.2       | 2         | 1         | 19        | 1         | 25        | 1         |
| 19 | 1.2D + 1.0Di + 1.0Wi 1.. | Yes | Y    |      | 1         | 1.2       | 2         | 1         | 20        | 1         | 26        | 1         |

**Load Combinations (Continued)**

|    | Description               | So... | P... | S... | BLCFac.. |
|----|---------------------------|-------|------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 20 | 1.2D + 1.0Di + 1.0Wi 1... | Yes   | Y    |      | 1        | 1.2      | 2        | 1        | 15       | -1       | 21       | -1       |          |          |          |
| 21 | 1.2D + 1.0Di + 1.0Wi 2... | Yes   | Y    |      | 1        | 1.2      | 2        | 1        | 16       | -1       | 22       | -1       |          |          |          |
| 22 | 1.2D + 1.0Di + 1.0Wi 2... | Yes   | Y    |      | 1        | 1.2      | 2        | 1        | 17       | -1       | 23       | -1       |          |          |          |
| 23 | 1.2D + 1.0Di + 1.0Wi 2... | Yes   | Y    |      | 1        | 1.2      | 2        | 1        | 18       | -1       | 24       | -1       |          |          |          |
| 24 | 1.2D + 1.0Di + 1.0Wi 3... | Yes   | Y    |      | 1        | 1.2      | 2        | 1        | 19       | -1       | 25       | -1       |          |          |          |
| 25 | 1.2D + 1.0Di + 1.0Wi 3... | Yes   | Y    |      | 1        | 1.2      | 2        | 1        | 20       | -1       | 26       | -1       |          |          |          |
| 26 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 3        | .068     | 9        | .068     | 42       | 1.5      |          |          |          |
| 27 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 4        | .068     | 10       | .068     | 42       | 1.5      |          |          |          |
| 28 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 5        | .068     | 11       | .068     | 42       | 1.5      |          |          |          |
| 29 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 6        | .068     | 12       | .068     | 42       | 1.5      |          |          |          |
| 30 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 7        | .068     | 13       | .068     | 42       | 1.5      |          |          |          |
| 31 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 8        | .068     | 14       | .068     | 42       | 1.5      |          |          |          |
| 32 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 3        | -.068    | 9        | -.068    | 42       | 1.5      |          |          |          |
| 33 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 4        | -.068    | 10       | -.068    | 42       | 1.5      |          |          |          |
| 34 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 5        | -.068    | 11       | -.068    | 42       | 1.5      |          |          |          |
| 35 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 6        | -.068    | 12       | -.068    | 42       | 1.5      |          |          |          |
| 36 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 7        | -.068    | 13       | -.068    | 42       | 1.5      |          |          |          |
| 37 | 1.2D + 1.5Lm_1 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 8        | -.068    | 14       | -.068    | 42       | 1.5      |          |          |          |
| 38 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 3        | .068     | 9        | .068     | 43       | 1.5      |          |          |          |
| 39 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 4        | .068     | 10       | .068     | 43       | 1.5      |          |          |          |
| 40 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 5        | .068     | 11       | .068     | 43       | 1.5      |          |          |          |
| 41 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 6        | .068     | 12       | .068     | 43       | 1.5      |          |          |          |
| 42 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 7        | .068     | 13       | .068     | 43       | 1.5      |          |          |          |
| 43 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 8        | .068     | 14       | .068     | 43       | 1.5      |          |          |          |
| 44 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 3        | -.068    | 9        | -.068    | 43       | 1.5      |          |          |          |
| 45 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 4        | -.068    | 10       | -.068    | 43       | 1.5      |          |          |          |
| 46 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 5        | -.068    | 11       | -.068    | 43       | 1.5      |          |          |          |
| 47 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 6        | -.068    | 12       | -.068    | 43       | 1.5      |          |          |          |
| 48 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 7        | -.068    | 13       | -.068    | 43       | 1.5      |          |          |          |
| 49 | 1.2D + 1.5Lm_2 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 8        | -.068    | 14       | -.068    | 43       | 1.5      |          |          |          |
| 50 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 3        | .068     | 9        | .068     | 44       | 1.5      |          |          |          |
| 51 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 4        | .068     | 10       | .068     | 44       | 1.5      |          |          |          |
| 52 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 5        | .068     | 11       | .068     | 44       | 1.5      |          |          |          |
| 53 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 6        | .068     | 12       | .068     | 44       | 1.5      |          |          |          |
| 54 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 7        | .068     | 13       | .068     | 44       | 1.5      |          |          |          |
| 55 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 8        | .068     | 14       | .068     | 44       | 1.5      |          |          |          |
| 56 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 3        | -.068    | 9        | -.068    | 44       | 1.5      |          |          |          |
| 57 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 4        | -.068    | 10       | -.068    | 44       | 1.5      |          |          |          |
| 58 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 5        | -.068    | 11       | -.068    | 44       | 1.5      |          |          |          |
| 59 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 6        | -.068    | 12       | -.068    | 44       | 1.5      |          |          |          |
| 60 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 7        | -.068    | 13       | -.068    | 44       | 1.5      |          |          |          |
| 61 | 1.2D + 1.5Lm_3 + 1.0...   | Yes   | Y    |      | 1        | 1.2      | 8        | -.068    | 14       | -.068    | 44       | 1.5      |          |          |          |
| 62 | 1.2D + 1.5Lv_1 0°         | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 63 | 1.2D + 1.5Lv_1 30°        | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 64 | 1.2D + 1.5Lv_1 60°        | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 65 | 1.2D + 1.5Lv_1 90°        | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 66 | 1.2D + 1.5Lv_1 120°       | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 67 | 1.2D + 1.5Lv_1 150°       | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 68 | 1.2D + 1.5Lv_1 180°       | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 69 | 1.2D + 1.5Lv_1 210°       | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 70 | 1.2D + 1.5Lv_1 240°       | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 71 | 1.2D + 1.5Lv_1 270°       | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 72 | 1.2D + 1.5Lv_1 300°       | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 73 | 1.2D + 1.5Lv_1 330°       | Yes   | Y    |      | 1        | 1.2      | 45       | 1.5      |          |          |          |          |          |          |          |
| 74 | 1.2D + 1.5Lv_2 0°         | Yes   | Y    |      | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |          |
| 75 | 1.2D + 1.5Lv_2 30°        | Yes   | Y    |      | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |          |
| 76 | 1.2D + 1.5Lv_2 60°        | Yes   | Y    |      | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |          |

### Load Combinations (Continued)

|     | Description             | So., P... | S... | BLCFac., |  |
|-----|-------------------------|-----------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| 77  | 1.2D + 1.5Lv 2 90°      | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 78  | 1.2D + 1.5Lv 2 120°     | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 79  | 1.2D + 1.5Lv 2 150°     | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 80  | 1.2D + 1.5Lv 2 180°     | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 81  | 1.2D + 1.5Lv 2 210°     | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 82  | 1.2D + 1.5Lv 2 240°     | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 83  | 1.2D + 1.5Lv 2 270°     | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 84  | 1.2D + 1.5Lv 2 300°     | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 85  | 1.2D + 1.5Lv 2 330°     | Yes       | Y    | 1        | 1.2      | 46       | 1.5      |          |          |          |          |          |          |  |
| 86  | 1.2D + 1.5Lv 3 0°       | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 87  | 1.2D + 1.5Lv 3 30°      | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 88  | 1.2D + 1.5Lv 3 60°      | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 89  | 1.2D + 1.5Lv 3 90°      | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 90  | 1.2D + 1.5Lv 3 120°     | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 91  | 1.2D + 1.5Lv 3 150°     | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 92  | 1.2D + 1.5Lv 3 180°     | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 93  | 1.2D + 1.5Lv 3 210°     | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 94  | 1.2D + 1.5Lv 3 240°     | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 95  | 1.2D + 1.5Lv 3 270°     | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 96  | 1.2D + 1.5Lv 3 300°     | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 97  | 1.2D + 1.5Lv 3 330°     | Yes       | Y    | 1        | 1.2      | 47       | 1.5      |          |          |          |          |          |          |  |
| 98  | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | 1        | 28       | 29       | 1        | 41       | 1        |          |  |
| 99  | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | .866     | 28       | .5       | 30       | 1        | 41       | 1        |  |
| 100 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | .5       | 28       | .866     | 31       | 1        | 41       | 1        |  |
| 101 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       |          | 28       | 1        | 32       | 1        | 41       | 1        |  |
| 102 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | -.5      | 28       | .866     | 33       | 1        | 41       | 1        |  |
| 103 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | -.866    | 28       | .5       | 34       | 1        | 41       | 1        |  |
| 104 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | -1       | 28       | 35       | 1        | 41       | 1        |          |  |
| 105 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | -.866    | 28       | -.5      | 36       | 1        | 41       | 1        |  |
| 106 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | -.5      | 28       | -.866    | 37       | 1        | 41       | 1        |  |
| 107 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       |          | 28       | -1       | 38       | 1        | 41       | 1        |  |
| 108 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | .5       | 28       | -.866    | 39       | 1        | 41       | 1        |  |
| 109 | 1.2D + 1.0EV +1.0 EH .. | Yes       | Y    | 1        | 1.2      | 27       | .866     | 28       | -.5      | 40       | 1        | 41       | 1        |  |

### Envelope Joint Reactions

| Joint |         | X [k] | LC     | Y [k] | LC    | Z [k] | LC     | MX [k-ft] | LC     | MY [k-ft] | LC | MZ [k-ft] | LC    |
|-------|---------|-------|--------|-------|-------|-------|--------|-----------|--------|-----------|----|-----------|-------|
| 1     | N78     | max   | 1.142  | 11    | 1.157 | 17    | .752   | 13        | -.535  | 7         | 0  | 109       | .212  |
| 2     |         | min   | -1.547 | 29    | .512  | 11    | -2.155 | 7         | -1.209 | 14        | 0  | 1         | -.061 |
| 3     | N79B    | max   | 1.506  | 35    | 1.148 | 23    | 1.917  | 25        | -.554  | 6         | 0  | 109       | .251  |
| 4     |         | min   | -.561  | 5     | .513  | 6     | -.25   | 6         | -1.241 | 23        | 0  | 1         | -.076 |
| 5     | N85B    | max   | .294   | 5     | .061  | 23    | 1.136  | 5         | -.021  | 85        | 0  | 109       | .118  |
| 6     |         | min   | -.275  | 11    | .016  | 5     | -1.078 | 11        | -.098  | 17        | 0  | 1         | .008  |
| 7     | N86B    | max   | .2     | 5     | .06   | 19    | .807   | 5         | -.021  | 85        | 0  | 109       | .12   |
| 8     |         | min   | -.216  | 11    | .017  | 74    | -.869  | 11        | -.097  | 17        | 0  | 1         | .008  |
| 9     | Totals: | max   | 1.562  | 11    | 2.407 | 17    | 1.865  | 2         |        |           |    |           |       |
| 10    |         | min   | -1.562 | 5     | 1.102 | 11    | -1.865 | 8         |        |           |    |           |       |

### Envelope AISC 15th(360-16): LRFD Steel Code Checks

| Member | Shape | Code C... | Loc[ft] | LC Shear ... | Loc[ft] | Dir | LC   | phi*Pnc [k] | phi*Pnt [k] | phi*Mn y... | phi*Mn z... | Cb    | Egn           |
|--------|-------|-----------|---------|--------------|---------|-----|------|-------------|-------------|-------------|-------------|-------|---------------|
| 1      | M54   | PIPE      | 2.5     | .239         | 8.854   | 36  | .071 | 8.724       | 8           | 41.049      | 50.715      | 3.596 | 3.596 1 H1-1b |
| 2      | M6    | PIPE      | 2.5     | .282         | 8.854   | 6   | .094 | 3.776       | 2           | 41.05       | 50.715      | 3.596 | 3.596 1 H1-1b |
| 3      | M5    | PIPE      | 2.5     | .126         | 6.667   | 85  | .025 | 3.333       | 85          | 46.315      | 50.715      | 3.596 | 3.596 1 H1-1b |
| 4      | M11   | PIPE      | 2.0     | .227         | .052    | 5   | .054 | .99         | 18          | 29.81       | 32.13       | 1.872 | 1.872 1 H1-1b |
| 5      | M12   | PIPE      | 2.0     | .152         | 234     | 29  | .068 | 2.448       | 31          | 29.81       | 32.13       | 1.872 | 1.872 2 H1-1b |

**Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)**

| Member | Shape | Code C...  | Loc[ft] | LC Shear ... | Loc[ft] | Dir  | LC    | phi*Pnc [kl] | phi*Pnt [kl] | phi*Mn y... | phi*Mn z... | Cb    | Egn         |
|--------|-------|------------|---------|--------------|---------|------|-------|--------------|--------------|-------------|-------------|-------|-------------|
| 6      | M17   | PL5/8X8    | .253    | .417         | 17      | .181 | .417  | y 29         | 155.571      | 162         | 2.109       | 27    | 1... H1-1b  |
| 7      | M12A  | PL5/8X3.5  | .000    | .243         | 14      | .000 | 0     | z 25         | 69.904       | 70.875      | .923        | 5.168 | 1 H1-1b     |
| 8      | M13   | PL5/8X3.5  | .045    | .247         | 11      | .017 | .247  | y 7          | 68.066       | 70.875      | .923        | 5.168 | 2... H1-1b  |
| 9      | M14   | PL5/8X3.5  | .058    | .247         | 29      | .025 | .247  | y 30         | 68.067       | 70.875      | .923        | 5.168 | 2... H1-1b  |
| 10     | M15A  | PL5/8X3.5  | .000    | .243         | 20      | .000 | 0     | z 25         | 69.904       | 70.875      | .923        | 5.168 | 1 H1-1b     |
| 11     | M17A  | PIPE 2.0   | .182    | .052         | 35      | .055 | .99   | 24           | 29.81        | 32.13       | 1.872       | 1.872 | 2... H1-1b  |
| 12     | M18   | PIPE 2.0   | .152    | .234         | 35      | .068 | 2.448 | 29           | 29.81        | 32.13       | 1.872       | 1.872 | 2... H1-1b  |
| 13     | M21   | PL5/8X8    | .249    | .417         | 23      | .178 | 0     | v 28         | 155.571      | 162         | 2.109       | 27    | 1... H1-1b  |
| 14     | M22   | PL5/8X3.5  | .000    | .243         | 35      | .000 | .051  | y 12         | 69.904       | 70.875      | .923        | 5.168 | 2... H1-1b  |
| 15     | M23   | PL5/8X3.5  | .038    | .247         | 12      | .013 | .247  | v 12         | 68.066       | 70.875      | .923        | 5.168 | 2... H1-1b  |
| 16     | M24   | PL5/8X3.5  | .057    | .247         | 35      | .025 | .247  | y 29         | 68.067       | 70.875      | .923        | 5.168 | 2... H1-1b  |
| 17     | M25   | PL5/8X3.5  | .000    | .051         | 35      | .000 | 0     | z 16         | 69.904       | 70.875      | .923        | 5.168 | 2... H1-1b  |
| 18     | M34   | SR 3/4     | .054    | 0            | 58      | .011 | 3.667 | 29           | 4.484        | 14.314      | .179        | .179  | 1 H1-1b*    |
| 19     | M35   | SR 3/4     | .000    | 0            | 109     | .011 | 0     | 35           | 4.484        | 14.314      | .179        | .179  | 1 H1-1a     |
| 20     | M36   | SR 3/4     | .086    | 3.667        | 29      | .019 | 3.667 | 5            | 4.484        | 14.314      | .179        | .179  | 1 H1-1b*    |
| 21     | M37   | SR 3/4     | .000    | 0            | 109     | .015 | 0     | 11           | 4.484        | 14.314      | .179        | .179  | 1 H1-1a     |
| 22     | M44   | PIPE 2.5   | .219    | 6.667        | 34      | .037 | 3.333 | 26           | 46.315       | 50.715      | 3.596       | 3.596 | 1 H1-1b     |
| 23     | M47   | PIPE 2.5   | .133    | 3.333        | 8       | .033 | 6.667 | 28           | 46.315       | 50.715      | 3.596       | 3.596 | 1 H1-1b     |
| 24     | M50   | PIPE 2.5   | .124    | 3.333        | 8       | .022 | 3.333 | 7            | 46.315       | 50.715      | 3.596       | 3.596 | 1 H1-1b     |
| 25     | M59   | SR 5/8 HRA | .056    | 0            | 23      | .026 | 0     | 29           | 3.122        | 9.94        | .104        | .104  | 2... H1-1b  |
| 26     | M60   | SR 5/8 HRA | .097    | 2.771        | 3       | .004 | 0     | 28           | 3.122        | 9.94        | .104        | .104  | 2... H1-1b* |
| 27     | M61   | SR 5/8 HRA | .090    | 2.771        | 2       | .002 | 0     | 2            | 3.122        | 9.94        | .104        | .104  | 2... H1-1b* |
| 28     | M62   | SR 5/8 HRA | .109    | 2.771        | 35      | .023 | 0     | 29           | 3.122        | 9.94        | .104        | .104  | 2... H1-1b  |
| 29     | M65A  | PL5/8X3.5  | .263    | .5           | 58      | .029 | .5    | v 9          | 66.866       | 70.875      | .923        | 5.168 | 1... H1-1b  |
| 30     | M66A  | PL5/8X3.5  | .530    | 0            | 29      | .066 | 0     | y 6          | 66.866       | 70.875      | .923        | 5.168 | 1... H1-1b  |
| 31     | M63A  | PL5/8X3.5  | .257    | .5           | 51      | .027 | .5    | v 50         | 66.866       | 70.875      | .923        | 5.168 | 1... H1-1b  |
| 32     | M64A  | PL5/8X3.5  | .524    | 0            | 35      | .064 | 0     | y 35         | 66.866       | 70.875      | .923        | 5.168 | 1... H1-1b  |
| 33     | M66C  | PIPE 2.0   | .072    | 6.582        | 17      | .059 | 6.582 | 28           | 19.112       | 32.13       | 1.872       | 1.872 | 2... H1-1b  |
| 34     | M67A  | PIPE 2.0   | .066    | 6.582        | 17      | .060 | 6.582 | 29           | 19.112       | 32.13       | 1.872       | 1.872 | 2... H1-1b  |
| 35     | M70   | PIPE 2.0   | .048    | 2.5          | 8       | .015 | 1.25  | 8            | 23.809       | 32.13       | 1.872       | 1.872 | 1... H1-1b  |

|      |     | Shear X (k) | Vertical Y (k) | Shear Z (k) | MX (k-ft) | MY (k-ft) | MZ (k-ft) | Combined Shear (X+Y)+(Mz/Arm) | Axial Tension | Combined Tension (Tension)+(Mx/(H*PL/2)) |     |        |    |       |       |       |
|------|-----|-------------|----------------|-------------|-----------|-----------|-----------|-------------------------------|---------------|------------------------------------------|-----|--------|----|-------|-------|-------|
| N78  | max | 1.142       | 11             | 1.157       | 17        | 0.752     | 13        | -0.535                        | 7             | 0                                        | 109 | 0.212  | 30 | 1.868 | 0.000 | 2.140 |
| N78  | min | -1.547      | 29             | 0.512       | 11        | -2.155    | 7         | -1.209                        | 14            | 0                                        | 1   | -0.061 | 74 | 1.560 | 2.155 | 6.991 |
| N79B | max | 1.506       | 35             | 1.148       | 23        | 1.917     | 25        | -0.554                        | 6             | 0                                        | 109 | 0.251  | 29 | 2.181 | 0.000 | 2.216 |
| N79B | min | -0.561      | 5              | 0.513       | 6         | -0.25     | 6         | -1.241                        | 23            | 0                                        | 1   | -0.076 | 74 | 0.673 | 0.250 | 5.214 |

TIA-222-H

## Section 4-9 - Connections

## Main Connection @ Leg Support

|                            |          |     |      |                             |     |        |                       |
|----------------------------|----------|-----|------|-----------------------------|-----|--------|-----------------------|
| Qty.                       | 4        | in. | Fyb  | Fub                         | UNC | 11     | Bolt threads per inch |
| Bolt/Rod Dia.              | 0.625    | in. | 55   | 75                          | Ab  | 0.3068 | in <sup>2</sup>       |
| Bolt/Rod Grade             | F1554-55 |     | N    | N = Included / X = Excluded | An  | 0.2260 | in <sup>2</sup>       |
| Thread(s)                  |          |     |      |                             |     |        |                       |
| Horiz. Dist. Between Bolts | 10.5     | in. |      |                             |     |        |                       |
| Leg Dia / Width            | 2        | in. | Ecc= | 4.25                        | in. |        |                       |

## Front Support Member

|                         |       |                  |     |         |    |  |  |
|-------------------------|-------|------------------|-----|---------|----|--|--|
| Angle/Channel/Plate Ht. | 6     | in.              | Fyb | Fub     |    |  |  |
| Thickness               | 0.375 | in.              | 36  | 58      |    |  |  |
| Grade                   | A36   |                  |     |         |    |  |  |
| Edge Dist.              | 1.25  | in. (Le)         |     |         |    |  |  |
| Slotted Hole            | No    | N = No / Y = Yes | Lc= | 0.90625 | in |  |  |

## Back Support Member

|                  |         |                                             |     |  |  |  |
|------------------|---------|---------------------------------------------|-----|--|--|--|
| Back Member Type | Channel | Fyb                                         | Fub |  |  |  |
| Steel Grade      | A36     | 36                                          | 58  |  |  |  |
| Height           | 6       | in.                                         |     |  |  |  |
| Width            | 2.16    | in. (Note: Enter "D" for plate or flat bar) |     |  |  |  |
| Thickness        | 0.375   | in.                                         |     |  |  |  |

Zy = 1.5959 in.<sup>3</sup> (Plastic Modulus)<https://calcresource.com/cross-sections.html>

## Strength Factors

|    |      |         |
|----|------|---------|
| Φv | 0.75 | Shear   |
| Φt | 0.70 | Tension |
| Φb | 0.80 | Bearing |
| Φf | 0.90 | Flexure |

Rib = 1 Conn. length reduction factor (= to 1.00 for single bolt conn. or Lb &lt; 16 in.) (Lb = dist. between bolts in same line of force)

|      |        |      |                                                 |        |        |
|------|--------|------|-------------------------------------------------|--------|--------|
| ΦRnv | 8.629  | kips | Single Bolt/Rod Shear Strength                  |        |        |
| ΦRnt | 12.713 | kips | Single Bolt/Rod Tension Strength                | 22.185 | 32.625 |
| ΦRnb | 22.185 | kips | Single Bolt/Rod Member Bearing Strength (Front) | 15.769 | 27.188 |
| ΦRnb | 22.185 | kips | Single Bolt/Rod Member Bearing Strength (Back)  |        |        |

## Combined Shear &amp; Tension - Section 4.9.6.4

|      | Shear         | Tension       | Unity Check | Result |
|------|---------------|---------------|-------------|--------|
| N78  | V/ΦRnv= 0.054 | T/ΦRnt= 0.084 | 0.100       | Pass   |
| N78  | V/ΦRnv= 0.045 | T/ΦRnt= 0.275 | 0.279       | Pass   |
| N79B | V/ΦRnv= 0.063 | T/ΦRnt= 0.087 | 0.108       | Pass   |
| N79B | V/ΦRnv= 0.020 | T/ΦRnt= 0.205 | 0.206       | Pass   |

| Controlling Shear/Bearing |               | Tension       | Unity Check | Result |
|---------------------------|---------------|---------------|-------------|--------|
| N78                       | V/ΦRnv= 0.054 | T/ΦRnt= 0.084 | 0.100       | Pass   |
| N78                       | V/ΦRnv= 0.045 | T/ΦRnt= 0.275 | 0.279       | Pass   |
| N79B                      | V/ΦRnv= 0.063 | T/ΦRnt= 0.087 | 0.108       | Pass   |
| N79B                      | V/ΦRnv= 0.020 | T/ΦRnt= 0.205 | 0.206       | Pass   |

|      | Bending       | Unity Check | Result |
|------|---------------|-------------|--------|
| N78  | M/ΦMn = 0.068 | 0.088       | Pass   |
| N78  | M/ΦMn = 0.287 | 0.287       | Pass   |
| N79B | M/ΦMn = 0.091 | 0.091       | Pass   |
| N79B | M/ΦMn = 0.214 | 0.214       | Pass   |

Controlling Unity Check = 0.287 &lt; 1.05 Pass

# **ATTACHMENT 5**



C Squared Systems, LLC  
65 Dartmouth Drive  
Auburn, NH 03032  
(603) 644-2800  
[support@csquaredsystems.com](mailto:support@csquaredsystems.com)

---

## Calculated Radio Frequency Emissions Report



Stafford 4  
169 Hampden Road, Stafford, CT 06076

---

July 26, 2023

## Table of Contents

|                                                                              |    |
|------------------------------------------------------------------------------|----|
| 1. Introduction.....                                                         | 1  |
| 2. FCC Guidelines for Evaluating RF Radiation Exposure Limits.....           | 1  |
| 3. RF Exposure Prediction Methods .....                                      | 2  |
| 4. Antenna Inventory .....                                                   | 3  |
| 5. Calculation Results.....                                                  | 4  |
| 6. Conclusion.....                                                           | 6  |
| 7. Statement of Certification.....                                           | 6  |
| Attachment A: References.....                                                | 7  |
| Attachment B: FCC Limits for Maximum Permissible Exposure (MPE) .....        | 8  |
| Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns..... | 10 |

## List of Figures

|                                                                           |   |
|---------------------------------------------------------------------------|---|
| Figure 1: Graph of General Population % MPE vs. Distance.....             | 4 |
| Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)..... | 9 |

## List of Tables

|                                                                      |   |
|----------------------------------------------------------------------|---|
| Table 1: Proposed Antenna Inventory .....                            | 3 |
| Table 2: Maximum Percent of General Population Exposure Values ..... | 5 |
| Table 3: FCC Limits for Maximum Permissible Exposure .....           | 8 |

## 1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 152.8' AGL on an existing guyed tower located at 169 Hampden Road in Stafford, CT. The coordinates of the guyed tower are 41° 59' 58.49" N, 72° 21' 20.29" W.

Verizon is proposing the following:

- 1) Install nine (9) multi-band antennas, three (3) per sector to support its commercial LTE network.

This report considers the planned antenna configuration for Verizon<sup>1</sup> and the existing antennas for T-Mobile<sup>2</sup> to derive the resulting % MPE of its proposed installation.

## 2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm<sup>2</sup>). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

---

<sup>1</sup> As referenced to Verizon's Radio Frequency Design Sheet updated 12/05/2022.

<sup>2</sup> As referenced to EBI Consulting's Radio Frequency Emissions Analysis Report, Dated 10/18/2021

### 3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

$$\text{Power Density} = \left( \frac{\text{GRF}^2 \times 1.64 \times \text{ERP}}{4\pi \times R^2} \right) \times \text{Off Beam Loss}$$

Where:

EIRP = Effective Isotropic Radiated Power

$R = \text{Radial Distance} = \sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor (GRF) of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

#### 4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

| Operator | Sector / Call Sign | TX Freq (MHz) | Power at Antenna (Watts) | Ant Gain (dBi) | Power EIRP (Watts) | Antenna Model   | Beam Width | Mech. Tilt | Length (ft) | Antenna Centerline Height (ft) |
|----------|--------------------|---------------|--------------------------|----------------|--------------------|-----------------|------------|------------|-------------|--------------------------------|
| Verizon  | Alpha / 30°        | 700           | 160                      | 14.9           | 4944               | NHH-65B-R2B     | 65         | 0          | 5.99        | 152.8                          |
|          |                    | 850           | 160                      | 15             | 5060               |                 | 60         |            |             |                                |
|          |                    | 1900          | 160                      | 17.9           | 9866               |                 | 69         |            |             |                                |
|          |                    | 2100          | 240                      | 18.4           | 16604              |                 | 64         |            |             |                                |
|          |                    | 3500          | 20                       | 17.7           | 1178               | NHHSS-65B-R2BT4 | 54         | 0          | 5.99        | 152.8                          |
|          |                    | 3700          | 200                      | 25.5           | 70963              | MT6413-77A      | 105        | 0          | 2.92        | 152.8                          |
|          | Beta / 150°        | 700           | 160                      | 14.9           | 4944               | NHH-65B-R2B     | 65         | 0          | 5.99        | 152.8                          |
|          |                    | 850           | 160                      | 15             | 5060               |                 | 60         |            |             |                                |
|          |                    | 1900          | 160                      | 17.9           | 9866               |                 | 69         |            |             |                                |
|          |                    | 2100          | 240                      | 18.4           | 16604              |                 | 64         |            |             |                                |
|          |                    | 3500          | 20                       | 17.7           | 1178               | NHHSS-65B-R2BT4 | 54         | 0          | 5.99        | 152.8                          |
|          |                    | 3700          | 200                      | 25.5           | 70963              | MT6413-77A      | 105        | 0          | 2.92        | 152.8                          |
|          | Gamma / 270°       | 700           | 160                      | 14.9           | 4944               | NHH-65B-R2B     | 65         | 0          | 5.99        | 152.8                          |
|          |                    | 850           | 160                      | 15             | 5060               |                 | 60         |            |             |                                |
|          |                    | 1900          | 160                      | 17.9           | 9866               |                 | 69         |            |             |                                |
|          |                    | 2100          | 240                      | 18.4           | 16604              |                 | 64         |            |             |                                |
|          |                    | 3500          | 20                       | 17.7           | 1178               | NHHSS-65B-R2BT4 | 54         | 0          | 5.99        | 152.8                          |
|          |                    | 3700          | 200                      | 25.5           | 70963              | MT6413-77A      | 105        | 0          | 2.92        | 152.8                          |

Table 1: Proposed Antenna Inventory<sup>34</sup>

<sup>3</sup> Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 12/05/2022.

<sup>4</sup> Transmit power assumes 0 dB of cable loss.

## 5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within  $\pm 5$  degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.



Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (6.23% of the General Population limit) is calculated to occur at a horizontal distance of 715 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1500 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 715 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

| Carrier               | Number of Transmitters | Power out of Base Station Per Transmitter (Watts) | Antenna Height (Feet) | Distance to the Base of Antennas (Feet) | Power Density (mW/cm <sup>2</sup> ) | Limit (mW/cm <sup>2</sup> ) | % MPE        |
|-----------------------|------------------------|---------------------------------------------------|-----------------------|-----------------------------------------|-------------------------------------|-----------------------------|--------------|
| T-Mobile 2500 MHz     | 1                      | 240.0                                             | 171.0                 | 715                                     | 0.026947                            | 1.000                       | 2.69%        |
| T-Mobile LTE 1900 MHz | 1                      | 120.0                                             | 171.0                 | 715                                     | 0.000053                            | 1.000                       | 0.01%        |
| T-Mobile LTE 2100 MHz | 1                      | 120.0                                             | 171.0                 | 715                                     | 0.000087                            | 1.000                       | 0.01%        |
| T-Mobile LTE 600 MHz  | 1                      | 140.0                                             | 171.0                 | 715                                     | 0.000850                            | 0.400                       | 0.21%        |
| T-Mobile LTE 700 MHz  | 1                      | 60.0                                              | 171.0                 | 715                                     | 0.000394                            | 0.467                       | 0.08%        |
| Verizon 3700 MHz      | 1                      | 200.0                                             | 152.8                 | 715                                     | 0.028016                            | 1.000                       | 2.80%        |
| Verizon LTE 1900 MHz  | 1                      | 160.0                                             | 152.8                 | 715                                     | 0.000141                            | 1.000                       | 0.01%        |
| Verizon LTE 2100 MHz  | 1                      | 240.0                                             | 152.8                 | 715                                     | 0.000192                            | 1.000                       | 0.02%        |
| Verizon LTE 750 MHz   | 1                      | 160.0                                             | 152.8                 | 715                                     | 0.001072                            | 0.500                       | 0.21%        |
| Verizon LTE 885 MHz   | 1                      | 160.0                                             | 152.8                 | 715                                     | 0.001001                            | 0.567                       | 0.18%        |
|                       |                        |                                                   |                       |                                         |                                     | <b>Total</b>                | <b>6.23%</b> |

**Table 2: Maximum Percent of General Population Exposure Values**

## 6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be 6.23% of the FCC limit (General Population/Uncontrolled). This maximum cumulative percent of MPE value is calculated to occur 715 feet away from the site.

## 7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.



Report Prepared By: Ram Acharya  
RF Engineer 1  
C Squared Systems, LLC

July 24, 2023  
Date



Reviewed/Approved By: Martin Lavin  
Senior RF Engineer  
C Squared Systems, LLC

July 26, 2023  
Date

### Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Verizon's Radio Frequency Design Sheet updated 10/21/2022

AT&T's filing, Connecticut Siting Council Notice of Exempt Modification – Antenna Add - 169 Hampton R (aka 1 Service Road) Stafford, CT, dated 9/23/2022

As referenced to Dish Wireless LLC's filing, Connecticut Siting Council Tower Share Application – 169 Hampton R , Stafford, CT, dated 11/19/2021

T-Mobile's filing, Connecticut Siting Council Notice of Exempt Modification – 169 Hampton R , Stafford, CT, dated 10/1/2020

### Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

#### (A) Limits for Occupational/Controlled Exposure<sup>5</sup>

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (E) (A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> ,  H  <sup>2</sup> or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------------------------------------|
| 0.3-3.0               | 614                               | 1.63                              | (100)*                                  | 6                                                                 |
| 3.0-30                | 1842/f                            | 4.89/f                            | (900/f <sup>2</sup> )*                  | 6                                                                 |
| 30-300                | 61.4                              | 0.163                             | 1.0                                     | 6                                                                 |
| 300-1500              | -                                 | -                                 | f/300                                   | 6                                                                 |
| 1500-100,000          | -                                 | -                                 | 5                                       | 6                                                                 |

#### (B) Limits for General Population/Uncontrolled Exposure<sup>6</sup>

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (E) (A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> ,  H  <sup>2</sup> or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------------------------------------|
| 0.3-1.34              | 614                               | 1.63                              | (100)*                                  | 30                                                                |
| 1.34-30               | 824/f                             | 2.19/f                            | (180/f <sup>2</sup> )*                  | 30                                                                |
| 30-300                | 27.5                              | 0.073                             | 0.2                                     | 30                                                                |
| 300-1500              | -                                 | -                                 | f/1500                                  | 30                                                                |
| 1500-100,000          | -                                 | -                                 | 1.0                                     | 30                                                                |

f = frequency in MHz \* Plane-wave equivalent power density

**Table 3: FCC Limits for Maximum Permissible Exposure**

<sup>5</sup> Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

<sup>6</sup> General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.



Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

### Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns

|                                                                                                                                                                                                                                                                                                                                          |                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| <p><b>750 MHz</b></p> <p>Manufacturer: COMMSCOPE<br/>         Model #: NHH-65B-R2B<br/>         Frequency Band: 698-806 MHz<br/>         Gain: 14.9 dBi<br/>         Vertical Beamwidth: 12.4°<br/>         Horizontal Beamwidth: 65.0°<br/>         Polarization: ±45°<br/>         Dimensions (L x W x D): 71.97" x 11.85" x 7.09"</p> |    |
| <p><b>885 MHz</b></p> <p>Manufacturer: COMMSCOPE<br/>         Model #: NHH-65B-R2B<br/>         Frequency Band: 806-896 MHz<br/>         Gain: 15.0 dBi<br/>         Vertical Beamwidth: 11.2°<br/>         Horizontal Beamwidth: 60°<br/>         Polarization: ±45°<br/>         Dimensions (L x W x D): 71.97" x 11.85" x 7.09"</p>   |   |
| <p><b>1900 MHz</b></p> <p>Manufacturer: COMMSCOPE<br/>         Model #: NHH-65B-R2B<br/>         Frequency Band: 1850-1990 MHz<br/>         Gain: 17.9 dBi<br/>         Vertical Beamwidth: 5.2°<br/>         Horizontal Beamwidth: 69°<br/>         Polarization: ±45°<br/>         Dimensions (L x W x D): 71.97" x 11.85" x 7.09"</p> |  |

**2100 MHz**

Manufacturer: COMMSCOPE  
Model #: NHH-65B-R2B  
Frequency Band: 1920-2200 MHz  
Gain: 18.4 dBi  
Vertical Beamwidth: 4.9°  
Horizontal Beamwidth: 64.0°  
Polarization: ±45°  
Dimensions (L x W x D): 71.97" x 11.85" x 7.09"



# SD050 | 4.5L | 50 kW

## INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

**GENERAC** | INDUSTRIAL POWER

### Standby Power Rating

50 kW, 63 kVA, 60 Hz

### Prime Power Rating\*

45 kW, 56 kVA, 60 Hz



\*EPA Certified Prime ratings are not available in the US or its Territories



Image used for illustration purposes only

## Codes and Standards

Not all codes and standards apply to all configurations. Contact factory for details.



UL2200, UL508, UL489, UL142



CSA C22.2



BS5514 and DIN 6271



SAE J1349



NFPA 37, 70, 99, 110



NEC700, 701, 702, 708



ISO 3046, 7637, 8528, 9001



NEMA ICS10, MG1, 250, ICS6, AB1



ANSI C62.41



IBC 2009, CBC 2010, IBC 2012,  
ASCE 7-05, ASCE 7-10, ICC-ES AC-  
156 (2012)

## Powering Ahead

For over 50 years, Generac has provided innovative design and superior manufacturing.

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial applications under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

# **ATTACHMENT 6**



## Certificate of Mailing — Firm

| Name and Address of Sender                                                                                                                |                                                                                                                                        | TOTAL NO.<br>of Pieces Listed by Sender                                             | TOTAL NO.<br>of Pieces Received at Post Office™ | Affix Stamp Here<br><i>Postmark with Date of Receipt.</i>                                                                                                                                                                                                                                                                                        |                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Kenneth C. Baldwin, Esq.<br>Robinson & Cole LLP<br>280 Trumbull Street<br>Hartford, CT 06103                                              |                                                                                                                                        | 4                                                                                   | 4                                               | <br>07/27/2023<br>US POSTAGE \$003.55 <sup>0</sup><br><br>ZIP 06103<br>041L12203937<br> |                |  |
| Postmaster, per <i>(name of receiving employee)</i><br> |                                                                                                                                        |                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                  |                |  |
| USPS® Tracking Number<br>Firm-specific Identifier                                                                                         | Address<br>(Name, Street, City, State, and ZIP Code™)                                                                                  | Postage                                                                             | Fee                                             | Special Handling                                                                                                                                                                                                                                                                                                                                 | Parcel Airlift |  |
| 1.                                                                                                                                        | Salverio P. Titus, First Selectman<br>Town of Stafford - Warren Memorial Town Hall<br>1 Main Street<br>Stafford Springs, CT 06076      |  | 00355                                           |                                                                                                                                                                                                                                                                                                                                                  |                |  |
| 2.                                                                                                                                        | Jennifer Roy, Zoning Official<br>Town of Stafford - Warren Memorial Town Hall<br>1 Main Street<br>Stafford Springs, CT 06076           |                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                  |                |  |
| 3.                                                                                                                                        | Karen, Phillip and Michael Vivenzio<br>72 Tanglewood Drive<br>East Longmeadow, MA 01025                                                |                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                  |                |  |
| 4.                                                                                                                                        | Everest Infrastructures Partners<br>Attn: Michael Ashley Culbert<br>2 Allgheny Center, Suite 703 - Nova Tower 2<br>Allegheny, PA 15212 |                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                  |                |  |
| 5.                                                                                                                                        |                                                                                                                                        |                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                  |                |  |
| 6.                                                                                                                                        |                                                                                                                                        |                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                  |                |  |