Calculating $90^{\text {th }}$ Percentiles

- How do you calculate the $90^{\text {th }}$ percentile result?
- For systems collecting more than 5 samples;
- Place Lead or Copper results in ascending order.
- Assign each sample a number, 1 for the lowest value and rank.
- Multiply the total number of samples collected by 0.9
- Example: 20 samples X $0.9=18$
-Therefore, the $18^{\text {th }}$ highest ranked result is the $90^{\text {th }}$ percentile sample to be compared to the Action Level.

Calculate the Lead 90th Percentile 10 samples collected

Site 1: $0.005 \mathrm{mg} / \mathrm{L}$
Site 2: $0.015 \mathrm{mg} / \mathrm{L}$
Site 3: $0.005 \mathrm{mg} / \mathrm{L}$
Site 4: $0.014 \mathrm{mg} / \mathrm{L}$
Site 5: $0.017 \mathrm{mg} / \mathrm{L}$
Site 6: $0.005 \mathrm{mg} / \mathrm{L}$
Site 7: $0.011 \mathrm{mg} / \mathrm{L}$
Site 8: $0.002 \mathrm{mg} / \mathrm{L}$
Site 9: $0.018 \mathrm{mg} / \mathrm{L}$
Site 10: $0.004 \mathrm{mg} / \mathrm{L}$
What is the $90^{\text {th }}$ percentile value?

Calculate the Lead 90th Percentile 10 samples collected

Order and Rank Lead results from lowest to highest:

$$
\begin{aligned}
& \text { Rank } 1 \text { - Site } 8-0.002 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 2 \text { - Site } 10-0.004 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 3 \text { - Site } 6-0.005 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 4 \text { - Site } 3-0.005 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 5 \text { - Site } 1-0.005 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 6 \text { - Site } 7-0.011 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 7 \text { - Site } 4-0.014 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 8 \text { - Site } 2-0.015 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 9 \text { - Site } 5-0.017 \mathrm{mg} / \mathrm{L} \\
& \text { Rank } 10 \text { - Site } 9-0.018 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

Multiply the number of samples by 0.9 :
0.9×10 samples $=9$ Therefore, the 9 th highest ranked sample is the $90^{\text {th }}$ percentile result to compare to the Action Level.

Lead 90th Percentile $=0.017 \mathrm{mg} / \mathrm{L}$
(Action Level is $0.015 \mathrm{mg} / \mathrm{L}$)

Calculating 90th Percentiles

- Calculating 90th percentile result for system that collected 5 samples:
- Rank results in ascending order and assign a number to each with 1 being the lowest rank.
- Calculate the average of the $4^{\text {th }}$ highest and 5th highest ranked results.
- The result of which is then compared to the Action Level.

Calculating 90th Percentiles

Calculate the Lead 90th Percentile

5 samples collected
Order and Rank lead results from lowest to highest:
Rank 1 - $0.001 \mathrm{mg} / \mathrm{L}$
Rank $2-0.003 \mathrm{mg} / \mathrm{L}$
Rank $3-0.005 \mathrm{mg} / \mathrm{L}$
Rank 4-0.012 mg/L
Rank 5 - $0.026 \mathrm{mg} / \mathrm{L}$
Multiply the number of samples by 0.9 :
0.9×5 samples $=4.5$. Therefore, calculate the average of the $4^{\text {th }}(0.012)$ and $5^{\text {th }}(0.026)$ highest ranked result to get the $90^{\text {th }}$ percentile result to compare to the Action Level.

$$
\frac{0.012 \mathrm{mg} / \mathrm{L}+0.026 \mathrm{mg} / \mathrm{L}}{2}=0.019 \mathrm{mg} / \mathrm{L}
$$

Lead 90th percentile $=0.019 \mathrm{mg} / \mathrm{I}($ Action Level is $0.015 \mathrm{mg} / \mathrm{I})$

90th percentile Interpolation Calculation

Calculate the Copper 90th Percentile

 7 samples collected- Calculating $90^{\text {th }}$ percentile result for system that collected 7 samples:
- Rank results in ascending order and assign a number to each with 1 being the lowest rank.
- Interpolate to get the $90^{\text {th }}$ percentile level. The result of which is then compared to the Copper Action Level.

90th percentile Interpolation Calculation

Calculate the Copper 90th percentile 7 samples collected

Interpolate: 0.9×7 samples $=6.3$.
Therefore, interpolate to get the $90^{\text {th }}$ percentile result to compare to the Action Level.

- Rank 1 - Result $=1.17 \mathrm{mg} / \mathrm{l}$
- Rank 2 - Result $=1.19 \mathrm{mg} / \mathrm{l}$
- Rank 3 - Result $=1.34 \mathrm{mg} / \mathrm{l}$
- Rank 4 - Result $=1.51 \mathrm{mg} / \mathrm{l}$
- Rank 5 - Result $=1.57 \mathrm{mg} / \mathrm{l}$
- Rank 6 - Result $=1.73 \mathrm{mg} / \mathrm{l}$
- Rank 7 - Result $=1.95 \mathrm{mg} / \mathrm{l}$

90th percentile Interpolation Calculation

Calculate the Copper $90^{\text {th }}$ percentile
7 samples ($90^{\text {th }} \%$) $=6.3$ ranked sample
First, subtract the difference between the $6^{\text {th }}(1.73)$ \& 7 th (1.95) ranks.

$$
1.95-1.73=0.22
$$

Second, multiply the answer by 0.3 since the $90^{\text {th }}$ percentile is 0.3 higher than the $6^{\text {th }}$ ranked result in this case.

$$
0.22 \times 0.3=0.066
$$

Next, add 0.066 to the $6^{\text {th }}$ ranked result (1.73).

$$
1.73+0.066=1.8 \mathrm{mg} / \mathrm{l}
$$

Copper $90^{\text {th }}$ percentile $=1.8 \mathrm{mg} / \mathrm{I}$ (Action Level is $\left.1.3 \mathrm{mg} / \mathrm{I}\right)$

