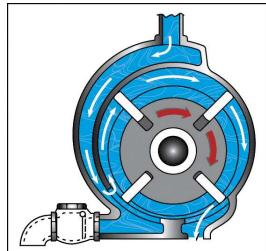


Basic Pump Operations And Hydraulics

Day One - Pump Theory

- This section will cover
 - Types of pumps
 - Pump drives
 - Pump controls
 - Pressure control devices
 - Pump instrumentation
 - Basic pump operations


Fire Pumps 2 Types

- Positive displacement will pump anything
 - Water
 - Air
 - Semi-solids
- Non-positive displacement
 - Will not pump air
 - 750 TO 2000 gpm typical

Positive Displacement Pumps

Rotary Vane Pumps

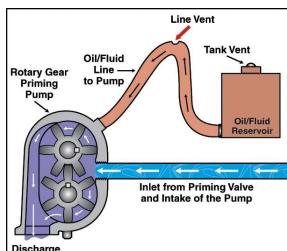
- Free traveling vanes
- Eccentric rotor
- Oil lubricated
- Driven by an electric motor
- Newer pumps are oilless

Priming Pump Assembly

- Electric starter motor
- Uses truck electricity
- Crank 45 seconds maximum

Primer Valve Control

- Engages primer
- Opens valve between fire pump & priming pump



Priming Oil

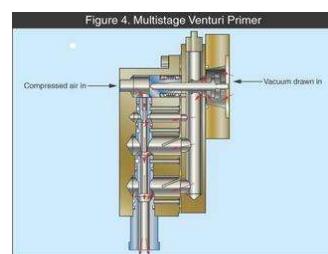
- Cools
- Lubricates
- Seals clearances

Priming Pump Assembly

Oil-less Primers

- Hale recommends running the pumps regularly and to let water flow out for a little while to clean out dust

Air Primer



- Chassis Air Supply
- No Electric Motor
- No Lubrication Required
- Cleanable Inline Strainer

Connecticut Fire Academy
Pump Operator

11

Air Primer

Air Primer

- The following 4 slides have different modes and ways of using an air primer

Centrifugal Pumps

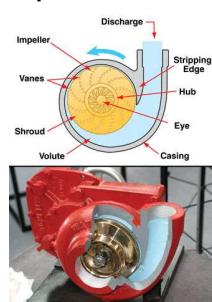
Single & Two Stage Pumps

Purpose of a Fire Pump

- Add pressure to available water
 - Most municipal water systems lack required pressure for handlines
- Pumps can not increase the volume available from a given source

Advantages

- Takes advantage of incoming pressure
 - If a pump is making 100 PSI and takes a pressurized water supply at 50 PSI, the total pump output will be 150 PSI
- Mechanically simple
 - Only one moving part


Disadvantages

- Not self-priming
- Subject to cavitation
- Limited lift capabilities

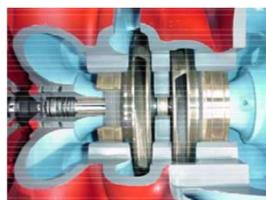
Centrifugal Pump Operation

- Water enters the impeller eye
- Water is accelerated as the impeller spins
- Water is discharged to the manifold

Centrifugal Pump Discharge

- Determined by-
 - Number & size of impellers
 - Pump displacement
 - Impeller speed
 - Incoming pressure

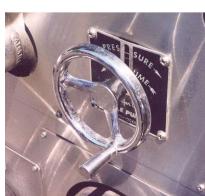
Single Stage Pump



- One impeller
- Single or dual suction
- Discharge pressure and volume controlled by engine speed & valves

Two Stage Pump

- Two impellers on a single shaft
- Pressure (series) mode
- Volume (parallel) mode

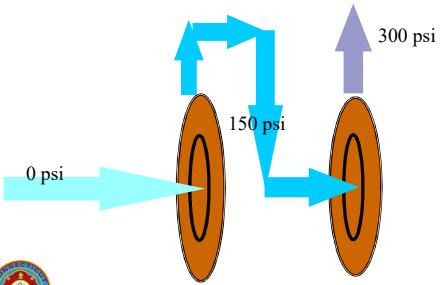


Transfer Valve

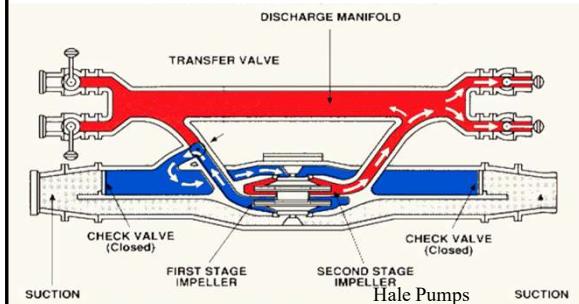
- Determines pump "mode"
 - Series
 - Pressure
- Operation
 - Manual
 - Electric
 - Hydraulic
 - Pneumatic

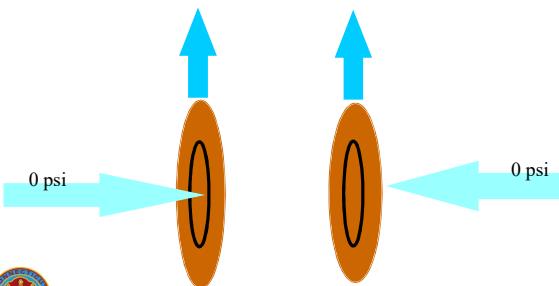
Two Stage Pump

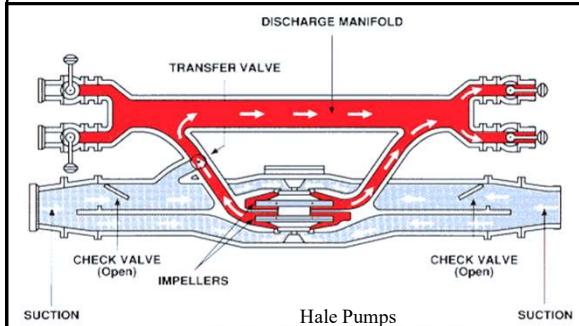
- In pressure/series mode, one impeller discharges into the intake of the second impeller
- In volume/parallel mode, both impellers discharge into the discharge manifold



Two Stage Pump


- Use pressure mode when-
 - Higher pressures are needed
 - Less than half the pump capacity is needed
- Use volume mode when-
 - You will be flowing more than 50% of the pump capacity


Series (Pressure) Operation


Series (Pressure) Operation

Volume (Parallel) Operation

Volume (Parallel) Operation

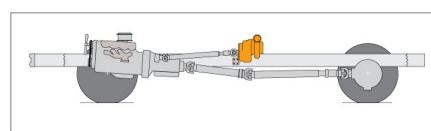
Pump Wear Rings

- Prevents water from leaking back into the inlet
- Tolerances of 0.0" to 0.01"
- Will be damaged by heat

Pump Packing

- Seals the pump shaft
- Lubricated by water
- Slow leaking is normal
- Adjustable

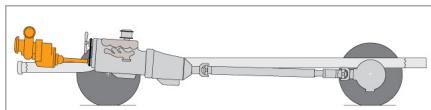
Mechanical Seal


Pump Drive Types

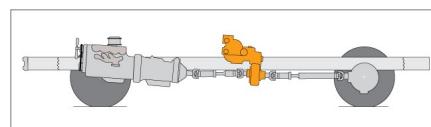
Auxiliary Engine Drives

- Independent from the apparatus engine
- Pump & roll capable
- Some capable of very high flows

PTO Driven



- Power comes from the transmission
- Lower capacity pumps
 - 1250 GPM or less



Front Mounted Pump Drive

- Driven from the engine crankshaft
- Common on water source pumper
- Manual clutch on the pump shaft to engage

Mid-Ship Pump Drive

- Most commonly used today
- Split driveshaft
- Transmission must be engaged to drive the pump

Transfer Case

- Shifts the transmission output to either the rear axle or the pump
- Pneumatic, electric, or manually activated

Pump Controls

Pump Piping & Valves

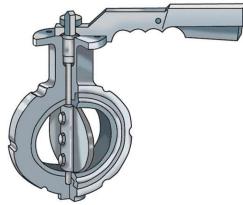
- May be steel, brass, plastic, or stainless steel
- Must withstand a 500 PSI static test

Steamer Intakes

- Direct line to the pump impeller
- Best choice for drafting

Intake Valves

- Located below the impeller eye
- Various locations
- Larger than 2 1/2" must be slow acting valves
- Must have an air bleeder


Intake Relief Valve

- Adjustable relief pressure
- Dumps excess pressure from supply lines
- Absorbs some water hammer

Butterfly Valves

- Not slow acting
- May be difficult to control
- Found on intakes

Auxiliary Intakes

- Used for supplementing main supply
- Must have an air bleeder
- Bends and fittings may reduce flow

Front Intakes

- Must have slow acting valves
- Long plumbing runs
- Multiple 90° bends
- High loss
- May not be the best choice for drafting

Remote Control Intakes

- Electric or pneumatic
- Allows intake to be received away from the pump panel

Tank to Pump Valve

- Discharges from the bottom of the tank
- 3" minimum piping
- 1 way check valve prevents bottom filling of the tank
- 500 GPM minimum

Discharge Valves

- Must have individual pressure gauges
 - Except tank fill & booster
- Self or mechanically locking

Quarter Turn Valves

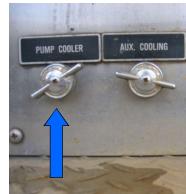
- Found on most pumps
 - Push / pull valves are $\frac{1}{4}$ turn valves
- Found on some intakes
- May be manually locking

Large Diameter Valves

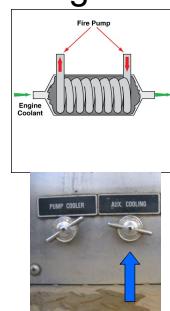
- Must be slow acting
- Electric, manual, pneumatic
- Required on valves greater than $2\frac{1}{2}$ "

Drain Valves

- Used to relieve pressure in between the valve and the nozzle


Tank Fill Line

- Used to fill booster tank
- Used to circulate water


Re-Circulating Line

- Sends a small amount of water from the discharge back into the intake
- May be too small to cool during high pressure operations

Auxiliary Engine Cooling

- Circulates pump water through a heat exchanger
- Does not mix with coolant

Main Pump Drain

- Low point drain in the pump cavity
- Removes debris from the pump

Throttle Control

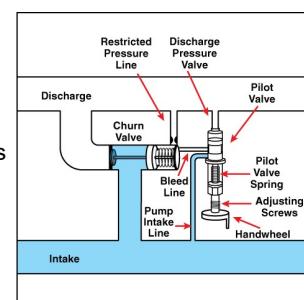
- Controls engine RPM
- Manual or electric
- Includes an emergency idle button

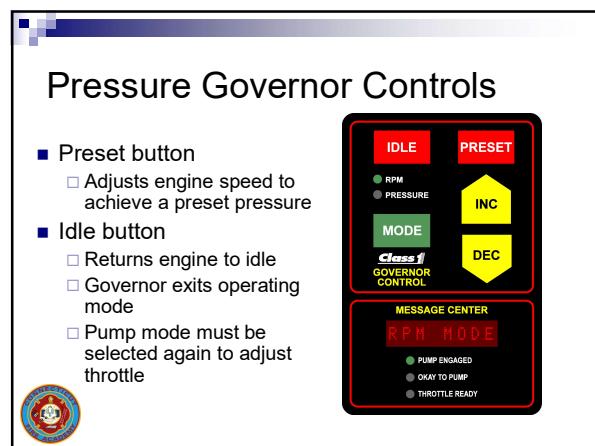
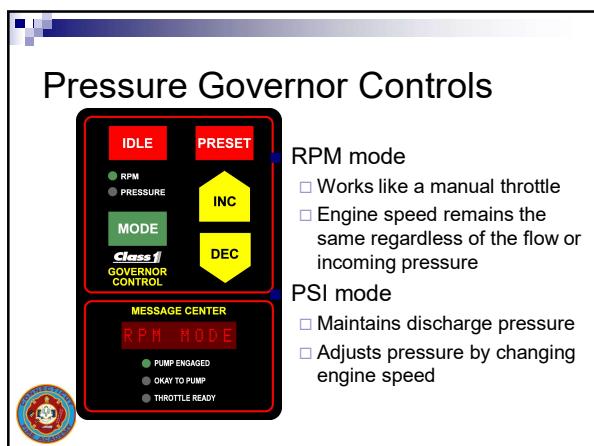
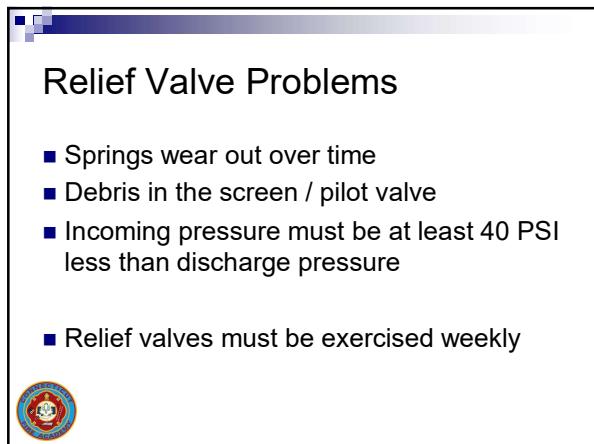
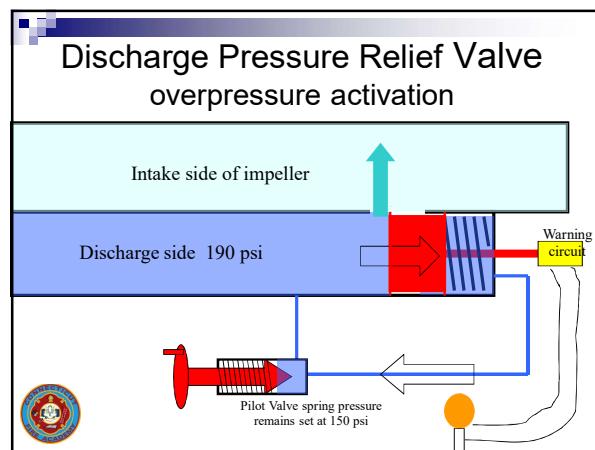
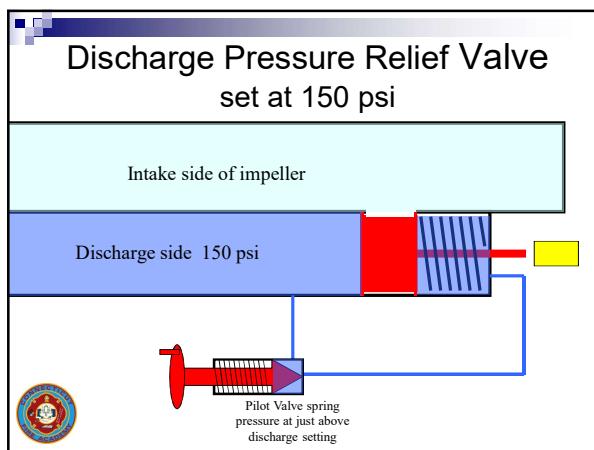
Pressure Control Devices

Relief Valves & Pressure Governors

Pressure Control Devices

- Must operate in 3 to 10 seconds
- React at a pressure rise of no greater than 30 PSI
- Must have a visual indication of operation
 - Idiot light
- These are NFPA minimums


Relief Valves






- Assembly of springs & valves designed to re-direct excess pressure

How it Works

- The valve is set to open at the highest pressure for the operation
- When the pressure is exceeded, the valve opens and diverts excess pressure to the intake

Setting a Pressure Governor

- 1) Set the pump to the desired pressure
- 2) Press the "mode" or "PSI" button
- 3) Monitor discharge pressure

Pressure Governor Advantages

- When additional lines open, the pump pressure will increase to supply the additional flow
- Hydrant transitions can be done without manually throttling down
 - Only if all air is bled

Pressure Governor Problems

- Any air in the supply line will be read as cavitation by the governor
- All air must be bled completely from supply lines

Pressure Governor Problems

- If using strong hydrants, the governor can not dump excess pressure
- Example- a 125 PSI hydrant feeding a pump that makes 40 PSI at idle
 - 165 PSI output at idle
 - Low pressure lines may be over-pressurized even if gated down

Pressure Governor Problems

- Failure of electronic systems will disable the governor and the throttle
- This can be dangerous for interior crews

Pump Instrumentation

The Big Five

Master Intake Gauge

- Reads vacuum and pressure
- Tells how much water is available

Master Discharge Gauge

- Measured as water leaves the impeller
- Set for the highest pressure required

Tachometer

- Used to help indicate early cavitation
- Used to gauge pump efficiency when testing

Water Temperature

- Used to gauge when to open or close auxiliary engine coolers

Oil Pressure Gauge

- May decrease as pumping operations are extended
- If not reading, confirm with the gauge in the cab before taking action

Pump Overheat Indicator

- Heat sensor in the pump manifold

Voltmeter

- Some apparatus have one on the pump panel
- Readings less than 12 volts may affect electric throttles and pressure governors

Discharge Gauges

- Measures pressure after the discharge valve
- Gated to desired pressure if lower than master pressure

Water Tank Level Lights

- Most measure in $\frac{1}{4}$ increments
- May not be accurate if on uneven ground

Engaging the Pump

Mid-ship Pumps

Steps to Engage the Pump

- 1) Position the apparatus
- 2) Set parking brake
- 3) Shift to neutral
- 4) Operate pump shift
- 5) Place transmission in proper gear

Indicators of a Successful Shift

- Sound
- Indicator light
- Speedometer
- Electronic transmission readout

Indicators of a Successful Shift

- Pressure on master gauge
- Relief valve lights
- Manual override position (if equipped)

Air Pump Shifts

- Air pressure must be greater than 90 PSI to actuate the pump shift
- Glance at your air pressure before shifting

Troubleshooting

- If the pump won't engage
 - Retrace your steps
 - Start from the beginning (shifting slower)
 - Use manual override
 - Notify command / other companies if unsuccessful again

Disengaging the Pump

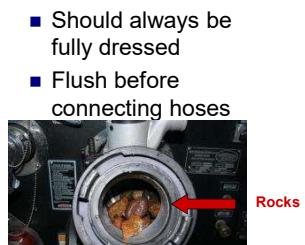
- Return to idle
- Place transmission in neutral
 - Wait for the speedometer to stop
- Disengage the pump shift

Hydrant Operations

And Other Pressurized Water Sources

Types of Pressurized Sources

- Hydrants
 - Most common
- Relay pumps



Hydrants

- The closest is not always the best
- Accessible?
- Lack of maintenance?
- Dead end main?

Hydrants

Residual Pressure

- Maintain no less than 20 PSI incoming
 - Allows for minor system fluctuations
 - Gives a buffer in case of burst hoses
 - Allows for inaccurate gauges

Hydrant Assist Valves

- Allow first due companies to establish their own water supply
- Later arriving apparatus can tie in and boost pressure without interrupting flow

Estimating Hydrant Flow

- Note static pressure
- When flowing, note the residual pressure
- The percentage difference between the two will tell you approximately how much water is still available

Estimating Hydrant Flow

- 100 PSI static, 80 PSI residual
 - 20% drop
- 0-10% = 3 times the current flow
- 11-15% = 2 times the current flow
- 16-25% = same as the current flow
- Greater than 25% = less than current flow

Shutting Down Hydrant Ops

- Ensure a full tank
- Idle down
- Close intake & hydrant
- Break connections
- Drain hydrant fully

Troubleshooting

Pump Won't Generate Pressure

- Is the pump is engaged?
- Does the pump have water?
- Am I flowing too much?

Failure of Supply Line

- Immediately close the intake
- Immediately open the tank to pump
- Close exterior / non-essential lines
- Adjust throttle
- Notify interior companies & command

Residual Pressure Decreasing

- Burst hose line?
- Did somebody change tip sizes?
- Debris clogging intake?

Low Pressure / Flow Complaint

- Burst hose line?
- Kinks?

□ The driver is often responsible for all kinks between the pump and the door

Low Pressure / Flow Complaint

- Cavitation?
- Clogged nozzle?

Practical

Booster Tank And External Water Supply Transitions

Pumping From the Tank

- Most fires are extinguished with one line supplied by the booster tank
- Rarely will you begin operations from a hydrant

Pumping From the Tank

- Engage the pump
- Chock the wheels
- Circulate water

Pumping From the Tank

- Charge the selected line only when called for
- Set desired pressure
- Set relief valve / engage pressure governor

Setting a Relief Valve

- 1) Set pump to highest pressure for the operation
- 2) Turn counter-clockwise (lower) until the light comes on

Setting a Relief Valve

- 3) Turn clockwise (increase) until the light goes out
 - Count your turns
- 4) Turn counter-clockwise half of the turns it took to close the valve

Pumping From the Tank

- Monitor water tank level
- Establish an external water supply

Transitioning to External Water

- Make intake connections
- Call for water
- Do not open the valve until water is at the intake and air is bled

Bleeding Incoming Air

- All air must be bled
- Failing to bleed all air can effect pressure governors

Transitioning to External Water

- *Slowly* open the intake valve
- Throttle down as needed
- Close tank to pump
- Refill tank

Basic Pump Operations And Hydraulics

Day 2 - Hydraulics Theory

- This section will cover:
 - Pump discharge pressure
 - Nozzles
 - Friction loss in hose
 - Appliance loss
 - Elevation loss
 - Fire ground hydraulics

Line Pressure Control

- Responsibilities of the pump operator:
 - Safe working pressures
 - Sufficient water
 - Safe application of principles

Hydraulics THEORY

- Not for use on the Fireground !
- Useful for:
 - Preconnects
 - Maximum water movement through supply line
 - Preplanning problems
 - Designing drills
 - Passing the Pump Operator Certification exam
 - Enhances understanding of shortcuts

Pump Pressure

- **PP = NP + FL +/- EL**
 - **PP = Pump Pressure**
 - **NP = Nozzle Pressure**
 - **FL = Friction Loss**
 - **EL = Elevation Loss (Gain)**

Pump Discharge Pressure

- The pressure required at the discharge of the pump to deliver an adequate volume of water at sufficient pressure to the nozzle

Determining Operating Pressure

- 1)- Determine the flow rate
- 2)- Determine friction loss
- 3)- Determine nozzle pressure
- 4)- Determine elevation loss or gain
- 5)- Determine appliance loss
- 6)- Add all of the numbers together

Nozzles & Flows

This section will cover:

Types of nozzles Nozzle operating pressures
Nozzle flow rates Nozzle reaction

Hose Maximum Flows

- 1 ½" – 125 GPM
- 1 ¾" – 200 GPM
- 2" – 250 GPM
- 2 ½" – 325 GPM
- 3" – 500 GPM
- 4" – 1000 GPM
- 5" – 1500 GPM

3 Basic Nozzle Types

- Smoothbore
 - Fixed diameter orifice
- Fog
 - Deflecting or impinging
- Special application
 - Cellar, chimney, piercing, etc.

Smoothbore Nozzles

- Compact stream with great reach
- Little water lost to steam before breakover
- 50 PSI nozzle pressure for hand lines
- 80 PSI nozzle pressure for master stream

Smoothbore Nozzles

- Compact stream with great reach
- Little water lost to steam before breakover
- 50 PSI nozzle pressure for hand lines
- 80 PSI nozzle pressure for master stream

Flow Rates

- Since friction loss is related to flow rate, we must know the flow of the nozzle before we can determine friction loss
- Determined by
 - Diameter of orifice
 - Nozzle pressure

Determining Flow Rate

- Freeman's Formula
- $29.7 \times D^2 \times \sqrt{NP}$
 - 29.7 is constant
 - D^2 is the square of the orifice diameter
 - \sqrt{NP} is the square root of the nozzle pressure

Freeman's Formula Example

- Determine the flow rate from a 1" tip on a hand line
 - $29.7 \times D^2 \times \sqrt{NP}$
 - $29.7 \times (1^2) \times \sqrt{50}$
 - Flow rate = 210 GPM

Solid Bore Nozzle Flows

Tip	NP	Actual	Rounded
15/16"	50	185	185
1"	50	210	200
1 1/8"	50	266	250
1 1/4"	50	328	300
1 1/4"	80	415	400
1 3/8"	80	502	500
1 1/2"	80	598	600
1 3/4"	80	814	800
2"	80	1063	1000
2 1/4"	100	1503	1500

Handline Flows

- For every increase of 1/8" in tip there is a 50 GPM increase in flow (approximately)
- If we remember the flow of the smallest tip, we know that for each tip size increase the flow increases 50 GPM

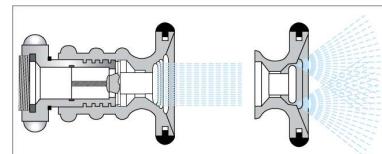
Master Stream Flows

- For every increase of 1/8" in tip there is a 100 GPM increase in flow (approximately)

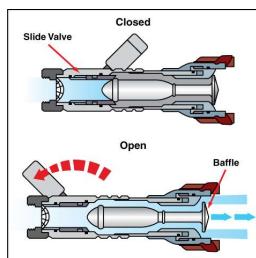
Smoothbore Stream Reach

- However, if a smoothbore tip is removed **and pressure is not added to make up for the increased flow, the stream will fall shorter**
- Therefore, pump operators must know what tip size is being used

Stream Reach & Volume


- If tips are removed without notifying the pump operator you will only get these flows
 - 1" tip at 50 PSI = 210 GPM
 - 1 1/8" tip drops to 40 PSI = 238 GPM
 - 1 1/4" tip drops to 30 PSI = 254 GPM

Fog Nozzles


Fog Streams

- Water is deflected against itself or the stem head of the nozzle

Automatic Nozzles

- A baffle moves against a spring to try to maintain the nozzle pressure
 - The more pressure, the more the baffle opens
 - Inadequate pressure = inadequate volume

Constant Gallonage Nozzles

- Designed to flow a specific volume
- No spring

Adjustable Gallonage Nozzles

- A collar on the nozzle adjusts the flow
- The pump operator must know what GPM is selected

Adjustable Pressure Nozzles

- Reduces the spring pressure in the nozzle
 - This allows more water to pass through
- Pump for the standard pressure
 - Pump operator does not need to know which "mode" it is in

Fog Nozzle Pressures

- Fog nozzles are usually pumped at 100 PSI nozzle pressure
 - Many are available that operate at 75 or 50 PSI
- Most master stream fog nozzles are 100 PSI
 - Some are available that operate at 75 PSI

Master Stream Fog Nozzles

- Flows up to 1000 GPM
 - Some may be greater
- Pumped according to desired flow

Fog Nozzle Flows

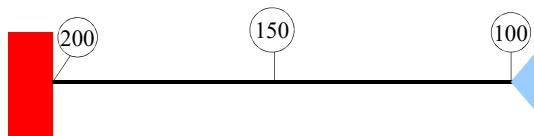
- We assume 1 3/4" fog nozzles to flow 150 GPM
 - Flows up to 200 GPM are possible
- We assume 2 1/2" fog nozzles to flow 250 GPM
 - Flows up to 325 GPM are possible

Portable Master Stream

- TFT "Blitz-Fire" & Elkhart "R.A.M."
- No bends to generate loss
- Pump as an 80 or 100 PSI nozzle

Nozzle Pressure Review

- Fog- 100 PSI
 - Some may be lower
- Smoothbore handline- 50 PSI
- Smoothbore master stream- 80 PSI
- Relay pumper- 20 PSI


Principles of Friction Loss

Friction Loss

- Defined
 - That part of the total pressure lost while forcing water through pipe, fittings, hose, and adapters

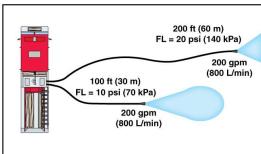
Friction Loss An estimate, until measured

$$PP = NP + FL +/- EL$$

$$200 = 100 + 100 +/- 0$$

Friction Loss

- Friction losses have reduced over the years with advances in hose manufacture
 - Rubber linings
 - Synthetic linings
- New advances continue as technology changes



Causes of Friction Loss

- Type & condition of hose lining
- Couplings
- Bends & kinks
- Improper gaskets

Principle 1

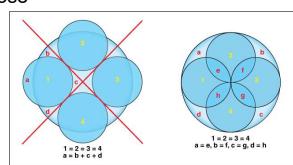
- For the same flow, friction loss varies with the length of hose
 - Double the length = double the friction loss

Principle 2

- Higher flows yield higher friction loss
 - Given the same size hose, if you double the flow, you quadruple the friction loss
- Example
 - 200 GPM in a 2 1/2" has a friction loss of 8 PSI
 - 400 GPM in the same hose would have 32 PSI of friction loss

Principle 3

- For the same flow, larger diameter hose has less friction loss than a smaller hose
 - Double the diameter of the hose, friction loss is reduced to 1/32nd
- Example
 - 500 GPM through a 2 1/2" hose = 50 PSI FL
 - 500 GPM through a 5" hose = 2 PSI FL


Principle 4

- For the same flow, friction loss is the same regardless of system pressure
 - If a 40 PSI system had 10 pounds of friction loss at a certain flow, a 4000 PSI system would have the same
- Friction loss is a product of volume (GPM), not pressure

Hose Principles

- When hose diameter doubles, the area of the hose quadruples
 - It would take 4- 2 1/2" hoses to equal the same area as 1- 5" hose

Friction Loss in Conductors

- Common causes of friction loss are;
 - Water molecules 'rubbing' against each other
 - Hose lining
 - Couplings
 - Sharp bends & kinks
 - Change in hose size by adapters
 - Improper gasket size

Friction Loss Pressure

- Pressure has little to do with the FL
 - 4000 psi hydraulic system would experience roughly the same FL as a 40 psi system.
 - FL IS A FUNCTION OF VELOCITY, NOT PRESSURE!
 - Hard suction tubes have friction loss when working below atmospheric pressure

Friction Loss & Operating Pressures

Single Hose Layouts

Friction Loss Formula

- $FL = Cx(Q^2)xL$
 - C= the coefficient for the particular hose
 - Q= hundreds of gallons per minute
 - GPM / 100
 - L= length in hundreds of feet
 - Feet / 100

Coefficients

■ ¾" booster	1,100	■ 3" with 3" couplings	0.677
■ 1" booster	150	■ 3 ½"	0.34
■ 1 ½" rubber lined	24	■ 4"	0.2
■ 1 ¾" rubber lined	15.5	■ 4 ½"	0.1
■ 2" with 1 ½" couplings	8	■ 5"	0.08
■ 2 ½" rubber lined	2	■ 6"	0.05
■ 3" with 2 ½" couplings	0.8		

Friction Loss Example 1

- 100ft of 1 ¾" with a 100psi fog nozzle flowing 150gpm
 - $FL = CQ^2L$
 - C=15.5
 - Q=1.5
 - L=1
 - $FL = 15.5 \times (1.5^2) \times 1$
 - $FL = 34.875$

Friction Loss Example 1

- When adding pressures, work in rounded numbers
 - 34.875 is rounded to 35psi
- Now add the nozzle pressure
 - 100psi (nozzle) + 35psi (friction loss)
 - 135psi pump discharge pressure

Friction Loss Example 2

- 200ft of 1 3/4" with a 15/16" smoothbore
- Step 1- before anything else can be done, the flow must be determined
 - Freeman's formula from chapter 7
 - $29.7 \times D^2 \times \sqrt{NP}$
 - $29.7 \times 0.9375^2 \times \sqrt{50}$
 - Flow = 184.5gpm (rounded to 185gpm)

Friction Loss Example 2

- Now that the flow is determined, the friction loss can be calculated
 - $FL = CQ^2 L$
 - C=15.5
 - Q=1.85
 - L=2
 - $FL = 15.5 \times (1.85^2) \times 2$
 - $FL = 106 \text{psi}$

Friction Loss Example 2

- Now add the nozzle pressure
 - 106psi (FL) + 50psi (NP)
 - 156psi pump discharge pressure

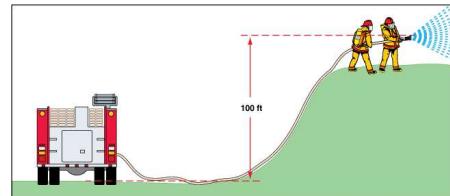
Multiple Hoselines

- Many operations involve more than one hoseline
 - When the diameter and lengths are the same, you only need to calculate one line
 - The pump discharge pressure will be set the same for both

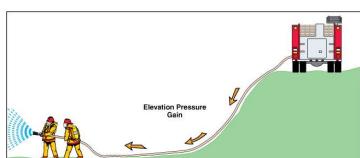
Appliance & Elevation Loss

Appliance Loss

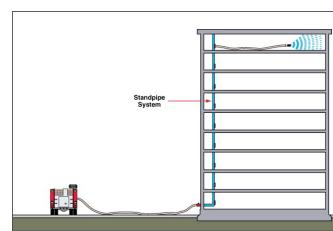
- Wye, Siamese, reducer, water thief, etc.
 - Add 10 PSI if greater than 350 GPM
- Deck gun or aerial master stream
 - Add 25 PSI
- These are estimates!


Elevation Loss & Gain

- 5 PSI loss for every 10 feet above the pump
 - For buildings, use 5 PSI per story above ground level
- 5 PSI gain for every 10 feet below the pump
- Regardless of hose diameter or flow


Elevation Loss

- Determine the pressure loss due to elevation


Elevation Gain

- Determine the pressure gain due to elevation if the nozzle is 40 feet below the pump

Elevation Loss

- Determine the pressure loss due to elevation

Supplying Master Streams

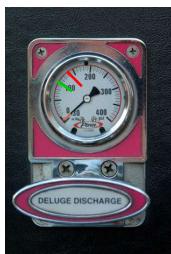
Supplying Master Streams

Apparatus Mounted & Ground Based

- Determine the pump discharge pressure for this apparatus mounted master stream

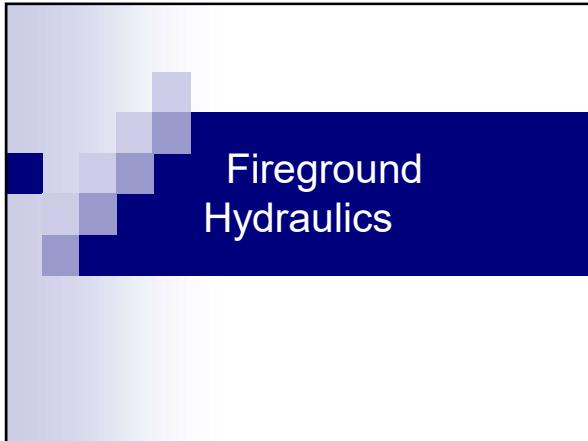
Ground Based Master Stream

- Determine the pump discharge pressure for this deck gun flowing 500 GPM through 200 feet of 5" hose



Formulas

- Useful for new hose loads
- Useful for pre-planning
- Not for fireground use

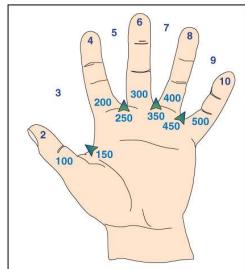

Marked Gauges

- These departments may put two different colored lines on the gauge
- The pump operator can then pump at the maximum or the minimum for the line

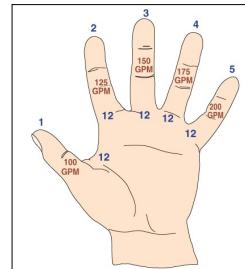
Fireground Hydraulics


Marked Gauges

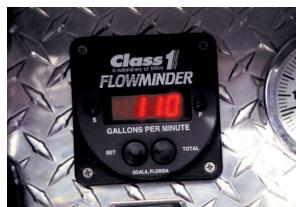
- Some departments chose to mark the pressure gauges for pre-connects
 - Example- this deck gun is marked for 105 PSI with a green line


Prepared Charts

- May be generic or custom made
- Keep them simple & easy to read


Hand Method for 2 1/2"

- Multiply the number at the fingertip by the first digit of the number on the palm
- Example
 - 200gpm
 - $4 \times 2 = 8$ psi / 100ft


Hand Method for 1 3/4"

- Multiply the number at the fingertip by 12
- Example
 - 150gpm
 - $3 \times 12 = 36$ psi / 100ft

Flowmeters

- Reads GPM
- Set the discharge gate & throttle to the desired flow
- Water must be continuously flowing to set

Flowmeters

- May be paired with a pressure gauge
- Trust your pressures, but verify with the flowmeter

Flowmeter Troubleshooting

- If interior companies are reporting a loss in pressure-
 - And pressure is good but the flowmeter shows a *high flow*, there is probably a *burst line*
 - And pressure is good but the flowmeter shows a *low flow*, there are probably *kinks in the line*

Hydraulic Calculations

- Not for fireground use
- As a pump operator, you must be able to memorize some flows and losses

Memorization

- As a pump operator, it is your job to know proper pumping pressure
- At a minimum you should know your pre-connect pressures without hesitation
 - You should also know what to add if lengths are added

Condensed Q

- 3" Hose
 - $FL(\text{per 100'}) = Q^2$
- 4" Hose
 - $FL (\text{per 100'}) = Q^2/5$
- 5" Hose
 - $FL(\text{per 100'}) = Q^2/15$
- Not accurate for long hose lays

Condensed Q

- FL in 600' of 3" with 400 GPM flow?
 - Q^2
- FL in 900' of 4" with 600 GPM flow?
 - $Q^2/5$
- FL in 1000' of 5" with 900 GPM flow?
 - $Q^2/15$

Fireground Math

- Know pump discharge pressures for pre-connects
 - Calculated at the firehouse
- Work backwards to determine pressures required for added lengths
 - Example- 200ft 1 3/4" crosslay w/100psi nozzle
 - 170psi PDP – 100psi NP = 70psi FL for 200ft
 - Or 35psi per 100ft

Fireground Math

- Know your discharge pressures before you leave the firehouse
- Use simple fireground math to add or remove lengths
- Commit common pressures to memory

Common 1 3/4" Friction Losses

- 1 3/4" @ 95gpm = 14psi / 100ft
 - Foam line
- 1 3/4" @ 125gpm = 24psi / 100ft
 - Foam line
- 1 3/4" @ 150gpm = 35psi / 100ft
- 1 3/4" @ 185gpm= 53psi / 100ft
 - 15/16" smoothbore
- 1 3/4" @ 200gpm = 62psi / 100ft

Common 2 ½" Friction Losses

- 2 1/2" @ 210gpm = 9psi / 100ft
 - 1" smoothbore
- 2 1/2" @ 266gpm = 14psi / 100ft
 - 1 1/8" smoothbore
- 2 1/2" @ 328gpm = 22psi / 100ft
 - 1 1/4" smoothbore

Common 4" & 5" Friction Losses

- 4" @ 500gpm = 5psi / 100ft
- 4" @ 750gpm = 11psi / 100ft
- 4" @ 1000gpm = 20psi / 100ft
- 5" @ 500gpm = 2psi / 100ft
- 5" @ 750gpm = 5psi / 100ft
- 5" @ 1000gpm = 8psi / 100ft
- 5" @ 1500gpm = 18psi / 100ft

Common 3" Friction Losses

- 3" @ 300gpm = 7psi / 100ft
- 3" @ 400gpm = 13psi / 100ft
- 3" @ 500gpm = 20psi / 100ft
- 3" @ 600gpm = 29psi / 100ft

