Insect (and tick) repellents applied to skin and/or clothing can be broadly grouped as synthetic-chemical or botanical chemical-based compounds. There are about 150 repellent products registered with the U.S. Environmental Protection Agency (EPA) for use on human skin. The primary active ingredient in most insect/tick repellents today is DEET (N, N-diethyl-m-toluamide). For blacklegged ticks, DEET concentrations around 20 to 30% applied to clothes are about 86-92% effective in preventing tick bites. Other repellents and appropriate concentrations for use against ticks include picaridin (20%), Oil of Lemon Eucalyptus (30%), and IR3535 (20%). For use only on clothing, products with permethrin, a pyrethroid insecticide, work primarily by killing ticks on contact with treated clothes, although it also has some repellent activity. Available as an aerosol spray or pre-treated clothing, it can provide a high level of protection. Botanical, herbal or natural-based repellents include one or several plant essential oils. Most provide a more limited duration of protection. However, many are not effective against ticks and are not labeled for use against ticks. More information on repellents is available in a fact sheet at www.ct.gov/caes under publications.

• Nymphal blacklegged ticks are very small (pinhead size), difficult to see, and are active during the late spring and summer months. Roughly 70-80% of human Lyme disease cases occur in the summer months.
• The majority (about 75%) of Lyme disease cases are associated with activities (play, yard or garden work) around the home and about 21% in activities away from the home. Adult blacklegged ticks are active in the fall, warmer days in the winter, and in the spring when outdoor activity and exposure is more limited. They are larger, easier to see, and therefore associated with fewer cases of Lyme disease (even though infection rates may be higher.)
• Ticks do not jump, fly or drop from trees, but grasp passing hosts from the leaf litter, tips of grass, etc. Most ticks are probably picked up on the lower legs and then crawl up the body seeking a place to feed. Adult ticks will seek deer and other larger animals at the shrub level several feet above the ground, about or above the height of a child.
• Children 5-13 years of age are particularly at risk for tick bites and Lyme disease as playing outdoors has been identified as a high-risk activity. Take notice of the proximity of woodland edge or mixed grassy and brushy areas from public and private recreational areas and playing fields. While ticks are unlikely to be encountered in open fields, children chasing balls off the field or cutting through woods to school may be entering a high-risk tick area.
• Pets can bring ticks into the home, resulting in a tick bite without the person being outdoors. A veterinarian can suggest methods to protect your pets. Engorged blacklegged ticks dropping off a pet will not survive or lay eggs in the house as it is too dry.
Lyme Disease
Lyme disease is an infection caused by the spirochete bacterium *Borrelia burgdorferi*, transmitted by the feeding of the blacklegged tick, *Ixodes scapularis*. Early infection is noted by an expanding red rash in 70-90% of patients within 7-14 days at the site of the tick bite. With or without the rash, non-specific "viral-like" symptoms include fatigue, muscle and joint pain, and maybe a fever. Rashes vary in size, shape, and appearance. The rash is often red, but may have central clearing, or a "bull's eye" appearance. As the infection spreads it can cause arthritis, debilitating malaise and fatigue, neurologic or cardiac problems.

Babesiosis
Babesiosis is a malaria-like illness that is caused by a protozoan *Babesia microti*, propagating in red blood cells. Human infection can range from subclinical to mild flu-like illness, to severe life-threatening disease in the elderly, the immune-suppressed, and people without spleens. Symptoms include fever, fatigue, chills, headache, muscle and joint pain. Co-infection with *B. microti* and *B. burgdorferi* can result in overlapping clinical symptoms, more severe Lyme disease, and a longer recovery than either disease alone.

Anaplasmosis
The bacterium *Anaplasma phagocytophilum* invades a type of white blood cell, forming colonies (morulae) that may be observed in a stained peripheral blood smear. Clinical symptoms are non-specific and may include fever, headache, chills, muscle aches, nausea, vomiting, and malaise. Most cases are mild, resolving without treatment within 30 days, but cases may also be moderate or severe in elderly or immunocompromised individuals.

Hard Tick Relapsing Fever
*Borrelia miyamotoi* was first found in the blacklegged tick, *I. scapularis*, in Connecticut in 2001. The first human cases in North America were described in 2013 in patients presenting with a viral-like illness, some of whom also had Lyme disease or babesiosis. Symptomatic cases appear to be highest in people during July and August. Symptoms include fever, chills, fatigue, headache, muscle and joint pain. Fever and other symptoms may occur in cycles separated by periods of feeling better. The prevalence of *B. miyamotoi* in blacklegged ticks appears low (1-5%). Unlike with Lyme disease, this pathogen can be transovarially transmitted (female tick to egg), raising the possibility of transmission by larval ticks feeding on people.

Powassan Virus
Powassan (POW) virus is a tick-borne encephalitis virus. Cases of Powassan encephalitis are relatively rare (7-12 cases reported in the US each year). The principal tick vectors are the blacklegged tick, *I. scapularis*, in Connecticut. Ticks can carry multiple pathogens, although the rate of co-infection is low (0.1-4.0%). The Powassan virus can be transmitted in as little as 15 minutes after tick attachment. American dog ticks do NOT transmit the pathogens associated with the blacklegged tick (they are vectors for Rocky Mountain spotted fever and tularemia). Powassan encephalitis may include fever, headache, muscle and joint pain. Fever and other symptoms may occur in cycles separated by periods of feeling better. The prevalence of *B. miyamotoi* in blacklegged ticks appears low (1-5%). Unlike with Lyme disease, this pathogen can be transovarially transmitted (female tick to egg), raising the possibility of transmission by larval ticks feeding on people.

Transmission
Ticks attach and feed slowly over a period of several days. Most Lyme disease cases are associated with the bite of the nymphal stage of the blacklegged tick. The probability of transmission of Lyme spirochetes increases the longer an infected tick is attached (0% at 24 hours, 12% at 48 hours, 79% at 72 hours, and 94% at 96 hours). It also takes at least 24 hours for the agents of babesiosis and anaplasmosis to be transmitted by the tick. Approximately 30% of blacklegged ticks, on average, will be infected with Lyme disease bacterium. Prompt removal of an attached tick will reduce the chance of infection. However, the Powassan virus can be transmitted in as little as 15 minutes after tick attachment. American dog ticks do NOT transmit the pathogens associated with the blacklegged tick (they are vectors for Rocky Mountain spotted fever and tularemia). Ticks can carry multiple pathogens, although the rate of co-infection is low (0.1-4.0%).

Tick Removal
To remove a tick, use thin-tipped tweezers or forceps to grasp the tick as close to the skin surface as possible. Pull the tick straight upward with steady even pressure. Disinfect the area with rubbing alcohol or another skin disinfectant; a topical antibiotic also may be applied. Save the tick for identification or testing and evidence of tick bite.